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a b s t r a c t

Recent literature on panel data emphasizes the importance of accounting for time-varying unobservable
individual effects, which may stem from either omitted individual characteristics or macro-level shocks
that affect each individual unit differently. In this paper, we propose a simple specification test of the null
hypothesis that the individual effects are time-invariant against the alternative that they are time-varying.
Our test is an application of Hausman (1978) testing procedure and can be used for any generalized linear
model for panel data that admits a sufficient statistic for the individual effect. This is a wide class of
models which includes the Gaussian linear model and a variety of nonlinear models typically employed
for discrete or categorical outcomes. The basic idea of the test is to compare two alternative estimators
of the model parameters based on two different formulations of the conditional maximum likelihood
method. Our approach does not require assumptions on the distribution of unobserved heterogeneity, nor
it requires the latter to be independent of the regressors in the model. We investigate the finite sample
properties of the test through a set of Monte Carlo experiments. Our results show that the test performs
well, with small size distortions and good power properties. We use a health economics example based
on data from the Health and Retirement Study to illustrate the proposed test.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

A distinctive feature of panel data modeling is the treatment
of unobserved heterogeneity, which is typically interpreted as the
effect of unobservable factors on the outcome of interest. The
simplest way of dealing with this form of heterogeneity is to
include in the model time-invariant unobservable individual (i.e.,
unit-specific) effects. Assuming that these effects are constant over
time, however, may be difficult to justify in certain applications.
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For example, Stowasser et al. (2011) convincingly argue that
the dynamic pattern of self-reported health status can be better
modeled by introducing a latent time-varying individual-specific
health component. Clearly, biased parameter estimates may result
if the individual effects are assumed to be time-invariant when in
fact they are not. This is especially true in the case of long panels.

Linear panel data models with time-varying individual effects
have been studied, among others, by Holtz-Eakin et al. (1988),
Chamberlain (1992) and Ahn et al. (2001, 2013) in a large n and
small T framework, and by Bai (2009), Bonhomme and Manresa
(2012) and Kneip et al. (2012) in a large n and large T framework;
see Ahn et al. (2013) for a detailed review of this literature.

On the other hand, only a few studies have tried to relax the as-
sumption of time-invariant individual effects in nonlinear settings.
For example, Heiss (2008) proposes a limited dependent variable
model with time-varying effects which are assumed to follow a
first-order autoregressive process with parameters that are com-
mon across sample units, while Bartolucci and Farcomeni (2009)
present a multivariate extension of the dynamic logit model based
on time-varying individual effects which are assumed to follow a
time-homogeneous Markov chain for every sample unit. Although
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the specification in Heiss (2008) is parsimonious (it uses only one
additional parameter with respect to a standard random-effects
model) and perhaps more easily justifiable in many applications,
the discrete approach adopted by Bartolucci and Farcomeni (2009)
results in a model that is more flexible and tends to fit the data
better; see Bartolucci et al. (2011) formore detailed comments. Un-
like the linear case, however, both approaches are computationally
demanding. Further, the first approach requires strong parametric
assumptions on the distribution of the random effects. Therefore,
practitioners may find it useful to carry out a preliminary test for
the presence of time-invariant unobserved heterogeneity before
estimating this type of models.

In this paper, we present a simple test for the null hypothesis
of time-invariant individual effects in generalized linear models
(GLMs) for panel data. This class of models is quite broad and
includes the Gaussian linear model and a variety of nonlinear
models typically employed for discrete or categorical outcomes,
such as logit, probit, Poisson and negative binomial regression
models. The basic idea of the test is to compare two alternative
estimators of the model parameters based on two different
formulations of the conditional maximum likelihood method. It
extends to GLMswith canonical link the suggestion byWooldridge
(2010, p. 325) of comparing the fixed-effects and the first-
difference estimators as a way of formally testing violations of
strict exogeneity.

Because our test is a pure specification test1 based on the com-
parison of two alternative estimators of the sameparameter vector,
we refer to it as a Hausman-like test. Unlike the standard version
of the Hausman test (Hausman, 1978), however, we compare es-
timators that are both inconsistent under the alternative. In fact,
as pointed out by Ruud (1984), what matters for a specification
test to have power is that it is based on estimators that diverge
under the alternative (that is, their difference converges in proba-
bility to a nonzero limit), and that the sampling variance of their
difference is sufficiently small. We show that, since our alternative
estimators dependondifferent functions of the data, they generally
converge in probability to different points in the parameter space
when the individual effects are time-varying. Thus, our test has
power against a variety of alternatives resulting in time-varying in-
dividual effects, such as omitted time-varying regressors, failure of
functional form assumptions, and general misspecification of the
systematic part of the model. Clearly, when the inconsistency of
both estimators is the same, as in the case of a panel with only two
waves, our test has no power.

It is worth emphasizing three features of our test. First, it does
not require assumptions on the distribution of unobserved het-
erogeneity, nor it requires the latter to be independent of the
regressors in the model. Second, it can be easily implemented us-
ing standard statistical software, as the test statistic is a simple
quadratic form involving the difference of the parameter estimates
and consistent estimates of their asymptotic variances and covari-
ance.2 Third, it does not require assumption on how time-invariant
regressors enter the model, as the conditional likelihood function
does not depend on them.

The remainder of this paper is organized as follows. Section 2
introduces our test in the case of a linear panel data model and
analyzes its power properties in this simple setting. Section 3
presents our general statistical framework for the test. Section 4
investigates the small sample properties of the proposed test
through a set of Monte Carlo experiments. Section 5 provides
an empirical illustration based on data from the Health and
Retirement Study. Finally, Section 6 offers some conclusions.

1 A pure specification test one that places little structure on the alternative
hypothesis; see Cox and Hinkley (1974) and Ruud (1984) for a detailed discussion.
2 We implemented the proposed test in a series of R and Stata functions which

are available from the corresponding author upon request.
2. The test in the case of linear panel data models

Consider a balanced panelwhere n units, drawn at random from
a given population, are observed for T periods. For each sample
unit i = 1, . . . , n, we denote by yi = (yi1, . . . , yiT )′ the vector
of observations on the outcome of interest and by Xi the matrix
of observations on k time-varying regressors. The tth row of Xi is
denoted by xit = (xit1, . . . , xitk)′.

Under the null hypothesis of time-invariant unobserved hetero-
geneity, our model for the data is the standard linear panel data
model
yit = αi + β′xit + ϵit , i = 1, . . . , n, t = 1, . . . , T , (1)
where αi is a time-invariant unobservable individual effect and the
error vector ϵi = (ϵi1, . . . , ϵiT )

′ is assumed to be mean indepen-
dent of Xi. Note that, at this stage, we make no other assumption
on the ϵit , so they may be heteroskedastic or serially correlated for
a given i. Under our set of assumptions, a consistent estimator of β
is the fixed-effects (FE) estimator

β̂1 =


n

i=1

X̃ ′

i X̃i

−1 n
i=1

X̃ ′

i ỹi,

with X̃i = LXi and ỹi = Lyi, where L is the T×T symmetric idempo-
tent matrix that transforms a vector into deviations from the time
average of its elements. An alternative consistent estimator of β is
the first-difference (FD) estimator

β̂2 =


n

i=1

1X ′

i 1Xi

−1 n
i=1

1X ′

i 1yi,

where 1Xi = PXi, 1yi = Pyi and P is the (T − 1) × T matrix
that transforms a vector into first differences. Both estimators may
be regarded as OLS estimators based on different transformations
of the original data. Since we allow the ϵit to be heteroskedastic
or serially correlated, neither estimator is efficient under the null
hypothesis,3 although both are consistent.

2.1. The test statistic

To test the null hypothesis of time-invariant unobserved het-
erogeneity we propose a Hausman-type test based on the differ-
ence δ̂ = β̂1 − β̂2 between the FE and the FD estimators. In fact,
comparing the FE and FD estimators via a Hausman test is men-
tioned byWooldridge (2010, p. 325) as one way to formally detect
violations of strict exogeneity,4 although he does not study in de-
tail the power properties of the test and its possible generalization
to nonlinear models.

Under the null hypothesis of time-invariant unobserved hetero-
geneity,
√
n


β̂1 − β

β̂2 − β


d

→ N


0
0


,


V1 C12
C ′

12 V2


.

This implies that the asymptotic null distribution of
√
nδ̂ =

√
n(β̂1 − β̂2) is Gaussian with mean zero and variance V0 = V1

+ V2 − C12 − C ′

12. A consistent estimator of V1 is

V1 =


1
n

n
i=1

X̃ ′

i X̃i

−1 
1
n

n
i=1

X̃ ′

i ϵ̂i1ϵ̂
′

i1X̃i


1
n

n
i=1

X̃ ′

i X̃i

−1

, (2)

3 The FE estimator is more efficient when the errors in (1) are homoskedastic and
serially uncorrelated, while the FD estimator is more efficient when they follow a
random walk.
4 It follows that our test has power against a broad class of alternatives resulting

in endogeneity, such as time-varying individual effects, omitted time-varying
regressors, failure of functional form assumptions and general misspecification of
the systematic part of the model.
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with ϵ̂i1 = ỹi − X̃iβ̂1, a consistent estimator of V2 has the same
form as V1 with X̃i replaced by 1Xi and ϵ̂i1 replaced by ϵ̂i2 =

1yi − 1Xiβ̂2, while a consistent estimator of C12 is

C12 =


1
n

n
i=1

X̃ ′

i X̃i

−1 
1
n

n
i=1

X̃ ′

i ϵ̂i1ϵ̂
′

i21Xi


1
n

n
i=1

1X ′

i 1Xi

−1

.

Therefore, our test statistic is

ξ̂ = n δ̂
′V−

0 δ̂, (3)

where V0 = V1 + V2 −C12 −C ′

12 and V−

0 denotes a generalized
inverse ofV0.5 By construction,V0 is guaranteed to be non-negative
definite. The asymptotic null distribution of ξ̂ as n → ∞ is χ2

with number of degrees of freedom equal to the rank of V0 which,
in the ‘‘regular case’’ when V0 is positive definite, is just equal to
the number k of time-varying regressors. We can therefore test the
null hypothesis in the usual way and compute an asymptotic p-
value measuring the strength of the evidence provided by the data
against this hypothesis. Note that our test is valid even when the
errors in (1) are heteroskedastic or serially correlated.

2.2. Power of the test

For our test to have power, the FE and FD estimators must con-
verge in probability to different points in the parameter space un-
der the alternative. Since the two estimators are exactly the same
when either T = 2 or xit = xt for all i, our test has power onlywhen
T ≥ 3 and some of the regressors vary over both i and t . Further,
since the two estimators are consistent when unobserved hetero-
geneity is uncorrelated with the time-varying regressors, our test
has power only when unobserved heterogeneity is correlated with
the time-varying regressors.

In this section we study the inconsistency of the FE and FD es-
timators when unobserved heterogeneity is time-varying in order
to draw conclusions about the power of the proposed test. For sim-
plicity, we focus on the case of a single observed regressor xit , so
yit = αit + βxit + ϵit , and we assume that

xit = φαit + (1 − φ2)1/2zit , (4)

where the ϵit and the zit are independently and identically dis-
tributed (i.i.d.), independently of the αit , with zero mean and unit
variance. Thus, xit has zero mean and unit variance, and its covari-
ance with αit is proportional to φ. When φ = 0, xit and αit are
uncorrelated.

Denoting by uit = αit + ϵit the composite error term in model
(1) and letting xi = (xi1, . . . , xiT )′ andui = (ui1, . . . , uiT )

′, onemay
express the FE and the FD estimators as

β̂1 = β +

n
i=1

x̃′

iũi

n
i=1

x̃′

ix̃i
, β̂2 = β +

n
i=1

1x′

i1ui

n
i=1

1x′

i1xi
,

where x̃i = Lxi, 1xi = Pxi, with ũi and 1ui defined accordingly.
As n → ∞, we have that

plimβ̂1 − β =
Ex̃′

iũi

Ex̃′

ix̃i
, plimβ̂2 − β =

E1x′

i1ui

E1x′

i1xi
,

so plim(β̂1 − β̂2) is just the difference between these two expres-
sions. Moreover,

Ex̃′

iũi = φτ̃ ,

5 Generalized inverses are not unique, but Holly and Monfort (1986) show that
test statistics of the form (3) are invariant to the choice of generalized inverse.
Ex̃′

ix̃i = φ2τ̃ + (1 − φ2)(T − 1),
E1x′

i1ui = φ1τ ,

E1x′

i1xi = φ21τ + 2(1 − φ2)(T − 1),

where τ̃ =
T

t=1 E(αit − ᾱit)
2, 1τ =

T
t=2 E(αit − αi,t−1)

2, and
we use the fact that

T
t=1 E(zit − z̄it)2 = T − 1 and

T
t=2 E(zit −

zi,t−1)
2

= 2(T−1) because the zit are i.i.d. with unit variance. Thus,

plimβ̂1 − β =
φτ̃

φ2τ̃ + (1 − φ2)(T − 1)
(5)

and

plimβ̂2 − β =
φ1τ

φ21τ + 2(1 − φ2)(T − 1)
. (6)

This shows that our test has no power when φ = 0, because in this
case both estimators are consistent, nor when φ = ±1, because in
this case both converge to β ± 1. Note that if αit −αi,t−1 is station-
ary then1τ is proportional to T −1, which in turn implies that the
inconsistency of the FD estimator does not depend on T .6

To get sharper results we need to be more specific about the
time-series properties of the individual effects. We first consider
the case of individual effects that are independent across sample
units and follow a stationary AR(1) process parameterized as

αit =


vi1, t = 1,
ραit−1 + (1 − ρ2)1/2vit , t = 2, . . . , T ,

(7)

where the vit are i.i.d. with zero mean and unit variance, indepen-
dently of the ϵit and the zit . Note that ρ = 1 here represents the
case where the individual effects are time-invariant, while ρ = 0
represents the case where they follow awhite-noise. Appendix A.1
shows that, under (7), τ̃ = T − 1 − 2

T−1
t=1 [1 − (t/T )]ρt and

1τ = 2(T − 1)(1 − ρ). If ρ = 1 then τ̃ = 1τ = 0, whereas if
ρ = 0 then τ̃ = T − 1 and 1τ = 2(T − 1). Thus, β̂1 converges in
probability to β if ρ = 1 and to β + φ if ρ = 0. If −1 < ρ < 1,
then τ̃ = (T − 1)(1 − ρ̃), where

ρ̃ =
2ρ

(T − 1)(1 − ρ)


1 −

1
T

1 − ρT

1 − ρ


.

Thus

plimβ̂1 − β = φ
1 − ρ̃

1 − ρ̃φ2
. (8)

Since ρ̃ increases with T , the inconsistency of β̂1 also increases
with T .

As for β̂2, we have

plimβ̂2 − β = φ
1 − ρ

1 − ρφ2
, (9)

which does not depend on T . Notice that (9) has the same form as
(8) with ρ̃ replaced by ρ.7 Since β̂2 also converges in probability to
β if ρ = 1 and to β+φ if ρ = 0, our test has no power in these two
cases. On the other hand, the fact that β̂1 and β̂2 behave very differ-
ently as functions of T when T ≥ 3 is the source of the increasing
power of our test as T increases. Fig. 1 shows the relationship be-
tween plim(β̂1 − β̂2) and ρ for φ = 0.50 and different values of
T (T = 3, 5, 10). It is interesting to note that this relationship is
inversely U-shaped, with evidence of an asymmetric behavior for
low and high values of ρ.

6 A similar resultwas noted byWooldridge (2010, pp. 322–323) for the casewhen
xit is weakly dependent and 1xit1uit is stationary.
7 We thank an Associate Editor for pointing out this interesting result.
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Fig. 1. Behavior of the difference δ between the inconsistency of the FE and the FD
estimators as a function of the autocorrelation coefficient ρ in (7) for φ = 0.50 and
different values of T .

In Appendix A.1 we also consider the case when αit follows a
pure random walk

αit =


vi1, t = 1,
αit−1 + vit , t = 2, . . . , T ,

where the vit are i.i.d., independently of ϵit and zit . In this case
τ̃ = (T 2

−1)/6 and1τ = T−1, so our test has power approaching
1 as n → ∞ for any T .

Finally, in the ‘‘interactive fixed-effects’’ case considered by Bai
(2009), αit = λift with

ft =


v1, t = 1,
ρft−1 + (1 − ρ)1/2vt , t = 2, . . . , T ,

(10)

where |ρ| < 1 and the λi and the vt are i.i.d., independently of the
ϵit and the zit .8 Themain differencewith respect to the AR(1) case is
that ft is common to all units. How this ‘‘macro’’ factor impacts on
the ith micro-unit depends on the value of λi. Appendix A.2 shows
that, as n → ∞ and T → ∞, plimβ̂1 − β = φ while plimβ̂2 − β
is exactly the same as (9). We conclude that our test has no power
when ρ = 0, that is, when the ft are independent over time.

3. Generalization to nonlinear panel data models

In this sectionwe extend the testing approach illustrated in Sec-
tion 2 to nonlinear panel data models based on a GLM formulation
(McCullagh and Nelder, 1989). Our test compares two alternative
estimators of themodel parameters based on two different formu-
lations of the conditional maximum likelihood (CML) method. The
first is the standard CML estimator which, under the assumption
that the unobservable individual effects are time-invariant, condi-
tions on a sufficient statistic for αi, such as the sum y+

i of the out-
comes observed for the ith unit over the T periods. The second is a
pairwise version of the CML estimator based on pairs of consecu-
tive outcomes,which conditions on their sumover the twoperiods.
The basis for this extension is the fact that, under the additional
assumption of Gaussian errors in (1), these two CML estimators re-
spectively coincide with the FE and FD estimators in Section 2.

3.1. Likelihood-based justification

Under the additional assumption that the errors in model (1)
are Gaussian and serially uncorrelated with constant variance σ 2

ϵ ,

8 For ease of exposition, we discuss the case where αit has a factor structure with
only one factor but results canbe easily extended to the case ofmore thanone factor.
the joint density of yi (conditional on Xi) is

f (yi|Xi) =


1

2πσ 2
ϵ

T

exp


−

1
2σ 2

ϵ

T
t=1

(yit − αi − β′xit)2


,

whereas the density of y+

i =
T

t=1 yit is

f (y+

i |Xi) =
1

2πTσ 2
ϵ

exp

−
1

2Tσ 2
ϵ


y+

i − Tαi −

T
t=1

β′xit

2
 .

Thus, the density of yi conditional on y+

i (and Xi) is equal to

f (yi|Xi, y+

i ) =


2πTσ 2

ϵ

(

2πσ 2

ϵ )T
exp


−

1
2σ 2

ϵ

T
t=1

(ỹit − β̃
′

xit)2


, (11)

and depends only on β, not on αi. The corresponding conditional
log-likelihood is equal to L1(β) =

n
i=1 L1i(β), where L1i(β)

is proportional to −
T

t=1(ỹit − β̃
′

xit)2. Maximizing L1(β) gives
the full conditional maximum likelihood (FCML) estimator, which
coincides with the FE estimator β̂1. If we allow the errors in (1)
to be heteroskedastic, serially correlated or Gaussian, then the
FCML estimator is still consistent and asymptotically normal, but
its asymptotic variance has the ‘‘sandwich form’’ and may be
estimated consistently by V1 = H−1

1
S11H−1

1 , where the matrixH1 = n−1n
i=1 X̃

′

i X̃i is proportional to minus the Hessian of the
log-likelihood L1(β) and the matrixS11 = n−1n

i=1 X̃
′

i ϵ̂i1ϵ̂
′

i1X̃i is
proportional to the outer product of the likelihood score ∂L1(β)/∂β

evaluated at β̂1.
On the other hand, putting T = 2 in (11), we have

f (yi,t−1, yit |xi,t−1, xit , yi,t−1 + yit)

=
1
πσ 2

ϵ

exp


−

1
2σ 2

ϵ

t
h=t−1

(ỹiht − β′x̃iht)2


,

where ỹiht = yih − 0.5(yit + yi,t−1) and x̃iht = xih − 0.5(xit +

xi,t−1), for h = t − 1, t . The corresponding pairwise conditional
log-likelihood is L2(β) =

n
i=1 L2i(β), where L2i(β) is proportional

to −
T

t=2(1yit − β′∆xit)2. Maximizing L2(β) gives the pairwise
conditional maximum likelihood (PCML) estimator β̂2, which is
equivalent to the FD estimator. If we allow the errors in (1) to
be heteroskedasticity, serially correlated or Gaussian, then the
PCML estimator is still consistent and asymptotically normal, but
its asymptotic variance has the ‘‘sandwich form’’ and may be
estimated consistently by V2 = H−1

2
S22H−1

2 , where the matrixH2 = n−1n
i=1 ∆X ′

i ∆Xi is proportional tominus theHessian of the
log-likelihood L2(β) and the matrixS22 = n−1n

i=1 ∆X ′

i ϵ̂i2ϵ̂
′

i2∆Xi
is proportional to the outer product of the likelihood score
∂L2(β)/∂β evaluated at β̂2.

TheHausman-like test statistic based on the difference between
these two estimators has the same form as the statistic in (3).
If β̂1 is asymptotically efficient, then we may use as weighting
matrix a generalized inverse ofV0 = V2 −V1, otherwise we use a
generalized inverse ofV0 = DkW0D′

k, where Dk = [Ik, −Ik] and

W0 =

W11 W12W ′

12
W22



=

H1 O
O H2

−1 S11 S12S ′

12
S22
 H1 O

O H2

−1

, (12)

withS12 = n−1n
i=1 X̃

′

i ϵ̂i1ϵ̂
′

i2∆Xi. The expression for V0 reported
above coincides with that proposed in Section 2 but is of more
general validity.
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3.2. Generalized linear models

Now assume that, under the null hypothesis of time-invariant
unobserved heterogeneity, the conditional distribution of yit given
Xi belongs to the linear exponential family with density function
of the form

f (yit |Xi) = f (yit |xit) = exp

yitηit − b(ηit)

γ
+ c(yit , γ )


,

where ηit is a parameter that varies both across sample units and
over time depending on the regressors and the time-invariant in-
dividual effect, γ > 0 is a dispersion parameter treated here as
known, b(·) is a known, strictly convex and twice differentiable
function, and c(·, γ ) is a known function. An important property
of GLMs is that the conditional mean and variance of yit given Xi
and αi are respectively equal to µit = b′(ηit) and σ 2

it = γ b′′(ηit).
We further assume that µit = h(αi + β′xit), where h(·) is the in-
verse link function.

To ensure the existence of a conditional likelihood, we restrict
the inverse link function to be canonical, h(·) = b′(·), inwhich case
ηit = αi+β′xit . For example, h(·) is the logit transformation for the
binomial regression model, the log transformation for the Poisson
regression model, and the identity function for the Gaussian linear
model. The existence of the conditional likelihood depends on the
structure of the model and is not guaranteed in general.

If the inverse link function is canonical and the yit are indepen-
dent conditional on Xi, then the logarithm of the joint density of yi
is equal to

ln f (yi | Xi) = αiy+

i + β′

T
t=1

xityit

−

T
t=1

b(αi + β′xit) +

T
i=1

c(yit).

This log-density is the sum of two terms: the first is αiy+

i −T
t=1 b(αi + β′xit), which depends only on y+

i =
T

t=1 yit and on
αi (and also on β and Xi), the second is β′

T
t=1 xityit +

T
i=1 c(yit),

which does not depend on y+

i and αi. We conclude that y+

i is suf-
ficient for αi, so the density f (yi | Xi, y+

i ) of yi conditional on y+

i
(and Xi) depends only on β, not on αi; see Chamberlain (1980),
Diggle et al. (2002), and Sartori and Severini (2004). Note that the
conditional likelihood approach eliminates αit but also any time-
invariant regressor originally included in the model. The resulting
FCML estimator of β, again denoted by β̂1, maximizes the full con-
ditional log-likelihood

L1(β) =

n
i=1

L1i(β),

where L1i(β) is equal (up to an additive constant) to the logarithm
of f (yi | Xi, y+

i ).
The PCML estimator, denoted again by β̂2, maximizes instead

the pairwise conditional log-likelihood function

L2(β) =

n
i=1

L2i(β)

where L2i(β) is equal (up to an additive constant) to the logarithm
of f (yi,t−1, yit |xi,t−1, xit , yi,t−1+yit), the density of an adjacent pair
of outcomes conditional on the sufficient statistic yi,t−1 +yit for αi.
When the inverse link is canonical, this conditional density again
depends only on β, not on αi. If T = 2, then L1(β) = L2(β) so β̂1

and β̂2 coincide.
Under the null hypothesis of time-invariant individual effects,

β̂1 and β̂2 are both consistent for the true value β0 of β provided
that the assumed conditional mean µit = h(αi + β′xit) is cor-
rectly specified (Gourieroux et al., 1984). This allows the yit to be
dependent or ‘‘clustered’’ conditional on Xi. It also allows for over-
or under-dispersion (for example, the conditional variance of yit
in a count-data model may be greater than µit ). In all these cases,
β̂1 and β̂2 are asymptotically normal but their asymptotic variance
has the ‘‘sandwich form’’. Further,
√
n


β̂1 − β0

β̂2 − β0


d

→ N (0, W0) ,

where W0 has exactly the same form as (12) and its elements
may be consistently estimated by W11 = H−1

1
S11H−1

1 , W22 =H−1
2
S22H−1

2 and W12 = H−1
1
S12H−1

2 , with

Hp = −
1
n

n
i=1

∂2Lpi(β̂p)

∂β ∂β′
, p = 1, 2,

and

Spq =
1
n

n
i=1

∂Lpi(β̂p)

∂β

∂Lqi(β̂q)

∂β′
, p, q = 1, 2.

Under the alternative hypothesis of time-varying individual
effects, neither estimator is generally consistent for β. Further,
being based on different functions of the data when T > 2, β̂1

and β̂2 will generally converge to different points in the parameter
space. In fact, as pointed out by Varin et al. (2011) and Xu and Reid
(2012), β̂2 is more robust to violations of the assumption of time-
invariant unobserved heterogeneity than β̂1, as it only requires
this assumption to be satisfied for the two-dimensional conditional
likelihood quantities.

The above results suggest a test that rejects the null hypothesis
of time-invariant unobserved heterogeneity for large values of
the statistic ξ̂ defined in (3), namely a quadratic form in the
difference δ̂ = β̂1 − β̂2 with weighting matrix V0 = DkW0D′

k,
where the elements of W0 have been defined above in terms of
the matrices Hp, p = 1, 2, and Spq, p, q = 1, 2. As for the
linear case, V0 is guaranteed to be non-negative definite, and
the resulting Hausman-like test is valid even when the outcomes
observed for the ith unit are ‘‘clustered’’ or exhibit over- or under-
dispersion (Cameron and Trivedi, 2005). If, as it may happen, the
asymptotic variancematrixV0 is singular, then the asymptotic null
distribution of the test statistic is χ2 with a number of degrees of
freedom equal to the rank of V0.

To illustrate our results, in the remainder of this section we
provide more details for some commonly used panel data GLMs in
which the dispersion parameter is known, namely the binary logit
model, the ordered logit model and the Poisson regression model.
We refer the reader to Hausman et al. (1984) and Wooldridge
(2010) for a detailed discussion of CML estimation of other
GLMs, such as the exponential and gamma models for continuous
nonnegative outcomes and the negative binomial (type I) model
for discrete outcomes.

3.3. Examples

In the binary logit case, yit can take only two values, 0 or 1. The
full conditional log-likelihood L1(β) is based on

f (yi|Xi, y+

i ) =

T
t=1

exp(β′xityit)


di∈Di+

T
t=1

exp(β′xitdit)
, (13)

whereDi+ consists of all T -dimensional vectors di = (di1, . . . , d′

iT )

whose elements dit are equal to 0 or 1 and add up to y+

i = 0,
. . . , T . The pairwise conditional log-likelihood L2(β) is instead
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based on

f (yi,t−1, yit |xi,t−1, xit , yi,t−1 + yit = 1)

=
exp(β′xi,t−1yi,t−1 + β′xityit)
exp(β′xi,t−1di,t−1 + β′xitdit)

, (14)

where di,t−1 and dit are equal to 0 or 1 and add up to 1.
In the ordered logit case, yit can take any integer value from 0 to

J−1. Let y(j)
it denote the binary indicator obtained by dichotomizing

the ordinal outcome yit at value j, that is, y(j)
it = 1{yit > j − 1}, j =

1, . . . , J − 1. Under the assumption that the unknown parameter
vector is the same for all y(j)

it , Baetschmann et al. (2011) show that
the FCML estimator maximizes

L1(β) =

n
i=1

J−1
j=1

ln f (y(j)
i |Xi, y

(j)
i+),

where f (y(j)
i |Xi, y

(j)
i+) has the same form as in (13) with y(j)

i =

(y(j)
i1 , . . . , y(j)

iT )′ and y(j)
i+ = 1, 2, . . . , T−1. The PCML estimatormax-

imizes instead

L2(β) =

n
i=1

J−1
j=1

T
t=2

ln f (y(j)
i,t−1, y

(j)
it |Xi, y

(j)
i,t−1 + y(j)

it = 1),

where f (y(j)
i,t−1, y

(j)
it |Xi, y

(j)
i,t−1 + y(j)

it = 1) has the same form as in
(14).

In the Poisson regression case, yit can take any integer value
0, 1, 2, . . . . The full conditional log-likelihood L1(β) is based on

f (yi|Xi, y+

i ) =


T

t=1
yit


!

T
t=1

yit !

T
t=1

 exp(β′xit)
T

t=1
exp(β′xit)


yit

.

As pointed out by Cameron and Trivedi (2005), this conditional
log-likelihood is proportional to the concentrated log-likelihood
obtained by substituting α̂i =

T
t=1 yit/

T
t=1 exp(β

′xit) in
the unconditional log-likelihood. The pairwise conditional log-
likelihood is instead based/on

f (yi,t−1, yit |xi,t−1, xit , yi,t−1 + yit)

=
(yi,t−1 + yit)!
yi,t−1!yit !


exp(β′xi,t−1)

exp(β′xi,t−1) + exp(β′xit)

yi,t−1

×


exp(β′xit)

exp(β′xi,t−1) + exp(β′xit)

yit
.

4. Monte Carlo evidence

We now present someMonte Carlo evidence about the size and
power properties of the proposed test for four commonly used
GLMs, namely binary logit, ordered logit, Poisson regression and
the Gaussian linear model. For the latter, we also compare our test
with the Hausman-type test proposed by Bai (2009).

4.1. Setup

For binary and ordered logit, we generate the outcome of in-
terest as yit =

J−1
j=1 1{y∗

it > ωj}, where 1{A} is the indicator of
the event A, the ωj are fixed thresholds, J ≥ 2 is the number of
outcome categories, and y∗

it is a continuous latent variable that
obeys the linear model

y∗

it = αit + βxit + ϵit , i = 1, . . . , n, t = 1, . . . , T , (15)
with xit a scalar regressor and the ϵit i.i.d. as standard logistic. We
use ω1 = 0 for binary logit (J = 2) and ωj = −2, −0.75, 0.75, 2
for ordered logit with J = 4 categories. For Poisson regression, we
define the mean as λit = exp(αit + βxit).

For all DGPs, the individual effects αit follow a stationary AR(1)
process parameterized as in (7), where the vit are i.i.d. as standard
Gaussian.9 As for the autoregressive coefficient ρ, we consider a
set of eleven equally-spaced values ranging from 0 (purely random
individual effects) to 1 (time-invariant individual effects). To allow
for dependence between the individual effects and the regressor,
we generate xit according to (4), where the zit are i.i.d. as standard
Gaussian.

Since the FCML and the PCML estimators are both inconsistent
for β under model misspecification, we consider the following
design. In the baseline scenario, we assumeno correlation between
the individual effect and the regressor (φ = 0). We also set
β = 1, implying a low regression R2 (≈0.19) for the latent model
(15).10 We consider two departures from the baseline:

(i) φ = 0 and β = 2, that is, no correlation between xit and αit
but a higher latent regression R2 (≈0.48);

(ii) φ = 0.50 and β = 1, that is, positive correlation between xit
and αit .

For the Poisson and Gaussian regression models, the FCML and the
PCML estimators are consistent provided that the regressor and the
individual effect are uncorrelated. Since our test has no power in
this case, our baseline scenario for the Poisson and the Gaussian
models has a low degree of correlation between the individual
effect and the regressor (φ = 0.10), which increases to φ = 0.50
in our second scenario. In both scenarios, we set β = 1.

For each value of ρ and each scenario, we investigate the
behavior of tests of asymptotic level equal to 5% for two different
sample sizes (n = 1000 and 4000) and three different panel
lengths (T = 3, 5 and 10). These sample sizes and the panel lengths
are selected with an eye to the empirical illustration in Section 5.
We ran a total of 11 × 2 × 3 × 3 = 198 experiments in the case
of the logit and ordered logit models, and 11 × 2 × 3 × 2 = 132
experiments in the case of the Poisson and Gaussian models. The
Monte Carlo size and power of our test are obtained using 1000
replications of each experiment.

4.2. Results

Tables 1 and 2 present the size of our test for all models con-
sidered, along with the mean and standard deviation (SD) of the
test statistic under different scenarios. The size distortion is always
very small and not statistically different from zero, but the test ex-
hibits a slight tendency to over-reject.

Results for the power of our test are presented separately for
each model, in tabular form in Tables 3–6 and graphically in
Figs. 2–5. As expected, our test has no power when either ρ = 0
(no persistence) or ρ = 1 (time-invariant individual effects). Al-
though in the Poisson and Gaussian cases it has power only when
the regressor and the individual effect are correlated, in the logit
and ordered logit cases it also has power when they are uncorre-
lated provided that T > 3 and ρ is away from 0 and 1.

9 We also ran all the described experiments assuming a discrete distribution for
αit . In particular we have used a three-state first-order homogeneousMarkov chain
with zero mean and unit variance. Results are similar, so they are not reported
although they are available upon request.
10 Since the individual effects have unit variance and the ϵit have variance equal
to π2/3, if β = 1 the latent model (15) has regression R2 equal to β2/(1 + β2

+

π2/3) = 0.189. If β = 2, then R2
= 0.482.
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Table 1
Size analysis for binary and ordered logit models.

T Binary logit Ordered logit
n = 1000 n = 4000 n = 1000 n = 4000
Mean SD Size Mean SD Size Mean SD Size Mean SD Size

φ = 0, β = 1

3 1.05 1.50 0.060 0.98 1.42 0.045 1.03 1.36 0.058 0.99 1.32 0.044
5 1.05 1.48 0.054 1.06 1.48 0.054 0.98 1.46 0.047 1.01 1.33 0.049

10 1.06 1.60 0.053 0.99 1.45 0.055 0.98 1.34 0.043 0.88 1.28 0.040

φ = 0, β = 2

3 1.01 1.40 0.052 1.05 1.55 0.053 1.03 1.56 0.057 1.01 1.41 0.052
5 1.01 1.41 0.051 1.04 1.47 0.051 0.99 1.42 0.040 0.97 1.36 0.049

10 1.05 1.44 0.050 0.95 1.39 0.048 0.98 1.37 0.048 0.94 1.34 0.048

φ = 0.50, β = 1

3 1.03 1.43 0.044 1.06 1.51 0.063 1.04 1.40 0.052 1.01 1.41 0.046
5 0.93 1.25 0.042 1.04 1.53 0.052 0.96 1.42 0.050 1.05 1.40 0.059

10 1.06 1.48 0.057 0.93 1.28 0.044 0.97 1.34 0.043 0.92 1.26 0.046
Table 2
Size analysis for Poisson and Gaussian regression models.

T Poisson Gaussian
n = 1000 n = 4000 n = 1000 n = 4000
Mean SD Size Mean SD Size Mean SD Size Mean SD Size

φ = 0.10, β = 1

3 1.00 1.32 0.052 1.04 1.43 0.050 0.98 1.39 0.051 0.99 1.44 0.054
5 1.01 1.49 0.051 1.00 1.38 0.044 0.93 1.26 0.039 1.00 1.42 0.045

10 1.05 1.57 0.062 1.01 1.44 0.046 0.97 1.41 0.046 0.95 1.35 0.045

φ = 0.50, β = 1

3 0.98 1.34 0.043 1.05 1.46 0.055 0.98 1.39 0.051 0.99 1.44 0.054
5 1.04 1.42 0.061 0.92 1.34 0.033 0.93 1.26 0.039 1.00 1.42 0.045

10 1.06 1.51 0.055 1.01 1.56 0.054 0.97 1.41 0.046 0.95 1.35 0.045
Table 3
Power analysis for the binary logit model.

T φ = 0, β = 1 φ = 0, β = 2 φ = 0.50, β = 1
n = 1000 n = 4000 n = 1000 n = 4000 n = 1000 n = 4000
Mean SD Power Mean SD Power Mean SD Power Mean SD Power Mean SD Power Mean SD Power

ρ = 0.20

3 1.00 1.40 0.049 1.19 1.55 0.073 1.03 1.41 0.052 1.08 1.43 0.057 1.08 1.64 0.063 1.41 1.99 0.104
5 1.20 1.61 0.070 1.93 2.29 0.172 1.17 1.53 0.068 2.02 2.39 0.166 1.41 2.15 0.094 2.35 2.99 0.216

10 1.66 2.06 0.126 4.46 3.99 0.451 1.73 2.03 0.126 4.65 3.93 0.478 2.31 2.70 0.205 5.97 4.72 0.595

ρ = 0.40

3 1.03 1.40 0.053 1.43 1.77 0.102 1.08 1.44 0.058 1.34 1.67 0.091 1.31 2.01 0.097 1.92 2.48 0.165
5 1.64 1.99 0.120 3.69 3.57 0.360 1.58 1.92 0.109 3.68 3.44 0.384 2.37 3.17 0.212 5.81 5.05 0.554

10 3.60 3.34 0.371 12.65 6.76 0.950 3.52 3.15 0.377 12.36 6.38 0.941 6.37 5.32 0.614 21.18 9.62 0.994

ρ = 0.60

3 1.07 1.48 0.057 1.47 1.85 0.096 1.07 1.41 0.050 1.37 1.76 0.092 1.45 2.29 0.107 2.28 2.82 0.214
5 1.87 2.10 0.151 4.54 3.95 0.461 1.77 2.07 0.136 4.51 3.79 0.474 3.18 3.82 0.289 8.90 6.41 0.768

10 5.45 4.06 0.577 20.34 8.46 0.995 5.13 3.82 0.554 18.98 7.87 0.991 11.94 7.64 0.888 42.77 14.32 1.000

ρ = 0.80

3 1.02 1.53 0.055 1.26 1.68 0.075 1.03 1.48 0.047 1.15 1.56 0.047 1.37 2.05 0.096 1.87 2.52 0.145
5 1.50 1.87 0.112 3.15 3.16 0.319 1.49 1.89 0.100 3.06 2.95 0.315 2.80 3.36 0.248 7.31 5.65 0.690

10 4.82 3.78 0.516 17.38 7.80 0.988 4.61 3.63 0.503 16.01 7.07 0.983 13.45 8.26 0.917 47.93 14.52 1.000
In line with the asymptotic behavior of the difference between
the FE and the FD estimators analyzed in Section 2.2 (see especially
Fig. 1), the profile of the power of our test as a function of ρ

is always inversely U-shaped, with evidence of an asymmetric
behavior for low and high values of ρ.

As for dependence on the panel length T , the power is always
very low for short panels (T = 3) but increases rapidly with T .
Apart from marginal differences, this behavior is common across
scenarios and types of model, and is especially evident for the
largest sample size (n = 4000). This is again in line with the
asymptotic behavior observed for the difference between the FE
and the FD estimators, and is consistent with the discussion in
Varin (2008), according to which the ML estimator based on a
slightly misspecified pairwise log-likelihood may be closer to the
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Table 4
Power analysis for the ordered logit model.

T φ = 0, β = 1 φ = 0, β = 2 φ = 0.50, β = 1
n = 1000 n = 4000 n = 1000 n = 4000 n = 1000 n = 4000
Mean SD Power Mean SD Power Mean SD Power Mean SD Power Mean SD Power Mean SD Power

ρ = 0.20

3 0.97 1.36 0.042 1.21 1.68 0.079 1.02 1.44 0.046 1.30 1.77 0.082 1.18 1.75 0.069 1.55 2.15 0.120
5 1.36 1.82 0.090 2.58 2.84 0.238 1.40 1.82 0.088 3.19 3.26 0.320 1.66 2.29 0.119 3.09 3.49 0.296

10 2.28 2.57 0.203 6.08 4.64 0.630 2.89 2.98 0.290 8.49 5.42 0.798 3.08 3.38 0.302 9.15 5.80 0.812

ρ = 0.40

3 1.04 1.41 0.059 1.53 2.00 0.118 1.09 1.49 0.050 1.70 2.02 0.125 1.52 2.25 0.116 2.73 3.20 0.248
5 1.97 2.40 0.167 4.86 4.05 0.500 2.09 2.37 0.184 6.09 4.58 0.633 3.30 3.69 0.315 9.39 6.35 0.810

10 4.87 4.03 0.526 16.65 7.59 0.986 6.31 4.61 0.644 22.01 8.81 0.998 10.65 6.96 0.846 38.37 12.44 1.000

ρ = 0.60

3 1.05 1.46 0.061 1.61 2.08 0.120 1.08 1.48 0.048 1.78 2.07 0.143 1.73 2.42 0.138 3.42 3.70 0.332
5 2.25 2.57 0.202 5.96 4.48 0.609 2.39 2.57 0.219 7.19 5.03 0.699 4.98 4.72 0.483 15.43 8.27 0.966

10 7.32 5.11 0.721 26.45 9.55 1.000 9.16 5.65 0.832 33.51 10.74 1.000 21.15 10.13 0.986 79.84 18.81 1.000

ρ = 0.80

3 1.04 1.49 0.057 1.32 1.82 0.097 1.03 1.48 0.049 1.37 1.69 0.091 1.49 2.13 0.100 2.63 3.19 0.240
5 1.80 2.20 0.149 4.11 3.69 0.420 1.78 2.13 0.136 4.73 3.91 0.510 4.22 4.27 0.435 12.74 7.37 0.917

10 6.43 4.72 0.648 23.01 8.76 0.999 7.73 5.11 0.743 27.87 9.73 1.000 23.89 10.97 0.996 89.08 20.18 1.000
Table 5
Power analysis for the Poisson model.

T φ = 0.10, β = 1 φ = 0.50, β = 1
n = 1000 n = 4000 n = 1000 n = 4000
Mean SD Power Mean SD Power Mean SD Power Mean SD Power

ρ = 0.20

3 1.10 1.57 0.062 1.32 2.06 0.088 1.95 2.57 0.166 3.64 3.81 0.368
5 1.23 1.78 0.076 1.80 2.46 0.136 3.87 3.89 0.398 11.21 7.24 0.865

10 1.61 2.12 0.125 3.14 3.21 0.308 8.38 6.23 0.750 30.07 11.51 0.999

ρ = 0.40

3 1.16 1.57 0.066 1.61 2.29 0.123 3.39 3.77 0.334 8.25 6.13 0.732
5 1.82 2.26 0.151 3.39 3.44 0.335 10.34 7.34 0.810 34.71 14.66 0.997

10 3.00 3.36 0.289 9.16 5.98 0.810 31.88 13.55 0.999 116.93 27.24 1.000

ρ = 0.60

3 1.30 1.82 0.086 1.71 2.31 0.128 4.10 4.31 0.397 10.97 7.14 0.843
5 2.10 2.58 0.196 4.28 4.00 0.434 16.91 10.36 0.941 55.90 20.01 1.000

10 4.24 3.88 0.436 14.33 7.57 0.951 60.59 22.41 1.000 222.99 51.84 1.000

ρ = 0.80

3 1.27 1.72 0.081 1.56 2.11 0.124 3.55 3.80 0.336 9.02 6.48 0.772
5 1.63 2.09 0.122 3.27 3.46 0.326 14.80 9.30 0.911 48.18 19.70 0.999

10 4.18 3.93 0.423 13.08 7.53 0.929 65.21 26.07 0.999 230.17 58.36 1.000
true parameter value than the FCML estimator. In our case, if T > 2
both types of conditional likelihood are misspecified when ρ is
different from one, but the pairwise conditional likelihood is ‘‘less
misspecified’’ than the full conditional likelihood, the difference
between the two likelihoods increasing as T increases.

As for the role of the slope parameter β (or equivalently the
regression R2) in the latent linear model (15), the power of the test
increases going from β = 1 to β = 2 in the ordered logit case,
but not in the binary logit case. This behavior reflects the fact that,
unlike an ordered outcomewithmore than two categories, a binary
outcome is completely uninformative about scale.

We conclude this section by briefly summarizing the main
results of the comparison with the test proposed by Bai (2009).11
Our evidence shows that Bai’s test has very small power when the
individual effects are correlated with the regressor and follow the
AR(1) process in (7), especially for ρ < 0.4. The reason is the fact

11 Detailed tabulations are available upon request.
that Bai’s interactive fixed-effects estimator is consistent for β as
both n → ∞ and T → ∞ when the individual effects have a
factor structure, but not when T is small or when the individual
effects display a different and less restrictive pattern of temporal
dependence. In fact, our Monte Carlo results show that, when
the time-varying individual effects follow an AR(1) process, Bai’s
interactive fixed-effects estimator has a finite sample bias that is
too close to that of the FE estimator for his test to have power. On
the other hand, as shown in Appendix A.2, our test has power in
the case of a linear model with interactive fixed effects when the
common factors are persistent, but has no power when they are
independent over time. Bai’s test is instead powerful in both cases.

5. Empirical illustration

In our empirical illustration we consider the same example
analyzed by Heiss (2008). The outcome of interest is the self-
rated health status (SRHS) of older Americans, recorded on a
5-point ordered scale (poor, fair, good, very good, excellent). The
data are from the University of Michigan Health and Retirement



F. Bartolucci et al. / Journal of Econometrics 184 (2015) 111–123 119
Table 6
Power analysis for the Gaussian linear model.

T φ = 0.10, β = 1 φ = 0.50, β = 1
n = 1000 n = 4000 n = 1000 n = 4000
Mean SD Power Mean SD Power Mean SD Power Mean SD Power

ρ = 0.20

3 1.17 1.76 0.061 1.43 1.91 0.099 3.34 3.56 0.318 9.49 5.88 0.835
5 1.58 2.13 0.122 3.38 3.33 0.344 11.49 6.70 0.891 43.08 13.33 1.000

10 3.21 3.24 0.313 10.21 6.25 0.859 39.15 12.16 1.000 155.02 24.71 1.000

ρ = 0.40

3 1.38 2.01 0.092 2.18 2.57 0.193 7.35 5.45 0.718 24.92 9.65 1.000
5 2.71 3.04 0.262 8.02 5.46 0.757 34.06 11.57 1.000 133.61 23.49 1.000

10 8.54 5.58 0.785 31.68 11.16 1.000 133.70 22.40 1.000 534.52 45.58 1.000

ρ = 0.60

3 1.42 2.06 0.089 2.37 2.72 0.216 9.25 6.11 0.834 32.31 11.03 1.000
5 3.30 3.43 0.311 10.46 6.29 0.852 50.37 13.98 1.000 199.21 28.67 1.000

10 13.35 7.05 0.942 50.90 14.18 1.000 227.94 28.68 1.000 911.66 58.88 1.000

ρ = 0.80

3 1.23 1.84 0.073 1.73 2.22 0.138 6.20 4.92 0.628 20.54 8.83 0.996
5 2.46 2.90 0.229 7.10 5.11 0.697 38.51 12.26 1.000 152.23 25.19 1.000

10 11.84 6.59 0.919 44.63 13.33 1.000 222.26 27.79 1.000 887.22 57.72 1.000
Fig. 2. Power curves of the test for the binary logit model.
Study (HRS), a longitudinal survey of the US population aged 50
and older.

As an alternative to a conventional ordered logit model with
time-invariant individual effects, Heiss (2008) proposes a model
that includes, in addition to both time-varying and time-invariant
exogenous regressors, a set of time-varying unobservable individ-
ual effects. The time-varying individual effect, interpreted as an
individual’s unobserved ‘‘true’’ health, is assumed to be indepen-
dent of the regressors and to follow an AR(1) process parameter-
ized as in (7). Heiss (2008) argues that such a model is much more
plausible than other models in the literature, as it is better able to
capture the pattern of slowly declining autocorrelation exhibited
by SRHS.12 His estimate of the autoregressive parameter ρ indi-
cates that the individual effects are highly persistent (ρ̂ = 0.9439,
with an asymptotic standard error of 0.0128), but he provides no
formal test of the null hypothesis that they are time-invariant. In
fact, since ρ lies in the closed interval [−1, 1], the hypothesis of
time-invariant individual effects (ρ = 1) is on the boundary of the

12 The direct competitor to the approach in Heiss (2008) would be a random-
effects model with state dependence. However, state dependence is not very
convincing in this context as it implies that the simple perception of own health
affects future true health status.
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Fig. 3. Power curves of the test for the ordered logit model.
parameter space, so standard hypothesis testing procedures do not
apply. On the other hand, no difficulty arises with our approach.

Our working sample from the HRS consists of a balanced panel
of n = 4094 respondents observed for all ten available waves
from 1992 to 2010 (T = 10).13 Table 7 presents definitions and
summary statistics for all the variables considered. It is worth
noting that the cross-sectional dimension (n) and the time-series
dimension (T ) of our sample exactly match our Monte Carlo
experiments.

Our test compares the FCML and the PCML estimators of an
ordered logit model with fixed effects, as described in Section 3.3.
We also consider a version of the test based on FCML and PCML
estimators of a binary logit model with fixed effects, where the
binary outcome is equal to one if SRHS is good or better, and
to zero otherwise. For each model we consider two different
specifications. The first (Model M1) includes as time-varying
regressors only the body mass index (BMI) and a quadratic age
spline with a single knot at age 65, which historically has been the
normal retirement age in the USA. The second (Model M2) adds to
Model M1 a set of wave dummies. We include no constant term
and no time-invariant regressor because, under the CML method,
they are eliminated from the conditional log-likelihood along with
the time-invariant individual effects.

Table 8 presents the parameter estimates which are used to
compute our test statistic. The top panel shows the FCML estimates
for the two different specifications of eachmodel, while the central
panel shows the PCML estimates. The bottom panel shows the
value of our test statistic and its p-value based on an asymptotic
χ2 distribution. Since the p-value is always lower than 1%, our
test strongly rejects the hypothesis of time-invariant unobserved
heterogeneity. In line with our simulations, the test statistic is

13 We employ the RAND HRS Data File (Version L), a user-friendly version of the
data produced by the RAND Center for the Study of Aging.
larger for the ordered logit model, especially when time dummies
are included. These results lend formal support to a modeling
strategy that allows for time-varying unobserved heterogeneity.

To complete our empirical illustration, we estimate an AR(1)
random-effects logit model similar to that considered by Heiss
(2008), except for a different specification of the age effects and
the inclusion of BMI as an additional time-varying regressor. We
include as time-invariant regressors the same socio-demographic
variables considered by Heiss (2008), namely indicator for gender,
race and educational attainments. Table 9 shows the estimates
obtained for both the binary and the ordered logit models under
our two model specifications.14 Our estimates are very similar to
those obtained by Heiss (2008). In particular, our estimates of ρ

are always very close to his estimate.

6. Conclusions

This paper proposes a computationally convenient Hausman-
like specification test for the null hypothesis of time-invariant
unobserved heterogeneity in GLMs for panel data against the al-
ternative of time-varying unobserved heterogeneity of unspecified
form. The test is based on the comparison of alternative estimators
obtained by maximizing, respectively, a full and a pairwise condi-
tional likelihood function.

The finite-sample properties of the proposed test are investi-
gated via a set of Monte Carlo experiments. Our results suggest

14 We estimated the model using the arldv Stata package kindly provided by
Florian Heiss. The likelihood of this model does not have a closed-form solution,
so numerical integration is necessary. We used the sequential Gauss–Legendre
quadrature method proposed by Heiss (2008), with 50 integration points. To
eliminate convergence issues, we also dropped 37 individuals (370 observations)
with BMI values greater than the 99.9th percentile.
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Fig. 4. Power curves of the test for the Poisson regression model.
Fig. 5. Power curves of the test for the Gaussian linear model.
that the test generally performs well, showing small size distor-
tions and good power properties for sample sizes common in eco-
nomic applications.

Our test is attractive because: (i) computation of the test statis-
tic only requires a quadratic form which involves the difference
of the parameter estimates and an estimator of its asymptotic
variancematrix, (ii) the test does not need assumptions on the dis-
tribution of the individual effects, (iii) individual effects can be cor-
related with the observed explanatory variables, (iv) it can be used
regardless of the nature of the dependent variable, and (v) it can be
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Table 7
Sample statistics (n = 4094, T = 10).

Variable Description Mean SD Min Max

SRHS (categorical) Self-rated health status, ranging from poor (1) to excellent (5) 3.47 1.04 1 5
SRHS (binary) Dummy equal to 1 if SRHS >2 0.827 0.378 0 1
Age Age of the respondent (years) 65.20 6.98 50 93
Female Dummy for female 0.519 0.5 0 1
High school grad Dummy for high school completed 0.336 0.472 0 1
Some college Dummy for college dropout 0.203 0.402 0 1
College grad Dummy for college completed 0.218 0.413 0 1
Non white Dummy for asian, black or hispanic 0.149 0.357 0 1
BMI Body mass index 27.41 4.76 12.8 51.9
Table 8
Test implementation for binary and ordered logit models.

Binary logit Ordered logit
M1 M2 M1 M2

FCML
Age-65 −0.053***

−0.103 −0.054***
−0.110

(0.0096) (0.1125) (0.0067) (0.0771)
(Age-65)2 0.002** 0.002 0.003*** 0.002**

(0.0011) (0.0013) (0.0008) (0.0009)
(Age-65)2

+
−0.006***

−0.005***
−0.005***

−0.005***

(0.0018) (0.0019) (0.0012) (0.0013)
BMI −0.011 −0.011 −0.018**

−0.018**

(0.0109) (0.0110) (0.0078) (0.0079)

PCML
Age-65 −0.052***

−0.217 −0.058***
−0.162

(0.0125) (0.1463) (0.0085) (0.0988)
(Age-65)2 0.005*** 0.005** 0.004*** 0.004***

(0.0015) (0.0018) (0.0010) (0.0012)
(Age-65)2

+
−0.008***

−0.010***
−0.007***

−0.009***

(0.0024) (0.0025) (0.0016) (0.0017)
BMI −0.021 −0.025*

−0.008 −0.011
(0.0141) (0.0144) (0.0101) (0.0103)

Wave dummies No Yes No Yes

H0 = time-invariant individual effects
Test statistic 15.53 95.43 23.39 225.01
p-value 0.004 0.000 0.000 0.000

Standard errors in parenthesis.
* p < 10%.
** p < 5%.
*** p < 1%.
easily implemented using existing software for fixed effects panel
data models.

We provide an empirical illustration using the same model for
SRHS as Heiss (2008) but exploiting a longer balanced panel from
the HRS. We reject the null hypothesis of time-invariant unob-
served heterogeneity for both binary and ordered logit versions of
the model, confirming the results in Heiss (2008) but using a pro-
cedure that is both simpler and more robust. We conclude that a
better model for this data may be based on the assumption that
SRHS depends on unobservable ‘‘true’’ health which follows some
time-series process with declining autocorrelations.

Appendix. Inconsistency of the FE and FD estimators

In Appendix A.1 we first consider the case of individual effects
that are independent across sample units and follow either a
stationary AR(1) process, as in Heiss (2008), or a pure random
walk. Then, in Appendix A.2we consider the case inwhich they are
correlated across sample units, as in Bai (2009). In the latter case,
we derive asymptotic results for both n and T diverging to infinity.

A.1. Cross-sectional independence

Suppose that the αit obey a stationary AR(1) process parame-
terized as in (7). Under this assumption, the vector αi = (αi1,
. . . , αiT )
′ has mean zero and variance matrix Σ, whose generic

element σrs is equal to ρ|r−s|. Therefore, the vector α̃i = Lαi has
mean zero and variance matrix equal to LΣL, and

τ̃ = tr LΣL = T −
1
T

T
s=1

T
t=1

ρ |t−s|
= T − 1 − 2

T−1
t=1


1 −

t
T


ρt ,

where tr denotes the trace operator. If ρ = 0 then τ̃ = T − 1,
whereas if ρ = 1 then τ̃ = 0. Notice that, if −1 < ρ < 1, then

T−1
t=1


1 −

t
T


ρt

=
ρ

1 − ρ


1 −

1
T

1 − ρT

1 − ρ


.

Substituting the expression for τ̃ in (5) shows that the inconsis-
tency of β̂1 increases with T unless either φ = 0 or ρ = 1, in
which case it is equal to zero. On the other hand, plimβ̂1 − β = φ

if ρ = 0.
The case of the FD estimator is simpler because 1αit = αit −

αi,t−1 has mean zero and variance equal to 2(1 − ρ), so 1τ =

2(T − 1)(1 − ρ), which is equal to 2(T − 1) if ρ = 0 and is equal
to zero if ρ = 1. Substituting in (6), we obtain

plimβ̂2 − β =
φ(1 − ρ)

φ2(1 − ρ) + (1 − φ2)
= φ

1 − ρ

1 − ρφ2
.
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Table 9
AR(1) random-effects binary and ordered logit models.

Binary logit Ordered logit
M1 M2 M1 M2

Age-65 −0.058*** 0.015 −0.065***
−0.001

(0.0118) (0.0215) (0.0062) (0.0138)
(Age-65)2 0.003** 0.003* 0.004*** 0.003***

(0.0014) (0.0017) (0.0007) (0.0008)
(Age-65)2

+
−0.008***

−0.009***
−0.007***

−0.007***

(0.0022) (0.0024) (0.0012) (0.0013)
Female 0.254** 0.326*** 0.076 0.143

(0.1245) (0.1266) (0.0893) (0.0901)
High school grad 2.079*** 2.118*** 1.457*** 1.490***

(0.1633) (0.1648) (0.1237) (0.1242)
Some college 2.514*** 2.582*** 1.926*** 1.980***

(0.1876) (0.1896) (0.1369) (0.1373)
College grad 3.788*** 3.836*** 2.731*** 2.774***

(0.2035) (0.2055) (0.1355) (0.1356)
Non white −1.269***

−1.264***
−1.100***

−1.092***

(0.1678) (0.1685) (0.1270) (0.1273)
BMI −0.066***

−0.063***
−0.068***

−0.066***

(0.0102) (0.0103) (0.0064) (0.0065)
Constant 3.940*** 4.621***

(0.3262) (0.3643)

Wave dummies No Yes No Yes

σ 2 3.522*** 3.544*** 2.854*** 2.864***

(0.1001) (0.1018) (0.0452) (0.0453)
ρ 0.948*** 0.947*** 0.950*** 0.949***

(0.0037) (0.0037) (0.0022) (0.0022)

Log-lik −12580.92 −12533.92 −44103.21 −43974.68

Standard errors in parenthesis.
* p < 10%.
** p < 5%.
*** p < 1%.

Now suppose that the αit follow a pure random walk

αit =


vi1, t = 1,
αit−1 + vit , t = 2, . . . , T ,

where the vit are again i.i.d., independently of ϵit and zit . The
generic element of the matrix Σ is now equal to σrs = min(r, s),
so τ̃ = tr LΣL = (T 2

− 1)/6. Substituting this expression in (5),
we find that the inconsistency of the FE estimator again increases
with T unless φ = 0, in which case it is equal to zero. As for the
FD estimator, since now 1αit has zero mean and unit variance, it
follows that

plimβ̂2 − β =
φ(T − 1)

(T − 1)(2 − φ2)
=

φ

2 − φ2
.

A.2. Interactive fixed-effects

In the case considered by Bai (2009), αit = λift with ft param-
eterized as in (10). Since αit − ᾱit = λi(ft − f̄ ) and αit − αi,t−1 =

λi(ft − ft−1), from the Law of Iterated Expectations we obtain the
same limits in probability as in (5) and (6), except that they are
now defined for n → ∞ and T → ∞. Because τ̃ /T → 1 and
1τ/T → 2(1 − ρ) as T → ∞, we have that

plimβ̂1 − β →
φ

φ2 + 1 − φ2
= φ, as T → ∞,

while plimβ̂2 − β is exactly the same as (9).
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