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Abstract: This paper studies what happens when we move from a short
regression to a long regression (or vice versa), when the long regression is
shorter than the data-generation process. In the special case where the long
regression equals the data-generation process, the least-squares estimators
have smaller bias (in fact zero bias) but larger variances in the long regression
than in the short regression. But if the long regression is also misspecified,
the bias may not be smaller. We provide bias and mean squared error com-
parisons and study the dependence of the differences on the misspecification
parameter.
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1 Introduction

Ludwig van Beethoven composed nine symphonies. Suppose a tenth sym-
phony is discovered. There is no full score, only three parts are available:
first violin, cello, and clarinet. This version is recorded and creates a big hit.
Of course everybody realizes that many instruments are missing — still, it
seems one gets a good idea of Beethoven’s tenth. Now the trumpet part is
discovered and a new recording is made. The new recording is received less
enthusiastically than the first recording and music experts claim that adding
the trumpet moves us away from how the real symphony should sound.

This creates a puzzle and a debate among scientists of various disciplines.
How is it possible that getting closer to the true instrumentation does not
get us closer to the true sound? Of course, adding all instruments to the
score creates the true sound, but it seems that adding only some of them
may not lead to an improvement. An addition in itself is not necessarily an
improvement, it must be a ‘balanced addition’.

What does this mean: a ‘balanced addition’? The current paper con-
tains our attempt to answer this question. We do so in the context of the
standard linear regression model and omitted variables but, given the con-
nection between omitted variables and many other forms of misspecification,
our analysis extends to a variety of problems, such as the choice of suitable
functional forms (polynomial terms, interactions, lag lengths, etc.), errors
in variables, simultaneity, unobserved heterogeneity, censoring, and sample
selection.

To illustrate the issue, consider a data-generation process (DGP) contain-
ing a constant term and four regressors:

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + ǫ. (1)

Our interest is in estimating β1, and we are particularly concerned with
estimation bias. In our first model, the only regressors are the constant term
and x1. In the second model we add x2, in the third we add x3, and finally,
in the fourth model, we add x4. These four models give us four different
ordinary least-squares (OLS) estimators of β1, each with its own bias, and
we know that the bias in the last model equals zero. The left panel of Figure 1
shows that the bias in estimating β1 decreases monotonically to zero as more
regressors are sequentially added to the basic model. (If we change the order
in which x2, x3, and x4 are added to the basic model, then this is still true
in this case.) It would therefore seem that adding more regressors (getting
closer to the truth) always decreases the bias in estimating β1.

But now consider estimating β4. We start with the constant term and
x4 as the only regressors (our basic model) and then we sequentially add
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Figure 1: Bias of the OLS estimators of β1 and β4 by adding regressors
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x1, x2, and x3. In the right panel of Figure 1 the bias no longer decreases
monotonically to zero, and again this result does not depend on the order
in which x1, x2, and x3 are added to the basic model. Apparently, adding
variables to our model does not necessarily decrease the size of the bias even
when these variables belong to the DGP.

This simple fact is not mentioned in textbooks, at least not in the text-
books we consulted (e.g. Maddala 1992; Davidson and MacKinnon 2004;
Cameron and Trivedi 2005; Angrist and Pischke 2009, 2015; Greene 2011;
Wooldridge 2012). The usual story is that the ‘long’ regression (where model
and DGP coincide) yields unbiased estimators, and that the ‘short’ regres-
sion (where one or more of the relevant regressors are omitted) yields biased
estimators. The size of this ‘omitted variable bias’ depends on the size of the
parameters associated with the omitted regressors and the correlation be-
tween included and omitted regressors, so that it will be small if and only if
the omitted regressors are either relatively ‘unimportant’ (i.e. their parame-
ters are relatively small) or almost uncorrelated with the included regressors.
As this bias does not vanish asymptotically, the OLS estimator from the
short regression is also inconsistent.

The implicit message from the textbook analysis is that adding variables
to the model always decreases the bias of the OLS estimator of interest. In
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finite sample setups with fixed regressors and homoskedastic errors, the in-
clusion of additional variables necessarily increases the sampling variance,
giving rise to a bias-precision trade-off. Since this increase in variance does
not depend on the size of the omitted parameters, it is advantageous to delete
‘unimportant’ regressors, even when we know for certain that they belong
to the DGP, because the small increase in bias will be more than offset by
the decrease in variance. (In the case of either stochastic regressors or het-
eroskedastic errors, the conclusions are more nuanced because the inclusion
of additional variables may also decrease the sampling variance.) This trade-
off is a typical finite-sample problem. In large samples the bias dominates
the variance, so it is advisable to avoid misspecification at all cost; see, for
example, Davidson and MacKinnon (2004, p. 116).

This is the textbook story and it is correct, but only if we compare the
smaller model with the full DGP, not if we compare a small model with
a larger model which is still smaller than the DGP, as demonstrated by
Figure 1. Since, in practice, any model is likely to be smaller than the DGP,
we can never be certain that the bias of our OLS estimator decreases when
we add more variables.

Kevin Clarke seems to have been the first to analyze this somewhat coun-
terintuitive situation, but his 2005 paper was published in a journal not typi-
cally read by econometricians and it went largely unnoticed. Clarke criticized
the use of ‘bloated specifications’ based on the ‘key underlying assumption
[. . . ] that the danger posed by omitted variable bias can be ameliorated by
the inclusion of relevant control variables’ when, in fact, ‘the inclusion of
additional control variables may increase or decrease the bias, and we can-
not know for sure which is the case in any particular situation’. Although
important, his study relies on a simplified DGP, does not provide analytical
conditions to interpret bias comparisons of OLS estimators from models with
different sets of regressors, and his conclusions about the ‘phantom menace’
are based on the results of a simple Monte Carlo experiment.

The aim of this paper is to analyze the issue in greater detail and discuss
its consequences. Unlike Clarke (2005), we provide analytical conditions on
bias and mean squared error (MSE) comparisons of OLS estimators from
models with different sets of regressors in a setting where ‘long’ and ‘short’
models are both subject to general forms of misspecification. In addition, we
analyze properties of the residuals, the OLS estimators of the error variance,
and the usual F -test for misspecification.

The plan of the paper is as follows. In Section 2 we present the setup. The
bias and mean squared error of the estimators are presented and compared in
Sections 3 and 4. We discuss residuals, the estimation of the error variance,
and the usual F -test for misspecification in Section 5. Section 6 concludes. A
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data appendix contains the data underlying the little experiment presented
above and a mathematical appendix provides proofs of our propositions.

2 Setup

Our data are assumed to be generated by the process

y = X1β1 +X2β2 + δ + ǫ, (2)

where y is the n × 1 vector containing the observations on the outcome of
interest, X1 (n×k1) and X2 (n×k2) are matrices of regressors, β1 and β2 are
unknown parameter vectors, δ is a vector representing misspecification, and ǫ
is a vector of random disturbances. For example, if the assumed model for y
includes X1 and X2 but omits a set of relevant regressors X3, then δ = X3β3.
As another example, if y = X1β1 +X∗

2β2 + ǫ, but X∗

2 is unobservable and we
only have available a set X2 = X∗

2 +U of ‘proxy’ variables (McCallum 1972),
then δ = −Uβ2.

We let k1 ≥ 1, k2 ≥ 1, and k = k1 + k2 < n, and assume that the matrix
X = (X1 : X2) has full column-rank k. We explicitly exclude the trivial
case where X ′

1X2 = 0. For simplicity we also assume that the regressors and
the misspecification vector δ are all nonrandom. In this simple setting, the
randomness in y is caused exclusively by ǫ, which has mean and variance

E(ǫ) = 0, var(ǫ) = σ2In, (3)

respectively. Equations (2) and (3) define the DGP in the case of fixed
regressors. The specification of the DGP could be extended to cover the case
of stochastic regressors and heteroskedastic errors. Such generalizations are
ignored here because they would not change the biases of our OLS estimators
of β1 and β2. However, as discussed in Section 4, they could affect their
sampling variances and thus the MSE comparisons.

Since the DGP is not known, δ is excluded from any model used for
estimation purposes. We consider two models:

y = X1β1 + ǫ, (4)

and
y = X1β1 +X2β2 + ǫ, (5)

which we call the ‘short’ and the ‘long’ model, respectively. If δ is zero,
then the long model coincides with the DGP. This is the textbook case. If
δ is not zero, then both models are underspecified, as in the so-called M-
open perspective adopted in the Bayesian literature on model selection and
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model averaging; see, for example, Bernardo and Smith (1994), Hoeting et
al. (1999), and Clyde and Iversen (2013). If all or some components of β2 are
zero, then the short model includes parameters (namely the zero components
of β2) which are absent from the DGP, so it is underspecified and overspecified
at the same time.

Letting M1 = In −X1(X
′

1X1)
−1X ′

1, the usual symmetric idempotent ma-
trix of rank n− k1, and defining

A = X1(X
′

1X1)
−1, B = M1X2(X

′

2M1X2)
−1, (6)

we can write the restricted OLS estimator of β1 in the short model (4) as

β̂1r = A′y, (7)

and the unrestricted OLS estimators of β1 and β2 in the long model (5) as

β̂1u = A′y − A′X2B
′y, β̂2u = B′y. (8)

Note that we have excluded the case where X ′

1X2 = 0. The reason is now
clear: if X ′

1X2 = 0 then β̂1r = β̂1u, and a comparison is meaningless.
In the next two sections we shall compare the bias, variance, and MSE

of these two estimators of β1, in particular their dependence on δ. We shall
say that X2 represents a ‘balanced addition’ to X1 if either the bias or the
MSE of the unrestricted estimator of β1 is smaller than the bias or the MSE
of the restricted estimator.

3 Bias

Since the bias dominates the variance in sufficiently large samples, we first
consider the two biases br = E(β̂1r − β1) and bu = E(β̂1u − β1). Their differ-
ence br − bu plays an important role in econometrics, as it helps understand
the relationship between estimators in models with different sets of control
variables (Angrist and Pischke 2009, 2015), and represents the basis for a
variety of specification tests (see, e.g., Hausman 1978).

Proposition 3.1 Under the DGP given by (2) and (3), the biases of the
restricted estimator β̂1r and the unrestricted estimator β̂1u are

br = A′δ + A′X2β2, bu = A′δ − A′X2B
′δ,

respectively.
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Except for a few special cases, it is not clear a priori which of the two
biases is larger. In the textbook case, where δ = 0, we have

br = A′X2β2, bu = 0,

so the unrestricted estimator β̂1u is unbiased, while the restricted estimator
is unbiased only if β2 lies in the null space of the matrix X ′

1X2.
A second special case arises when δ 6= 0 and X1 is orthogonal to the

misspecification vector ζ = X2β2 + δ in the short model (4). Then,

br = 0, bu = −A′X2B
′ζ,

so the restricted estimator is unbiased, while the unrestricted estimator is
not.

A third example is the ‘proxy’ setup of McCallum (1972), where X2 =
X∗

2 + U and δ = −Uβ2. In this case

br = A′(X2 − U)β2, bu = A′(X2B
′ − In)Uβ2.

After imposing the orthogonality restrictions X ′

1U = 0 and X∗
′

2 U = 0, the
two biases become br = A′X∗

2β2 and bu = A′X∗

2Cβ2, where

C = (X∗

2

′M1X
∗

2 + U ′U)−1U ′U.

In the special case when k2 = 1, the matrix C reduces to a scalar between
zero and one, so that β̂1u always has a smaller bias than β̂1r. This result
does not, however, extend to more general settings where the measurement
error U is correlated with X1 (Frost 1979), or where some additional variable
in either X1 or X2 is also measured with error (Barnow 1976; Garber and
Klepper 1980; Bekker and Wansbeek 1996).

In terms of the misspecification vector ζ = X2β2 + δ, we can rewrite the
biases of β̂1r and β̂1u from Proposition 3.1 as

br = A′ζ, bu = A′(In −X2B
′)ζ. (9)

Based on the bias criterion, we say that X2 represents a ‘balanced addition’
to model (4) if b′ubu ≤ b′rbr. We can also write this inequality as

b′ubu
b′rbr

=
η′AA′η

ζ ′AA′ζ
≤ 1,

where η = ζ−X2B
′ζ is the vector of ‘partial residuals’ (Larsen and McCleary

1972) in the regression of ζ onX1 andX2. The inequality trivially holds when
δ = 0.
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4 Mean squared error

In finite samples both bias and variance matter. The biases of β̂1r and β̂1u,
given in Proposition 3.1, depend on δ. Their variances are

var(β̂1r) = σ2A′A, var(β̂1u) = σ2A′ (In +X2B
′BX ′

2)A,

respectively, and these do not depend on δ. Hence, with or without misspec-
ification, the restricted estimator β̂1r is more precise (has smaller variance)
than the unrestricted estimator β̂1u. (Recall that we have excluded the case
X ′

1X2 = 0.) Note, however, that this result does not necessarily extend to
the case of stochastic regressors (Kinal and Lahiri 1983; Teräsvirta 1987) or
heteroskedastic errors (Hansen 2015, p. 176), where the inclusion of addi-
tional variables in the regression may decrease the variance.

Combining variance and bias into MSE matrices gives

MSE(β̂1r) = σ2A′A + A′(X2β2 + δ)(X2β2 + δ)′A

and

MSE(β̂1u) = σ2A′ (In +X2B
′BX ′

2)A + A′(In −X2B
′)δδ′(In −BX ′

2)A.

Naturally, we want to know under which conditions one MSE matrix is larger
than the other, and the role of δ in this comparison. We first compare the
trace of the two matrices, then we compare the matrices themselves. From
the previous two MSE expressions we see that tr[MSE(β̂1u)] ≤ tr[MSE(β̂1r)]
if and only if

b′ubu − b′rbr
σ2

≤ − tr[(X ′

1X1)
−1X ′

1X2(X
′

2M1X2)
−1X ′

2X1(X
′

1X1)
−1],

which shows that we should choose the restricted estimator more frequently
when we consider both bias and variance than if we only consider the bias.
Parsimonious modeling is thus a greater virtue than previously thought, a
result that we shall see and emphasize again later.

In order to compare the full MSE matrices we define the k1 × (k2 + 1)
matrix

Q1 =
[

σA′X2(X
′

2M1X2)
−1/2 : A′(In −X2B

′)δ
]

(10)

and the (k2 + 1)-vector

θ =

(

θ1
1

)

, θ1 = (X ′

2M1X2)
1/2(β2 +B′δ)/σ, (11)
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and note that Q1θ = br, the bias of the restricted estimator. The MSE
difference then takes the form

∆1 = MSE(β̂1u)−MSE(β̂1r) = Q1(Ik2+1 − θθ′)Q′

1. (12)

The rank of Q1 can only take one of two values, as follows.

Proposition 4.1 Let r = rank(X ′

1X2) ≥ 1. Then the rank of Q1 is

rank(Q1) =

{

r, if δ = M1δ1 +X2δ2 for some δ1 and δ2,

r + 1, otherwise.

In what follows we shall carefully distinguish between these two cases. We
first consider the case where rank(Q1) = r + 1 and introduce the symbol +

to denote the Moore-Penrose inverse of a matrix.

Proposition 4.2 If δ is not a linear combination of the columns of M1 and
X2, then rank(Q1) = r + 1 and, letting

q(δ) = θ′Q′

1(Q1Q
′

1)
+Q1θ,

we obtain

∆1 ≥ 0 ⇐⇒ q(δ) ≤ 1,

∆1 > 0 ⇐⇒ q(δ) < 1 and r = k1 − 1,

while ∆1 is never negative (semi)definite.

Proposition 4.2 tells us that, in the situation where δ does not depend linearly
on M1 and X2, the unrestricted estimator β̂1u never dominates the restricted
estimator β̂1r, and that the restricted estimator dominates the unrestricted
estimator if and only if the quadratic form q(δ) is smaller than or equal to
one. When does this happen? We can write

q(δ) =
θ′Q′

1(Q1Q
′

1)
+Q1θ

θ′θ
· θ′θ

and note that θ′Q′

1(Q1Q
′

1)
+Q1θ/θ

′θ ≤ 1 and θ′θ = 1 + θ′1θ1 ≥ 1, where the
first inequality follows from the fact that Q′

1(Q1Q
′

1)
+Q1 is symmetric and

idempotent, so its eigenvalues are only zero and one. This tells us that, in
general, it is not clear whether q is larger or smaller than one.

What can we say about q(δ) in the neighborhood of δ = 0? In other words,
when we move from no specification to a small amount of misspecification,
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how sensitive is q to such a small change? Such questions are typically
answered by computing the local sensitivity, that is, the derivative of q(δ) at
δ = 0 (Magnus and Vasnev 2007). The function q is defined for all δ, whether
or not δ can be written as a linear combination of the columns of M1 and X2.
In particular, q(0) is defined, but local sensitivity is not, because the function
q is not even continuous at δ = 0. This follows because rank(Q1) = r when
δ = 0, but rank(Q1) = r + 1 when δ does not lie in the space spanned by
the columns of M1 and X2, however close to zero it is. Hence, there is a
discontinuity in rank at δ = 0. It then follows from Magnus and Neudecker
(1999, Section 8.5) that Q+

1 is discontinuous at δ = 0 unless Q1 has full
column- or row-rank. What this means is that a small perturbation of δ may
have a large effect on q(δ).

We note one case of special interest. When r = k2 then Q1 has full
column-rank, so q(δ) = θ′θ = 1 + θ′1θ1. Hence,

∆1 ≥ 0 ⇐⇒ X ′

2M1(X2β2 + δ) = 0,

while ∆1 is never positive definite.
Let us next consider the case where δ lies in the space spanned by the

columns of M1 and X2, so that we can write δ = M1δ1+X2δ2. The DGP (2)
then takes the form

y = X1β1 +X2(β2 + δ2) +M1δ1 + ǫ,

from which it follows that there is no loss in generality by setting δ2 = 0. The
condition δ = M1δ1+X2δ2 then reduces to X ′

1δ = 0, and the misspecification
δ affects neither the bias nor the variance of the restricted estimator β̂1r,
although it does affect the bias (but not the variance) of the unrestricted
estimator β̂1u, unless X2 is also orthogonal to δ.

Proposition 4.3 If X ′

1δ = 0, then rank(Q1) = r and, letting

ω(δ) = β ′

2X
′

2X1 (X
′

1X2V1X
′

2X1)
+
X ′

1X2β2

with
V1 = σ2(X ′

2M1X2)
−1 +B′δδ′B,

we obtain

∆1 ≥ 0 ⇐⇒ ω(δ) ≤ 1,

∆1 > 0 ⇐⇒ ω(δ) < 1 and r = k1,

∆1 ≤ 0 ⇐⇒ ω(δ) ≥ 1 and r = 1,

∆1 < 0 ⇐⇒ ω(δ) > 1 and k1 = 1.
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Again we should ask when it is true that ω(δ) ≤ 1. First notice that V1 is
nonsingular and that its inverse is given by

V −1

1 =
1

σ2

[

X ′

2M1X2 −
X ′

2M1δδ
′M1X2/σ

2

1 + δ′M1X2(X ′

2M1X2)−1X ′

2M1δ/σ2

]

.

Next, letting W = X ′

1X2V
1/2
1 , we may express ω(δ) as

ω(δ) = β ′

2V
−1/2
1 W ′(WW ′)+WV

−1/2
1 β2.

A sufficient condition for ω(δ) ≤ 1 is therefore β ′

2V
−1

1 β2 ≤ 1, but this condi-
tion is, in general, not necessary. Using the expression for V −1

1 we find

β ′

2V
−1

1 β2 ≤ 1 ⇐⇒ λ ≤ 1 + λδ,

where

λ =
β ′

2X
′

2M1X2β2

σ2
, λδ =

δ′M1X2β2β
′

2X
′

2M1δ/σ
2

σ2[1 + δ′M1X2(X
′

2M1X2)−1X ′

2M1δ/σ2]
. (13)

We note that λ is the noncentrality parameter in the distribution of the clas-
sical F -statistic for testing the hypothesis that β2 = 0 in the long model (5)
when the errors are normal. The condition λ ≤ 1 is well-known as the
condition under which the complete restricted estimator (β̂1r, 0) has smaller
MSE than the complete unrestricted estimator (β̂1u, β̂2u) in the absence of
misspecification; see Toro-Vizcarrondo and Wallace (1968, Equation (19)).

In contrast to the setup in Proposition 4.2 the function ω is now differ-
entiable at δ = 0. This is because ω depends on δ only through M1δ. The
derivative of ω at δ = 0 vanishes, but the second derivative is nonzero, in
fact negative semidefinite. Hence, ω achieves a maximum at δ = 0. We can
see this also by noting that the fact that

X ′

1X2V1X
′

2X1 ≥ σ2X ′

1X2(X
′

2M1X2)
−1X ′

2X1

implies that

(X ′

1X2V1X
′

2X1)
+ ≤

[X ′

1X2(X
′

2M1X2)
−1X ′

2X1]
+

σ2
,

because the rank of the matrix X ′

1X2V1X
′

2X1 does not depend on δ; see Mil-
liken and Akdeniz (1977) and Magnus and Neudecker (1999, Miscellaneous
Exercise No. 13). This means that ignoring misspecification favors the unre-
stricted estimator, and that we should therefore be even more parsimonious
in our modeling than common practice prescribes.
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We consider two special cases. First, when r = k2 then the sufficient
condition β ′

2V
−1

1 β2 ≤ 1 is also necessary, and hence

∆1 ≥ 0 ⇐⇒ λ ≤ 1 + λδ,

∆1 > 0 ⇐⇒ λ < 1 + λδ and k1 = k2,

∆1 ≤ 0 ⇐⇒ λ ≥ 1 + λδ and k2 = 1,

∆1 < 0 ⇐⇒ λ > 1 + λδ and k1 = k2 = 1.

When, in addition, X ′

2δ = 0, then λδ = 0 and we find that the restricted
estimator β̂1r dominates the unrestricted estimator β̂1u if and only if λ ≤ 1.

Second, when, in addition to X ′

1δ = 0, also X ′

2δ = 0 (which is less restric-
tive than the textbook case δ = 0), we find ω(δ) = ω0, where

ω0 =
β ′

2X
′

2X1 [X
′

1X2(X
′

2M1X2)
−1X ′

2X1]
+
X ′

1X2β2

σ2
. (14)

This special case was, in essence, first derived by Magnus and Durbin (1999,
Theorem 1) and is required in the ‘equivalence theorem’ which motivates the
class of weighted-average least squares (WALS) estimators; see Magnus and
De Luca (2014) for a survey. Of course, when also r = k2 then we find again
that ω(δ) = λ.

In this second special case, where δ is orthogonal to both X1 and X2, the
unrestricted estimator β̂1u is unbiased. Thus, Q1Q

′

1 = var(β̂1u)−var(β̂1r) and
ω0 corresponds, in essence, to the noncentrality parameter in the distribution
of the Hausman statistic for testing the hypothesis β2 = 0 in model (5) with
normal errors; see Holly (1982, p. 754).

5 Residuals, estimation of σ2, and testing

An estimate of the error variance σ2 is needed in order to assess the sampling
variability of the OLS estimators. This estimate is typically constructed by
suitably rescaling the sum of the squared residuals. The residuals in the short
model (4) and the long model (5) are given by

ǫ̂r = M1y, ǫ̂u = My,

respectively, where M = In −X(X ′X)−1X ′ is the usual symmetric idempo-
tent matrix of rank n− k. By the properties of M1 and M , we have

ǫ̂′r ǫ̂r = y′M1y, ǫ̂′uǫ̂u = y′My,
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and the restricted and unrestricted OLS estimators of σ2 are, respectively,

s2r =
y′M1y

n− k1
, s2u =

y′My

n− k
.

Under the additional assumption that the regression errors in (2) are nor-
mally distributed, the distributions of s2r and s2u are noncentral chi-squared:

(n− k1)s
2
r

σ2
∼ χ2(n− k1, λr),

(n− k)s2u
σ2

∼ χ2(n− k, λu),

where

λr =
ζ ′M1ζ

σ2
, λu =

ζ ′Mζ

σ2
=

δ′Mδ

σ2

are the noncentrality parameters. This implies that

E(s2r) = σ2

(

1 +
λr

n− k1

)

, E(s2u) = σ2

(

1 +
λu

n− k

)

.

The textbook case where δ = 0 gives λu = 0 and ζ = X2β2, so that λr = λ
as defined in (13). In this case the restricted estimator s2r is biased, while the
unrestricted estimator s2u is unbiased. If δ 6= 0, then both estimators of σ2

are biased upward and is not clear a priori which of the two biases is larger.
In fact, bias(s2u) ≤ bias(s2r) if and only if

λu

λr

≤
n− k

n− k1
.

This inequality holds when δ = 0, in which case λu = 0, but when δ 6= 0
we may have (n − k)/(n − k1) ≤ λu/λr ≤ 1, which implies that bias(s2u) ≥
bias(s2r). Also notice that, unless n → ∞, the two biases in estimating σ2 do
not vanish even when X1, X2, and δ are orthogonal. Although β̂1r and β̂1u

are unbiased in this limiting case, inference about β1 based on classical test
statistics and confidence intervals will be incorrect because actual coverage
levels are higher than nominal.

Next we consider the classical F -statistic

F =
(ǫ̂′r ǫ̂r − ǫ̂′uǫ̂u)/k2
ǫ̂′uǫ̂u/(n− k)

for testing the correct specification of the short model (4). In the text-
book case where δ = 0, this statistic follows a noncentral F -distribution
with (k2, n−k) degrees of freedom and noncentrality parameter λ as defined
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in (13). In our more general setup where δ can be different from zero, the
basic decomposition

M1 = M +M1X2(X
′

2M1X2)
−1X ′

2M1

implies that
ǫ̂′r ǫ̂r − ǫ̂′uǫ̂u = y′M1X2(X

′

2M1X2)
−1X ′

2M1y.

The numerator and the denominator of the F -statistic are still independent
as (M1−M)M = 0, but now both follow noncentral chi-squared distributions

ǫ̂′r ǫ̂r − ǫ̂′uǫ̂u
σ2

∼ χ2(k2, λr − λu),
ǫ̂′uǫ̂u
σ2

∼ χ2(n− k, λu).

The distribution of the F -statistic is therefore a doubly noncentral F with
(k2, n − k) degrees of freedom and noncentrality parameters (λr − λu, λu).
We refer the reader to Johnson, Kotz, and Balakrishnan (1995, Chapter 30)
for a discussion on the properties of this distribution.

In our framework, testing the correct specification of the short model (4)
amounts to testing the null hypothesis that ζ = 0. Under this null, the two
noncentrality parameters λr−λu and λu are both zero and the distribution of
the F -statistic is a central F with (k2, n−k) degrees of freedom. In contrast,
testing the correct specification of the long model (5) amounts to testing the
null hypothesis that δ = 0. Under this null, λu = 0 and λr − λu = λ defined
in (13). The distribution of the F -statistic is then a singly noncentral F with
(k2, n− k) degrees of freedom and noncentrality parameter λ.

6 Conclusions

It is not generally true that adding variables to a linear regression model
reduces the bias of the parameters of interest. This is true when we compare
a short model with a long model which coincides with the DGP, but it is not
necessarily true when both the short and the long model are underspecified,
as is the common situation. In this more common situation the strategy
of adding variables may increase both the bias and the variance of the OLS
estimators. The consequences of adding or omitting variables are ambiguous.

We have analyzed this ambiguity by providing exact expressions for the
bias and MSE comparisons of the OLS estimators from two misspecified
models with different sets of regressors, and shown that MSE comparisons
are particularly sensitive to small perturbations of the misspecification vector
δ in a neighborhood of δ = 0. We related our conditions for bias and MSE
dominance to previous findings in the literature, and we discussed the local
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sensitivity of MSE comparisons to small perturbations in misspecification,
the estimation of the error variance, and the usual F -test for misspecification.

Throughout we have focused on a simple DGP with fixed regressors and
homoskedastic errors, and our results on MSE comparisons do not directly
extend to frameworks with either stochastic regressors or heteroskedastic er-
rors, where the inclusion of additional variables may decrease the variance
of the corresponding OLS estimator. The extension to stochastic regres-
sors, which could be developed by generalizing the setup in Kinal and Lahiri
(1983), would be particularly useful because it would provide insight in a
whole class of important problems where misspecification occurs in the form
of a random variable, e.g. errors in variables, simultaneity, and sample selec-
tion.

Compared to the textbook case where the long model and the DGP co-
incide, our findings tilt the bias-precision trade-off between the restricted
and unrestricted OLS estimators in favor of the restricted estimators. This
emphasizes again the importance of model parsimony and the importance of
recognizing models as approximations of an unknown DGP. The first issue
was championed by Einstein whose words ‘As simple as possible, but not
simpler’ may be difficult to apply, but remain excellent advice. The second
issue has implications for model-building strategies, as pointed out by Hansen
(2005) and others, emphasizing the dangers of ignoring the impact of model
selection on inference. The development of model-averaging techniques in an
M-open framework, where the DGP is not included in the assumed set of
models, is therefore one of several challenging lines for future research.

Appendix A: Data

Table 1 presents the data underlying the example in the introduction. These
data have been obtained by repeatedly drawing thirty observations from a
multivariate normal distribution with zero means, unit variances, and corre-
lation matrix

R =









1 −0.25 0.20 0.35
−0.25 1 −0.20 −0.30
0.20 −0.20 1 −0.40
0.35 −0.30 −0.40 1









until the absolute value of the differences between sample and theoretical
correlations did not exceed 0.05. In the chosen pseudo-random sample, the
regressors x1, x2, x3, and x4 have means

m =
(

−0.1069 0.0016 −0.3261 0.1297
)

,
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Table 1: Data underlying the example in the introduction.

obs x1 x2 x3 x4

1 0.8163 0.9657 −0.3117 0.1100
2 −2.2118 1.2288 0.7152 −2.1125
3 −0.0853 0.2224 −1.1263 1.4286
4 −0.6089 1.5049 −0.6765 −1.6555
5 −1.7725 0.0492 −1.5358 1.2491
6 −0.6467 0.4116 −0.0659 0.8478
7 −0.0896 0.5599 −1.3879 0.0872
8 0.9110 0.0359 0.7732 −1.1832
9 −1.1612 0.5058 −1.5293 0.2883
10 0.0072 −1.4850 0.2864 1.3529
11 0.9896 −0.4203 0.5608 1.0412
12 0.7906 0.5619 0.6586 −0.4542
13 0.3187 1.1368 −1.4688 −0.0096
14 0.0649 1.2908 0.1675 0.0866
15 −1.5940 −1.2709 −1.2838 0.4529
16 −0.4108 −1.9377 2.1200 −1.3335
17 0.6693 0.2766 −0.5916 −0.2905
18 −0.2095 −0.4355 −0.4012 −0.4672
19 0.6368 −1.5590 −0.7939 1.7599
20 −0.7128 0.1294 −0.1938 −1.3237
21 1.4261 −1.8963 −0.6207 2.0997
22 1.2016 −0.7201 0.6938 0.5522
23 −3.3882 0.8007 −1.4663 −0.2741
24 0.0546 −0.9427 0.7044 −0.9465
25 1.5487 0.6487 −2.8828 1.6191
26 −0.4126 1.4388 1.2894 0.1542
27 −0.9765 −0.4683 −0.6976 −0.8480
28 −0.3026 0.2605 −2.1524 1.3546
29 0.3177 −0.6855 0.3742 −0.0908
30 1.6229 −0.1594 1.0584 0.3972
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standard deviations

s =
(

1.1518 0.9853 1.1230 1.0801
)

,

and correlation matrix

R =









1 −0.2237 0.1930 0.3429
−0.2237 1 −0.2223 −0.2973
0.1930 −0.2223 1 −0.4348
0.3429 −0.2973 −0.4348 1









.

The DGP underlying Figure 1 includes a constant term and the four regres-
sors in Table 1 with associated parameters equal to β0 = 1, β1 = 1, β2 = −1,
β3 = 1, and β4 = 1.

Appendix B: Proofs

In this appendix we present proofs of the propositions in the paper.

Proof of Proposition 3.1. From (7) we have

br = E(β̂1r)− β1 = A′(E y)− β1

and, from (8),

bu = E(β̂1u)− β1 = (A′ −A′X2B
′)(E y)− β1.

The results then follow from the fact that E y = X1β1 +X2β2 + δ. ‖

Proof of Proposition 4.1. Since rank(A′X2) = rank(X ′

1X2) = r we have
rank(Q1) = r if and only if

A′(In −X2B
′)δ = A′X2(X

′

2M1X2)
−1/2µ

for some µ. This occurs if and only if

(In −X2B
′)δ −X2(X

′

2M1X2)
−1/2µ = M1δ1

for some δ1 and µ, and hence if and only if δ = M1δ1 + X2δ2 for some δ1
and δ2. ‖

To prove Propositions 4.2 and 4.3 we shall need the following lemma.
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Lemma B.1 Let Q 6= 0 be an m× n matrix (m ≥ 1, n ≥ 1) and let θ be an
n× 1 vector. Define the m×m matrix ∆ = Q(In − θθ′)Q′. Then,

rank(∆) =

{

rank(Q)− 1, if θ′Q′(QQ′)+Qθ = 1,

rank(Q), otherwise,

where A+ denotes the Moore-Penrose inverse of A. Further,

∆ ≥ 0 ⇐⇒ θ′Q′(QQ′)+Qθ ≤ 1,

∆ > 0 ⇐⇒ θ′Q′(QQ′)−1Qθ < 1 and rank(Q) = m,

∆ ≤ 0 ⇐⇒ θ′Q′(QQ′)+Qθ ≥ 1 and rank(Q) = 1,

∆ < 0 ⇐⇒ θ′Q′(QQ′)−1Qθ > 1 and m = 1.

Proof. Let A = QQ′ and a = Qθ. Note that Q′(QQ′)−Q is unique, hence
equal to Q′(QQ′)+Q, and that rank(A : a) = rank(A). The results about the
rank and the semidefiniteness then follow from Lemma A1 in Magnus and
Durbin (1999). The statements about ∆ > 0 and ∆ < 0 follow by adding
the requirement that ∆ is nonsingular. ‖

Proof of Proposition 4.2. If δ 6= M1δ1 + X2δ2, then rank(Q1) = r + 1
because of Proposition 4.1. The result then follows from Lemma B.1. ‖

Proof of Proposition 4.3. If X ′

1δ = 0, then rank(Q1) = r because of
Proposition 4.1. Also,

Q1 = A′X2

[

σ(X ′

2M1X2)
−1/2 : −B′δ

]

, Q1θ = A′X2β2,

so that
∆1 = Q1Q

′

1 −Q1θθ
′Q′

1 = A′X2(V1 − β2β
′

2)X
′

2A.

The matrix ∆1 is positive (negative) (semi)definite if and only if the matrix

X ′

1X2(V1 − β2β
′

2)X
′

2X1

is positive (negative) (semi)definite, and the result follows again from Lemma
B.1. ‖
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