High Frequency Traders: Taking Advantage of Speed

Mehmet Sağlam

Carl H. Lindner College of Business University of Cincinnati email: mehmet.saglam@uc.edu

Joint work with Yacine Aït-Sahalia (Princeton).

October 2014

 Increase market quality [Hendershott et. al., (2011), Jovanovic and Menkveld (2012)].
Question: Can we endogenize liquidity provision as a function of

speed, competition and volatility?

- Increase market quality [Hendershott et. al., (2011), Jovanovic and Menkveld (2012)].
 Question: Can we endogenize liquidity provision as a function of speed, competition and volatility?
- Keep very low inventories [Kirilenko et. al., 2011]. Question: Would inventory limits depend on speed?

- Increase market quality [Hendershott et. al., (2011), Jovanovic and Menkveld (2012)].
 Question: Can we endogenize liquidity provision as a function of speed, competition and volatility?
- Keep very low inventories [Kirilenko et. al., 2011]. Question: Would inventory limits depend on speed?
- Cancel orders with high probability [Hasbrouck and Saar, 2009]. Question: What could be the driver of this behavior?

- We derive the HFT's optimal liquidity provision in a dynamic model as a function of his speed, asset volatility in monopolistic and duopolistic markets.
- Our model reproduces endogenous cancellation of limit orders.
- We evaluate various recent proposals to regulate high-frequency trading.

Limit Order Book

• The fundamental price for the asset is S_t .

- The fundamental price for the asset is S_t .
- Bid-offer spread is given by C.

- The fundamental price for the asset is S_t .
- Bid-offer spread is given by C.
- The LFTs submit market orders which arrive at random times according to a Poisson process with parameter λ.

- HFT receives a signal s with rate μ which is informative about the sign of the incoming market order.
 - \Rightarrow Signals can be generated from hard information
 - order book imbalance
 - index arbitrage
 - new trades on a correlated asset

- HFT receives a signal s with rate μ which is informative about the sign of the incoming market order.
 - \Rightarrow Signals can be generated from hard information
 - order book imbalance
 - index arbitrage
 - new trades on a correlated asset
- Higher μ implies better trading technology. Higher number of quote revisions.

- HFT receives a signal s with rate μ which is informative about the sign of the incoming market order.
 - \Rightarrow Signals can be generated from hard information
 - order book imbalance
 - index arbitrage
 - new trades on a correlated asset
- Higher μ implies better trading technology. Higher number of quote revisions.
- The signal is an iid Bernoulli random variable, $s \in {\text{sell,buy}}$ with each being equally likely.

- HFT receives a signal s with rate μ which is informative about the sign of the incoming market order.
 - \Rightarrow Signals can be generated from hard information
 - order book imbalance
 - index arbitrage
 - new trades on a correlated asset
- Higher μ implies better trading technology. Higher number of quote revisions.
- The signal is an iid Bernoulli random variable, *s* ∈ {sell,buy} with each being equally likely.
- Conditional on buy (sell) signal the next market order will be a sell (buy) order with probability p and buy (sell) with probability 1 − p.

- The HFT makes quoting decisions immediately after observing a signal or market order.
- The HFT can post limit orders at the best bid (ℓ^b = 1) and/or the best ask price (ℓ^a = 1).
- The quantity is fixed at 1 lot: no optimization over quantity. The number of possible actions is 4:

- The HFT makes quoting decisions immediately after observing a signal or market order.
- The HFT can post limit orders at the best bid (ℓ^b = 1) and/or the best ask price (ℓ^a = 1).
- The quantity is fixed at 1 lot: no optimization over quantity. The number of possible actions is 4:

- The HFT makes quoting decisions immediately after observing a signal or market order.
- The HFT can post limit orders at the best bid (ℓ^b = 1) and/or the best ask price (ℓ^a = 1).
- The quantity is fixed at 1 lot: no optimization over quantity. The number of possible actions is 4:

- The HFT makes quoting decisions immediately after observing a signal or market order.
- The HFT can post limit orders at the best bid (ℓ^b = 1) and/or the best ask price (ℓ^a = 1).
- The quantity is fixed at 1 lot: no optimization over quantity. The number of possible actions is 4:

HFT's Objective Function

• HFT is inventory-averse and gets penalized for holding any excess inventory of x_t at a rate of $\Gamma |x_t|$.

HFT's Objective Function

- HFT is inventory-averse and gets penalized for holding any excess inventory of x_t at a rate of $\Gamma |x_t|$.
- HFT maximizes expected discounted rewards earned from the bid-ask spread minus the penalty costs from holding inventory.

HFT's Objective Function

- HFT is inventory-averse and gets penalized for holding any excess inventory of x_t at a rate of $\Gamma |x_t|$.
- HFT maximizes expected discounted rewards earned from the bid-ask spread minus the penalty costs from holding inventory.
- With T_i^s the *i*th market sell order and T_j^b the *j*th market buy order, the HFT maximizes over any feasible π that chooses ℓ^b and ℓ^a at decision times:

$$\begin{split} \max_{\pi} \mathbb{E}^{\pi} \left[\frac{C}{2} \sum_{i=1}^{\infty} e^{-DT_i^{\text{sell}}} \mathbb{1}\left(\ell_{T_i^{\text{sell}}}^b = 1\right) + \frac{C}{2} \sum_{j=1}^{\infty} e^{-DT_j^{\text{buy}}} \mathbb{1}\left(\ell_{T_j^{\text{buy}}}^a = 1\right) - \Gamma \int_0^{\infty} e^{-Dt} |x_t| dt \end{split} \right] \end{split}$$

• We can transform the continuous-time problem into a discrete-time Markov Decision Process via uniformization.

- We can transform the continuous-time problem into a discrete-time Markov Decision Process via uniformization.
- The state space is represented by (x, s) where x denotes the holdings of the trader with $x \in \{\dots, -2, -1, 0, 1, 2, \dots\}$ and s is the most recent signal received by the trader with $s \in \{1 \text{ (buy)}, -1 \text{ (sell)}\}$.

- We can transform the continuous-time problem into a discrete-time Markov Decision Process via uniformization.
- The state space is represented by (x, s) where x denotes the holdings of the trader with $x \in \{\dots, -2, -1, 0, 1, 2, \dots\}$ and s is the most recent signal received by the trader with $s \in \{1 \text{ (buy)}, -1 \text{ (sell)}\}$.
- The corresponding action at each state is whether to quote a limit order or not at the best bid and best ask, i.e., $\ell^b \in \{0, 1\}$ and $\ell^a \in \{0, 1\}$.

Optimal Market Making Policy

- The optimal quoting policy of the HFT, π*, consists in quoting at the best bid and the ask according to a threshold policy.
- We prove that there exists L^* and $\,U^*$ with $-L^*\geq U^*$ such that

$$\ell^{b*}(x,1) = \begin{cases} 1 & \text{if } x < U^* \\ 0 & \text{if } x \ge U^* \end{cases} \qquad \ell^{a*}(x,1) = \begin{cases} 1 & \text{if } x > L^* \\ 0 & \text{if } x \le L^* \end{cases}$$

$$\ell^{b*}(x,-1) = \begin{cases} 1 & \text{if } x < -L^* \\ 0 & \text{if } x \ge -L^* \end{cases} \quad \ell^{a*}(x,-1) = \begin{cases} 1 & \text{if } x > -U^* \\ 0 & \text{if } x \le -U^* \end{cases}$$

Illustration: A Simulated Path

Comparative Statics

Implications for the Market Structure

Implications from stationary probabilities

- Inventory fluctuates between [L, -L].
- Signals can take values from $\{-1,1\}.$
- Under optimal policy, we have a finite state irreducible Markov Chain.
- Long-run stationary probabilities, $\pi(x, s)$, exist.
- Long-run probability of quoting at both sides of the market can be found by

$$q_{quote} = \sum_{x \in (L,U)} \pi(x,1) + \sum_{x \in (-U,-L)} \pi(x,-1).$$

HFT's Liquidity Provision

Welfare of the LFTs: Fill Rate

Cancellation Rates

Price Volatility

• Let the fundamental price of the security, S_t , be specified by a pure jump process

$$S_t = S_0 + \sum_{i=1}^{N_t} Y_i,$$

 N_t is a Poisson process with arrival rate ζ counting the number of tick movements up to time t and Y_i is the jump size with

$$Y_i \sim \begin{cases} J & \text{with probability } rac{1}{2}, \\ -J & \text{with probability } rac{1}{2}. \end{cases}$$

• When the price jump occurs, an LFT may arrive and possibly trade with a stale HFT quote, effectively imposing adverse selection on the HFT.

Illustration: Volatility Model

Illustration: Volatility Model

Impact of Volatility on HFT's Profits

Impact of Volatility on HFT's Quoting Policy

Impact of Volatility on Welfare of the LFTs

Duopoly Model - Priority Issues

• Medium-frequency trader (MFT) competes with HFT.

Duopoly Model - Priority Issues

- Medium-frequency trader (MFT) competes with HFT.
- MFT submits and cancels orders at an exogenous rate of β .

Duopoly Model - Priority Issues

- Medium-frequency trader (MFT) competes with HFT.
- MFT submits and cancels orders at an exogenous rate of β .
- Our model can accommodate priority issues with additional states.

Impact of Competition on HFT's Profits

Impact of Competition on Liquidity

Policy Implications

Discussion of Highly Cited Policies

- Tobin Tax: Suppose that HFT pays $\frac{\kappa}{2}$ dollars each time for every trade.
 - Equivalent to changing the spread in our model. Define the tax-adjusted bid-offer spread as $\tilde{C} \equiv C \kappa$.
- Speed Bumps for HFTs: We can impose (random) minimum time before a quote can be cancelled.
 - Random minumum time limits can be modeled using another Poisson clock with rate θ . Lower θ imposes larger order resting times.
- Cancellation Taxes: We can tax the HFT by ε dolars whenever he cancels an existing quote.
 - This extension can be accommodated via additional states that keeps track of the previous quotes.

Tobin Tax decreases HFT's Objective Value

Tobin Tax hurts Liquidity

Tobin Tax hurts Liquidity

Resting Time decreases HFT's Objective Value

Resting Time improves Liquidity

Resting Time improves Liquidity

Downside: Countercyclical with Volatility

Cancellation Tax decreases HFT's Objective Value

Cancellation Tax improves Liquidity

Cancellation Tax improves Liquidity

Downside: Countercyclical with Volatility

- We develop a fully dynamic trading model in which we study HFT's optimal quoting policy
- Model is very tractable and allows multiple extensions with interesting research questions.

- We develop a fully dynamic trading model in which we study HFT's optimal quoting policy
- Model is very tractable and allows multiple extensions with interesting research questions.

Key implications:

- HFTs improve market liquidity but they shy away providing liquidity in high volatility regimes.
- Tobin tax is a **bad** policy for the market but minimum time limits and cancellation taxes can improve liquidity.