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1 Introduction

This paper is motivated by the problem of online exchange of files (or data

or services). In typical systems that serve this purpose – Napster, now de-

funct, is the most familiar example but there are many in current operation,

including Gnutella and Kazaa (file sharing), Seti@home (computational as-

sistance), Slashdot and Yahoo Answers (answers to queries) – a single inter-

action involves an agent who wants a file (or data or service) and an agent

who can provide it. The former benefits from obtaining the file but the latter

bears the (often non-trivial) cost of providing it and so has an incentive to

free-ride.1 Assuming that benefit exceeds the cost, provision of the service

increases social welfare and should therefore be encouraged – but how?

This problem is a particular instance of trade in the absence of a double

coincidence of wants, which has motivated a large literature on search models

of money. Indeed, we shall formalize our problem in the same terms, and

the “solution” we develop is for a (benevolent) designer to institute a system

that relies on fiat money or tokens (we use the terms interchangeably), to

introduce a quantity of tokens into the system and to recommend strategies

to the participants for requesting and providing service. Because our agents

are self-interested, the designer must recommend strategies that constitute

an equilibrium – but our environment also imposes other constraints on

the designer: the system must be anonymous and distributed, must take

account of the fact that agents meet only electronically (and not face-to-

face), that files and tokens are indivisible, that the designer cannot know the

precise parameters of the population and, perhaps most importantly, that

the designer cannot constrain the number of tokens that agents hold.2,3

1Empirical studies show that this free-riding problem can be quite severe: in the

Gnutella system for instance, almost 70% of users share no files at all (Adar & Hube-

man, 2000).
2It might be useful to note that none of the systems mentioned above involve a central

authority or central monitoring agency. Napster, for instance, merely maintained many

partial lists (distributed across many servers) of music files available and contact informa-

tion for subscribers who had these files; users seeking files could simply search these lists

and then contact the file-holder directly. In practice, the absence of a central agency is

crucial, since it could not handle the volume of traffic that would be generated and would

be exceedingly vulnerable to attack. Hence a distributed system is a sine qua non.
3The reader might wonder how agents who do not meet in person can exchange tokens
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This paper asks how much a designer can accomplish, given these con-

straints, by judicious choice of the protocol – the quantity of tokens and the

recommended strategies. To answer this question we characterize equilib-

rium protocols and among these, the ones that are robust to small pertur-

bations of the population parameters (the designer’s slight misperceptions

of these parameters); we prove that robust equilibrium protocols exist; we

provide bounds for the efficiency of robust equilibrium protocols; we show

that the “optimal quantity of money” in our setting is different than in other

settings considered in the literature; we provide an effective procedure for

choosing a robust equilibrium protocol whose efficiency is at least good (if

not optimal); and we provide numerical simulations to illustrate some of

the theorems and also to demonstrate that design matters: a great deal of

efficiency may be lost if the designer chooses the “wrong” protocol.

As in the familiar search models of money, our environment is populated

by a continuum of agents each of whom is initially endowed with a unique file

that can be duplicated and provided to others.4 In each period, a fraction

of the population is matched; one member of each match – the client –

must decide whether to request service (provision of a file or forwarding of

a packet) and the other – the server – must decide whether to provide the

service (if requested). The client who receives the service derives a benefit,

the server who provides the service incurs a cost. To simplify the analysis

we assume here that, except for the uniqueness of the files they possess,

all agents are identical, and that all files are equally valuable to receive

and equally costly to provide. (We discuss extensions in the Conclusion.)

We assume benefit exceeds cost, so that social welfare is increased when

the service is provided, but that cost is strictly positive, so that the server

has a disincentive to provide it. The designer supplies a supply of tokens

and recommends strategies (circumstances under which service should be

requested or provided); together these constitute a protocol . We assume that

at all, since they can only exchange electronic files, and electronic files would seem to be

easily duplicated. In fact, however, there are practicable, secure and private procedures

for online token exchange, utilizing hardware or software or both; see Buttyan & Hubaux

(2001), Vishnumurthy, Chandrakumar & Sirer (2003) and Ciuffoletti (2010) for instance.

Similar procedures can also serve as escrow accounts to assure that service that is promised

is actually provided and that payment that is promised is actually made.
4In the real systems we have in mind, the population is in the tens of thousands or

hundreds of thousands so a continuum model seems a reasonable approximation.
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the price of service is fixed at one token; this restriction seems natural in our

environment and is made in much of the search literature; see also below

and the Conclusion. We differ from much of the literature in three ways

suggested by the motivation discussed. First, we do not impose an exogenous

upper bound on money holdings: agents can store as much money as they

wish. Second, we require that the protocol should induce an equilibrium

(i.e., that the recommended strategies are best replies in the (unique) steady-

state distribution) that is robust to small perturbations of the population

parameters. Third, we allow the designer to control both the money supply

and the price. As we shall show, each of these has significant implications.

Leaving aside degenerate protocols in which there is no trade, all robust

equilibrium protocols are Markov (not history dependent), symmetric (the

population plays a single pure strategy) and have a particularly simple form:

clients request service whenever their token holding is above zero; servers

provide service when their token holding is at or below a threshold K and do

not provide service when the token holding is above K. We prove that ro-

bust equilibria exist but the absence of an exogenous upper holdings makes

the proof surprisingly hard. (See Section 6.) Having shown that robust

equilibria exist we turn to our original question: which equilibrium proto-

cols are the most efficient? We have shown that we can restrict attention

to threshold strategies; among protocols that employ the threshold K the

one that would be most efficient if agents were compliant has token supply

K/2. However, these protocols need not be equilibria and the most efficient

protocols may have token supplies different from K/2; K/2 need not be the

optimal quantity of money . We go on to provide estimates for efficiency

of various protocols and an effective procedure for the designer to choose a

“good” – if not optimal – protocol. Simulations illustrate these results and

some related points.

Following a discussion of the literature below, the remainder of the paper

is organized in the following way. Section 2 introduces the model, defines

strategies, the steady state value function, best responses, equilibrium and

robust equilibrium. Section 3 discusses the nature of equilibrium and robust

equilibrium and establishes existence of robust equilibrium. Simulations il-

lustrate the nature of equilibrium. Section 4 discusses efficiency of protocols,

shows that almost full efficiency is obtainable by an equilibrium protocol if
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agents are sufficiently patient or the benefit/cost ratio is sufficiently large, es-

tablishes lower bounds for efficiency of equilibrium protocols and uses these

bounds to provide an effective procedure for constructing efficient equilib-

rium protocols, and shows that the optimal quantity of money in our setting,

with no exogenous bound on money holdings is different from the optimal

quantity of money in settings with an exogenous bound on money hold-

ings. Numerical simulations give some idea of the efficiency loss resulting

from choosing the “wrong” protocol. Section 5 concludes and offers some

directions for further research. Proofs are collected in the Appendix.

Literature Following the seminal work of Kiyotaki & Wright (1989), there

is a large literature on search models of money which has contributed enor-

mously to our understanding of money in various environments. A portion

of this literature – e.g. Camera & Corbae (1999), Berentsen (2002) – al-

lows agents to accumulate more than one unit of money, while maintaining

the assumption of Kiyotaki & Wright (1989) that there is an exogenously

given upper bound on money holdings; this is precluded in our environment.

A different portion of this literature – e.g. Cavalcanti & Wallace (1999A,

1999B), Berentsen, Camera & Waller (2007), Zhu & Mannaer (2009) and

Hu, Kennan & Wallace (2009) – assumes that agents have and can condition

on (complete or partial) knowledge of the money holdings of (some of) their

counter-parties in each match, which is again precluded in our environment.

A particularly striking paper in this literature is Kocherlakota (2002), which

shows that any individually rational outcome can be supported in equilib-

rium provided money is infinitely divisible and the common discount factor

is above some minimum threshold. However, Kocherlakota (2002) also as-

sumes that agents have a good deal of information about the money holdings

of their counterparties. To quote the abstract: “The one-money theorem

says that the allocation is achievable using only one money if that money is

divisible and money holdings are observable. The two-money theorem says

that the allocation is achievable using two divisible monies, even if money

holdings are concealable.” To elaborate: the one-money theorem assumes

that agents must display their true money holdings; the two-money theo-

rem assumes that agents can display less money than they actually have

but cannot display more money than they actually have. In both cases,

agents have (complete or partial) knowledge about the money holdings of

their counter-parties and can condition on it. In our work, agents have no
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knowledge about the money holdings of their counter-parties and so cannot

condition on it.

Our work is closest to Zhou (1999) and Berentsen (2000). Zhou (1999)

assumes money is divisible and the supply of money is given endogenously

but the price is determined endogenously.5 Berentsen (2000) assumes money

is indivisible and the price is given exogenously but the money supply is de-

termined endogenously. In our work, both the money supply and the price

are chosen exogenously by the designer. Of course, from an economic point

of view, all that really matters is the ratio M/p of the money supply M

to the price p; fixing either the money supply or the price amounts sim-

ply to choosing a normalization. So it would be more accurate to say that

in both Zhou (1999) and Berentsen (2000) the ratio M/p is determined en-

dogenously : fixing M , as Zhou (1999) does, is just choosing a normalization;

fixing p, as Berentsen (2000) does, is just choosing a different normalization.

In our work, we have chosen a particular price normalization p = 1 but the

money supply, and hence the ratio M/p, is determined exogenously by the

designer. Our designer has more control and that control is important be-

cause if the designer did not control M/p the designer could not be sure

of designing an optimal equilibrium protocol. Indeed, if the designer did

not control M/p it would seem to make no sense to even talk about de-

signing protocols, much less optimal equilibrium protocols. We also note

that neither Zhou (1999) nor Berentsen (2000) prove that equilibrium exist;

they both provide sufficient conditions but those conditions are stringent

and endogenous – they are not conditions on the primitives of the model

(benefit-cost ratio and discount factor).

This work also connects to an Electrical Engineering and Computer

Science literature that discusses token exchanges in online communities.

Some of that literature assumes that agents are compliant, rather than self-

interested, and does not treat incentives and equilibrium (Vishnumurthy,

Chandrakumar & Sirer 2003), (Buttyan & Hubaux 2003); some of that lit-

erature makes use of very different models than the one offered here (Tan

& Jarvis 2006) and (Figueiredo, Shapiro & Towsley 2004); and some of the

literature is not formal and rigorous, offering simulations rather than theo-

rems (Pai & Mohr 2006). The papers closest to ours are probably Friedman,

5We say “the” price because Zhou (1999) considers only single-price equilibria.
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Halpern and Kash (2006, 2007), which treat somewhat different models.

However, these papers seem puzzling in many dimensions and many of the

proofs seem mysterious (at least to us).

Another literature to which this work connects is the game-theoretic

literature on anonymous interactions. In a context in which interactions

were publicly observable, full cooperation (i.e., provision of service) could

be achieved at equilibrium by the use of trigger strategies, which deny service

in the future to any agent who refuses service in the present. As Kandori

(1992) and Ellison (2000) have pointed out, in some contexts, cooperation

can be supported even without public observability if agents deny service in

the future to all agents whenever they have observed an agent who refuses

service in the present; in this equilibrium any failure to provide service re-

sults in a contagion, producing wider and wider ripples of defection, until

no agent provides service. However contagion is not likely to sustain coop-

eration in the systems of interest to us, because the population is so large

(typically comprising tens of thousands or even hundreds of thousands of

agents) that an agent is unlikely, in a reasonable time frame, to meet any

other agent whose network of past associations overlap with his. (When the

population is literally a continuum, no agent ever meets any other agent

whose network of past associations overlap with his.) A more relevant lit-

erature, of which Kandori (1992) is again the seminal work, uses reputation

and social norms as devices as a means of incentivizing cooperation. The

work that is closest to ours is Zhang, Park & van der Schaar (2010), which

asks which reputation-based systems can be supported in equilibrium and

which of these achieve the greatest social efficiency. Because provision of

service in their model depends on the reputations of both client and server,

some central authority must keep track of and verify reputations; hence

these systems are not distributed in the sense we use here.

2 Model

The population consists of a continuum (mass 1) of infinitely lived agents.

Each agent can provide a resource (e.g, a data file, audio file, video file,

service) that is of benefit to others but is costly to produce (uploading a

file uses bandwidth and time). The benefit of receiving this resource is b
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and the cost of producing it is c; we assume b > c > 0.6 Agents care about

current and future benefits/costs and discount future benefits/costs at the

constant rate β ∈ (0, 1). Agents are risk neutral so seek to maximize the

discounted present value of a stream of benefits and costs.

Time is discrete. In each time period, a fraction ρ ≤ 1/2 of the popula-

tion is randomly chosen to be a client and matched with a randomly chosen

server ; the fraction 1− 2ρ are unmatched.7 (No agent is both a client and

a server in the same period.) When a client and server are matched, the

client chooses whether or not to request service, the server chooses whether

or not to provide service (e.g., transfer the file) if requested.

The parameters b, c, β, ρ completely describe the environment. Because

the units of benefit b and cost c are arbitrary (and tokens have no intrinsic

value), only the benefit-cost ratio r = b/c is actually relevant. We consider

variations in the benefit-cost ratio r and the discount factor β, but view the

matching rate ρ as immutable.

2.1 Tokens and Strategies

In a single interaction between a server and a client, the server has no

incentive to provide services to the client. The mechanism we study for

creating incentives to provide service involves the exchange of tokens. Tokens

are indivisible, have no intrinsic value, cannot be counterfeited, and can

be stored and transferred without loss. Each agent can hold an arbitrary

non-negative finite number of tokens, but cannot hold a negative number

of tokens and cannot borrow. We emphasize that our tokens are purely

electronic objects and are transferred electronically.

The designer creates incentives for the agents to provide or share re-

sources by providing a supply of tokens and recommending strategies (be-

havior) for agents when they are clients and servers. At the moment, we

allow for strategies that depend on histories but we show that optimal strate-

6If b ≤ c there is no social value to providing service; if c ≤ 0 agents will always be

willing to provide service.
7We assume that the matching procedure is such that the Law of Large Numbers holds

exactly; Duffie & Sun (1997), Als-Ferrer (1999) and Podczek & Puzzello (forthcoming)

construct such matching procedures.
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gies (best responses) depend only on current token holdings.

An event describes the particulars of a match at a particular time:

whether the agent was chosen to be a client or a server or neither, whether

the agent was matched with someone who was willing to serve or to buy,

whether the agent received a benefit and surrendered a token or provided

service and acquired a token or neither, and the change in the token hold-

ing. Write εt for an event at time t. A history of length T specifies an initial

token holding m and a finite sequence of events h = (m; ε0, ε1, εT−1). Write

HT for the set of histories of length T , H =
⋃
T HT for the set of finite his-

tories. An infinite history specifies an initial token holding m and an infinite

sequence of events h = (m; ε0, ε1, . . .). We insist that finite/infinite histories

be feasible in the sense that net token holdings are never negative (i.e., a

request for service by an agent holding 0 tokens will not be honored). Given

a finite or infinite history h, write d(h, t) for the change in token holding

at time t and d+(h, t), d−(h, t) for the positive and negative parts of d(h, t).

Note that d(h, t) = +1 if the agent serves, d(h, t) = −1 if the agent buys,

d(h, t) = 0 otherwise. Note also that the token holding at the end of the

finite history h is

N(h) = m+
T−1∑
t=0

d(h, t)

A strategy is a pair (σ, τ) : H → {0, 1}; τ is the client strategy and σ

is the server strategy. Following the history h, τ(h) = 1 means the client

requests service and τ(h) = 0 means the client does not request service;

σ(h) = 1 means the server provides service, σ(h) = 0 means the server

does not provide service. (Note that we require individual agents to follow

pure strategies, but we will eventually allow for the possibility that different

agents follow different pure strategies, so the population strategy might be

mixed.) If service is requested and provided, a single token is transferred

from client to server, so the client’s holding of tokens decreases by 1 and the

server’s holding of tokens increases by 1. Tacitly, we assume that a token is

transferred if and only if service is provided; like the transfer of tokens itself,

this can be accomplished electronically in a completely distributed way.
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2.2 Steady State Payoffs, Values and Optimal Strategies

Because we consider a continuum population, assume that agents are matched

randomly and can observe only their own histories, the relevant state of the

system from the point of view of a single agent can be completely summa-

rized by the fraction µ of agents who do not request service when they are

clients and the fraction ν of agents who do not provide service when they

are servers. If the population is in a steady state then µ, ν do not change

over time. Given µ, ν, a strategy (τ, σ) determines in the obvious way a

probability distribution P (τ, σ|µ, ν) over infinite histories H. We define the

discounted expected utility to an agent whose initial token holding is m and

who follows the strategy (τ, σ) to be

Eu(m, τ, σ|µ, ν) =
∑
h∈H

P (τ, σ|µ, ν)(h)
∞∑
t=0

βt
[
d+(h, t)b− d−(h, t)c

]
(Here and below, when some of the variables β, b, c, µ, ν, τ, σ are clearly un-

derstood we frequently omit all or some of them; this should not cause

confusion.)

Given µ, ν, τ, σ and an initial token holding m we define the value to be

V (m,µ, ν, τ, σ) = sup
(τ,σ)

Eu(m, τ, σ|µ, ν)

Discounting implies that the supremum – which is taken over all strategy

profiles – exists and is at most b/(1− β).

Given µ, ν the strategy (τ, σ) is optimal or a best response for an initial

token holding of m if

Eu(m, τ, σ|µ, ν) ≥ Eu(m, τ ′, σ′|µ, ν)

for all alternative strategies τ ′, σ′. Because agents discount the future at the

constant rate β, the strategy (τ, σ) is optimal if and only it has the one-

shot deviation property ; that is, there does not exist a finite history h and

a profitable deviation (τ ′, σ′) that differs from (τ, σ) following the history h

and nowhere else. A familiar and straightforward diagonalization argument

establishes that optimal strategies exist and achieve the value; we record

this fact below, omitting the proof.
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Proposition 1 For each µ, ν and each initial token holding m there is an

optimal strategy τ, σ and

Eu(m, τ, σ|µ, ν) = V (m,µ, ν, τ, σ)

2.3 Optimal Strategies

We want to characterize optimal strategies, but before we do, there is a

degeneracy that must be addressed. If µ = 1 then no one ever requests

service so the choice of whether to provide service is irrelevant; if ν = 1 then

no one ever provides service so the choice of whether to request service is

irrelevant. In what follows, we sometimes ignore or avoid these degenerate

cases, but this should not lead to any confusion.

Fix β, b, c, µ, ν; let (τ, σ) be optimal for the initial token holding m. Note

that the continuation of (τ, σ) must also be optimal following every history

that begins with m. If h is such a history and the token holding at h is n

then (τ, σ) induces a strategy (τh, σh) from an initial token holding n that

simply transposes what follows h back to time 0, and this strategy must be

optimal for the initial token holding of n. Conversely, any strategy that is

optimal for the initial token holding of n must also be optimal following h.

It follows that optimal strategies (τ, σ) (whose existence is guaranteed by

Proposition 1) depend only on the current token holding but are otherwise

independent of history; we frequently say such strategies are Markov – but

note that they are Markov in individual token holdings. Write Σ(µ, ν, β) for

the set of optimal strategies.

Theorem 1 For all b, c, β, µ, ν with ν < 1, every optimal strategy (τ, σ) has

the property that τ(n) = 1 for every n ≥ 1; i.e. “always request service when

possible”.8

In view of Theorem 1, we suppress client strategies τ entirely, assuming

that clients always request service whenever possible. We abuse notation

and continue to write Σ(µ, ν, β) for the set of optimal strategies.

8Because a request for service will not be honored when an agent holds 0 tokens, it is

irrelevant whether τ(0) = 0 or τ(0) = 1.
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We now show that optimal (server) strategies also have a simple form.

Say that the (server) strategy σ is a threshold strategy (with threshold K) if

σ(n) = 1 if n ≤ K
σ(n) = 0 if n > K (1)

We write σK for the threshold strategy with threshold K and

Σ = {σK : 0 ≤ K <∞}

for the set of threshold strategies.

Theorem 2 For each µ, ν, b, c, β with µ < 1 the set of optimal (server)

strategies consists of either a single threshold strategy or two threshold strate-

gies with adjacent thresholds.

(The assumptions in Theorems 1 and 2 that ν < 1 and µ < 1 avoid the

degeneracies previously noted.)

2.4 Protocols

The designer chooses a per capita supply of tokens α ∈ (0,∞) and recom-

mends a strategy to each agent; we allow for the possibility that the designer

recommends different strategies to different agents. Because self-interested

agents will always play a best response, the designer will recommend only

strategies in Σ; in view of anonymity, it does not matter which agents are

recommended to play each strategy, but rather only the fraction of agents

recommended to play each strategy. Hence we can identify a recommenda-

tion with a mixed threshold strategy, which is a probability distribution on Σ;

with the obvious abuse of notation, we view γ as a function γ : N+ → [0, 1]

such that

γ(K) ≥ 0 for each K ≥ 0
∞∑
K=0

γ(K) = 1

Write ∆(Σ) for the set of mixed threshold strategies. As usual, we identify

the threshold strategy σK with the mixed strategy that puts mass 1 on σK .
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Assuming that the designer only recommends best responses (because other

recommendations would not be followed), we interpret an element γ ∈ ∆(Σ)

as a recommendation that the fraction γ(K) play the threshold strategy σK .

A protocol is a pair Π = (α, γ) consisting of a per-capita supply of tokens

α ∈ (0,∞) and a mixed strategy recommendation γ ∈ ∆(Σ).

2.5 Invariant Distributions

If the designer chooses the protocol Π = (α, γ) and agents follow the recom-

mendation γ, we can easily describe the evolution of the token distribution

(the distribution of token holdings). The token distribution must satisfy the

two feasibility conditions:

∞∑
k=0

η(k) = 1 (2)

∞∑
k=0

kη(k) = α (3)

Write

µ = η(0), ν =
∑

σ(k)=0

η(k)

Evidently, with respect to this token distribution, µ is the fraction of agents

who have no tokens, hence cannot pay for service, and ν is the fraction of

agents who do not serve (assuming they follow the protocol).

To determine the token distribution next period, it is convenient to think

backwards and ask how an agent could come to have k tokens in the next

period. There are three possibilities; the agent could have

• k− 1 tokens in the current period, be chosen as a server, meet a client

who can pay for service, and provide service (hence acquire a token);

• k+ 1 tokens in the current period, be chosen as a client, meet a server

who provides service, and buy service (hence expend a token);

• k tokens in the current period but neither provide service nor buy

service (hence neither acquire nor expend a token).
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Given a recommendation γ it is convenient to define σγ : N+ → [0, 1] by

σγ(n) =
∞∑
K=0

γ(K)σK(n)

Assuming that the Law of Large Numbers holds exactly in our continuum

framework and that all agents follow the recommendation γ, σγ(n) is the

fraction of agents in the population who serve when they have n tokens, so

σγ is the population strategy. Keeping in mind that token holdings cannot

be negative, it is easy to see that the token distribution next period will be

η+(k) = η(k − 1)[ρ(1− µ)σγ(k − 1)]

+ η(k + 1)[ρ(1− ν)]

+ η(k)[1− ρ(1− µ)σγ(k)− ρ(1− ν)] (4)

where we use the convention η(−1) = 0.

Given the protocol Π = (α, γ), the (feasible) token distribution η is

invariant if η+ = η; that is, η is stationary when agents comply with the

recommendation γ. Invariant distributions always exist and are unique.

Theorem 3 For each protocol Π = (α, γ) there is a unique invariant dis-

tribution ηΠ, which is completely determined by the feasibility conditions (2)

and (3) and the recursion relationship

ηΠ(k) = ηΠ(k − 1)[ρ(1− µ)σγ(k − 1)]

+ ηΠ(k + 1)[ρ(1− ν)]

+ ηΠ(k)[1− ρ(1− µ)σγ(k)− ρ(1− ν)] (5)

2.6 Definition of Equilibrium and Robust Equilibrium

Assuming agents are rational and self-interested, they will comply with a

given protocol if and only if compliance is individually optimal; that is, no

agent can benefit by deviating from the protocol. To formalize this, fix a

protocol Π = (α, γ), and let ηΠ be the unique invariant distribution. Write

µΠ = ηΠ(0) , νΠ =
∑

σ(k)=0

ηΠ(k)
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for the fraction of agents who have no tokens and the fraction of agents who

do not serve (in the invariant distribution induced by Π), respectively. We

say Π = (α, γ) is an equilibrium protocol if σK is an optimal strategy (given

given µΠ, ηΠ) whenever γ(K) > 0. That is, γ puts positive weight only on

threshold strategies that are optimal, given the invariant distribution that

Π itself induces.

Using the one step deviation principle, we can provide a useful alterna-

tive description of equilibrium in terms of the value function V . As noted

before, because optimal strategies exist and are Markov, we may unambigu-

ously write Vk for the value following any history at which the agent has

k tokens. (The value function depends on the population data µ, ν and on

the environmental parameters b, c, β; but there should be no confusion in

suppressing those here.)

Fix any Markov strategy σ. In order for σ to be optimal, it is necessary

and sufficient that it achieves the value V` following every token holding `.

Expressed in terms of current token holdings and future values, and taking

into account how behavior in a given period affects the token holding in

the next period, this means that σ is optimal if and only if it satisfies the

following system of equations:

V0 = ρσ(0)[(1− µ)(−c+ βV1) + µβV0]

+ρ[1− σ(0)]βV0 + (1− 2ρ)βV0

Vk = ρ[(1− ν)(b+ βVk−1) + νβVk]

+ ρσ(k)[(1− µ)(−c+ βVk+1) + µβVk]

+ρ[1− σ(k)]βVk + (1− 2ρ)βVk

for each k > 0 (6)

Applying this observation to the threshold strategy σK and carrying out the

requisite algebra, we conclude that σK is optimal if and only if

−c+ βVk+1 ≥ βVk if k ≤ K (7)

−c+ βVk+1 ≤ βVk if k > K (8)

(If it seems strange that α, γ do not appear in these inequalities, remem-

ber that the value depends on the invariant distribution ηΠ, which in turn
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depends on α and on γ.)

Given a benefit/cost ratio r > 1 and a discount factor β < 1, write

EQ(r, β) for the set of protocols Π that constitute an equilibrium when

the benefit/cost ratio is r and the discount factor is β. Conversely, given

a protocol Π write E(Π) for the set {(r, β)} of pairs of benefit/cost ratios

r and discount factors β such that Π is an equilibrium protocol when the

benefit/cost ratio is r and discount factor is β. Note that EQ,E are corre-

spondences (which might have empty values) and are inverse to each other.

Given r, β we say that Π is a robust equilibrium if (r, β) belongs to the

interior of E(Π); i.e., there is some ε > 0 such that Π ∈ EQ(r′, β′) whenever

|r′−r| < ε and |β′−β| < ε. Write EQR(r, β) for the set of robust equilibrium

protocols for the benefit/cost ratio r and discount factor β and ER(Π)

for the set {(r, β)} of pairs of benefit/cost ratios for which Π is a robust

equilibrium. Note that EQR,ER are correspondences (which might have

empty values) and are inverse to each other.

3 Equilibrium and Robust Equilibrium

We first describe the nature of equilibrium and robust equilibrium and then

use that description to show that robust equilibria exist. The crucial fact

about equilibrium is that the strategy part of an equilibrium protocol can

involve mixing over at most two thresholds and that these thresholds must

be adjacent; the crucial fact about robust equilibrium is that the strategy

cannot involve strict mixing at all but must rather be a pure strategy.

Theorem 4 For each benefit/cost ratio r > 1 and discount factor β < 1 the

set EQ(r, β) is either empty or consists of protocols that involve only (possi-

bly degenerate) mixtures of two threshold strategies with adjacent thresholds.

Theorem 5 If Π = (α, σ) is a robust equilibrium then σ is a pure threshold

strategy.

The existence of equilibrium or robust equilibrium does not seem at all

obvious (and our proof is not simple). For both intuition and technical
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convenience, it is convenient to work “backwards”: rather than beginning

with population parameters r, β and looking for protocols Π that constitute

an equilibrium for those parameters, we begin with a protocol Π and look

for population parameters r, β for which Π constitutes an equilibrium. That

is, we do not study the correspondences EQ(r, β) and EQR(r, β) directly,

but rather the inverse correspondences E(Π) and ER(Π). This is easier for

several reasons, one of which is that the latter correspondences always have

non-empty values.

To give an intuitive understanding of the difficulty and how we overcome

it, fix a protocol Π = (α, σ) and let ηΠ be the invariant distribution. Because

we will eventually want to find a robust equilibrium, we assume σ is a

threshold strategy: σ = σK . To look for population parameters r, β for

which Π is an equilibrium, let us fix r and let β vary. (We could fix β and

let r vary, or vary both β, r simultaneously, but the intuition is most easily

conveyed by fixing r and letting β vary.) As we have already noted, the

invariant distribution ηΠ, and hence µΠ, νΠ, depend only on Π and so do

not change as β varies. Given the invariant distribution, if β is close to 0, an

agent has little incentive to acquire tokens; however the incentive to acquire

tokens increases as β → 1. It can be shown that there is a smallest discount

factor βL(Π) with the property that an agent whose discount factor is at

least βL(Π) will be willing to continue providing service until he has acquired

K tokens. This is not enough, because σK will only be incentive compatible

if the agent is also willing to stop providing service after he has acquired

K tokens. However, it can also be shown that there is a largest discount

factor βH(Π) for which the agent is willing to stop providing service after

he has acquired K tokens, and that βL(Π) < βH(Π). (Recall that r,Π are

fixed.) For every discount factor β in the closed interval [βL(Π), βH(Π)], the

protocol Π is an equilibrium when the population parameters are r, β; that

is, (r, β) ∈ E(Π). From this it can be shown that for every discount factor β

in the interval (βL(Π), βH(Π)), the protocol Π is a robust equilibrium when

the population parameters are r, β; that is, (r, β) ∈ ER(Π). Similarly, we

can hold β fixed and let r vary from 1 to ∞, construct the corresponding

intervals [rL(Π), rH(Π)] with rL(Π) < rH(Π) and then show that for every

benefit/cost ratio r in the open interval (rL(Π), rH(Π)) the protocol Π is a

robust equilibrium when the population parameters are r, β; that is, (r, β) ∈
ER(Π). This is the content of Theorem 6 below.
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Applying this procedure for every protocol yields a family {ER(Π)} of

non-empty open sets of parameters r, β for which robust equilibria exist.

However our work is not done because we do not know whether a robust

equilibrium exists for given population parameters r, β. To see that it does,

we show that {ER(Π)} covers a big enough set of population parameters.

In particular, for each r > 1 there is a β∗ < 1 such that {ER(Π)} covers

the set {Π(r, β) : β > β∗}; this means that for each r > 1 and β > β∗

there is a protocol Π that constitutes a robust equilibrium for the population

parameters r, β. Similarly, for each β > 0 there is a r∗ > 0 such that if r > r∗

there is a protocol that constitutes a robust equilibrium for the population

parameters β, r. The proof is not easy; to do so, we first establish (Theorem

6) some special properties of protocols of the form ΠK = (K/2, σK); we then

apply these special properties (Theorem 7) to obtain the desired result.

It is natural to ask why our proof seems (and is) so much more compli-

cated than existence proofs in the literature, such as in Berentsen (2002).

The answer is that the literature establishes the existence of equilibrium

only under the assumption that there is an exogenous upper bound K∗ on

the number of tokens any agent can hold. As discussed above, this as-

sumption makes it relatively easy to show that equilibrium exists: Fix the

benefit/cost ratio r > 1 and an arbitrary α > 0 and consider the protocol

(α, σK∗). As above, an agent whose discount factor β is at least βL(α, σK∗)

will provide service until he has acquired K∗ tokens; under the assumption

that K∗ is an upper bound on the number of tokens any agent can hold, the

agent will stop providing service after he has acquired K∗ tokens because,

by assumption, he cannot hold more than K∗ tokens so providing service

incurs a present cost with no future benefit. Hence (α, σK∗) is an equilib-

rium protocol for every β ≥ βL(Π) and is a robust equilibrium protocol for

every β > βL(α, σK∗). Thus, any protocol can be supported in equilibrium

so long as agents are sufficiently patient. As we have noted in the Introduc-

tion, assuming an exogenous upper bound on token holdings does not seem

realistic in the environments we consider.

Theorem 6 Fix a protocol Π = (α, σK).

(i) For each benefit/cost ratio r > 1, the set {β : Π ∈ EQ(r, β)} is a non-

degenerate closed interval [βL(Π), βH(Π)] whose endpoints are contin-
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uous functions of r.

(ii) For each discount factor β < 1, the set {r : Π ∈ EQ(r, β)} is a non-

degenerate closed interval [rl(Π), rH(Π)] whose endpoints are continu-

ous functions of β.

These results are illustrated for α = 1/4 in in Figures 1 and 2. (Figure 1

may give the impression that the intervals for successive values of K do not

overlap, but as Figure 2 illustrates, they actually do overlap; the overlap is

masked by the granularity of the Figure. However, as we have already said,

we do not assert that overlapping of intervals for successive values of K is a

general property.)

For the special protocols ΠK = (K/2, σK), in which the supply of tokens

is exactly half the selling threshold we prove in Theorem 7 below that the

intervals corresponding to successive values of the threshold overlap but are

not nested. This is exactly what we need to guarantee that (non-degenerate)

equilibria always exist provided that β, r are sufficiently large. Theorem 10

provides estimates on how big β, r must be.)

Theorem 7 Robust equilibria exist whenever β, r are sufficiently large. More

precisely:

(i) For each fixed threshold K and benefit-cost ratio r > 1, successive β-

intervals overlap but are not nested:

βL(ΠK−1) < βL(ΠK) < βH(ΠK−1) < βH(ΠK)

Moreover

lim
K→∞

βL(ΠK) = 1

In particular, there is some β∗ < 1 such that EQR(r, β) 6= ∅ for all

β > β∗.

(ii) For each fixed threshold K and discount factor β < 1, successive r-

intervals overlap but are not nested:

rL(ΠK−1) < rL(ΠK) < rH(ΠK−1) < rH(ΠK)
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Moreover

lim
K→∞

rL(ΠK) =∞

In particular, there is some r∗ > 1 such that EQR(r, β) 6= ∅ for all

r > r∗.

It follows from Theorem 7 that, as K → ∞, the left-hand end-points

βL(ΠK) → 1, so a fortiori the lengths of β-intervals shrink to 0. It is

natural to guess that the lengths of these intervals shrink monotonically to

0, and simulations suggest that this guess is correct, but we have neither

a proof nor a good intuition that this is actually true. We also guess that

the lengths of r-intervals shrink monotonically, but again we have neither a

proof nor a good intuition that this is actually true.

4 Efficiency

If agents were compliant (rather than self-interested), the designer could

simply instruct them to provide service at every meeting and they would

comply, so the per capita social gain in each period would be ρ(b − c).

If agents follow the protocol Π = (α, σK) then service will be provided

only in those meetings where the client can buy service and the server is

willing to provide service, so the per capita social gain in each period will

be ρ(b− c)(1− µΠ)(1− νΠ). Hence we define the efficiency of the protocol

Π to be

Eff(Π) = (1− µΠ)(1− νΠ)

In general it seems hard to determine the efficiency of a given protocol or

to compare the efficiency of different protocols. However, we can provide

efficiency bounds for protocols that utilize a given threshold strategy σK
and compute the precise efficiency of the protocols ΠK .9

Theorem 8 For each α ∈ (0,∞), each threshold K and all values of the

population parameters we have:

(i) Eff(α, σK) ≤ 1− 1
2dαe+1

9Berentsen (2002) derives similar results in a different model, with Poisson arrival rates.
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(ii) Eff(α, σK) ≤ Eff(ΠK)

(iii) Eff(ΠK) =
(

1− 1
K+1

)2
=
(

K
K+1

)2

Two implications of Theorem 8 are immediate. The first is that, in order

that a (threshold) protocol achieve efficiency near 1 it is necessary that it

provide a large number of tokens and also that it prescribe a high selling

threshold. Put differently: to yield full efficiency in the limit it is not enough

to increase the number of tokens without bound or to increase the threshold

without bound – both must be increased without bound. The second is that

the protocols ΠK that provide K/2 tokens per capita are the most efficient

protocols that utilize a given threshold strategy σK .

We caution the reader, however, that the protocols ΠK need not be equi-

librium protocols, and it is (robust) equilibrium protocols that we seek.

However, it follows immediately from Theorem 7 that whenever agents are

sufficiently patient or the benefit-cost ratio is sufficiently large (or both),

then some protocol ΠK is an equilibrium for large K, and hence that nearly

efficient equilibrium protocols always exist.

Theorem 9

(i) for each fixed discount factor β < 1

lim inf
r→∞

sup{Eff(ΠK) : ΠK ∈ EQR(β, r)} = 1

(ii) for each fixed benefit-cost ratio r > 1

lim inf
β→1

sup{Eff(ΠK) : ΠK ∈ EQR(β, r)} = 1

In words: as agents become arbitrarily patient or the benefit/cost ratio

becomes arbitrarily large, it is possible to choose robust equilibrium pro-

tocols that achieve efficiency arbitrarily close to first best. Some intuition

might be useful. Consider the protocols ΠK and the corresponding invariant

distributions. As K increases, the fraction of agents who cannot purchase

service and the fraction of agents who will do not provide both decrease –

so efficiency increases. However, if r, β are fixed and K increases then the
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protocols ΠK will eventually cease to be equilibrium protocols so equilib-

rium efficiency is bounded. On the other hand, if we fix r and let β → 1 or

fix β and let r →∞ then the thresholds K for which the protocols ΠK are

equilibrium protocols blow up, and hence efficiency tends to 1. Put differ-

ently: high discount factors or high benefit/cost ratios make the use of high

thresholds consistent with equilibrium.

Theorem 9 provides asymptotic efficiency results; the following result

presents an explicit lower bound (in terms of the population parameters

r, β) for the efficiency obtainable by a robust equilibrium protocol.

Theorem 10 Given the benefit/cost ratio r > 1 and the discount factor

β < 1, define10

KL = max

{
log ρβ

2(1−β)+2ρβ

(
1

1 + r

)
− 1 , 0

}
KH = log ρβ

1−β+ρβ

(
1

2r

)
Then:

(i) all the thresholds K for which ΠK is a robust equilibrium protocol lie

in the interval [KL,KH ];

(ii) the efficiency of the optimal robust equilibrium protocol is at least(
1− 1

KL+1

)2
=
(

KL

KL+1

)2
.

Theorem 10 yields a lower bound on efficiency because the optimal robust

equilibrium protocol is at least as efficient as any protocol ΠK that is a

robust equilibrium, but does not yield an upper bound on efficiency because

the optimal robust equilibrium protocol might be more efficient than any

protocol ΠK that is a robust equilibrium.

Theorem 10 also yields the designer an effective procedure for finding a

robust equilibrium whose efficiency is good, if not optimal, since all that is

necessary is to check protocols ΠK with thresholds K in the (finite) interval

[KL,KH ]. Moreover, it is not necessary to conduct an exhaustive search.

10Note that both the basis of the logarithms and the arguments are less than 1.
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Rather the designer can begin by checking the protocol ΠK , where K is the

midpoint of the interval [KL,KH ]. If MσK (K − 1) ≥ c/β and MσK (K) ≤
c/β, then ΠK is an equilibrium protocol and the search can stop. IfMσK (K−
1) < c/β, then for all K ′ > K, MσK′ (K

′ − 1) < c/β (because βL(ΠK′) >

βL(ΠK)). Therefore threshold protocols for which K ′ > K cannot be an

equilibrium and the designer can restrict search to the left half interval

[KL,K]. If MσK (K) > c/β, then for all K ′ < K, MσK′ (K
′) > c/β (because

βH(ΠK′) > βH(ΠK)). Therefore threshold protocols for which K ′ < K

cannot be an equilibrium and the designer can restrict search to the right

half interval [K,KH ]. Continuing to bisect in this way, the designer can find

an equilibrium threshold protocol in at most log2(KH −KL) iterations.

4.1 The Optimal Quantity of Money

The question naturally arises: “Which equilibrium protocols are most ef-

ficient?” Because all robust equilibrium protocols are threshold protocols,

this amounts to asking for which values of α,K is (α, σK) the most efficient

equilibrium protocol. If we focus on α we are asking a familiar question:

“What is the optimal quantity of money?” Kiyotaki & Wright (1989) con-

strain agents to hold no more than 1 unit of money and show that the

optimal quantity of money is 1/2. Berentsen (2002) relaxes the constraint

on money holdings to K and shows that (with certain assumptions) the

optimal quantity of money is K/2. However, this conclusion is an artifact

of the constraint that agents can hold no more than K units of money. In

our framework, which does not place an exogenous constraint on money

holdings, K/2 may not be – and often will not be – the optimal quantity of

money. Figure 3 illustrates this point in a simulation, but it is in fact quite

a robust phenomenon.

To see what this is so, fix r ≥ 1 and K ≥ 1. Theorem 7 guarantees that

there is an open interval of discount factors for which ΠK is an equilibrium

and an open interval of discount factors for which ΠK+1 is an equilibrium

and these intervals overlap:

βL(ΠK) < βL(ΠK+1) < βH(ΠK) < βH(ΠK+1)

Consider a discount factor β with βL(ΠK) < β < βL(ΠK+1). By construc-

tion, ΠK = (K/2, σK) is an equilibrium and ΠK+1 = ((K + 1)/2, σK+1)
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is not, so ΠK is the most efficient equilibrium protocol among the proto-

cols ΠK′ . However, these are not the only protocols: if we seek the most

efficient among all equilibrium protocols we must also consider protocols

(α, σK′) for values of α other than α = K ′/2. However, for discount factors

β < βL(ΠK+1) for which |βL(ΠK+1) − β| is sufficiently small, there will be

token supplies α < (K+1)/2 for which |(K+1)/2−α| is as small as we like

and for which (α, σK+1) is an equilibrium protocol. If |(K+1)/2−α| is small

then the invariant distributions for (α, σK+1) and for ((K+ 1)/2, σK+1) will

be close, and hence the efficiency of (α, σK+1) will be almost equal to the

efficiency of ((K + 1)/2, σK+1) = ΠK+1. Since the efficiency of ΠK+1 is

strictly greater than the efficiency of ΠK this means that (α, σK+1) is an

equilibrium protocol that is more efficient than ΠK . In other words, for

discount factors less than but very close to βK+1, K/2 is not the optimal

quantity of money.

As this discussion illustrates, it is crucial to the design problem that the

designer be able to choose the quantity of money α, since it is through α

that the designer controls efficiency (social welfare).

4.2 Choosing the Right Protocol

The reader may wonder why we have put so much emphasis on choosing the

right protocol. As Figure 3 already shows, the reason is simple: choosing

the wrong protocol can result in an enormous efficiency loss. Figure 4,

which compares efficiency of the most efficient protocol with efficiency of a

protocol for which the strategic threshold is constrained to be K = 3, makes

this point in an even starker way: as the reader will see, except for a small

range of discount factors, the efficiency loss is enormous.

5 Conclusion

In this paper, we have analyzed in some detail a simple, practicable and

distributed method to incentivize trade in on-line environments through the

use of (electronic) tokens. We have shown that when agents are patient,

the method we offer can achieve outcomes that are nearly efficient, provided
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the right protocol (supply of tokens and recommended threshold) is chosen,

but that equilibrium and efficiency are both sensitive to the precise choice

of protocol. Surprisingly, the “optimal” supply of tokens need not be half

the recommended threshold; this conclusion, and others, and much of the

difficulty of our arguments are a consequence of our allowing agents to ac-

cumulate as many tokens as they wish, rather than imposing an exogenous

bound on token holdings (which is common in the literature).

Our analysis is silent about convergence to the steady state. In partic-

ular, we do not know whether the recommended strategies would lead to

convergence to the invariant distribution for all initial token distributions

or for some particular token distributions. Berentsen (2002) proves conver-

gence under some conditions, but in a continuous time model in which token

holdings are subject to an exogenous bound; we have already noted that the

latter is a strong (and, in our view, unrealistic) assumption. Another point

is worth making as well. By definition, the recommended strategy is a best

reply when the system is in the steady state, but the recommended strategy

need not be a best reply – and very likely is not a best reply – when the

system is not in the steady state – so why should agents follow it?

We have assumed that service and tokens are both indivisible. This

seems a natural assumption given the environment in which we are interested

because a partial file is usually worthless by itself and because there is no

(extant) technology for online exchange of fractional tokens. The assumption

that service and tokens are exchanged one-for-one is a genuine restriction.

It is conceivable that there would exist an equilibrium in which different

quantities of tokens sometimes change hands, and such equilibria (if they do

exist) might be more efficient than the ones we consider here. Determining

whether such equilibria exist and characterizing them (if they do exist) seems

a daunting task that none of the literature seems to have addressed.11

We have considered the simplest setting, in which agents are identical,

all files are equally valuable, and no errors occur. In a more realistic setting,

we would need to take account of heterogeneous agents and files and allow

for the possibilities of errors (in transmission of files or exchange of tokens

11Zhou (1999) considers equilibria for various prices, but all the equilibria she studies are

assumed to have a single price and agents holding in these equilibria are only in integral

multiples of the single price.
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or both). We have followed here the well-known adage “one has to start

somewhere” – but we are keenly aware that there is much more work to be

done.

29



References

[1] E. Adar and B. Hubeman, “Free Riding on Gnutella”, First Monday,

Volume 5, No. 10, October 2000.

[2] C. Alós-Ferrer, “Dynamical Systems with a Continuum of Randomly

Matched Agents,” Journal of Economic Theory, Vol. 86, Issue 2, pp.

245-267, June 1999.

[3] P. Antoniadis, C. Courcoubetis and R. Mason, “Comparing Economic

Incentives in Peer-to-Peer Networks”, Computer Networks, Volume 46,

Issue 1, Pages 133-146, Sepetember 2004.

[4] L. Araujo and B. Camargo, “Money versus Memory”, mimeo, September

2009.

[5] A. Berentsen, “Money Inventories in Search Equilibrium,” Journal of

Money, Credit and Banking, Vol. 32(2), pp 168-78, May 2000.

[6] A. Berentsen, “On the Distribution of Money Holdings in a Random

Matching Model,” International Economic Review, Vol. 43(3), pp 945-

954, August 2002.

[7] A. Berentsen, G. Camera and C. Waller, “Money, Credit and Banking,”

Journal of Economic Theory, Vol. 135, Issue 1, pp. 171-195, July 2007.

[8] L. Buttyan and J-P. Hubaux, “Nuglets: a Virtual Currency to Stim-

ulate Cooperation in Self-Organized Mobile Ad Hoc Networks,” EPFL

Technical Report, 2001.

[9] L. Buttyan, J-P. Hubaux, “Stimulating Cooperation in Self-Organizing

Mobile Ad Hoc Networks”, Mobile Networks and Applications, Volume

8, Issue 5, 2003.

[10] G. Camera and D. Corbae, “Money and Price Dispersion”, Interna-

tional Economic Review, Volume 40, Issue 4, Pages 985-1008, November

1999.

[11] R. O. Cavalcanti and N. Wallace, “Inside and Outside Money as Alter-

native Media of Exchange,” Journal of Money, Credit and Banking, Vol.

31, pp. 443-457, 1999.

30



[12] R. O. Cavalcanti and N. Wallace, “A Model of Private Bank-Note Is-

sue,” Review of Economic Dynamics, Vol. 2 , pp. 104-136, 1999.

[13] A. Ciuffoletti, “Secure token passing at application level,” Future Gen-

eration Computer Systems, Vol. 26 , pp. 1026-1031, 2010.

[14] D. Duffie and Y. Sun, “Existence of Independent Random Matching,”

Annals of Applied Probability, Vol. 17, No. 1, pp. 386-419, 2007.

[15] G. Ellison, “Basins of Attraction, Long-Run Stochastic Stability, and

the Speed of Step-by-Step Evolution,” Review of Economic Studies, Vol.

67, Issue 1, Pages 17-45, 2000.

[16] M. Feldman, K. Lai, I. Stoica and J. Chuang, “Robust Incentive Tech-

niques for Peer-to-Peer Networks”, Proc. of the 5th ACM Conf. on Elec.

Commerce, Session 4, Pages 102-111, 2004.

[17] D. R. Figueiredo, J. K. Shapiro, D. Towsley, “Payment-based Incen-

tives for Anonymous Peer-to-Peer Systems”, UMass CMPSCI Technical

Report 04-62, July, 2004.

[18] E. Friedman, J. Halpern and I. Kash, “Efficiency and Nash equilibria

in a scrip system for P2P networks,” Proceedings of the Seventh ACM

Conference on Electronic Commerce, pp. 140-149, 2006.

[19] E. Green and R. Zhou, “A Rudimentary Random-Matching Model with

Divisible Money and Prices”, Journal of Economic Theory, Volume 81,

Issue 2, Pages 252-271, August 1998.

[20] A. Habib and J. Chuang, “Service Differentiated Peer Selection: an

Incentive Mechanism for Peer-to-Peer Media Streaming”, IEEE Trans.

on Multimedia, Volume 8, No. 3, Pages 610-621, 2006.

[21] T. Hu, J. Kennan and N. Wallace, “Coalition-Proof Trade and the

Friedman Rule in the Lagos-Wright Model,” Journal of Political Econ-

omy, University of Chicago Press, Vol. 117(1), pp. 116-137, 2002.

[22] M. Jackson. Social and Economic Networks. Princeton University Press,

Princeton, 2008.

31



[23] M. Kandori, “Social Norms and Community Enforcement,” Review of

Economic Studies, 59(1):63-80, 1992.

[24] I. Kash, E. Friedman and J. Halpern, “Optimizing scrip systems: effi-

ciency, crashes, hoarders, and altruists, Proceedings of the Eighth ACM

Conference on Electronic Commerce, pp. 305-315, 2007,

[25] N. Kiyotaki and R. Wright, “On Money as a Medium of Exchange,”

The Journal of Political Economy, Volume 97 , 927-954, 1989.

[26] N. R. Kocherlakota, “Money is Memory,” Journal of Economic Theory,

Volume 81, Issue 2, Pages 232-251, August 1998.

[27] N. R. Kocherlakota, “The Two Money Theorem,” International Eco-

nomic Review, Vol. 43, No. 2, pp. 333-346, May, 2002.

[28] J. Ostroy and R. Starr, “Money and the Decentralization of Exchange,”

Econometrica, Vol. 42, No. 6, pp. 1093-1113, 1974.

[29] V. Pai, A. E. Mohr, “Improving Robustness of Peer-to-Peer Streaming

with Incentives”, Workshop on th Economics of Networks, Systems and

Computation (NETECON’06), June 2006.

[30] K. Podczeck and Daniela Puzzello, “Independent Random Matching,”

Economic Theory, Vol. 50, No. 1, pp. 1-29, 2012.

[31] G. Tan, S. A. Jarvis, “A Payment-based Incentive and Service Differ-

entiation Mechanism for Peer-to-Peer Streaming Broadcast”, 14th IEEE

International Workshop on Quality of Service (IWQoS’06), November

2006.

[32] M. Uddin, B. Godfrey, T. Abdelzaher, “RELICS: In-Network Realiza-

tion of Incentives to Combat Selfishness in DTNs”, IEEE International

Conference on Network Protocols (ICNP), October 2010.

[33] V. Vishnumurthy, S. Chandrakumar and E. G. Sirer, “KARMA: A

Secure Economic Framework for Peer-to-Peer Resource Sharing”, Work-

shop on the Economics of Peer-to-Peer Systems, 2003.

[34] N. Wallace, “The Mechanism-Design Approach to Monetary Theory,”

Pennsylvania State University Working Paper, 2010.

32



[35] Y. Zhang, J. Park and M. van der Schaar, “Social Norms for Networked

Communities”, UCLA technical report, 2010.

[36] R. Zhou, “Individual and Aggregate Real Balances in a Random-

Matching Model”, International Economic Review, Volume 40, Issue 4,

Pages 1009-1038, November 1999.

[37] T. Zhu and E. Maenner, “Noncash Payment Methods in a Cashless

Economy,” Working paper 2009.

33



Appendix: Proofs

Proof of Theorem 1 We first estimate V (n + 1) − V (n) (for n ≥ 0)

which is the loss from having one less token. To this end fix an optimal

Markov strategy (τ, σ). We define a history-dependent strategy (τ ′, σ′) and

estimate the expected utility to an agent who begins with n tokens and fol-

lows (τ ′, σ′); this is a lower bound on V (n). The strategy (τ ′, σ′) is most

easily described in the following way: Begin by following the behavior pre-

scribed by the strategy (σ, τ) but for an agent who holds one more token

than is actually held; i.e., (τ ′, σ′)(h) = (τ, σ)(N(h) + 1). If it never hap-

pens that the agent holds 0 tokens, requests service, and is matched with

an agent who is willing to provide service, then continue in this way for-

ever. If it does happen that the agent holds 0 tokens, requests service, and

is matched with an agent who is willing to provide service, then service is

not provided in that period (because the agent cannot pay) and after that

period (τ ′, σ′) = (τ, σ). In other words, the agent behaves “as if” he held

one more token than actually held until the first time such behavior results

in requesting service, being offered service, and being unable to pay for ser-

vice; after that point, revert to (τ, σ). The point to keep in mind is that if a

moment of deviation occurs then an agent with one more token would hold

exactly 1 token, would request and receive service, and in the next period

would have 0 tokens – so that reverting to (τ, σ) is possible. Beginning with

n tokens and following the strategy (τ ′, σ′) yields the same string of payoffs

as beginning with n + 1 tokens and following the strategy (τ, σ) except in

the single period in which deviation occurs; in that period the expected loss

of utility is at most bρ. Hence the expected utility from beginning with n

tokens and following the strategy (τ ′, σ′) yields utility at least V (n+1)−bρ.

Hence V (n+ 1)−V (n) ≤ bρ < b < b/β. However, this is the incentive com-

patibility condition that guarantees that an agent strictly prefers to request

service when holding n+ 1 tokens, so the proof is complete.

At this point it is convenient to collect some notation and isolate two

technical results. Fix ρ, b, c, µ, ν and consider a Markov strategy σ. For each

k, let Vσ(k, β) be the value of following σ when the initial token holding is k

and the discount factor is β. As with the optimal value function V defined
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in the text, the value function Vσ can be defined by a recursive system of

equations:

Vσ(0, β) = ρσ(0)[(1− µ)(−c+ βVσ(1, β))

+ρ[1− σ(0)]βVσ(0, β) + (1− 2ρ)βVσ(0, β)

Vσ(k, β) = ρ[(1− ν)(b+ βVσ(k − 1, β) + νβVσ(k, β)]

+ρσ(k)[(1− µ)(−c+ βVσ(k + 1, β)) + µβVσ(k, β)]

+ρ[1− σ(k)]βVσ(k, β) + (1− 2ρ)βVσ(k, β)

for k > 0 (9)

From the value function, we define the marginal utilities

Mσ(k, β) = Vσ(k + 1, β)− Vσ(k, β) (10)

If β is fixed/understood, we simplify notation by writing Vσ(k) = Vσ(k, β)

and Mσ(k) = Mσ(k, β).

It is also convenient to introduce some auxiliary parameters:

φl = −(1− ν)ρβ

φc = 1− β + ((1− ν) + (1− µ))ρβ

φr = −(1− µ)ρβ (11)

We note the signs of these parameters and various combinations:

φl < 0 , φc > 0 , φr < 0

φl + φc + φr > 0 , φl + φc > 0 , φr + φc > 0
(12)

Using these auxiliary parameters and the recursion relations for V (σ

and performing some simple algebraic manipulations yields a useful matrix

representation involving marginals that we will use frequently:

φc φr 0 · · · 0

φl φc φr 0
...

0 φl φc φr 0
...

. . .
. . .

. . .
. . .

0 · · · 0 φl φc


K×K


Mσ(0)

Mσ(1)
...

Mσ(K1 − 1)

 =


(1− ν)ρb

0
...

0

(1− µ)ρc

 (13)
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In short form,write this matrix representation as

ΦM = u (14)

Lemma 1 Fix ρ, b, c, µ, ν and β. Let σ be a Markov strategy with the prop-

erty that

σ(k) =

{
1 if 0 ≤ k < K1

0 if K1 ≤ k < K2

Then:

(i) if 0 ≤ k < K2 then Mσ(k) > 0

(ii) in the range 0 ≤ k < K1, Mσ is either increasing, decreasing or de-

creasing then increasing

(iii) if Mσ(K1−1) ≥ c/β then Mσ(0) > Mσ(1) > ...Mσ(K1−2) ≥Mσ(K1−
1) ≥ c/β

Proof We first consider the token holding levels 0 ≤ k < K1. We make use

of the matrix representation (13).

To prove (i), we first show that Mσ(k) > 0 for 0 ≤ k < K1. If K1 < 3,

this follows by simply solving the matrix representation, so we henceforward

assume K1 ≥ 3. If there exists a token holding level k∗ with 0 ≤ k∗ < K1

such that Mσ(k∗) ≤ 0 then one of the following must hold: either (a) there

two consecutive such token holding levels, or (b) the marginal payoffs of the

neighboring token holding levels are both positive. We consider these cases

separately.

(a) In this case, there exists k∗ such that Mσ(k∗),Mσ(k∗ + 1) are both

non-positive. Of these marginals, one is at least as big; say Mσ(k∗) ≥
Mσ(k∗ + 1). From the identities above we see that

Mσ(k∗ + 2) =
φlMσ(k∗) + φcMσ(k∗ + 1)

−φr

≤ (φl + φc)Mσ(k∗ + 1)

−φr
≤ Mσ(k∗ + 1)
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Proceeding inductively, it follows that 0 ≥ Mσ(k∗) ≥ Mσ(k∗ + 1)... ≥
Mσ(K1 − 1). Moreover,

φcMσ(K1 − 1) = (1− µ)ρc− φlMσ(K1 − 2)

> −φlMσ(K1 − 2)

> −φlM(K − 1)

This requires φc < −φl which contradicts the sign relations (12). The

argument when Mσ(k∗+1) ≥Mσ(k∗) is similar and is left for the reader.

(b) In this case, there exists k∗ such that Mσ(k∗ − 1) > 0, Mσ(k∗) ≤ 0,

Mσ(k∗ + 1) > 0. This entails

φlMσ(k∗ − 1) + φcMσ(k∗) + φrMσ(k∗ + 1) < 0 (15)

which again contradicts the sign relations (12).

From the above we conclude Mσ(k) > 0 for 0 < k < K1. To see that

Mσ(0) > 0 note that

−φrMσ(1) = φcMσ(0)− (1− ν)ρb < −φrMσ(0) (16)

Therefore, Mσ(1) < Mσ(0), so Mσ(0) > 0, as desired.

Finally, to see that Mσ(k) > 0 for K1 ≤ k < K2, apply the recursion

equations (9) to obtain

φlMσ(k − 1) + (φc + φr)Mσ(k) = 0 (17)

We know thatMσ(K1−1) > 0 so the sign relations (12) imply thatMσ(K1) >

0 as well. Now it follows inductively that Mσ(k) > 0 for K1 ≤ k < K2. This

completes the proof of (i).

To prove (ii) it is enough to show that Mσ has no local maximum for

0 < k < K1. If M had a local maximum k∗ in this range we would have

Mσ(k∗) ≥ Mσ(k∗ − 1) and Mσ(k∗) ≥ Mσ(k∗ + 1). However, algebraic

manipulation yields the inequalities

Mσ(k∗) =
−φlMσ(k∗ − 1)− φrMσ(k∗ + 1)

φc

≤ −φl − φr
φc

Mσ(k∗)

< Mσ(k∗)
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which is a contradiction. This establishes (ii)

To prove (iii), first manipulate the matrix identity (13) to obtain:

(1− ν)ρβMσ(K1 − 2)

= (1− β + ((1− ν) + (1− µ))ρβ)Mσ(K − 1)− (1− µ)ρc

≥ (1− β + (1− ν)ρβ)Mσ(K1 − 1) ≥ (1− ν)ρβMσ(K1 − 1)

(18)

In view of (ii), the marginal payoffs are decreasing, so this establishes (iii).

Lemma 2 Fix ρ, b, c and a threshold protocol Π = (α, σK) with correspond-

ing µΠ, νΠ. The marginal utility MσK (k, β) is strictly increasing in the dis-

count factor β, i.e., if 0 ≤ β1 < β2 < 1, then,

MσK (k, β1) < MσK (k, β2) for all k (19)

Proof To economize slightly on notation we write σ = σK . We present the

proof in three steps.

In Step 1, we prove that if there exist 0 < K1 ≤ K2 < K − 1 such that

∀k ∈ [K1,K2],Mσ(k, β1) ≥ Mσ(k, β2), then at least one of the following is

true, Mσ(K1−1, β1) ≥Mσ(K1−1, β2) or Mσ(K2 +1, β1) ≥Mσ(K2 +1, β2).

In Step 2, we prove that if there exists a k∗ ∈ [0,K − 1] such that

Mσ(k∗, β1) ≥Mσ(k∗, β2), then for all k ∈ [0,K− 1], Mσ(k, β1) ≥Mσ(k, β2).

Step 2 uses the result of Step 1.

In Step 3, we disprove the possibility that k ∈ [0,K − 1], Mσ(k, β1) ≥
Mσ(k, β2).

Step 2 and Step 3 together show a contradiction and therefore, k ∈
[0,K − 1], Mσ(k, β1) < Mσ(k, β2).

Step 1 We assert that if there are indices 0 < K1 ≤ K2 < K − 1 such

that Mσ(k, β1) ≥ Mσ(k, β2) for all K1 ≤ k ≤ K2 then at least one of the

following must hold:

(A) Mσ(K1 − 1, β1) ≥Mσ(K1 − 1, β2)

(B) or Mσ(K2 + 1, β1) ≥Mσ(K2 + 1, β2).
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To see this, note that simple manipulations of the matrix representation

(13) yield

• if K2 = K1 then

(1− ν)ρMσ(K1 − 1, β) + (1− µ)ρMσ(K2 + 1, β)

= (1/β − 1 + ((1− ν) + (1− µ))ρ)Mσ(K1, β)

• if K2 > K1 then

(1− ν)ρMσ(K1 − 1, β) + (1− µ)ρMσ(K2 + 1, β)

= (1/β − 1 + (1− µ)ρ)Mσ(K1, β)

= +(1/β − 1)[Mσ(K1 + 1, β) + ...+Mσ(K2 − 1, β)]

= +(1/β − 1 + (1− ν)ρ)Mσ(K2, β)

Since β1 < β2 and we have assumed Mσ(k, β1) ≥ Mσ(k, β2) for 0 < K1 ≤
K2 < K − 1, in each of the cases above the right-hand side is larger when

β = β1 than when β = β2. Because the terms in the left-hand sides are

positive, it follows that at least one of (A), (B) must hold, as asserted.

Step 2 We assert first that if there is a k∗, 0 ≤ k∗ ≤ K1 such that

Mσ(k∗, β1) ≥Mσ(k∗, β2), then at least one of the following must hold:

(C) there exists some K3, 0 ≤ K3 ≤ K1, such that Mσ(k, β1) ≥Mσ(k, β2)

for all k, 0 ≤ k ≤ K3

(C) there exists some K4, 0 ≤ K4 ≤ K1, such that Mσ(k, β1) ≥Mσ(k, β2)

for all k, K4 ≤ k ≤ K−1

To see this, note first that if k∗ = 0 satisfies the hypothesis, then (C) holds

with K3 = 0 and that if k∗ = K − 1 satisfies the hypothesis, then (D) holds

with K4 = K − 1. Hence it suffices to consider a k∗, 0 < k∗ < K − 1, that

satisfies the hypothesis. We now make use of Step 1. Set K1 = K2 = k∗.

Applying Step 1 once increases the token holding interval where Mσ(k, β1) ≥
Mσ(k, β2) by 1. Let K1 and K2 be the new end points of the interval and

apply Step 1 again. Continuing in this way we come eventually to a point

where either K1 = 0 or K2 = K − 1. If K1 = 0, set K3 = K2 and note that

(C) holds. If K2 = K − 1, set K4 = K − 1 and note that (D) holds
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We now show that either (C) or (D) leads to the desired conclusion.

Consider (C) first. Using the matrix representation (13) we obtain

(1− ν)ρβMσ(K1 + 1, β) + (1− ν)ρb

= [1− (1− (1− µ)ρ)β]Mσ(0, β)

+ (1− β)[Mσ(1, β) + ...+M(K1 − 1, β)]

+ [1− (1− (1− ν)ρ)β]Mσ(K1, β)

The right-hand side is bigger when β = β1 than when β = β2. Therefore

Mσ(K1 + 1, β1) ≥Mσ(K1 + 1, β2). By induction, Mσ(k, β1) ≥Mσ(k, β2) for

all k, 0 ≤ k ≤ K − 1.

Now consider (D). Using the matrix representation (13) we obtain

(1− µ)ρβMσ(K2 − 1, β) + (1− µ)ρc

= [1− (1− (1− ν)ρ)β]Mσ(K − 1, β)

+ (1− β)[Mσ(K − 2, β) + ...+Mσ(K2 + 1, β)]

+ [1− (1− (1− µ)ρ)β]Mσ(K2, β)

The right-hand side is bigger when β = β1 than when β = β2. Therefore

Mσ(K2− 1, β1) ≥Mσ(K2− 1, β2). By induction, Mσ(k, β1) ≥Mσ(k, β2) for

all k, 0 ≤ k ≤ K − 1.

Taking (C) and (D) together completes Step 2.

Step 3 Using the matrix representation (13) we obtain

[1− (1− (1− µ)ρ)β]Mσ(0, β)

+(1− β)[Mσ(1, β) + ...+Mσ(K1 − 1, β)]

+[1− (1− (1− ν)ρ)β]Mσ(K − 1, β)

= (1− ν)ρb+ (1− µ)ρc

In view of Step 2, the left-hand side is bigger when β = β1 than when β = β2.

However, the right-hand side is independent of β, so this is a contradiction.

We conclude that Mσ(k, β1) < Mσ(k, β2) for every k, 0 ≤ k ≤ K − 1.

Proof of Theorem 2 Fix β. The Markov strategy σ is optimal if and only
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if it satisfies the Bellman optimality conditions:

β(Vσ(k + 1)− Vσ(k)) ≥ c, if σ(k) = 1 (20)

β(Vσ(k + 1)− Vσ(k)) ≤ c, if σ(k) = 0 (21)

If σ is not a threshold strategy, there must exist integers K1 < K2 such that

σ(k) = 1, 0 ≤ k < K1

σ(k) = 0, K1 ≤ k < K2

σ(k) = 1, k = K2

(22)

We will show that the Bellman optimality conditions are violated at K2

and K2 − 1. To this end, let K3 be the smallest integer greater than K2

for which σ(K3) = 0. (Such an integer exists because it cannot be optimal

to serve when the token holding is sufficiently high.) Thus σ(k) = 1, for

K2 ≤ k < K3 and Mσ(K3 − 1) ≥ c/β. Following σ,

Mσ(K3 − 2) = [(1− µ)ρc− φcMσ(K3 − 1)]/φl > Mσ(K3 − 1) ≥ c/β (23)

An inductive argument shows that Mσ(K2) > Mσ(K2+1) ≥ c/β. According

to the recursion equations (9) we have

Mσ(K2 − 1) = (φcMσ(K2) + φrMσ(K2 + 1))/(−φl) > c/β

which is a contradiction. We conclude that a non-threshold strategy cannot

be optimal; equivalently, only threshold strategies can be optimal strategies.

It remains to show that the only possible optimal threshold strategies

have adjacent thresholds. Consider first two threshold strategies with con-

secutive thresholds K and K + 1. We assert that

MσK (K) < c/β ⇔MσK+1(K) < c/β (24)

We prove direction “⇒”; the “⇐” direction is similar and left to the reader.

Suppose instead that MσK+1(K) ≥ c/β. It follows that −φrMσK+1(K) ≥
(1−µ)ρc. If we delete the last line in the matrix equation (13) for σK+1 and

move MσK+1(K) to the right-hand side, we get another matrix equation

ΦK×KMσK+1 = ũ

41



where ũ = ((1−ν)ρb, 0, ..., 0,−φrMσK+1(K))T. For the thresholdK, ΦK×KMσK =

u. Therefore,

ΦK×K(MσK+1 −MσK ) = ũ− u (25)

Lemma 1 guarantees that ũ−u ≥ 0, so MσK+1 ≥MσK . That is, MσK+1(k) ≥
MσK (k) for 0 ≤ k ≤ K−1. Because MσK+1(K) ≥ c/β > MσK (K), it follows

that MσK+1(k) ≥MσK (k) for 0 ≤ k ≤ K. According to the matrix equation,

the following identity holds for both σ = σK and σ = σK+1:

(1− ν)ρb+ (1− µ)ρc

=(1− β + (1− µ)ρβ)Mσ(0)

+(1− β)

K−1∑
k=1

Mσ(k) + (1− β + (1− ν)ρβ)Mσ(K)

(26)

This is a contradiction so we have established the direction ⇒, as desired.

It follows directly from the matrix identity that

MσK (K) = c/β ⇔MσK+1(K) = c/β

Hence

MσK (K) > c/β ⇔MσK+1(K) > c/β (27)

We now assert that if K̃ > K then

MσK (K) < c/β ⇒MσK̃
(K̃ − 1) < c/β (28)

We have already shown that this is true when K̃ = K+ 1; i.e. MσK+1(K) <

c/β. Consider K̃ = K + 2. Of MσK+2(K + 1) ≥ c/β, then (27) implies

that MσK+1(K + 1) ≥ c/β. Therefore, MσK+1(K + 1) > MσK+1(K). This

is a contradiction to MσK+1(K + 1) < MσK+1(K). Following inductively we

obtain the assertion (28).

A similar argument (which we omit) shows that:

MσK (K − 1) > c/β ⇒MσK̃
(K̃) > c/β,∀K̃ < K (29)

Finally, suppose σK is an optimal threshold strategy. Then MσK (K −
1) ≥ c/β and MσK (K) ≤ c/β. If the equalities hold strictly, (28) and (29)
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guarantee that σK is the only optimal threshold strategy. If MσK (K − 1) =

c/β (and hence, MσK (K) < c/β), only σK and σK−1 are optimal threshold

strategies. If MσK (K) = c/β (and hence, MσK (K − 1) > c/β), only σK and

σK+1 are optimal threshold strategies. This completes the proof.

Proof of Theorem 3 This follows immediately from the representation of

η+ and the definition of invariance .

Proof of Theorem 4 Given a protocol Π = (α, σ), let ηΠ be the unique

invariant distribution; let µΠ be the fraction of agents who have no tokens

and νΠ the fraction of agents who do not provide service; these depend only

on Π and not on the population parameters. If σ =
∑
γ(K)σK is a best

response given the population parameters and µΠ, νΠ, γ must put strictly

positive weight only on threshold strategies σK that are pure best responses.

In view of Theorem 2, there are at most two threshold strategies that are

pure best responses and they are at adjacent thresholds. That is, σ is either

a pure threshold strategy or a mixture of two adjacent threshold strategies,

as asserted.

Proof of Theorem 5 Suppose to the contrary that Π = (α, σ) is a robust

equilibrium protocol and that σ =
∑
γ(K)σK is a proper mixed strategy,

so that γ(K) > 0 for at least two values of the threshold K, Let µΠ be the

fraction of agents who have no tokens and νΠ the fraction of agents who

do not provide service; these depend only on Π and not on the population

parameters. In view of Theorem 4, σ must assign positive probability only

to two adjacent threshold strategies; say σ = γ(K)σK + γ(K + 1)σK+1 with

γ(K) > 0 and γ(K + 1) > 0, and both σK , σK+1 must be best responses.

Because σK(K + 1) = 0 and σK+1(K + 1) = 1, equations (8), (9) (which

provide necessary and sufficient conditions for optimality in terms of the

true value function) entail that

−c+ βVK+1 ≤ βVK

−c+ βVK+1 ≥ βVK

Hence −c+ βVK+1 = βVK . Because σK is a best response, the value func-

tions VσK must coincide with the true value function V . Hence, an agent
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following σK must be indifferent to providing service when holding K to-

kens. However, if β increases slightly MσK also increases, whence an agent

following σK must strictly prefer to provide service. In other words, when β

increases slightly, σK can no longer be a best response and σK can no longer

be an equilibrium protocol. This is a contradiction, so we conclude that

a robust equilibrium protocol Π cannot involve proper mixed strategies, as

asserted.

Proof of Theorem 6 We divide the proof of (i) into several steps.

Step 1 We first prove there exists βL ∈ [0, 1) such that

Mσ(K − 1, β) <
c

β
for β < βL

Mσ(K − 1, βL) =
c

β

Mσ(K − 1, β) >
c

β
for β > βL

To see this, define the auxiliary function

F (β) = Mσ(K − 1, β)− c

β

F is evidently continuous. Lemma 2 guarantees that Mσ(K−1, β) is strictly

increasing in β, so F (β) is also strictly increasing in β as well. We show

that F (1) > 0 and limβ→0 F (β) < 0 and then apply the intermediate value

theorem to find βL.

To see that F (1) > 0, note first that the coefficients in the left-hand

matrix of (13) are simply φl = −ρ(1 − ν), φc = ρ(1 − ν + 1 − µ) and

φr = ρ(1− µ). We split the matrix MσK in two parts. To do this, write

u′ = (ρ(1− ν)c 0 ... 0 ρ(1− µ)c)T

u′′ = (ρ(1− ν)(b− c) 0 ... 0 0)T
(30)

and define M′
σK ,M

′′
σK to be the solutions to the equations

ΦM′
σK

= u′, ΦM′′
σK = u′′ (31)

Note that MσK = M′
σK

+ M′′
σK

and MσK is the solution to (13). It is easy

to check that M′
σK

is a constant matrix: M ′σK (k) = c for 0 ≤ k < K − 1.
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Lemma 1 guarantees that the entries of M′′
σK

are strictly positive: M ′′σ (k) >

0 for 0 ≤ k < K − 1. Hence the entries of MσK are strictly greater than c:

Mσ(k) > c for0 ≤ k < K − 1. In particular, F (1) > 0.

To see that limβ→0 F (β) < 0, suppose not. Because F is strictly increas-

ing, this means F (β) ≥ 0 for every β ∈ (0, 1], which entails that Mσ(k) ≥ c
β

for 0 ≤ k < K − 1. Summing the rows in (13) yields:

ρ(1− ν)b+ ρ(1− µ)c > K(1− β)
c

β
=
Kc

β
−Kc (32)

Note that Kc/β flows up as β → 0, so this is impossible. We conclude that

limβ→0 F (β) < 0, as asserted.

Because F is strictly increasing, the intermediate value theorem guaran-

tees that we can find an unique βL such that

F (β) < 0 for β < βL

F (βL) = 0

F (β) > 0 for β > βL

The definition of F yields the desired property of βL

Step 2 Next we prove there exists βH ∈ (βL, 1) such that if β ∈ [0, βH ]

then

MσK ,β(K − 1) <
φc + φr
−φl

c

β
for β < βH

MσK ,βH (K − 1) =
φc + φr
−φl

c

β

MσK ,β(K − 1) >
φc + φr
−φl

c

β
for β > βH

To see this, note first that φc+φr
−φl

c
β =

[
1− 1

ρ(1−ν) + 1
ρ(1−ν)β

]
c
β and define

another auxiliary function:

G(β) = MΠ(K − 1, β)− (1− 1

ρ(1− ν)
+

1

ρ(1− ν)β
)
c

β

G is continuous and increasing. From Step 1 it follows that MσK (K−1, 1) >

c so G(1) = MσK (K−1, 1)−c > 0. It also follows that MσK (K−1, βL) = c
βL

;

because (1 − 1
ρ(1−ν) + 1

ρ(1−ν)βL
) c
βL

> 1
βL

, we conclude that G(βL) < 0.
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Because G is continuous and increasing, there is a unique βH ∈ (βL, 1) such

that
G(β) < 0 for β < βH

G(βH) = 0

G(β) > 0 for β > βL

Step 3 The definitions of F,G imply that in order for Π to be an equilibrium

protocol when the discount factor is β it is the necessary and sufficient

condition that F (β) ≥ 0 and G(β) ≤ 0. Hence Π is an equilibrium protocol

when the discount factor is β exactly for β ∈ [βL, βH ].

Because F,G are continuous in all their arguments and strictly increas-

ing, βL, βH , which are the zeroes of F,G, are continuous functions of the

parameters as well. This completes the proof of (i).

The proof of (ii) is similar and left to the reader.

Proof of Theorem 7 We first consider (i). Fix r. Consider the two proto-

cols ΠK = (K/2, σK) and ΠK+1 = ((K+1)/2, σK+1) and the corresponding

intervals [βL1 , β
H
1 ] and [βL2 , β

H
2 ] of discount factors that sustain equilibrium.

We need to show that

βL1 < βL2 < βH1 < βH2

(The sustainable ranges for two consecutive threshold protocols overlap but

are not nested.) There are three inequalities to be established; we carry out

the analyses in (A), (B), (C) below.

(A) To prove βL2 > βL1 , write β = βL1 . We show that MσK+1(K) < c
β .

To see this, suppose not; i.e. MσK+1(K) ≥ c
β . The construction of βL1

guarantees that MσK (K−1) = c/β. We will use this inequality and equality

to show that all marginal payoffs of ΠK+1 so large that they violate the

restrictions imposed by the bounded benefit b and cost c.

To simplify the notation, let ωX = X+1
X ( 1

β − 1)1
ρ . Note ωK+1 < ωK .

Then the matrix identity (13) becomes:
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ωX + 2 −1 0 · · · 0

−1 ωX + 2 −1 0
...

0 −1 ωX + 2 −1 0
...

. . .
. . .

. . .
. . .

0 · · · 0 −1 ωX + 2


X×X


MσX (0)

MσX (1)
...

MσX (X − 1)

 =


b/β

0
...

0

c/β


(33)

Suppose MσK+1(K) ≥ MσK (K − 1) = c
β . We investigate the relation

between MσK+1(K − 1) and MσK (K − 2). Using the matrix identity,

MσK+1(K − 1)

MσK (K − 2)
=

(ωK+1 + 2)MσK+1(K)− c
β

(ωK + 2)MσK (K − 1)− c
β

>
(ωK+1 + 2)MσK+1(K)

(ωK + 2)MσK (K − 1)
>
ωK+1 + 1

ωK + 1

Moreover if 2 ≤ k ≤ K − 1 then

MσK+1(K − k)

MσK (K − k − 1)
=

(ωK+1 + 1)[MσK+1(K) +MσK+1(K − k + 1)]− c
β

(ωK + 1)[MσK (K − 1) +MσK (K − k)]− c
β

By induction,

MσK+1(K − k)

MσK (K − k − 1)
>

(
ωK+1 + 1

ωK + 1

)k
>

(
ωK+1

ωK

)k
>

(
1− 1

(K + 1)2

)k
> 1− k

(K + 1)2
>
K + 1

K + 2
,∀0 ≤ k ≤ K − 1

Next we prove MσK+1(0) ≥ MσK (0). This is relatively easy since, if

MσK+1(0) < MσK (0), then using the marginal payoff matrix and by in-

duction, MσK+1(K − 1) < MσK (K − 1) = c
β . This is a contradiction to

MσK+1(K − 1) > MσK+1(K) = c
β . Therefore, MσK+1(0) ≥MσK (0).

The marginal payoffs are bounded as follows,

(MσX (0) +MσX (X − 1)) + ωX

X−1∑
k=0

MσX (k) = b/β + c/β (34)
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However, since

ωK+1

K∑
k=0

MσK+1(k) >
K + 1

K
ωK+1

K∑
k=1

MσK+1(k)

>
K + 1

K

K(K + 2)

(K + 1)2

K + 1

K + 2
ωK

K−1∑
k=0

MσK (k)

= ωK

K−1∑
k=0

MσK (k)

and MσK+1(0) + MσK+1(K) > MσK (0) + MσK (K − 1), a contradiction oc-

curs. Therefore, for β = βL1 , MσK+1(K) < c
β . This means βL2 > βL1 . This

completes (A).

(B) To prove βH2 > βH1 , let β = βH1 , we need to show that the protocol

ΠK+1 must have MσK+1(K + 1) < c/β. We use contradiction to prove

this. The idea is: Suppose MσK+1(K + 1) ≥ c/β, then we show that all

the marginal payoffs of ΠK+1 are large enough such that they violate the

restriction imposed by the bounded benefit b and cost c.

Suppose MσK+1(K + 1) ≥ MσK (K) = c/β. According to the matrix

equation, similar to part (A), by induction we can get,

MσK+1(K + 1− k)

MσK (K − k)
>

(
ωK+1 + 1

ωK + 1

)k
>

(K + 1)3

K(K + 2)2
,∀0 ≤ k ≤ K

Also MσK+1(0) ≥MσK (0). The marginal payoffs are bounded as follows,

(MσX (0) +MσX (X)) + ωX

X∑
k=0

MσX (k) = b/β + c/β (35)

However, since

ωK+1

K+1∑
k=0

MσK+1(k) >
K + 2

K + 1
ωK+1

K+1∑
k=1

MσK+1(k)

>
K + 2

K + 1

K(K + 2)

(K + 1)2

(K + 1)3

K(K + 2)2
ωK

K∑
k=0

MσK (k)

= ωK

K∑
k=0

MσK (k)
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and MσK+1(0) + MσK+1(K + 1) > MσK (0) + MσK (K), a contradiction

occurs. Therefore, for β = βH1 , MσK+1(K + 1) < c
β . This means βH2 > βH1 .

This completes part (B).

(C) To prove βL2 < βH1 , wreite β = βH1 . We show that MσK+1(K) >

MσK (K) = c
β . If not, then as in (A) we must have MσK+1(K) ≤MσK (K) =

c
β ; in that case we show MσK+1(k) ≤MσK (k) for 0 ≤ k ≤ K. This will again

violate the restrictions imposed by b and c.

We extend the marginal payoff matrix in (33) from K ×K to (K + 1)×
(K+ 1) and incorporate MσK (K). If MσK (K) = c

β , such extension does not

change the solution of the marginal payoffs MσK (k), ∀k ∈ [0,K]. Note the

new coefficient matrix has the same size of the coefficient matrix for σK+1.

Suppose MσK+1(K) < MσK (K) = c
β . According to the matrix equation,

MσK+1(K − 1)

MσK (K − 1)
=

(ωK+1 + 2)MσK+1(K)− c/β
(ωK + 2)MσK (K)− c/β

< 1

Moreover, for 0 ≤ k ≤ K we have

MσK+1(K − k)

MσK (K − k)
=

(ωK+1 + 1)[MσK+1(K) +MσK+1(K − k + 1)]− c/β
(ωK + 1)[MσK (K) +MσK (K − k + 1)]− c/β

By induction, MσK+1(k) < MσK (k) 0 ≤ k ≤ K. However, since

(MσX (0) +MσX (X − 1)) + ωX

X−1∑
k=0

MσX (k) = b/β + c/β (36)

Again, the left-hand side is bigger when X = K than when X = K + 1,

which is a contradiction. This completes part (C).

Combining (A), (B) and (C) establishes the desired string of inequalities.

The remaining conclusions of (i) follow immediately.

The argument for (ii) is very similar and left to the reader.

Proof of Theorem 8 Fix a protocol Π = (α, σK) and let ηΠ be the cor-

responding invariant distribution. We first find a closed form expression for

ηΠ. To do this, plug the strategy σK into the characterization of the invari-

ant distribution given in Theorem 3. A little algebra provides an identify
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involving ηΠ(0), ηΠ(1), ηΠ(K) and a simpler recursion relationship.

ηΠ(1) =

[
1− ηΠ(0)

1− ηΠ(K)

]
ηΠ(0)

ηΠ(k) =

[
2− ηΠ(0)− ηΠ(K)

1− ηΠ(K)

]
ηΠ(k − 1) +

[
1− ηΠ(0)

1− ηΠ(K)

]
ηΠ(0)ηΠ(k − 2)

From this we can solve recursively, obtaining

ηΠ(k) =

[
1− ηΠ(0)

1− ηΠ(K)

]k
(37)

for all k = 0, 1, . . . ,K. Note that the one remaining degree of freedom is

pinned down by the requirement that the total token holding be equal to α.

We next solve the following simple maximization problem:

maximize
0≤x1,x2≤1

E∗(x1, x2) = 1− x1 − x2 + x1x2

subject to x1(1− x1)K = x2(1− x2)K
(38)

To solve this problem, set f(x) = x(1 − x)K . A straightforward calculus

exercise shows that if 0 ≤ x1 ≤ 1
K+1 ≤ x2 ≤ 1 and f(x1) = f(x2) then:

(a) x1 + x2 ≥ 2
K+1 , with equality achieved at x1 = x2 = 1

K+1 .

(b) x1x2 ≤ 1
K+1 , with equality achieved at x1 = x2 = 1

K+1 .

Putting (a) and (b) together shows that the optimal solution to the maxi-

mization problem (38) is to have x1 = x2 = 1
K+1 and maxE∗ =

(
1− 1

K+1

)2
.

If we take x1 = µΠ, x2 = νΠ and apply the closed form solution (37)

for the invariant distribution, we see that f(x1) = f(x2). By definition,

Eff(Π) = E∗(x1, x2) so

Eff(Π) ≤ maxE∗ =

(
1− 1

K + 1

)2

On the other hand, if α = K/2 then the invariant distribution has ηΠ(k) =
1

K+1 for all k and

Eff(K/2, σK) =

(
1− 1

K + 1

)2

= [K/(K + 1)]2
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Taken together, part (ii) and (iii) are proved..

Next fix a protocol (α, σK). Let dαe be the least integer greater than or

equal to α and set K∗ = 2dαe. There are two cases to consider.

In the first case, K ≤ K∗.

Eff(α, σK) ≤
(

1− 1

K + 1

)2

≤
(

1− 1

K∗ + 1

)2

=

(
1− 1

2dαe+ 1

)2

which is the desired result in the first case.

In the second case, K > K∗. Define the protocol Π′ = (dαe, σK); let η′

be the invariant token distribution for Π′. Let Π∗ = (dαe, σK∗); note that

the invariant token distribution η∗ is uniform (η∗(k) = 1
K?+1 = 1

2dαe+1 for

all k = 0, 1, ...,K∗). Note that Π′ and Π have the same strategy component

but that the token supply for Π′ is larger than for Π, and that Π′ and Π∗

have the same token supply but that the strategy component of Π′ has a

higher threshold.

We assert that η′(0) ≥ 1
2dαe+1 . If not then η′(0) < 1

2dαe+1 = 1
K?+1 . It

follows that for all k ∈ {0, 1, ...,K} we have η′(k) < 1
K∗+1 = η∗(k). Hence

dα0e =
K∗∑
k=0

kη∗(k) =
K∗∑
k=0

k(η∗(k)− η′(k)) +
K∗∑
k=0

kη′(k)

≤K∗
K∗∑
k=0

(η∗(k)− η′(k)) +

K∗∑
k=0

kη′(k) = K∗(1−
K∗∑
k=0

η′(k)) +

K∗∑
k=0

kη′(k)

=K∗
K∑

k=K∗

η′(k) +
K∗∑
k=0

kη′(k) ≤
K∑

k=K∗

kη′(k) +
K∗∑
k=0

kη′(k) = dα0e

This is a contradiction. Hence, η′(0) ≥ 1
2dαe+1 .

Because the token supply for Π is less than Π′, the number of agents

with no tokens is larger, so η(0) > η′(0) ≥ 1
2dαe+1 . Hence

Eff(Π) = (1− η(0))(1− η(K)) < (1− η(0)) <

(
1− 1

2dαe+ 1

)
which is the desired result in the second case. This complete the proof for

part (i).
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Proof of Theorem 9 Both assertions follow immediately by combining

Theorems 7 and 8.

Proof of Theorem 10 We first derive the lower bound KL. If ΠK =

(K/2, σK) is an equilibrium protocol then consecutive marginal utilities bear

the relationship

φlMσK (k − 1) + φcMσK (k) = −φrMσK (k + 1) > 0

(Because β is fixed, we suppress it in the notation.) Therefore, MσK (k) >
−φl
φc
MσK (k − 1). By induction,

MσK (k) >

(
−φl
φc

)k
MσK (0) >

(
ρβ

2(1− β) + 2ρβ

)k
MσK (0)

Because φcMσK (0) = (1−ν)ρb−φrMσK (1) > (1−ν)ρb+ (1−ν)ρc, we have

MσK (0) >
(1− ν)ρb

φc
=

ρβ

2(1− β) + 2ρβ

b+ c

β

Therefore,

MσK (k) >

(
ρβ

2(1− β) + 2ρβ

)k+1 b+ c

β
(39)

Because ΠK is assumed to be an equilibrium protocol, we must have

MσK (K) ≤ c/β. Moreover, we must also have(
ρβ

2(1− β) + 2ρβ

)K+1 b+ c

β
≤ c

β

because otherwise MσK (K) > c/β. Therefore,

K ≥ max{log ρβ
2(1−β)+2ρβ

c

b+ c
− 1, 0} (40)

This provides the lower bound KL.

We now derive the upper bound KH . Rewriting the relation between

consecutive marginal utilities we obtain

0 = φlMσK (k − 1) + φcMσK (k) + φrMσK (k + 1)

> φlMσK (k − 1) + (φc + φr)MσK (k)
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Therefore, MσK (k) < −φl
φc+φr

MσK (k − 1). By induction,

MσK (k) <

(
−φl

φc + φr

)k
MσK (0) <

(
ρβ

1− β + ρβ

)k
MσK (0)

Because φcMσK (0) = (1−ν)ρb−φrMσK (1) < (1−ν)ρb−φrb/β = 2(1−ν)ρb,

we have,

MσK (0) <
ρβ

1− β + ρβ

2b

β

Therefore,

MσK (k) <

(
ρβ

1− β + ρβ

)k+1 2b

β
(41)

Because ΠK is assumed to be an equilibrium protocol, we must have

MσK (K − 1) ≥ c/β. Moreover,(
ρβ

1− β + ρβ

)K 2b

β
≥ c

β

because otherwise MσK (K − 1) < c/β. Therefore,

K ≤ log ρβ
1−β+ρβ

c

2b
(42)

This provides the upper bound KH .

Combining the two estimates yields the range containing all integers K

for which ΠK is an equilibrium protocol. The estimate for efficiency follows

immediately since Eff(ΠK) ≥ Eff(ΠKL) if K ≥ KL, so the proof is com-

plete.

53


