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Abstract

Speed matters: we show that an investor’s optimal trading strategy is signifi-

cantly different when he observes news faster than others versus when he does not,

holding the precision of his signals constant. When the investor has fast access to

news, his trades are much more sensitive to news, account for a much bigger frac-

tion of trading volume, and forecasts short run price changes. Moreover, in this

case, an increase in news informativeness increases liquidity, volume, and the fast

investor’s share of trading volume. Last, price changes are more correlated with

news and trades contribute more to volatility when the investor has fast access to

news.
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Authorities are exploring potential holes in the system, including new algorithms

referred to as “news aggregation” that search the internet, news sites and social

media for selected keywords, and fire off orders in milliseconds. The trades are

so quick, often before the information is widely disseminated, that authorities are

debating whether they violate insider trading rules.

“FBI joins SEC in Computer Trading Probe,” The Financial Times, March 6, 2013.

1 Introduction

In an efficient market, prices should immediately reflect public information. Yet, recent

empirical evidence show that information in news is not immediately impounded into

prices, so that trading on news is profitable.1 There are two possible, non-exclusive,

explanations for these findings. First, news traders could filter out more precise signals

from news because they process information more efficiently. Second, news traders might

react faster to news. Existing models of informed trading focus on the first explanation.2

Does this matter? Does fast access to news significantly alter an investor’s behavior

relative to the case in which he processes news more efficiently?

These questions are of broad interest. First, understanding the respective effects of

speed and accuracy on news traders’ optimal behavior is required to empirically assess

the source of their profits. Moreover, some market participants now trade on news at

the very high frequency using highly computerized trading strategies.3 Their profits

derive both from an efficient processing of and a fast access to the virtually continuous

flow of messages generated by the trading process (quote updates, trades, cancellations

1See, for instance, Busse and Green (2002), Tetlock, Saar-Tsechansky, and Macskassy (2008), En-
gelberg (2008), Tetlock (2010), and Engelberg, Reed, Ringgenberg (2012).

2For instance, Kim and Verrecchia (1994) assume that when news about the payoff of an asset is
released, some traders (“skilled information processors”) are better able to interpret their informational
content and therefore form more accurate forecasts than dealers. However, in Kim and Verrecchia (1994)
all traders receive news at the same time.

3See the opening quotation and “Computers that trade on the news,” the New York Times, May
22, 2012.
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etc.).4 Models incorporating both advantages are therefore needed to understand high

frequency news trading and its effects. Last, such models can also shed light on the

process by which news gets impounded in prices, a question of interest for various areas

of finance.5

In order to study news trading, we consider a dynamic model similar to Kyle (1985),

but in which new information about the payoff of a risky security arrives before each

trading round.6 One investor (“the speculator”) and dealers observe signals (“news”)

about this information. In the baseline model, the speculator processes news more

efficiently (i.e., his signal is more precise) but he receives news at the same time as

dealers do. We then consider the case in which dealers receive news with a lag of one

period relative to the speculator. Our central finding is that the speculator’s optimal

trading strategy is very different in each case.

In the absence of a speed advantage, the speculator’s optimal trade in each period is

proportional to dealers’ forecast “error” (that is, the difference between the speculator’s

and dealers’ forecast of the asset payoff), as in Kyle (1985). Thus, the news affects the

speculator’s trading strategy only insofar as it affects his forecast of the asset payoff.

In contrast, when the speculator has a speed advantage, the news affects his trading

strategy over and above this forecast effect. That is, the news becomes a distinct

determinant of his strategy.

The intuition is as follows. Suppose that the speculator just received good news.

4For instance, Brogaard, Hendershott, and Riordan (2012) find that high frequency traders react
to information contained in limit order book updates, market-wide returns, and macroeconomic an-
nouncements. Jovanovic and Menkveld (2012) or Zhang (2012) show that high frequency traders also
use index futures price information as a source of information to establish positions in underlying stocks.
In order to secure fast access to information, high frequency traders position their computers close to
trading platforms’ servers (a practice called co-location), or buy direct access to exchanges datafeed.

5For instance, it is important to understand the sources of volatility in financial markets (see, e.g.,
French and Roll (1986)).

6Thus, the news arrival rate in our model is commensurate with the trading frequency. This is
a reasonable assumption for high frequency news traders. For instance, Hendershott (2011) writes:
“At an HFT firm there is a near infinite amount of financial market data arriving continuously.” One
reason is that each order submitted to the market or quote update is a signal. Hendershott (2011)
estimates the number of orders for U.S. equity markets alone at about 100,000 per second.
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His forecast of the asset payoff increases, which commands buying shares of the asset

whether the speculator gets news faster or not. However, if he gets news faster, the

speculator also expects dealers to soon mark up the price of the asset, when receiving

the news. To exploit this foreknowledge of the short run quote dynamics, the speculator

optimally buys more shares than he would in the absence of a speed advantage. That is,

the investor’s optimal trading strategy is more responsive to news when he reacts faster

to news.

In the continuous time version of the model, these effects lead to a particularly simple

characterization for the stochastic process followed by the speculator’s optimal position

in the risky asset. The drift of this process is proportional to dealers’ forecast error and

its volatility is proportional to news. However, this volatility is zero if the speculator

does not react faster to news, even if he processes news more efficiently than the dealer.7

In contrast, it is strictly positive when the speculator gets news faster than the dealer.

Moreover, in this case, the drift of the speculator’s position is less sensitive to dealers’

forecast error. Thus, fast access to news significantly alters the speculator’s trading

strategy: (i) he trades much more aggressively on news, so that his risky position is an

order of magnitude more volatile; and (ii) he trades less aggressively on dealers’ forecast

error.

For this reason, the speculator’s trades leave very different “footprints” on market

data (volume, price changes, trades) when he has a speed advantage. First, the specu-

lator’s share of trading volume is much higher when he reacts faster to news because his

optimal trading strategy then calls for much larger adjustments in his portfolio holdings

at each point in time, as Figure 1 shows.

Second, fast access to news considerably strengthens the correlation between the

speculator’s trade at a given point in time and subsequent cumulative price changes,

especially when price changes are measured over a short time interval right after the

7This finding is standard; see Back (1992), Back and Pedersen (1998), Back, Cao, and Willard
(2000) or Chau and Vayanos (2008).
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Figure 1: Speculator’s trading strategy at 1-second frequency. The figure plots
the evolution of the speculator’s position (left graph) and the change in this position—
the speculator’s trade—(right graph), when he has a speed advantage (plain line) and
when he has no speed advantage (dot-dashed line), using the characterization of his
optimal trading strategy in each case in the continuous time model (derived in Section
3), and aggregated over 1-second intervals. The simulation considers one particular path
for news in the model and parameters used for the simulation are σu = σv = σe = Σ0 = 1
(see Theorem 1). The liquidation date t = 1 corresponds to 1 month.
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investor’s transaction. The reason is that the speculator’s trade anticipates on dealers’

quote updates when he reacts fast to news while it does not otherwise.

Last, changes in the speculator’s holding of the risky asset are less positively auto-

correlated when he reacts fast to news. Indeed, in this case, these changes over short

time intervals are predominantly determined by news. As the news is uncorrelated, it

does not generate serial correlation in the speculator’s trades. In contrast, when the

speculator has no speed advantage, changes in his holdings are mainly determined by

changes in dealers’ forecast error about the asset payoff. As this error is persistent,

changes in the speculator’s position are also persistent (as in Kyle (1985)).

These footprints of the speculator when he reacts faster to news match well styl-

ized facts about high frequency traders: (a) their trades account for a large fraction

of the trading volume (Hendershott, Jones, and Menkveld (2011), Brogaard, Hender-
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shott, and Riordan (2012) or Chaboud, Chiquoine, Hjalmarsson, and Vega (2013)), (b)

their aggressive orders (i.e., marketable orders) anticipate very short run price changes

(Kirilenko, Kyle, Samadi, and Tuzun (2011) or Brogaard, Hendershott, and Riordan

(2012)), and (c) they have a relatively low positive autocorrelation (Hirschey (2013)).

When the speculator reacts to news faster, the model also predicts that an im-

provement in news informativeness for dealers should trigger a joint increase in trading

volume, the speculator’s contribution to volume, and liquidity. Indeed, dealers’ quote

updates are more sensitive to news when this is more precise. Hence, with fast access to

news, the speculator can better forecast short run dealers’ quote updates when dealers’

news is more informative, which induces the speculator to trade even more aggressively

on news. As a result, the volatility of his position in the risky asset increases, which

means that both trading volume and the fraction of this volume due to the speculator

increase with dealers’ news informativeness. However, as dealers receive more informa-

tive news, they also better forecast the asset payoff, which alleviates their exposure to

informed trading. Accordingly, in equilibrium, liquidity improves when dealers’ news is

more informative, even though informed trading intensifies in this case.8

In contrast, when the speculator does not react faster to news, an increase in news

informativeness for dealers induces the speculator to trade less aggressively on his private

information. Hence, an improvement in news informativeness strengthens liquidity while

reducing the speculator’s share of trading volume and trading volume. These conflicting

implications regarding the effects of news informativeness for dealers on liquidity and

volume offer one way to test whether speed plays a role or not in news traders’ strategies.

The nature of price discovery also depends on whether the speculator has a faster

access to news or not. In the latter case, short-run price changes are more strongly

positively correlated with news and less correlated with dealers’ forecast error than in

8One polar case of the model is when dealers and the (faster) speculator observe the same news.
The speculator’s responsiveness to news and therefore the volatility of his position in the risky asset
are then maximal—yet still finite.
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the former. The first effect strengthens informational efficiency while the second weakens

it. In equilibrium, they exactly cancel out so that, at any point in time, informational

efficiency—measured as the expected squared difference between the transaction price

and the speculator’s estimate of the asset payoff—is the same whether the speculator

has a speed advantage or not.

The speculator’s speed advantage also affects the relative contributions of trades and

news to short run volatility. Trades move prices more when the speculator has a speed

advantage because they are more informative: they contain information on the asset

payoff and impending news. Hence, upon receiving news, dealers update their quotes

by a smaller amount when the speculator has a speed advantage. These two effects

exactly offset each other so that volatility is unaffected by whether the speculator gets

faster access to news or not. Thus, the model implies that the fraction of volatility due

to news is smaller when the speculator is faster. This is another empirical implication

of the model that one could test using the methodology of Hasbrouck (1991) to measure

the relative contributions of trades and public information to volatility.

Our model builds upon the dynamic version of Kyle (1985). In contrast to Kyle

(1985), we allow for news arrival in each trading round, as in Back and Pedersen (1998)

(BP(1998)), Chau and Vayanos (2008) (CV(2008)), and Martinez and Roşu (2013)

(MR(2013)). In BP(1998) and MR(2013), only the informed investor receives news.

This is a special case of our model in which dealers’ news are uninformative. In this

polar case, as in BP(1998), the investor never aggressively trades on news, whether fast

or not. In contrast, in MR(2013), informed investors aggressively trade on news be-

cause they have ambiguity aversion about the asset payoff while the speculator is risk

neutral in our model. In CV(2008), dealers and the informed investor receive news at

the same time. The instantaneous variance of the informed investor’s position is zero

in their model, as we obtain when the speculator has no speed advantage. In Foster

and Viswanathan (1990) (FV(1990)), dealers observe news with a lag as in our model.
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However, between news arrivals, the informed investor can trade continuously so that

the news arrival rate relative to the trading rate is zero in FV(1990). As a result, and in

contrast to our model, in FV(1990) the instantaneous variance of the informed investor’s

position is nil, just as it is in BP(1998) and CV(2008).

In order to obtain a closed-form solution for the equilibrium, we focus on the contin-

uous time version of the model. The possibility for the speculator to trade continuously

is not key for our findings, however. In the Internet Appendix, we show that results

are unchanged when news and trades occur at discrete points in time. Our results just

require at least two trading rounds, since otherwise dealers’ lagged observation of news

cannot play a role.

Finally, our paper is related to the growing theoretical literature on high frequency

trading since, as mentioned previously, some high frequency trading firms trade on

news.9 Relative to this literature, our main contribution is to offer an equilibrium

characterization of the dynamic trading strategy for a speculator who can both react

faster to news and process news more efficiently. As explained previously, this is likely

to be the case for investors trading on news at the high frequency.10

The paper is organized as follows. Section 2 describes the model. In Section 3, we

show that the speculator trades significantly more aggressively on news when he gets

advanced access to news. Section 4 derives implications for volume, price changes, and

trade autocorrelation; and Section 5 studies the effects of a change in dealers’ news

informativeness. Finally, in Section 6, we study how the speed at which the speculator

reacts to news affects price discovery and volatility. Section 7 concludes. The appendix

9For theories of high frequency trading, see Jovanovic and Menkveld (2012), Biais, Foucault, and
Moinas (2012), Pagnotta and Philippon (2012), Cartea and Penalva (2012), or Hoffmann (2013).

10High frequency traders’ strategies are heterogeneous (see SEC (2010)). In particular, some HFTs
follow market making strategies (see Brogaard, Hendershott, and Riordan (2012) or Menkveld (2013)).
This type of strategy is not captured by our model, in which the speculator only submits market
orders, as in Kyle (1985). Ours seems to be a reasonable assumption to model high frequency traders
exploiting private information since Brogaard, Hendershott, and Riordan (2012) show empirically that
only market orders submitted by high frequency traders are a source of adverse selection. Moreover,
some HFTs mainly use market orders (see Baron, Brogaard, and Kirilenko (2012) or Hagströmer and
Norden (2013)).
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contains the proofs for the continuous time version of the model. The Internet Appendix

shows the robustness of our findings in the discrete time version.

2 Model

Trading for a risky asset takes place at T trading rounds during the time interval [0, 1],

with time between trades ∆t = 1
T

. The liquidation value of the asset is

vT = v0 +
T∑
t=1

∆vt, (1)

with all variables normally distributed: v0 ∼ N (0,Σ0), with Σ0 > 0, and ∆vt =

vt − vt−1
i.i.d.∼ N (0, σ2

v∆t). The risk-free rate is assumed to be zero.

In each trading round t, one risk neutral informed speculator (“he”) and noise traders

submit market orders to a risk neutral competitive dealer (“she”), who sets the price

at which trades take place.11 We denote by ∆xt and ∆ut the market orders of the

speculator and noise traders, respectively, with ∆ut
i.i.d.∼ N (0, σ2

u∆t). The speculator

chooses his trade optimally given his information, as explained in more detail below.

Thus, in trading round t = 1, . . . , T , the order flow executed by the dealer is

∆yt = ∆ut + ∆xt. (2)

New information regarding the liquidation value of the asset arrives at the beginning

of each trading round t (see Figure 2). Specifically, at t, the speculator observes a signal

∆st = ∆vt + ∆εt, (3)

11For tractability, we focus on the case in which there is a single speculator. Extending the model to
the case with multiple speculators is not straightforward (see, for instance, Holden and Subrahmanyam
(1992) or Back, Cao, and Willard (2000) for treatment without news). It is therefore left for future
work.
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where ∆εt
i.i.d.∼ N (0, σ2

ε∆t). At the same time, the dealer observes a signal

∆zt−` = ∆st−` + ∆et−`, (4)

where ` = 1 or ` = 0 (see below) and ∆et
i.i.d.∼ N (0, σ2

e∆t). We refer to ∆st and ∆zt

as the news observed by the speculator and the dealer, respectively. At date 0 only the

speculator observes v0, and subsequently receives more precise news than the dealer if

σe > 0. These assumptions reflect the speculator’s ability to better process information

than the dealer.

When ` = 0, the dealer receives information on innovations in the asset value, ∆vt,

without delay relative to the speculator. In contrast, when ` = 1, the dealer always

receives information on innovations in the asset value with a lag of one period relative to

the speculator. That is, the dealer is slower in getting access to news than the speculator,

and ` measures the latency with which he obtains information. More specifically, when

` = 0, the dealer’s information set before observing the order flow in trading round t is

I(`=0)
t = {∆zτ}τ≤t ∪ {∆yτ}τ≤t−1. In contrast, when ` = 1, the dealer’s information set

is I(`=1)
t = {∆zτ}τ≤t−1 ∪ {∆yτ}τ≤t−1 = I(`=0)

t \ {∆zt}.

We refer to the case in which ` = 0 as the benchmark model, and to the case in

which ` = 1 as the fast model. In the latter case, the speculator observes news faster

than the dealer, but otherwise the two models are identical. Hence, by contrasting the

properties of the two models, we can isolate the effects of speed of access to information

while holding the precision of information constant.

Our findings depend on the informativeness of news for the dealer relative to the

informativeness of news for the speculator, i.e., on σe, rather than on the absolute level

of σε. Hence, to simplify notations, we set σε = 0, i.e., the speculator observes perfectly

the innovation in the asset value. When σe = 0, the speculator and the dealer observe

the same news but not necessarily at the same speed. For technical reasons, Σ0 must be

10



Figure 2: Timing of events during trading round t

Speculator receives
signal ∆st

Dealer receives
signal ∆zt−`

` = 0: Benchmark model

` = 1: Fast model

Dealer sets quote

qt = E
(
vT | I(`)

t

) Traders submit
market orders

Order flow is realized
∆yt = ∆xt + ∆ut

Dealer sets price

pt = E
(
vT | I(`)

t ∪∆yt
)

Trading takes
place at pt

strictly positive12; however, this parameter can be very close to zero. In this case, when

in addition σe = 0, the fast model can be interpreted as a model in which the speculator

has short-lived information, that is, information that will be observed perfectly by dealers

at the beginning of the next trading round, as in Admati and Pfleiderer (1988). This case

is rather special, however, since a long-lived information advantage for the speculator

only requires σe > 0, no matter how small σe in fact is.

We denote by qt the dealer’s expectation of the asset liquidation value just before

she observes the aggregate order flow ∆yt, and by pt the transaction price in trading

round t. As the dealer is competitive and risk neutral, she executes the order flow

at a price equal to her expectation of the asset liquidation value conditional on her

information, including that contained in the order flow in trading round t, as in Kyle

(1985). Thus,

qt = E
(
vT | I(`)

t

)
and pt = E

(
vT | I(`)

t ∪∆yt
)
, (5)

where I(`)
t , the information set of the dealer just before trading at t, was defined above.

In each trading round, before choosing his trade, the speculator receives news ∆vt

and observes the dealer’s quote qt. Hence, the speculator’s information set at date t is

J (`)
t = I(`)

t ∪ {vτ}τ≤t.13 A trading strategy for the speculator is a vector of functions

x = (x1, x2, ..., xT ) so that xt is measurable with respect to J (`)
t , where xt specifies

12See the discussion at the end of Section 3.
13Here we assume that the speculator can perfectly infer the dealer’s signal from the quote. This is

true in equilibrium, since, as shown in Section 3, the dealer’s quote depends linearly on the signal.
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the speculator’s position at the end of trading round t. The speculator’s trade at t is

therefore ∆xt = xt−xt−1. For a given trading strategy, the speculator’s expected profit

at date t is

πt = E

(
T∑
τ=0

(vT − pτ )∆xτ
∣∣∣ J (`)

t

)
. (6)

As in Kyle (1985), we focus on sequential equilibria. A sequential equilibrium is

such that, at each date: (i) the dealer’s pricing policy is given by equation (5) and (ii)

the speculator’s trading strategy maximizes his expected trading profit (6) given the

dealer’s pricing policy. Furthermore, as in Kyle (1985), we restrict our attention to

linear equilibria.

Let the index B refer to the Benchmark model (with ` = 0), and F refer to the Fast

model (with ` = 1). For instance, denote the dealer’s information set by

IBt = I(`=0)
t and IFt = I(`=1)

t . (7)

In a linear equilibrium, the transaction price in each trading round is a linear function

of the unanticipated part of the order flow

pt = qt + λkt

(
∆yt − E

(
∆yt|Ikt

))
for k ∈ {B,F}. (8)

In the benchmark model, the dealer’s quote is of the form

qt = pt−1 + µBt ∆zt, (9)
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while in the fast model it is of the form14

qt = pt−1 + µFt−1

(
∆zt−1 − E

(
∆zt−1|IFt

))
. (10)

The speculator’s optimal trade is a linear function of his past and current news

and past and current dealer quotes. In the Internet Appendix, we show that, in a linear

equilibrium, the speculator’s optimal trading strategy necessarily has the following form:

∆xt = βkt (vt − qt)∆t︸ ︷︷ ︸
Forecast Error

Component

+ γkt ∆vt︸ ︷︷ ︸
News Trading

Component

for k ∈ {B,F}. (11)

Thus, the speculator’s optimal trade at date t is a function of the dealer’s forecast error,

vt − qt, and of the news received by the speculator, ∆vt, at this date. Intuitively, the

speculator should buy (sell) the asset when the dealer underestimates (overestimates) the

liquidation value, that is, when the forecast error is positive (negative). This intuition

is captured by the first component of the speculator’s strategy, and we refer to this

component as the forecast error component. It is standard in models of trading with

asymmetric information such as Kyle (1985), Back and Pedersen (1998), Back, Cao, and

Willard (2000), etc.

The forecast error component implicitly depends on his current news ∆vt, since

vt = v0 +
∑t

τ=1 ∆vτ . However, news affects this component only through its effect on

vt, the speculator’s forecast of the asset liquidation value. If, in addition, γkt 6= 0, news

received at date t affects the investor’s trading strategy above and beyond its effect on

the forecast. Thus, we refer to the second component of the investor’s trading strategy

as the news trading component, and we say that there is news trading when γkt 6= 0.

14In the benchmark case, the dealer cannot forecast news from the past trading history since the news
is uncorrelated and the speculator observes news at the same time as the dealer. Thus, E

(
∆zt|IBt

)
= 0

in the benchmark case. In contrast, E
(
∆zt−1|IFt

)
6= 0 in the fast model because the order flow ∆yt−1,

which is part of IFt , might be correlated with ∆zt−1, the dealer’s (lagged) news received at t. This will
be the case in equilibrium.
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Actually, the direction and size of news directly affects the informed investor’s behavior

in this case.15 In the next section, we show that news trading arises if and only if the

speculator has a speed advantage, i.e., γBt = 0 whereas γFt > 0.

In the rest of the paper, we focus on the continuous time version of the model.

Indeed, as in Kyle (1985), the coefficients that characterize the speculator’s optimal

trading strategy (e.g., βkt and γkt ) and the dealer’s pricing policy (e.g., λkt ) do not have a

closed-form expression in the discrete time version. Moreover, the equilibrium obtained

in continuous time is more directly comparable to other related extensions of the Kyle

(1985) model, e.g., Back and Pedersen (1998) or Chau and Vayanos (2008), as these are

set in continuous time. Our findings however are not specific to continuous time trading

since, as shown in the Internet Appendix, the qualitative conclusions are identical in

the discrete time version of the model.

For completeness, in Appendix A we formally define the continuous time equivalent

of the model laid out in this section. Intuitively, one can think of the continuous time

version as the case in which ∆t, the interval of time between two trading rounds, becomes

infinitesimal and is denoted by dt.16

3 Optimal News Trading

In this section, we derive the equilibrium of the benchmark model and the fast model

when news and trades take place in continuous time. In this case, dpt and dqt denote

the increments of the processes followed by the transaction price and the dealer’s quote,

while dxt denotes the change in the speculator’s position. The next theorem provides

15For instance, suppose that at date t, qt = 100 and that, after receiving news, the investor forecasts
the asset liquidation value to be vt = 105. If γkt = 0, the investor will buy the asset at date t, whether
he just received good or bad news at this date. In contrast, if γkt > 0, the direction and size of the
investor’s trade at date t will depend on both the direction and size of the news. In particular, the
investor may eventually sell the asset at date t if the news at this date is sufficiently bad, even though
vt > qt.

16One must use extra care in describing the continuous time analog of equations (8)–(10), since t−dt
is not well defined in continuous time.
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a characterization of the equilibrium coefficients βkt , γkt , λkt , µ
k
t in both the benchmark

and the fast models, i.e., when k ∈ {B,F}. In particular, it shows that there is no

news trading in the benchmark case (γBt = 0), while there is news trading when the

speculator reacts faster to news (γFt > 0). This difference implies that the speculator’s

trades have very different properties when he is fast and when he is not (see Section 4).

Theorem 1. In the benchmark model there is a unique linear equilibrium, of the form17

dxt = βBt (vt − pt)dt+ γBdvt, (12)

dpt = µBdzt + λBdyt, (13)

with coefficients given by

βBt =
1

1− t
σu

Σ
1/2
0

(
1 +

σ2
vσ

2
e

Σ0(σ2
v + σ2

e)

)1/2

, (14)

γB = 0, (15)

λB =
Σ

1/2
0

σu

(
1 +

σ2
vσ

2
e

Σ0(σ2
v + σ2

e)

)1/2

, (16)

µB =
σ2
v

σ2
v + σ2

e

. (17)

In the fast model there is a unique linear equilibrium, of the form:

dxt = βFt (vt − qt)dt+ γFdvt, (18)

dqt = λFdyt + µF (dzt − ρFdyt), (19)

17In the benchmark model we express the forecast error component as a multiple of vt − pt, rather
than of vt − qt, as in the discrete time version. We do this because in the continuous time benchmark
model qt is not a well defined Itô process (see Footnote 29 in Appendix A). Nevertheless, replacing qt
with pt has no effect on the trading strategy dxt in continuous time, since (pt − qt) dt = λt dyt dt = 0.
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with coefficients given by

βFt =
1

1− t
σu

(Σ0 + σ2
v)

1/2

1(
1 + σ2

e

σ2
v
g
)1/2

1 +
(1− g)σ2

v

Σ0

1 + σ2
e

σ2
v

+ σ2
e

σ2
v
g

2 + σ2
e

σ2
v

+ σ2
e

σ2
v
g

 , (20)

γF =
σu
σv

g1/2 =
σu

(Σ0 + σ2
v)

1/2

(
1 + σ2

e

σ2
v
g
)1/2

(1 + g)

2 + σ2
e

σ2
v

+ σ2
e

σ2
v
g

, (21)

λF =
(Σ0 + σ2

v)
1/2

σu

1(
1 + σ2

e

σ2
v
g
)1/2

(1 + g)
, (22)

µF =
1 + g

2 + σ2
e

σ2
v

+ σ2
e

σ2
v
g
, (23)

ρF =
σv
σu

g1/2

1 + g
=

σ2
v

σu(Σ0 + σ2
v)

1/2

(1 + σ2
e

σ2
v
g)1/2

2 + σ2
e

σ2
v

+ σ2
e

σ2
v
g
, (24)

and g is the unique root in (0, 1) of the cubic equation

g =

(
1 + σ2

e

σ2
v
g
)
(1 + g)2(

2 + σ2
e

σ2
v

+ σ2
e

σ2
v
g
)2

σ2
v

σ2
v + Σ0

. (25)

In both models, when σv → 0, the equilibrium converges to the unique linear equilibrium

in the continuous time version of Kyle (1985).

We first discuss the properties of the process followed by the speculator’s optimal

position, xt. In equilibrium, the drift of this process is given by the forecast error

component, and its volatility is given by the news trading component. Theorem 1 yields

the following corollary.

Corollary 1. If the speculator reacts faster to news, and if σe < +∞ and σv > 0, then

there is news trading, i.e., γF > 0. Otherwise, there is no news trading. In particular,

γB = 0 for all parameter values.

The speculator’s optimal trading strategy is therefore significantly different when he

gets access to news faster versus when he does not. In the former case, this strategy

consists of repeated small trades in the same direction for a relatively long period of
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time since the dealer’s forecast error, vt − qt, changes slowly over time. This is still the

case on average when the speculator reacts faster to news, but then his optimal position

becomes much more volatile since γF > 0. Thus, over a short time interval, he trades

much more and in larger sizes than when he does not react faster to news (see the next

section for a formal statement). To an external observer, the speculator’s holdings would

appear as only being driven by incoming news when he has a speed advantage, since

changes in a stochastic process over a short period of time are predominantly determined

by the volatility component of this process, and not by its drift component.

This difference between the fast model and the benchmark model is crucial for all

our remaining findings. The intuition for this key result is as follows. Suppose that

the speculator receives good news, i.e., dvt > 0. He then marks up his forecast vt of

the long run value of the asset relative to the dealer’s forecast. This leads the investor

to buy shares of the asset whether he is slow or fast but at a very slow rate to avoid

dissipating his informational advantage. This effect of good news on the investor’s trade

is captured by the forecast error component of his trading strategy. However, when the

dealer receives news with a lag, there is a second effect: the investor expects the dealer to

soon receive good news, since dzt = dvt+det, which will induce her to mark up her quote

(see equations (10) and (19)). The speculator optimally exploits this foreknowledge of

the short-run quote dynamics by buying shares in addition to those bought based on

his update of the long-run value of the asset. This extra motive for buying shares after

good news is captured by the news trading component of his strategy, which explains

why γF > 0. In contrast, when the dealer reacts to news with no lag, she updates her

quote to reflect news before the speculator can exploit his forecast of this update. For

this reason, in the benchmark model γB = 0, even when the dealer’s news is less precise

(i.e., σe > 0).

There are two limit cases in which there is no news trading even when the speculator

gets news faster than the dealer. First, there is obviously no news trading when there is
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no news, that is, when σv = 0. Second, and more interestingly, there is no news trading

when σe becomes infinite. In this case, the dealer’s quote updates become insensitive

to news, because the news is completely uninformative for the dealer when σe tends

to infinity. As a result, the speculator cannot use his news to forecast short-run quote

updates, and he stops trading on news, i.e., γF tends to zero when σe becomes infinite.

Corollary 2. For all parameter values and at each date, βFt < βBt .

This result shows that the two components of the speculator’s trading strategy are

interdependent. Indeed, the speculator compensates his increased aggressiveness on

news in the fast model by optimally trading less aggressively on the dealer’s forecast

error. Thus, he partially substitutes profits derived from trading on his forecast of the

“long run” value of the asset by profits from trading on his foreknowledge of short run

quote dynamics. As explained in Section 6, this substitution effect has an impact on

the nature of price discovery.18

We now turn our attention to the dealer’s pricing policy. As in Kyle (1985), we

measure market illiquidity by λ, the immediate price impact of a trade.

Corollary 3. Illiquidity is higher when the speculator has a speed advantage, i.e., λF >

λB.

When the speculator reacts faster to news, trades move prices more because they

contain more information since the speculator trades on news more aggressively. Fur-

thermore, in this case, the dealer can forecast news from past trades since these trades

depend on news. Formally, in the fast model, E(dzt|dyt) = ρFdyt, where ρF is defined

in equation (24). Thus, in the fast model, the dealer’s quote update depends on the

innovation in news, i.e., dzt − ρFdyt, (see equation (19)), rather than the news itself,

18It can also be shown that βBt and βFt are increasing in σv and σu. When σv increases, uncertainty
on the final payoff of the asset is larger for the dealer, other things equal. This is also the case when
σu increases, because the order flow becomes noisier. In either case, the speculator optimally reacts
by trading more aggressively on the dealer’s forecast error. As these effects are standard, we omit the
proof of these results for brevity. The effects of σe on βkt and γF are analyzed in Section 5.
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dzt. Moreover, as news can be anticipated from past trades, the dealer’s quote updates

are less sensitive to news in the fast model, as claimed in the next corollary.

Corollary 4. Quote updates are less sensitive to news when the speculator has a speed

advantage, i.e., µF < µB.

In Section 6, we show that this finding has important implications for the relative

contributions of news and trades to volatility.

Theorem 1 holds for all parameter values, except Σ0 = 0. As Σ0 approaches zero, the

dealer’s forecast error becomes very small, at least at date t = 0. However, the forecast

error component of the speculator’s trading strategy remains finite, which implies that

βk0 approaches infinity when Σ0 goes to zero. This precludes the existence of a linear

equilibrium when Σ0 = 0. However, Theorem 1 and all our results (which are all

implications of the theorem) remain unchanged even when Σ0 is very close to zero.

When this is the case and in addition σe = 0, the speculator has almost no long-lived

information advantage. In particular, when he is fast, the speculator anticipates that

the dealer will receive the same news as he observes with a lag. Thus, the speculator

cannot trade on news for long. Yet, the news trading component of his strategy remains

finite and is in fact maximal (see Corollary 8 in Section 5).19

4 Detecting News Trading

In the previous section, we have shown that the speculator’s optimal trading strategy

contains a news trading component when the investor is fast but not otherwise. We

now show that this feature implies that the speculator’s “footprints” (the effects of his

trades on volume and prices) depend on whether he trades on news or not. Identifying

these footprints is useful to assess the extent to which speculators who trade on news

19When σe = 0, one can show that γF = σu

σv

(
σ2
v+2Σ0

σ2
v

+
√(σ2

v+2Σ0

σ2
v

)2 − 1
)

using the expression for

γF in Theorem 1, and solving for g in equation (25).
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exploit a speed advantage or are only better at processing news.

4.1 News Trading and Volume

As explained in the previous section and shown in Figure 1, the speculator’s position

is much more volatile when he reacts faster to news than when he does not. Thus, the

fraction of total trading volume due to the speculator’s trades is much higher when he

has a speed advantage. To see this formally, let the Informed Participation Rate (IPRt)

be the instantaneous contribution of the speculator’s trade to total trading volume:

IPRt =
Var(dxt)

Var(dyt)
=

Var(dxt)

Var(dut) + Var(dxt)
(26)

Corollary 5. The Informed Participation Rate is higher when the speculator trades on

news (i.e., reacts faster to news). Specifically:

IPRB = 0, IPRF =
g

1 + g
> 0, (27)

where g ∈ (0, 1) is defined in Theorem 1.

In the benchmark model, the speculator optimally chooses to trade in very small

sizes relative to noise traders in order to avoid dissipating his long-run informational

advantage too quickly, as in Kyle (1985). Hence, over short time intervals, the specu-

lator’s order flow is negligible relative to noise traders’ order flow. In contrast, in the

fast model, the speculator’s order flow over a short time interval is of the same order of

magnitude as noise traders’ flows because the speculator optimally trades much more

aggressively on news.

The expressions for the informed participation rate in Corollary 5 are obtained when

the speculator’s order flow and trading volume are measured over an infinitesimal time

interval. In Appendix B, we show that the Informed Participation Rate remains higher

when the speculator reacts faster to news even when trades are aggregated over time
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Figure 3: Informed participation rate at various sampling frequencies. The
figure plots the fraction of the trading volume due to the speculator when data are
sampled over time intervals of various lengths (10−3 seconds, 10−1 seconds, 1 second,
1 minute, 1 hour) in (a) the benchmark model, marked with “∗”; and (b) the fast model,
marked with “◦”. The parameters used for the simulation are σu = σv = σe = Σ0 = 1
(see Theorem 1). The liquidation date t = 1 corresponds to 1 month.
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intervals of arbitrary length. However, in this case, the Informed Participation Rate in

the benchmark model is not zero and increases with the length of the time interval over

which trades and volume are measured, as shown in Figure 3.

High Frequency Traders (HFTs) have been shown to account for a large fraction of

the total trading volume in various financial markets around the world. For instance,

Brogaard, Hendershott, and Riordan (2012) find that market orders by HFTs account for

about 41% of the trading volume for the Nasdaq stocks in their sample. There are several

possible explanations for HFTs’ large share of trading volume. For instance, HFTs may

have crowded out slow traders (as implied by Biais, Foucault, and Moinas (2013)),

or they might intermediate many transactions as market makers. Our model suggests

another, non exclusive, explanation: optimal trading on news at the high frequency (that

is, on frequent signals) can require frequent and large adjustments in portfolio holdings

when speculators have access to news slightly faster than other market participants,

despite the higher impact costs associated with this strategy. Furthermore, as our model
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shows, this strategy can be optimal even when the speculator’s informational advantage

is long-lived (that is, even if σe > 0).

4.2 News Trading and Trade Autocorrelation

In both the fast and the benchmark model, i.e., for both k ∈ {B,F}, the dealer’s

forecast error component, βkt (vt−qt)dt, changes slowly over time because the speculator

wishes to preserve his informational advantage, and does not trade aggressively on the

forecast error. As a result, the drift component of the speculator’s position changes very

slowly, which means that the average direction of the speculator’s trade is relatively

stable. This feature is a source of positive autocorrelation in the speculator’s trades.

However, when the speculator reacts faster to information, over a short time interval his

trades are mainly driven by news. As the news is uncorrelated, they are not a source

of autocorrelation in the speculator’s trades. For this reason, the autocorrelation of

the speculator’s order flow is smaller in the fast model. In fact, over very short time

intervals, this autocorrelation is zero, as the next corollary shows.

Corollary 6. The autocorrelation of the speculator’s trades over short time intervals is

lower when he reacts faster to news. More specifically, for τ ∈ (0, 1− t),

Corr(dxBt , dx
B
t+τ ) =

(
1− t− τ

1− t

)λBβB0 − 1
2

> 0,

Corr(dxFt , dx
F
t+τ ) = 0.

(28)

In Appendix B, we show that the autocorrelation of the speculator’s trades remains

smaller in the fast model even when his trades are aggregated over non infinitesimal time

intervals, but that it increases when the interval of time over which trades are aggregated

gets larger. Actually, over longer time intervals, the net change in the speculator’s

portfolio holding becomes increasingly determined by the forecast error component of

his trading strategy, which as explained before is a source of autocorrelation in the
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speculator’s trades.

Brogaard (2011) and Hirschey (2013) find a positive but small autocorrelation in

HFTs’ aggregate order flow on Nasdaq. This finding is consistent both with the bench-

mark and the fast models. Some papers (Menkveld (2013) or Kirilenko, Kyle, Samadi,

and Tuzun (2011)) find evidence of mean reverting inventories for HFTs. Mean-reverting

positions should induce a negative autocorrelation in HFTs’ trades. This may stem

from inventory constraints, which are absent from our model. Accounting for these con-

straints in the speculator’s optimization problem is beyond the scope of this paper, but

they would naturally lead to mean reversion in the speculator’s position. Alternatively,

mean reversion in inventories might be characteristic of high frequency market-making,

a strategy which is not captured by our model.20

4.3 News Trading and Price Changes

As explained in Section 3, the speculator trades more aggressively on news in the fast

model because, in this case, news are informative on the short-run dynamics of quotes,

in addition to the long-run liquidation value of the asset. For instance, he aggressively

buys when receiving good news as he expects the dealer to soon mark up her quote.

Intuitively, this behavior implies a positive relationship between the speculator’s trade

and subsequent price changes. To formalize this relationship, let CPI t be the covariance

between the speculator’s trade per unit of time and the subsequent cumulative price

change over the time interval [t, t+ τ ] for τ > 0:

CPI t(τ) = Cov

(
dxt
dt

, pt+τ − pt
)
. (29)

This covariance can be seen as a measure of the Cumulative Price Impact (CPI) of the

speculator’s trade at a given point in time. Thus, it is a measure of trade informativeness.

20For instance, Menkveld (2013) shows that the high frequency trader in his dataset behaves very
much as a market maker rather than as an informed investor.
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Corollary 7. In the benchmark model, the cumulative price impact is

CPIBt (τ) = CB
1

[
1−

(
1− τ

1− t

)λBβB0 ]
, (30)

while in the fast model it is

CPI Ft (τ) = CF
0 + CF

1

[
1−

(
1− τ

1− t

)(λF−µF ρF )βF0
]
, (31)

where CF
0 , CB

1 and CF
1 are positive coefficients given in the proof of this corollary.

Figure 4 illustrates the corollary for specific values of the parameters. As expected,

the covariance between the speculator’s trade and the subsequent cumulative price

change is positive, and at short horizons (small τ), it is much larger when the spec-

ulator reacts faster to news. This difference shrinks as one measure price changes over

longer horizons. Actually, as explained in Section 4.2, the average direction of the spec-

ulator’s trades is relatively stable over time, in both the fast and the benchmark models.

Thus, a speculator’s buy (sell) order is followed by additional buy (sell) orders on av-

erage, which implies that the immediate price change associated with a trade by the

speculator is followed by additional price changes in the same direction, whether he is

fast or not.

As Figure 4 shows, measuring CPI for various values of τ could be useful empiri-

cally to assess the relative importance of news trading in a speculator’s trading strategy.

Indeed, a large value of CPI over short horizons (a positive “intercept”) is indicative

of news trading, since CPI Ft (τ) ≈ CF
0 > 0, while CPIBt (τ) ≈ 0 for τ small. In con-

trast, the rate at which CPI increases with τ (the “slope”) indicates the magnitude of

the forecast error component, i.e., the rate at which the speculator slowly exploits the

dealer’s forecast error. We are not aware of empirical papers on HFTs reporting CPI.21

21In their Figure 1, Brogaard, Hendershott, and Riordan (2012) plot the correlation coefficients
between aggressive order imbalances of HFTs in their sample and subsequent returns over a 1 second
interval. However, they do not show the correlation coefficients between HFTs’ order imbalances and
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Figure 4: Cumulative Price Impact at Different Horizons. The figure plots the
cumulative price impact at t = 0, Cov

(
dx0
dt
, pτ − p0

)
against the horizon τ ∈ (0, 1] in

(a) the benchmark model, with a dotted line; and (b) the fast model, with a solid line.
The parameters used are σu = σv = σe = Σ0 = 1 (see Theorem 1). The liquidation date
t = 1 corresponds to 1 month.
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However, Brogaard, Hendershott, and Riordan (2012) and Kirilenko, Kyle, Samadi, and

Tuzun (2011) find that aggressive orders (that is, marketable orders) by HFTs have a

positive correlation with subsequent returns over a very short horizon. They interpret

this finding as reflecting HFTs’ ability to anticipate short-term price movements, which

is indeed the source of the correlation between the speculator’s trade and short-term

price changes in the fast model.

5 News Informativeness, Volume, and Liquidity

We measure the informativeness of news for the dealer by ν = 1
σe

, since a smaller

σe means that the news received by the dealer provides a more precise signal about

innovations in the asset value. News vendors (Reuters, Bloomberg, or Dow Jones) now

report firm-specific news in real time, assigning a direction and a relevance score to each

news (see, for instance, Gross-Klussmann and Hautsch (2011)). One could take as a

subsequent cumulative returns.

25



proxy for ν the average news relevance score provided by these vendors for a firm or

a portfolio of firms. Indeed, firms with more relevant news should be firms for which

dealers receive more informative signals.22 More generally, recent advances in textual

analysis offer ways to measure newswires informativeness (see, for instance, Boudoukh,

Feldman, Kogan, and Richardson (2013)).

Corollary 8. When the speculator reacts faster to news, the rate γF at which he trades

on news increases with the news informativeness, i.e., ∂γF

∂ν
> 0. In contrast, in both the

benchmark and the fast models, the speculator trades less aggressively on the dealer’s

forecast error when the news informativeness increases, i.e., ∂βk

∂ν
< 0 for k ∈ {F,B}. If

the dealer receives uninformative news (ν = 0), then there is no news trading (γF = 0),

and βF = βB.

In the fast model, an increase in news informativeness for the dealer strengthens the

speculator’s incentive to trade on news for two reasons. First, the speculator can better

forecast the dealer’s news (since Var(dzt|dvt) = σ2
e). Second, the dealer’s quote update

becomes more sensitive to news, other things equal, i.e., µk increases with ν. Thus, an

increase in news informativeness for the dealer enables the speculator to better forecast

short-run quote updates, so that he trades more aggressively on this knowledge in the

fast model. This complementarity between the informed investor’s trading intensity and

the precision of signals received by less informed agents is absent from standard models

of informed trading.

In contrast, the speculator trades less aggressively on the dealer’s forecast error

when the dealer receives more informative news. Actually, as explained previously, the

speculator substitutes part of his profits from trading on the dealer’s forecast error with

profits from trading on news. Moreover, as the dealer receives more informative news,

she corrects more rapidly her forecast error, inducing the speculator to trade even less

22High frequency trading firms are less likely to rely on relevance scores provided by data vendors,
as these are provided with a delay relative to the source news.
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aggressively on this error. The first effect operates only when the speculator trade on

news, that is, in the fast model. The second effect is standard in models of informed

trading, and operates even in the benchmark case, which explains why βB also declines

with ν.

In the limit when the dealer’s news is uninformative (σe = +∞), the model is

formally equivalent to the case in which the dealer never receives news, as in Back and

Pedersen (1998). In this case, the equilibrium is the same in the benchmark and the

fast models, and is identical to that derived in Back and Pedersen (1998). In particular,

even if the speculator receives news faster than the dealer, there is no news trading, i.e.,

γF converges to zero when σe approaches +∞.

Corollary 9. In the fast model, an increase in the dealer’s news informativeness triggers

an increase in (i) the speculator’s participation rate (∂IPR
F

∂ν
> 0), (ii) trading volume

(∂ Var(dy)
∂ν

> 0), and (iii) liquidity (∂λ
F

∂ν
< 0).

When news informativeness for the dealer increases, the speculator trades more ag-

gressively on news, as shown by Corollary 8. As a result, trading volume increases and

the speculator accounts for a larger share of this trading volume. Usually, increased

informed trading leads to a less liquid market. This is not the case here. Indeed, as the

dealer gets more precise news, she can better forecast the asset payoff and she is there-

fore less exposed to adverse selection. Hence, in equilibrium, when news informativeness

for the dealer increases, the model implies a joint increase in both informed trading and

liquidity.

These testable implications of the fast model are in sharp contrast with other mod-

els analyzing the effects of public information. These models usually imply that an

increase in the precision of public signals for dealers is associated with a lower trading

volume, as informed investors trade less, and greater market liquidity, as dealers are

less exposed to adverse selection (see, for instance, Propositions 1 and 2 in Kim and

Verrechia (1994)). The first implication holds in the benchmark model, but not in the
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fast model.23. Corollary 9 also implies that controlling for the precision of dealer’s news

is important to analyze the effect of news trading on liquidity. Indeed, in our model,

variations in the precision of news lead to a positive association between liquidity and

news trading. However, this correlation does not mean that news trading causes the

market to be more liquid. Instead, as Corollary 3 shows, the opposite is true.

Interestingly, Kelley and Tetlock (2013) find that trading volume and liquidity for a

stock are substantially larger on days with Dow Jones news for this stock than on days

without DJ news (see their Table II). This fact is consistent with our prediction if one

interprets days without DJ news as days in which news for a stock are less precise than

on days with DJ news. The model also predicts that the fraction of trading volume due

to informed trading should be higher on days with news. These predictions regarding

the effects of news informativeness cannot be easily obtained in models with short-lived

information such as Admati and Pfleiderer (1988) since these models assume that news

are observed perfectly by dealers after one period, that is, they implicitly focus on the

case σe = 0.24

6 Price Discovery and Volatility

As explained in the introduction, technological advances have enabled some investors

to react faster to news in recent years. In this section, we use our model to study how

this evolution could affect price discovery and the sources of price volatility. As in Kyle

23In the benchmark case, a decrease in σe (increase in ν) generates a decrease in βB and λB (see
equations (14) and (16)). A decrease in βB implies that the speculator trades less over a given time
interval. Thus, in the benchmark case, an increase in news informativeness generates an increase in
liquidity, but a decrease in volume.

24Variations in liquidity trading between days with and without news may explain why volume and
liquidity are higher on days with news. Specifically, if liquidity traders trade more on days with news
then liquidity and volume might be higher on these days, as implied by Admati and Pfleiderer (1988).
In contrast, our predictions do not rely on systematic variations in liquidity trading according to news
informativeness.
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(1985), we measure price discovery by the average squared pricing error at t, i.e.,

Σk
t = E

(
(vt − pkt )2

)
, k ∈ {B,F}, (32)

where pBt = pt in the benchmark model and pFt = qt in the fast model.25 The smaller is

Σk
t , the higher is informational efficiency at date t. If Σk

t = 0, the market is strong-form

efficient at date t: the price at this date is just equal to the speculator’s forecast of the

asset payoff. The next result shows that informational efficiency is identical in both the

fast and the benchmark models, but the nature of price discovery is not.

Corollary 10. For k ∈ {B,F}, the change in Σk
t is given by

dΣk
t = −2Cov(dpkt , vt − pkt )− 2Cov(dpkt , dvt) + (2σ2

v + Σ0)dt. (33)

When the speculator reacts faster to news, short run changes in prices are more corre-

lated with innovations in the asset value (i.e., Cov(dpkt , dvt) is higher when k = F ), but

less correlated with the dealer’s forecast error (i.e., Cov(dpkt , vt − pkt ) is smaller when

k = F ). Overall, dΣk
t is identical whether or not the speculator has a speed advantage.

According to equation (33), prices become more quickly strong-form efficient when

(i) prices impound the speculator’s news more swiftly (Cov(dpkt , dvt) increases), and

(ii) the dealer reduces her forecast error more rapidly (Cov(dpkt , vt − pt) increases).

Corollary 10 shows that news trading affects these two determinants of price discov-

ery in opposite ways. On the one hand, the speculator trades more aggressively on news

when he reacts faster to news, so that the news is more quickly reflected into prices. On

the other hand, due to the substitution effect, he trades less aggressively on the dealer’s

forecast error (βFt < βBt ), as shown in Corollary 2.

25This definition guarantees that pkt is a well defined Itô process in both the benchmark and the
fast model; see Footnote 29 in Appendix A. This is useful for calculations, but innocuous since in both
models the difference pt − qt is infinitesimal.
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In equilibrium, these two effects exactly offset each other, so that the rate at which

the market eventually becomes strong-form efficient is the same whether or not the

speculator reacts faster to news. As Σk
0 = Σ0, the last part of Corollary 10 implies

that informational efficiency is the same in both the benchmark and the fast models,

i.e., ΣB
t = ΣF

t at all dates t. Hence, news trading does not affect the speed of price

discovery. However, in the fast model, price changes are more correlated with news, and

less with the dealer’s forecast error. Thus, the model predicts that short-term returns

(dpkt ) should become more correlated with news dvt after shocks enabling some investors

to get access to news faster than other investors. As explained in Section 5, techniques

from textual analysis could be used to develop a proxy for news (dvt) and test this

prediction.

There is another way in which the nature of price discovery is affected: fast access to

news alters the relative contributions of trades and quotes to the overall price variance.

To show this, we decompose price variance into two components: (i) the “trade com-

ponent” that captures the effect of trades on the dealer’s forecast of the asset payoff,

and (ii) the “news component” that captures the effect of dealer’s news on this fore-

cast. Specifically, let σp be the instantaneous volatility of the price process pkt , where,

as explained previously, pBt = pt and pFt = qt. We have:

σ2
pdt = Var(dpkt ) = Var(dpktrades, t)︸ ︷︷ ︸

Trade Component

+ Var(dpkquotes, t)︸ ︷︷ ︸
News Component

, (34)

where Var(dpktrades, t) = Var(λkdyt), Var(dpBquotes, t) = Var(µBdzt), and Var(dpFquotes, t) =

Var
(
µF (dzt − ρFdyt)

)
.

Corollary 11. Whether the speculator has a speed advantage or not, the instantaneous

volatility of prices is constant, and equal to

σ2
p = σ2

v + Σ0. (35)

30



However, trades contribute to a larger fraction of this volatility when the speculator reacts

faster to news.

The volatility of price changes is independent of whether the speculator has a speed

advantage or not in getting access to news. However, this speed advantage alters the

relative contributions of trades and quote updates to volatility. In the fast model, trades

contribute more to volatility since trades are more informative than in the benchmark

case (see Section 4.3). The flip side is that the dealer’s quote is less sensitive to news,

as explained in Section 3 (see Corollary 4). Thus, the contribution of quote revisions to

return volatility is lower in the fast model.

Hasbrouck (1991) shows how to estimate the relative contributions of trades and

public information to the volatility of the random walk component of prices. Using this

approach, one could test Corollary 11 by using exogenous shocks to the speed at which

speculators can get access to news. For instance, one could use the first availability of

co-location facilities in a country as an instrument for the speed of access to information,

as in Boehmer, Fong, and Wu (2012). Corollaries 10 and 11 imply that price changes

should be more correlated with news after the introduction of co-location and that

trades should contribute relatively more to volatility after this introduction. That is,

the introduction of co-location should strengthen the role of trades in impounding news

into prices.

7 Conclusion

In this paper, we have compared the optimal trading strategy of an informed investor

(the speculator) when he observes news either at the same speed as the dealers or faster

than the dealers, holding constant the precision of the signals conveyed by the news.

Our main result is that the speculator’s optimal trading strategy is very different in each

case.
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When the investor gets news at the same speed as dealers, his trades are completely

determined by the difference between his estimate of the asset payoff and dealers’ esti-

mate of this payoff (“dealers’ forecast error”), as is typical in models of informed trading.

News does not affect the speculator’s trade over and above its effect on dealers’ forecast

error, even if the speculator extracts more precise signals from news than dealers. In

contrast, news becomes a distinct determinant of the investor’s trading strategy and the

speculator’s trades are much more sensitive to news when the speculator gets advanced

access to news. For instance, in this case, the investor may optimally sell the asset

after bad news, even though his forecast of the asset payoff after receiving the news still

exceeds the dealers’ forecast.

We have shown that the behavior of the speculator when he has advanced access

to news matches well some stylized facts about high frequency traders. Moreover, the

model yields several testable implications that one could use to test whether speed is

a determinant of news traders’ profitability. First, an increase in news informativeness

should lead to a joint increase in liquidity, volume, and the contribution of informed

trading to volume when some investors get faster access to news. Second, differential

speed of access to news should strengthen (a) the correlation between price changes

and news, and (b) the contribution of trades to volatility. Recent advances in textual

analysis, combined with richer news data and technological changes in the dissemination

of news, offer opportunities to test these predictions.

A Proofs of Results

Before proving Theorem 1, we define the information sets of the market participants.

In the benchmark model, define Iqt = {zτ}τ≤t ∪{yτ}τ<t the dealer’s information set just

before trading at t; Ipt = {zτ}τ≤t∪{yτ}τ≤t the dealer’s information set just after trading

at t; and J q
t = Iqt ∪ {vτ}τ≤t the speculator’s information set just before trading at t.
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In the fast model, define Iqt = {zτ}τ<t ∪ {yτ}τ<t the dealer’s information set just

before trading at t; Ipt = {zτ}τ<t∪{yτ}τ≤t the dealer’s information set just after trading

at t; and J q
t = Iqt ∪ {vτ}τ≤t the speculator’s information set just before trading at t.

In both models, the dealer sets the quote qt and the trading price pt as follows:

qt = E(v1|Iqt+dt),

pt = E(v1|Ipt ).

(A.1)

Then, qt represents the quote just before the dealer receives the order flow dyt = dxt +

dut, and pt+dt is the price at which this order flow is executed.26

A.1 Proof of Theorem 1

Benchmark model: First, we compute the optimal trading strategy of the speculator

from the set of strategies of the form dxτ = βBτ (vτ − pτ ) dτ + γBτ dvτ , τ ≥ t, while taking

as given the dealer’s pricing rule dpτ = λBτ dyτ + µBτ dzτ . For t ∈ [0, 1), the speculator’s

expected profit is

πt = E

(∫ 1

t

(v1 − pτ+ dτ ) dxτ

∣∣∣ J q
t

)
. (A.2)

For convenience, we now omit the superscript B for the coefficients β, γ, µ, λ. To

simplify the formula for the speculator’s expected profit, for τ ≥ t denote by27

Vτ = E
(
(vτ − pτ )2 | J q

t

)
. (A.3)

By the law of iterated expectations, we can replace v1 in (A.2) by vτ+ dτ = vτ + dvτ .

Also, pτ+ dτ = pτ + µτ (dvτ + deτ ) + λτ (dxτ + duτ ), and dxτ = βτ (vτ − pτ ) dτ + γτ dvτ ,

26Note that, compared to the discrete time model in Section 2, the index of qt is shifted by the time
increment dt. This is done to ensure that qt is a well defined Itô process in the fast model.

27This can be written Vt,τ to indicate dependence on t, but for simplicity we only write Vτ .
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hence:

πt = E

(∫ 1

t

(
vτ − pτ + (1− µτ ) dvτ − λτ dxτ

)
dxτ

∣∣∣∣ J q
t

)
=

∫ 1

t

(
βτVτ + (1− µτ − λτγτ )γτσ2

v

)
dτ.

(A.4)

Vτ can be computed recursively:

Vτ+ dτ = E
(
(vτ+ dτ − pτ+ dτ )

2 | J q
t

)
= E

(
(vτ + dvτ − pτ − µτ dvτ − µτ deτ − λτ dxτ − λτ duτ )

2 | J q
t

)
= Vτ + (1− µτ − λτγτ )2σ2

v dτ + µ2
τσ

2
e dτ + λ2

τσ
2
u dτ − 2λτβτVτ dτ.

(A.5)

therefore Vτ satisfies the first-order linear ODE:

V ′τ = −2λτβτVτ + (1− µτ − λτγτ )2σ2
v + µ2

τσ
2
e + λ2

τσ
2
u, (A.6)

or equivalently βτVτ = −V ′
τ+(1−µτ−λτγτ )2σ2

v+µ2τσ
2
e+λ2τσ

2
u

2λτ
. Substitute this into (A.4), and

integrate by parts:

πt = − V1

2λ1

+
Vt
2λt

+

∫ 1

t

Vτ

( 1

2λτ

)′
dτ

+

∫ 1

t

(
(1− µτ − λτγτ )2σ2

v + µ2
τσ

2
e + λ2

τσ
2
u

2λτ
+ (1− µτ − λτγτ )γτσ2

v

))
dτ.

(A.7)

This is essentially the method of Kyle (1985): we have eliminated the choice variable

βτ and replaced it by Vτ . Since Vτ > 0 can be arbitrarily chosen, in order to get an

optimum we must have
(

1
2λτ

)′
= 0, which is equivalent to

λτ = constant = λ. (A.8)
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For a maximum, the transversality condition

V1 = 0 (A.9)

must be also satisfied.

We now turn to the choice of γτ . The first order condition with respect to γτ in (A.7)

is

−(1− µτ − λτγτ ) + (1− µτ − λτγτ )− λτγτ = 0 =⇒ γτ = 0. (A.10)

Thus, there is no news trading in the benchmark model. Note also that the second order

condition is λτ > 0.28

Next, we derive the pricing rules from the dealer’s zero profit conditions. From (A.1),

equations pt = E(v1|Ipt ) and qt = E(v1|Iqt+dt) = E(v1|Ipt , dzt) imply qt = pt+µtdzt, where

µt =
Cov(v1, dzt | Ipt )

Var( dzt | Ipt )
=

Cov
(
v0 +

∫ 1

0
dvτ , dvt + det | Ipt

)
Var( dvt + det | Ipt )

=
σ2
v

σ2
v + σ2

e

= µ.

(A.11)

Also, equations qt = E(v1|Iqt+dt) and pt+dt = E(v1|Iqt+dt, dyt) imply that pt+dt = qt+λtdyt,

and also dpt = µBt dzt+λBt dyt, which proves (13). Furthermore, since λt = λ is constant,

λ =
Cov(v1, dyt | Iqt+dt)

Var( dyt | Iqt+dt)
=

Cov(v1, βt(vt − pt) dt+ dut | Iqt+dt)

Var(βt(vt − pt) dt+ dut | Iqt+dt)
=

βtΣt

σ2
u

, (A.12)

where Σt = E
(
(vt− pt)2|Ipt

)
= E

(
(vt− pt)2

)
. As in the derivation of (A.6), it is straight-

forward to check that Σt satisfies the first-order linear ODE:

Σ′t = −2λβtΣt + (1− µ)2σ2
v + µ2σ2

e + λ2σ2
u. (A.13)

This is the same ODE as (A.6), except in that case τ ∈ [t, 1] and the initial condition is

28The condition λτ > 0 is also a second order condition with respect to the choice of βτ . To see
this, suppose λτ < 0. Then if βτ > 0 is chosen very large, equation (A.6) shows that Vτ is very large
as well, and thus βτVτ can be made arbitrarily large. Thus, there would be no maximum.
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Vt = (vt− pt)2; instead, equation (A.13) is defined for t ∈ [0, 1] and has initial condition

Σ0. By solving explicitly (A.6) and (A.13), one sees that the transversality condition

V1 = 0 is equivalent to
∫ 1

t
βτ dτ = +∞, and in turn this is equivalent to Σ1 = 0.

Since λ is constant, equation (A.12) implies that βtΣt = λσ2
u is constant. Equa-

tion (A.13) then implies that Σ′t is constant. From Σ1 = 0, we get Σt = (1− t)Σ0, and

βt = β0
1−t . Then, (A.13) becomes −Σ0 = −2λ2σ2

u + (1 − µ)2σ2
v + µ2σ2

e + λ2σ2
u. Since

µ = σ2
v

σ2
v+σ2

e
, we get λ2σ2

u = Σ0 + σ2
vσ

2
e

σ2
v+σ2

e
, which implies (16). Then, β0 = λσ2

u

Σ0
and βt = β0

1−t

imply (14).

Fast model: As for the benchmark model, we compute the optimal trading strategy of

the speculator, while taking as given the dealer’s pricing rules dqτ = λFτ dyτ + µFτ (dzτ −

ρFτ dyτ ) and pτ+ dτ = qτ + λFτ dyτ . The speculator has the same objective function as

in (A.2), but his trading strategy uses the quote qτ as a state variable, i.e., he chooses

among strategies of the form dxτ = βFτ (vτ − qτ ) dτ + γFτ dvτ .
29

For convenience, we now omit the superscript F for the coefficients β, γ, µ, λ, ρ, l.

Denote by

Vτ = E
(
(vτ − qτ )2 | J q

t

)
. (A.14)

As in the case of the benchmark model, we replace v1 by vτ+ dτ = vτ + dvτ . Also,

pτ+ dτ = qτ + λτ (dxτ + duτ ), and dxτ = βτ (vτ − qτ ) dτ + γτ dvτ . Hence:

πt = E

(∫ 1

t

(
vτ − qτ + dvτ − λτ dxτ

)
dxτ

∣∣∣∣ J q
t

)
=

∫ 1

t

(
βτVτ + (1− λτγτ )γτσ2

v

)
dτ.

(A.15)

By comparing the first equation in (A.15) with the first equation in (A.4), we observe

a key difference between the benchmark and the fast model. Indeed, in the benchmark

model, an extra (µτdvτ )dxτ is subtracted from the speculator’s objective function. This

29This is because pτ is not a well defined Itô process. Indeed, dpτ = pτ+ dτ − pτ = qτ − pτ + λFτ dyτ ,
and qτ − pτ depends on the lagged signal dzτ− dτ , which is not a well defined Itô increment.
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term comes from the dealer’s quote adjustment by (the unpredictable part of) µτdzτ ,

which in the benchmark model is included in the price paid by the speculator. This

lowers the benefit of news trading in the benchmark model compared to the fast model.

Since, as we have already proved, the optimal news trading is zero in the benchmark,

it is reasonable to expect that there is positive news trading in the fast model. Indeed,

we will prove that, in the fast model, γτ > 0.

To obtain the equation for Vτ , we proceed as in the benchmark model, except that

we replace λτ by lτ :

Vτ+ dτ = E
(
(vτ+ dτ − qτ+ dτ )

2 | J q
t

)
= Vτ + (1− µτ − lτγτ )2σ2

v dτ + µ2
τσ

2
e dτ + l2τσ

2
u dτ − 2lτβτVτ dτ,

(A.16)

hence Vτ satisfies the first-order linear ODE:

V ′τ = −2lτβτVτ + (1− µτ − lτγτ )2σ2
v + µ2

τσ
2
e + l2τσ

2
u, (A.17)

or equivalently βτVτ = −V ′
τ+(1−µτ−lτγτ )2σ2

v+µ2τσ
2
e+l2τσ

2
u

2lτ
. Substitute this into (A.15), and

integrate by parts:

πt = − V1

2l1
+
Vt
2lt

+

∫ 1

t

Vτ

( 1

2lτ

)′
dτ

+

∫ 1

t

(
(1− µτ − lτγτ )2σ2

v + µ2
τσ

2
e + l2τσ

2
u

2lτ
+ (1− λτγτ )γτσ2

v

))
dτ.

(A.18)

Since Vτ > 0 can be arbitrarily chosen, in order to get an optimum we must have(
1

2lτ

)′
= 0, which is equivalent to lτ = constant. For a maximum, the transversality

condition V1 = 0 must be also satisfied.

We now turn to the choice of γτ . The first order condition with respect to γτ in (A.18)
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is

−(1− µτ − lτγτ ) + (1− λτγτ )− λτγτ = 0 =⇒ γτ =
µτ

2λτ − lτ
=

µτ
λτ + µτρτ

.

(A.19)

Thus, we obtain a nonzero news trading component. The second order condition is

λτ + µτρτ > 0. There is also a second order condition with respect to βτ , i.e., lτ > 0;

see Footnote 28.

Next, we derive the pricing rules from the dealer’s zero profit conditions. As for

the benchmark model, equation (A.1) implies pt+dt = qt + λtdyt; it also implies qt+dt =

E(v1|Ipt+dt, dzt) = pt+dt+µt(dzt−ρtdyt), hence qt+dt = qt+λtdyt+µt(dzt−ρtdyt), which

proves (19). The coefficients are given by

λt =
Covt(v1, dyt)

Vart( dyt)
=

Covt(v1, βt(vt − pt) dt+ γt dvt + dut)

Var(βt(vt − pt) dt+ γt dvt + dut)
=

βtΣt + γtσ
2
v

γ2
t σ

2
v + σ2

u

,

ρt =
Covt( dzt, dyt)

Vart( dyt)
=

γtσ
2
v

γ2
t σ

2
v + σ2

u

,

µt =
Covt(v1, dzt − ρt dyt)

Vart( dzt − ρt dyt)
=
−ρtβtΣt + (1− ρtγt)σ2

v

(1− ρtγt)2σ2
v + ρ2

tσ
2
u + σ2

e

.

(A.20)

By the same arguments as for the benchmark model, Σt = (1− t)Σ0, βt = β0
1−t , and βtΣt,

λt, ρt, µt are constant. Also, Σt satisfies the same ODE (A.17) as Vτ , and Σ′t = −Σ0,

hence

−Σ0 = −2ltβtΣt + (1− µτ − lτγτ )2σ2
v + µ2

τσ
2
e + l2τσ

2
u. (A.21)

We now define the following constants:

a =
σ2
u

σ2
v

, b =
σ2
e

σ2
v

, c =
Σ0

σ2
v

,

g =
γ2

a
, λ̃ = λγ, ρ̃ = ργ, ψ =

β0Σ0

σ2
u

γ, l̃ = lγ.

(A.22)
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With these notations, equations (A.19)–(A.21) become

λ̃ = µ(1− ρ̃), λ̃ =
ψ + g

1 + g
, ρ̃ =

g

1 + g
, µ =

1− ψ
1 + b(1 + g)

c =
2ψ

g
− (1− µ− l̃)2 − µ2b− l̃2

g
.

(A.23)

Substitute λ̃, ρ̃, µ in λ̃ = µ(1− ρ̃) and solve for ψ:

ψ =
1− (1 + b)g − bg2

2 + b+ bg
=

1 + g

2 + b+ bg
− g. (A.24)

The other equations, together with l̃ = λ̃− µρ̃, imply

λ̃ =
1

2 + b+ bg
, ρ̃ =

g

1 + g
, µ =

1 + g

2 + b+ bg
, l̃ =

1− g
2 + b+ bg

, (A.25)

1 + c =
(1 + bg)(1 + g)2

g(2 + b+ bg)2
. (A.26)

From (A.22), we get

γ = a1/2g1/2, β0 =
σ2
u

Σ0γ
ψ =

a

cγ
ψ =

a1/2

cg1/2
ψ. (A.27)

From (A.24) and (A.26), we get ψ = 1+g
2+b+bg

−g = g(2+b+bg)
(1+g)(1+bg)

( (1+g)2(1+bg)
g(2+b+bg)2

− (1+g)(1+bg)
2+b+bg

)
=

g(2+b+bg)
(1+g)(1+bg)

(
c + 1 − (1+g)(1+bg)

2+b+bg

)
= g(2+b+bg)

(1+g)(1+bg)

(
c + (1 − g) (1+b+bg)

2+b+bg

)
. We compute β0 =

a1/2g1/2(2+b+bg)
(1+g)(1+bg)

(
1 + 1−g

c
1+b+bg
2+b+bg

)
. Using again (A.26), we get

β0 =
a1/2

(1 + c)1/2(1 + bg)1/2

(
1 +

1− g
c

1 + b+ bg

2 + b+ bg

)
. (A.28)

Now substitute a, b, c from (A.22) in equations (A.25)–(A.28) to obtain equations (20)–

(25). Moreover, the second order conditions λ + µρ > 0 and l > 0 are equivalent to

g ∈ (−1, 1).

Finally, we show that the equation 1 + c = (1+bg)(1+g)2

g(2+b+bg)2
has a unique solution g ∈
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(−1, 1), which in fact lies in (0, 1). This can be shown by noting that

Fb(g) = 1 + c, with Fb(x) =
(1 + bx)(1 + x)2

x(2 + b+ bx)2
. (A.29)

One verifies F ′b(x) = (x+1)(x−1)(2+b+3bx)
x2(2+b+bx)3

, so Fb(x) decreases on (0, 1). Since Fb(0) = +∞

and Fb(1) = 1
1+b

< 1, there is a unique g ∈ (0, 1) so that Fb(g) = 1 + c.30

For future use, we derive from (A.25) the following formulas:

γ = a1/2g1/2, λ =
1

γ

1

2 + b+ bg
, ρ =

1

γ

g

1 + g
, µ =

1 + g

2 + b+ bg
,

l =
1

γ

1− g
2 + b+ bg

, 1− µ− lγ =
b+ bg

2 + b+ bg
.

(A.30)

A.2 Useful Comparative Statics

To compare the fast and benchmark models, and to do some comparative statics for the

coefficients involved in Theorem 1, we prove the following result.

Lemma A.1. With the notations in Theorem 1, the following inequalities are true:

µF < µB, λF > λB, βF0 < βB0 . (A.31)

Proof. Recall that in the proof of Theorem 1, we have denoted

a =
σ2
u

σ2
v

, b =
σ2
e

σ2
v

, c =
Σ0

σ2
v

. (A.32)

We start by showing that

µF =
1 + g

2 + b+ bg
< µB =

1

1 + b
. (A.33)

By computation, this is equivalent to g < 1, which is true since g ∈ (0, 1).

30One can check that Fb(x) = 1 + c has no solution on (−1, 0): When b ≤ 1, Fb(x) < 0 on (−1, 0).

When b > 1, Fb(x) attains its maximum on (−1, 0) at x∗ = − 2+b
3b , for which Fb(x

∗) = (b−1)3

b(b+2)3 < 1.
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We show that

λF =
(1 + c)1/2

a1/2

1

(1 + bg)1/2(1 + g)
> λB =

c1/2

a1/2

(
1 +

b

c(b+ 1)

)1/2

. (A.34)

After squaring the two sides, and using 1 + c = (1+bg)(1+g)2

g(2+b+bg)2
, we need to prove that

1
g(2+b+bg)2

> c + 1 − 1
1+b

, or equivalently 1
1+b

> (1+bg)(1+g)2

g(2+b+bg)2
− 1

g(2+b+bg)2
= 2+b+g+2bg+bg2

(2+b+bg)2
.

This reduces to proving 1 + b + (1 − g)(1 + bg) > 0, which is true, since b > 0 and

g ∈ (0, 1).

In the proof of Theorem 1, we have ψ = 1+g
2+b+bg

−g = g(2+b+bg)
(1+g)(1+bg)

(
c+(1−g) (1+b+bg)

2+b+bg

)
>

0. But 1+g
2+b+bg

> g implies bg < 1−g
1+g

. We now show that

βF0 =
a1/2

cg1/2

(
1 + g

2 + b+ bg
− g
)

< βB0 =
a1/2

c

(
c+

b

1 + b

)1/2

, (A.35)

where we use (A.24) and (A.27) for βF0 , and (14) for βB0 . Using (A.26), the desired

inequality is equivalent to 1
g

(1−g−bg−bg2)2

(2+b+bg)2
< c + 1 − 1

1+b
= (1+bg)(1+g)2

g(2+b+bg)2
− 1

1+b
, or 1

1+b
<

4+3b+bg(2−b)−bg2(1+2b)−b2g3
(2+b+bg)2

. After some algebra, this is equivalent to bg2(1 + g)2 + bg(1 +

4g+g2) < 3+2b. We use bg < 1−g
1+g

(proved above) to show that bg2(1+g)2 < g(1−g2)

and bg(1 + 4g + g2) < (1 − g)1+4g+g2

1+g
< (1 − g)(1 + 3g). Then, it is sufficient to prove

that g(1− g2) + (1− g)(1 + 3g) < 3 + 2b, or 1 + 3g − 3g2 − g3 < 3 + 2b. For this, it is

sufficient to prove 1 + 3g − 3g2 < 3 + 2b. But 1 + 3g − 3g2 attains its maximum value

of 1 + 3
4

at g = 1
2
, and 1 + 3

4
< 3 + 2b.

A.3 Proof of Corollary 1

In the last part of the proof of Theorem 1, we have shown that, when σe < ∞, equa-

tion (25) has a unique solution g ∈ (0, 1]. Thus, since γFt = σu
σv
g1/2, there is news trading

when the speculator reacts faster to news. Moreover, when σe approaches +∞, or equiva-

lently when b = σ2
e

σ2
v

approaches +∞, it is straightforward to show that g = (1+bg)(1+g)2

(2+b+bg)2
1

1+c

converges to zero. Thus, if the dealer receives no news, there is no news trading.
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A.4 Proof of Corollary 2

From Theorem 1, we have βBt /β
F
t = βB0 /β

F
0 . Now, Lemma A.1 implies βB0 /β

F
0 > 1,

which yields the result.

A.5 Proof of Corollaries 3 and 4

See Lemma A.1.

A.6 Proof of Corollary 5

In the benchmark model, equation (12) and γBt = 0 imply that Var(dxt) = (βBt )2Σtdt
2 =

0, since dt2 = 0. Also, Var(dut) = σ2
udt. Thus, IPRB

t = Var(dxt)
Var(dxt)+Var(dut)

= 0.

In the fast model, equation (18) implies Var(dxt) = (γF )2σ2
vdt, and equation (21)

implies (γF )2σ2
v = σ2

ug. Thus, IPRF = σ2
ugdt

σ2
ugdt+σ

2
udt

= g
g+1

. From Theorem 1, we know

that g ∈ (0, 1). Hence, IPRF > 0.

A.7 Proof of Corollary 6

For k ∈ {B,F}, if pBt = pt and pFt = qt, we write the equilibrium equations

dxt = βkt (vt − pkt )dt+ γkdvt,

dpt = µk(dzt − ρkdyt) + λkdyt = µkdzt + lkdyt.

(A.36)

We first prove the following useful result.

Lemma A.2. In both the benchmark and the fast models, i.e., if k ∈ {B,F}, and for

all s < t ∈ (0, 1),

Cov(vs − pks , vt − pkt ) = Σs

(
1− t
1− s

)lkβk0
,

1

ds
Cov(dvs, vt − pkt ) = (1− lkγk − µk)σ2

v

(
1− t
1− s

)lkβk0
,

(A.37)
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where lk = λk − µkρk.

Proof. To simplify notation, we omit the superscript k for pkt . Fix s ∈ (0, 1). Denote by

Xt = Cov(vs−ps, vt−pt). For t ≥ s, dXt = Cov(vs−ps, dvt−dpt) = −Cov(vs−ps, dpt) =

−lkβktXtdt = −lk βk0
1−tXtdt. Then, d ln(Xt) = lkβk0 d ln(1 − t). Also, at t = s, we have

Xs = Σs. Thus, we have a first order differential equation, with solution given by the

first equation in (A.37).

Denote by Yt = 1
ds
Cov(dvs, vt − pt). For t > s, dYt = 1

ds
Cov(dvs, dvt − dpt) =

− 1
ds
Cov(dvs, dpt) = −lkβkt Ytdt = −lk βk0

1−tYtdt. Then, d ln(Yt) = lkβk0 d ln(1 − t). At

t = s + ds, we have Ys+ds = 1
ds
Cov(dvs, vs − ps + dvs − dps) = 1

ds
Cov(dvs, dvs) −

1
ds
Cov(dvs, l

kdyt + µkdzt) = (1 − lkγk − µk)σ2
v . Thus, we have a first order differential

equation, with solution given by the second equation in (A.37).

We now prove Corollary 6. For the benchmark model, denote by lB = λB. Then,

using the notations from Lemma A.2, we get

Corr(dxBt , dx
B
t+τ ) =

Cov(vt − pt, vt+τ − pt+τ )
Cov(vt − pt)1/2 Cov(vt+τ − pt+τ )1/2

=
Σt

(
1−t−τ

1−t

)λBβB0
Σ

1/2
t Σ

1/2
t+τ

. (A.38)

Since Σs = Σ0(1− s), we obtain Corr(dxBt , dx
B
t+τ ) =

(
1−t−τ

1−t

)λBβB0 − 1
2 .31

In the fast model, we use both equations in (A.37) to show that the autocovariance

of the informed order flow, Cov(dxFt , dx
F
t+τ ), is of order dt2. But the informed order flow

variance is of order dt, therefore the autocorrelation is of order dt, which as a number

equals zero in continuous time.

A.8 Proof of Corollary 7

If k ∈ {B,F}, consider the following notations similar to those from the proof of

Lemma A.2: Xt,t+τ = Cov(vt − pkt , vt+τ − pkt+τ ), and Yt,t+τ = 1
dt
Cov(dvt, vt+τ − pkt+τ ).

31Note that λBβB0 = 1 +
σ2
vσ

2
e

Σ0(σ2
v+σ2

e) > 1.
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Denote by lk = λk − µkρk, and αk =
(1−(t+τ)

1−t

)lkβk0 . Then, the corollary is proved if we

show that CPI kt (τ) = Ck
0 + Ck

1 (1− αk), where

CB
0 = 0, and CB

1 = βB0 Σ0,

CF
0 =

(
µF + lFγF

)
γFσ2

v , and CF
1 = βF0 Σ0 + (1− µF − lFγF )γFσ2

v .

(A.39)

For convenience, drop the superscript k. Denote by n = 1−µ− lγ. We write CPI t(τ) =

Cov
(

dxt
dt
, pt+τ − pt

)
. Since dxt = βt(vt − pt) dt+ γ dvt, we obtain CPI t(τ) = βt Cov

(
vt −

pt, pt+τ −pt
)

+ γ
dt
Cov
(
dvt, pt+τ −pt

)
= βt Cov

(
vt−pt, vt+τ −pt

)
+ γ

dt
Cov
(
dvt, vt+τ −pt

)
−

βtXt,t+τ − γ
dt
Yt,t+τ . But Cov

(
vt − pt, vt+τ − pt

)
= Σt, and Cov

(
dvt, vt+τ − pt

)
= σ2

v dt.

Hence, using Lemma A.2 to compute Xt,t+τ and Yt,t+τ , we get CPI t(τ) = βtΣt(1−α) +

γσ2
v(1 − nα). Theorem 1 implies that βtΣt is constant, hence βtΣt = β0Σ0. We get

CPI t(τ) = C0 + C1(1 − α), where C0 = γσ2
v(1 − n) and C1 = β0Σ0 + γσ2

vn. One can

now verify directly, for both k ∈ {B,F}, that Ck
0 and Ck

1 are as in equation (A.39).

Finally, we note that nF > 0. Indeed, denote by b = σ2
e

σ2
v
, and by g ∈ (0, 1) as in

Theorem 1. Then, according to equation (A.30), nF = 1− µF − lFγF = b+bg
2+b+bg

> 0.

A.9 Proof of Corollary 8

Remember that, by definition, a = σ2
u

σ2
v
, b = σ2

e

σ2
v

and c = Σ0

σ2
v
. For the benchmark model,

as in Theorem 1 and Lemma A.1, we have

βB0 =
σu

Σ
1/2
0

(
1 +

σ2
vσ

2
e

σ2
v + σ2

e

)1/2

=
a1/2

c

(
c+

b

1 + b

)1/2

. (A.40)

From the second equality, βB0 is increasing in b = σ2
e

σ2
v
, hence βB0 is decreasing in ν = 1

σe
.

Since βBt is proportional to βB0 , it follows that βBt is decreasing in ν.

As in the proof of Theorem 1, let F (b, x) = (1+bx)(1+x)2

x(2+b+bx)2
, with ∂F

∂b
= − (1+x)2(2+bx+bx2)

x(2+b+bx)3

and ∂F
∂x

= − (1−x)(1+x)(2+b+3bx)
x2(2+b+bx)3

. Since g ∈ (0, 1) is the solution of F (b, g(b, c)) = 1 + c,

by differentiating with respect to b and c, respectively, we get ∂F
∂b

+ ∂F
∂x

∂g
∂b

= 0, and
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∂F
∂x

∂g
∂c

= 1. We compute

∂g

∂b
= −g(1 + g)(2 + bg + bg2)

(1− g)(2 + b+ 3bg)
,

∂g

∂c
= − g2(2 + b+ bg)3

(1− g)(1 + g)(2 + b+ 3bg)
. (A.41)

Thus, g is decreasing in b, hence g is increasing in ν. As γF = σu
σv
g1/2, it follows that γF

is increasing with ν as well.

From the proof of Theorem 1, we also have

βF0 =
a1/2

cg1/2

(
1 + g

2 + b+ bg
− g
)
. (A.42)

Using (A.41), we compute
∂βF0
∂b

= a1/2g1/2(1+g)2(2+3b+3bg+b2g+b2g2)
2c(1−g)(2+b+bg)(2+b+3bg)

. Thus, βF0 is increas-

ing in b, hence βF0 is decreasing in ν.

Finally, when ν = 0, σe = +∞ and b = +∞. Then, as in the proof of Corollary 1, we

get g = 0 and γF = 0. Moreover, equation (A.40) implies that, in the benchmark model,

βB0 = a1/2

c
(c+1)1/2. In the fast model, equation (A.42) implies that βF0 = a1/2

c
1+g

g1/2(2+b+bg)
,

since g = 0. But equation (A.26) implies that (1 + c)1/2 = (1+bg)1/2(1+g)

g1/2(2+b+bg)
. Since g = 0

and b = +∞, by considering only the dominant terms, we show that bg = 0, hence

βF0 = a1/2

c
(c+ 1)1/2. Thus, when ν = 0, βF = βB.

A.10 Proof of Corollary 9

In the fast model, denote by TV F = Var(dyt) the trading volume, and IPRF = Var(dxt)
Var(dyt)

the informed participation rate. Then, by Corollary 5, TV F = σ2
u(1 + g), and IPRF =

g
1+g

, hence TV F and IPRF have the same dependence on σe as g. From (A.41), g is

decreasing in b, hence also in σe. Thus, both TV F and IPRF are decreasing in σe, i.e.,

are increasing in ν = 1
σe

.

As in equation (A.34), we have (λF )2 = 1+c
a

1
(1+bg)(1+g)2

. Using the formula for ∂g
∂b

in (A.41), we compute
∂
(

(1+bg)(1+g)2
)

∂b
= −g(1+g)3(1+bg)

1−g < 0. Therefore, λF is increasing

in b, hence in σe. Thus, higher precision of the public signal (lower σe) implies higher
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liquidity (lower price impact coefficient λF ).

A.11 Proof of Corollary 10

We compute dΣk
t = 2Cov(dvt−dpkt , vt−pkt )+Cov(dvt−dpkt , dvt−dpkt ). Since the news dvt

is orthogonal to vt − pkt in both models, dΣk
t = −2Cov(dpkt , vt − pkt )− 2Cov(dpkt , dvt) +

Var(dvt) + Var(dpkt ). But 1
dt
Var(dvt) = σ2

v ; and by Corollary 11, σ2
p = 1

dt
Var(dpkt ) =

σ2
v + Σ0. We have just proved (33).

Equation (13) implies that in the benchmark model dpt = µBdzt + λBdyt. Since

dyt = dxt + dut, with dxt = O(dt),

Cov(dpt, dvt) = µBσ2
vdt. (A.43)

Equation (19) implies that in the fast model dqt = λFdyt + µF (dzt − ρFdyt). Since

dxt = γF dvt +O(dt), we obtain

Cov(dpt, dvt) =
(
γF (λF − µFρF ) + µF

)
σ2
vdt. (A.44)

Next, we prove that γF (λF − µFρF ) + µF > µB. Using (A.30) and (A.33), we need to

show that 2
2+b+bg

> 1
1+b

, which is equivalent to 1 > g. But this is true, since g ∈ (0, 1).

Finally, from the proof of Theorem 1, in both models Σk
t = Σ0(1− t).

A.12 Proof of Corollary 11

Denote Var(dpkt ) = σ2
pdt the variance of the instantaneous price changes, and we use

Theorem 1 to compute the two components of this variance. In the benchmark model,

Var
(
dpBtrades, t

)
= (λB)2σ2

udt =
(

Σ0+ σ2
vσ

2
e

σ2
v+σ2

e

)
dt. Also, Var

(
dpBquotes, t

)
= (µB)2(σ2

v+σ
2
e)dt =

46



σ4
v

σ2
v+σ2

e
dt. We obtain the volatility decomposition in the benchmark model,

σ2
p =

Var(dpt)

dt
=

(
Σ0 +

σ2
vσ

2
e

σ2
v + σ2

e

)
+

σ4
v

σ2
v + σ2

e

= Σ0 + σ2
v . (A.45)

Similarly, in the fast model, Var
(
dpFtrades, t

)
= (λF )2

(
(γF )2σ2

v + σ2
u

)
dt, and using

equation (A.30) we compute Var
(
dpFtrades, t

)
= 1+g

g(2+b+bg)2
σ2
v dt. Also, Var

(
dpFquotes, t

)
=

(µF )2
(
(1−ρFγF )2σ2

v+σ
2
e+(ρF )2σ2

u

)
dt = (1+g)(1+b+bg)

(2+b+bg)2
σ2
vdt. According to (A.26), Σ0+σ2

v =

σ2
v(1 + c) = σ2

v
(1+g)2(1+bg)
g(2+b+bg)2

, hence we have

σ2
p =

Var(dqt)

dt
=

1 + g

g(2 + b+ bg)2
σ2
v +

(1 + g)(1 + b+ bg)

(2 + b+ bg)2
σ2
v = Σ0 + σ2

v . (A.46)

We now show that the volatility component coming from quote updates is larger

in the benchmark, i.e., σ2
v

σ2
v+σ2

e
= 1

1+b
> (1+g)(1+b+bg)

(2+b+bg)2
. The difference is proportional to

3 − g + 2b + bg − bg2 = 2(1 + b) + (1 − g)(1 + bg) > 0. Since the total volatility is the

same, it also implies that the volatility component coming from the trades is larger in

the fast model.

B Sampling at Lower Frequencies than the Trading

Frequency

In this section, we show that Corollaries 5 and 6 in Section 4 generalize when trades

are aggregated over intervals of an arbitrary length ∆τ . Suppose trading takes place in

continuous time, but trades are aggregated over T > 0 time intervals of equal length

1
T

= ∆τ . Then, data are indexed by t ∈ {1, 2, . . . , T}, which corresponds to calendar

time τ = t∆τ ∈ [0, 1]. Denote by ∆xt = xt−xt−1 =
∫ t∆τ

(t−1)∆τ
dxτ the aggregate informed

order flow over the t-th time interval.32

32This is related, but not equivalent, to the order flow at the t-th trading round in the discrete model
of Section 2. In the limit when ∆τ approaches zero, it is reasonable to expect that the two notions
are equivalent. This depends on whether the coefficients of the discrete time model (as described in
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The empirical counterpart of the Informed Participation Rate and the autocorrela-

tion of the speculator’s order flow when data are aggregated every ∆τ periods of time

are, respectively,

IPRt =
Var(∆xt)

Var(∆xt) + Var(∆ut)
,

Corr(∆xt,∆xt+s).

(B.1)

Proposition 1. When the sampling interval ∆τ is small, the empirical informed par-

ticipation rate in the benchmark increases with ∆τ and is always below its level in the

fast model:

IPRB
t =

(βBt )2Σt

σ2
u

∆τ + o(∆τ),

IPRF
t =

(γF )2σ2
v

(γF )2σ2
v + σ2

u

+
o(∆τ)

∆τ
.

(B.2)

The informed order flow autocorrelation in the fast model increases with the sampling

interval ∆τ and is always below its level in the benchmark:

Corr(∆xBt ,∆x
B
t+s) =

(
1− (t+ s)∆τ

1− t∆τ

)λBβB0 − 1
2

+
o(∆τ)

∆τ
,

Corr(∆xFt ,∆x
F
t+s) =

βFt+s

(
βFt Σt + γF

(
1− lFγF − µF

)
σ2
v

)
(γF )2σ2

v

×
(

1− (t+ s)∆τ

1− t∆τ

)lF βF0
∆τ + o(∆τ).

(B.3)

Proof. The aggregate trade over the t-th interval is ∆xt =
∫ t∆τ

(t−1)∆τ
βτ (vτ−pτ )dτ+γdvτ .

When ∆τ is small, βτ is approximately constant over the interval [(t−1)∆τ, t∆τ ]. Thus,

in the benchmark model we have ∆xBt = βBt (vt − pt)∆τ + o(∆τ), since γB = 0. This

implies Var(∆xBt ) = (βBt )2Σt(∆τ)2 + o
(
(∆τ)2

)
. Also, Var(∆ut) = σ2

u∆τ , which yields

the informed participation rate in (B.2). Using Lemma A.2 in Appendix A, we obtain

the Internet Appendix) converge to the corresponding coefficients of the continuous time version. We
suspect this is true, as in Kyle (1985), although we have not formally proved it.

48



Cov(∆xBt ,∆x
B
t+s) = βBt+sβ

B
t Σt

(
1−(t+s)∆τ

1−t∆τ

)λBβB0
(∆τ)2 + o

(
(∆τ)2

)
, which proves the first

equation in (B.3).

In the fast model, ∆xFt = βFt (vt − pt)∆τ + γF∆vt + o(∆τ). Then, Var(∆xFt ) =

(γF )2σ2
v∆τ + o(∆τ), which implies the informed participation rate in (B.2). Using

Lemma A.2, Cov(∆xFt ,∆x
F
t+s) = βFt+s

(
βFt Σt+γ

F
(
1−lFγF−µF

)
σ2
v

)(
1−(t+s)∆τ

1−t∆τ

)lF βF0
(∆τ)2+

o((∆τ)2), where lF = λF − µFρF , which proves the second equation in (B.3).

References

[1] Admati, Admati, and Paul Pfleiderer (1988): “A Theory of Intraday Patterns: Volume and
Price Variability,” Review of Financial Studies, 1, 3–40.

[2] Back, Kerry (1992): “Insider Trading in Continuous Time,” Review of Financial Studies, 5,
387–409.

[3] Back, Kerry, Henry Cao, and Gregory Willard (2000): “Imperfect Competition among
Informed Traders,” Journal of Finance, 55, 2117–2155.

[4] Back, Kerry, and Hal Pedersen (1998): “Long-Lived Information and Intraday Patterns,”
Journal of Financial Markets, 1, 385–402.

[5] Baron, Matthew, Jonathan Brogaard, and Andrei Kirilenko (2012): “The Trading
Profits of High Frequency Traders,” Working Paper.

[6] Biais, Bruno, Thierry Foucault, and Sophie Moinas (2012): “Equilibrium Fast Trading,”
Working Paper.

[7] Boehmer, Ekkehart, Kingsley Fong, and Julie Wu (2012): “International Evidence on
Algorithmic Trading,” Working Paper.

[8] Boudoukh, Jacob, Ronen Feldman, Shimon Kogan, and Matthew Richardson (2013):
“Which News Moves Stock Prices? A Textual Analysis,” Working Paper.

[9] Brogaard, Jonathan (2011): “The Activity of High Frequency Traders,” Working Paper.

[10] Brogaard, Jonathan, Terrence Hendershott, and Ryan Riordan (2012): “High Fre-
quency Trading and Price Discovery,” Working Paper.

[11] Busse, Jeffrey, and Clifton Green (2002): “Market Efficiency in Real Time,” Journal of
Financial Economics, 65, 415–437.

[12] Cartea, Alvara, and Jose Penalva (2012): “Where is the value in high frequency trading?
forthcoming Quarterly Journal of Finance.

[13] Chaboud, Alain, Benjamin Chiquoine, Erik Hjalmarsson, and Clara Vega (2013):
“Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market,” Working Paper.

[14] Chau, Minh, and Dimitri Vayanos (2008): “Strong-Form Efficiency with Monopolistic Insid-
ers,” Review of Financial Studies, 21, 2275–2306.

[15] Engelberg, Joseph, Adam Reed, and Matthew Ringgenberg (2012) “How are Shorts
Informed? Short Sellers, News and Information Processing” Journal of Financial Economics, 105,
260–278.

49



[16] Engelberg, Joseph (2008) “Costly Information Processing: Evidence from Earnings Announce-
ments,” Working Paper.

[17] Foster, Douglas, and S. Viswanathan (1990): “A Theory of the Interday Variations in
Volume, Variance, and Trading Costs in Securities Markets,” Review of Financial Studies, 3, 593–
624.

[18] French, Kenneth, and Richard Roll (1986) “Stock Return Variances” Journal of Financial
Economics, 17, 5–26.

[19] Gross-Klussmann, Alex and Nikolaus Hautsch (2011): “When Machines Read the News:
Using Automated Text Analytics to Quantify High-Frequency News-Implied Market Reactions,”
Journal of Empirical Finance, 18, 321–340.
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Internet Appendix for “News Trading and Speed” –

Not for publication

In this Appendix, we present the discrete time version of the fast and benchmark models

in subsections I.1 and I.2.

I.1 Discrete Time Fast Model

We use the notations from Section 2. Denote by Iqt = {∆zτ}τ≤t−1 ∪ {∆yτ}τ≤t−1 the

dealer’s information set just before trading at t, and by Ipt = {∆zτ}τ≤t−1 ∪ {∆yτ}τ≤t =

Iqt ∪ {∆yt} the information set just after trading at t. The zero profit condition for the

competitive dealer translates into the formulas

qt = E(v1 | Iqt ), pt = E(v1 | Ipt ). (I.4)

We also denote

Ωt = Var(vt | Ipt ), Σt = Var(vt | Iqt ). (I.5)

Definition 1. A pricing rule pt is called linear if it is of the form pt = qt + λt∆yt, for

all t = 1, . . . , T .33

The next result shows that if the pricing rule is linear, then the speculator’s strategy

is also linear, and furthermore it can be decomposed into a forecast error component,

βt(vt − qt)∆t, and a news trading component, γ̃t∆vt, where γ̃t ≡ γt − βt∆t = αtltµt
λt−αtl2t

(see (I.9)).

33We could defined more generally, a pricing rule to be linear in the whole history {∆yτ}τ≤t, but as
Kyle (1985) shows, this is equivalent to the pricing rule being linear only in ∆yt.
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Theorem 2. Any equilibrium with a linear pricing rule must be of the form

∆xt = βt(vt−1 − qt)∆t+ γt∆vt,

pt = qt + λt∆yt,

qt+1 = pt + µt(∆zt − ρt∆yt),

(I.6)

for t = 1, . . . , T , where βt, γt, λt, µt, ρt, Ωt, and Σt are constants that satisfy

λt =
βtΣt−1 + γtσ

2
v

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

,

µt =

(
σ2
u + β2

t Σt−1∆t− βtγtΣt−1

)
σ2
v

(β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u)σ
2
e + (β2

t Σt−1∆t+ σ2
u)σ

2
v

,

lt = λt − ρtµt =
βtΣt−1(σ2

v + σ2
e) + γtσ

2
vσ

2
e

(β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u)σ
2
e + (β2

t Σt−1∆t+ σ2
u)σ

2
v

,

ρt =
γtσ

2
v

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

,

Ωt = Σt−1 + σ2
v∆t−

β2
t Σ

2
t−1 + 2βtγtΣt−1σ

2
v + γ2

t σ
4
v

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

∆t,

Σt = Σt−1 + σ2
v∆t

−
β2
t Σ

2
t−1(σ2

v + σ2
e) + β2

t Σt−1∆tσ4
v + σ4

vσ
2
u + γ2

t σ
4
vσ

2
e + 2βtγtΣt−1σ

2
vσ

2
e

(β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u)σ
2
e + (β2

t Σt−1∆t+ σ2
u)σ

2
v

∆t.

(I.7)

The value function of the speculator is quadratic for all t = 1, . . . , T :

πt = αt−1(vt−1 − qt)2 + α′t−1(∆vt)
2 + α′′t−1(vt−1 − qt)∆vt + δt−1. (I.8)
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The coefficients of the optimal trading strategy and the value function satisfy

βt∆t =
1− 2αtlt

2(λt − αtl2t )
,

γt =
1− 2αtlt(1− µt)

2(λt − αtl2t )
= βt∆t+

αtltµt
λt − αtl2t

,

αt−1 = βt∆t(1− λtβt∆t) + αt(1− ltβt∆t)2,

α′t−1 = αt(1− µt − ltγt)2 + γt(1− λtγt),

α′′t−1 = βt∆t+ γt(1− 2λtβt∆t) + 2αt(1− ltβt∆t)(1− µt − ltγt),

δt−1 = αt
(
l2tσ

2
u + µ2

tσ
2
e

)
∆t+ α′tσ

2
v∆t+ δt.

(I.9)

The terminal conditions are

αT = α′T = α′′T = δT = 0. (I.10)

The second order condition is

λt − αtl2t > 0. (I.11)

Given Σ0, conditions (I.7)–(I.11) are necessary and sufficient for the existence of a

linear equilibrium.

Proof. First, we show that equations (I.7) are equivalent to the zero profit conditions of

the dealer. Second, we show that equations (I.9)–(I.11) are equivalent to the specula-

tor’s strategy in (I.6) being optimal. These two steps prove that equations (I.6)–(I.11)

describe an equilibrium. Conversely, all equilibria with a linear pricing rule must sat-

isfy these equations since the trading strategy in (I.6) is the best-response to the linear

pricing rule.

Zero profit of dealer: Start with with the dealer’s update due to the order flow at

t = 1, . . . , T . Conditional on Iqt , the variables vt−1− qt and ∆vt have a bivariate normal
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distribution:  vt−1 − qt

∆vt

 | Iqt−1 ∼ N


 0

0

 ,
 Σt−1 0

0 σ2
v


 . (I.12)

The aggregate order flow at t is of the form

∆yt = βt(vt−1 − qt)∆t+ γt∆vt + ∆ut. (I.13)

Denote by

Φt = Cov


 vt−1 − qt

∆vt

 ,∆yt
 =

 βtΣt−1

γtσ
2
v

∆t. (I.14)

Then, conditional on Ipt = Iqt ∪ {∆yt}, the distribution of vt−1 − qt and ∆vt is bivariate

normal:  vt−1 − qt

∆vt

 | Ipt ∼ N

 µ1

µ2

 ,
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2


 , (I.15)

where µ1

µ2

 = Φt Var(∆yt)
−1∆yt =

 βtΣt−1

γtσ
2
v

 1

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

∆yt, (I.16)

and σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 = Var


 vt−1 − qt

∆vt


− Φt Var(∆yt)

−1Φ′t

=

 Σt−1 0

0 σ2
v∆t

− 1

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

 β2
t Σ

2
t−1 βtγtΣt−1σ

2
v

βtγtΣt−1σ
2
v γ2

t σ
4
v

∆t.

(I.17)

We compute

pt − qt = E(vt − qt | Ipt ) = µ1 + µ2 =
βtΣt−1 + γtσ

2
v

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

∆yt, (I.18)
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which proves equation (I.7) for λt. Also,

Ωt = Var(vt − qt | Ipt ) = σ2
1 + σ2

2 + 2ρσ1σ2

= Σt−1 + σ2
v∆t−

β2
t Σ

2
t−1 + 2βtγtΣt−1σ

2
v + γ2

t σ
4
v

β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u

∆t,
(I.19)

which proves the formula for Ωt.

Next, to compute qt+1 = E(vt | Iqt+1), we start from the same prior as in (I.12), but

we consider the impact of both the order flow at t and the dealer’s signal at t+ 1:

∆yt = βt(vt−1 − qt)∆t+ γt∆vt + ∆ut,

∆zt = ∆vt + ∆et.

(I.20)

Denote by

Ψt = Cov


 vt−1 − qt

∆vt

 ,
 ∆yt

∆zt


 =

 βtΣt−1 0

γtσ
2
v σ2

v

∆t,

V yz
t = Var


 ∆yt

∆zt


 =

 β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u γtσ
2
v

γtσ
2
v σ2

v + σ2
e

∆t.

(I.21)

Conditional on Iqt+1 = Iqt ∪{∆yt,∆zt}, the distribution of vt−1− qt and ∆vt is bivariate

normal:  vt−1 − qt

∆vt

 | Iqt+1 ∼ N


 µ1

µ2

 ,
 σ2

1 ρσ1σ2

ρσ1σ2 σ2
2


 , (I.22)

where

 µ1

µ2

 = Ψt (V yz
t )−1

 ∆yt

∆zt

 =

 βtΣt−1(σ2
v + σ2

e)∆yt − βtγtΣt−1σ
2
v∆zt

γtσ
2
vσ

2
e∆yt + (β2

t Σt−1∆t+ σ2
u)σ

2
v∆zt


(β2

t Σt−1∆t+ γ2
t σ

2
v + σ2

u)σ
2
e + (β2

t Σt−1∆t+ σ2
u)σ

2
v

, (I.23)
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and σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 = Var


 vt−1 − qt

∆vt


−Ψt (V yz

t )−1 Ψ′t

=

 Σt−1 0

0 σ2
v∆t

−
 β2

t Σ
2
t−1(σ2

v + σ2
e) βtγtΣt−1σ

2
vσ

2
e

βtγtΣt−1σ
2
vσ

2
e (β2

t Σt−1∆t+ γ2
t σ

2
e + σ2

u)σ
4
v


(β2

t Σt−1∆t+ γ2
t σ

2
v + σ2

u)σ
2
e + (β2

t Σt−1∆t+ σ2
u)σ

2
v

∆t.

(I.24)

Therefore,

qt+1 − qt = µ1 + µ2

=

(
βtΣt−1(σ2

v + σ2
e) + γtσ

2
vσ

2
e

)
∆yt +

(
σ2
u + β2

t Σt−1∆t− βtγtΣt−1

)
σ2
v∆zt

(β2
t Σt−1∆t+ γ2

t σ
2
v + σ2

u)σ
2
e + (β2

t Σt−1∆t+ σ2
u)σ

2
v

(I.25)

= lt∆yt + µt∆zt = (λt − ρtµt)∆yt + µt∆zt, (I.26)

which proves equation (I.7) for µt, lt, and ρt. Also,

Σt = σ2
1 + σ2

2 + 2ρσ1σ2

= Σt−1 + σ2
v∆t−

β2
t Σ

2
t−1(σ2

v + σ2
e) + β2

t Σt−1∆tσ4
v + σ4

vσ
2
u + γ2

t σ
4
vσ

2
e + 2βtγtΣt−1σ

2
vσ

2
e

(β2
t Σt−1 + (βt + γt)2σ2

v + σ2
u)σ

2
e + (β2

t Σt−1 + σ2
u)σ

2
v

∆t,

(I.27)

which proves the formula for Σt.

Optimal Strategy of Speculator: At each t = 1, . . . , T , the speculator maximizes

the expected profit: πt = max
∑T

τ=t E
(
(vT − pτ )∆xτ

)
. We prove by backward induction

that the value function is quadratic and of the form given in (I.8): πt = αt−1(vt−1−qt)2+

α′t−1(∆vt)
2 +α′′t−1(vt−1− qt)∆vt + δt−1. At the last decision point (t = T ) the next value

function is zero, i.e., αT = α′T = α′′T = δT = 0, which are the terminal conditions (I.10).
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This is the transversality condition: no money is left on the table. In the induction step,

if t = 1, . . . , T − 1, we assume that πt+1 is of the desired form. The Bellman principle

of intertemporal optimization implies

πt = max
∆x

E
(

(vt − pt)∆x+ πt+1 | Iqt , vt,∆vt
)
. (I.28)

The last two equations in (I.6) imply that the quote qt evolves by qt+1 = qt+lt∆yt+µt∆zt,

where lt = λt− ρtµt. This implies that the speculator’s choice of ∆x affects the trading

price and the next quote by

pt = qt + λt(∆x+ ∆ut),

qt+1 = qt + lt(∆x+ ∆ut) + µt∆zt.

(I.29)

Substituting these into the Bellman equation, we get

πt = max
∆x

E
(

∆x(vt−1 + ∆vt − qt − λt∆x− λt∆ut)

+ αt(vt−1 + ∆vt − qt − lt∆x− lt∆ut − µt∆vt − µt∆et)2 + α′t∆v
2
t+1

+ α′′t (vt−1 + ∆vt − qt − lt∆x− lt∆ut − µt∆vt − µt∆et)∆vt+1 + δt

)
= max

∆x
∆x(vt−1 − qt + ∆vt − λt∆x)

+ αt

(
(vt−1 − qt − lt∆x+ (1− µt)∆vt)2 + (l2tσ

2
u + µ2

tσ
2
e)∆t

)
+ α′tσ

2
v∆t

+ 0 + δt.

(I.30)

The first order condition with respect to ∆x is

∆x =
1− 2αtlt

2(λt − αtl2t )
(vt−1 − qt) +

1− 2αtlt(1− µt)
2(λt − αtl2t )

∆vt, (I.31)

and the second order condition for a maximum is λt − αtl2t > 0, which is (I.11). Thus,

the optimal ∆x is indeed of the form ∆xt = βt(vt−1− qt)∆t+ γt∆vt, where βt∆t and γt
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are as in (I.9). We substitute ∆xt in the formula for πt to obtain

πt =
(
βt∆t(1− λtβt∆t) + αt(1− ltβt∆t)2

)
(vt−1 − qt)2

+
(
αt(1− µt − ltγt)2 + γt(1− λtγt)

)
∆v2

t (I.32)

+
(
βt∆t+ γt(1− 2λtβt∆t) + 2αt(1− ltβt∆t)(1− µt − ltγt)

)
(vt−1 − qt)∆vt

+ αt
(
l2tσ

2
u + µ2

tσ
2
e

)
∆t + α′tσ

2
v∆t + δt.

This proves that indeed πt is of the form πt = αt−1(vt−1−qt)2 +α′t−1(∆vt)
2 +α′′t−1(vt−1−

qt)∆vt + δt−1, with αt−1, α′t−1, α′′t−1 and δt−1 as in (I.9).

We now briefly discuss the existence of a solution for the recursive system given in

Theorem 2. The system of equations (I.7)–(I.9) can be numerically solved backwards,

starting from the boundary conditions (I.10). We also start with an arbitrary value

of ΣT > 0.34 By backward induction, suppose αt and Σt are given. One verifies that

equation (I.7) for Σt implies

Σt−1 =
Σt

(
σ2
vσ

2
u + σ2

v(σ
2
u + γ2

t σ
2
e)
)
− σ2

vσ
2
uσ

2
e∆t(

σ2
uσ

2
e + σ2

v(σ
2
u + γ2

t σ
2
e) + β2

t ∆t
2σ2

vσ
2
e − 2γtβt∆tσ2

vσ
2
e

)
− Σtβ2

t ∆t
(
σ2
v + σ2

e

) .
(I.33)

Then, in equation (I.7) we can rewrite λt, µt, lt as functions of (Σt, βt, γt) instead of

(Σt−1, βt, γt). Next, we use the formulas for βt and γt to express λt, µt, lt as functions of

(λt, µt, lt, αt,Σt). This gives a system of polynomial equations, whose solution λt, µt, lt

depends only on (αt,Σt). Numerical simulations show that the solution is unique under

the second order condition (I.11), but the authors have not been able to prove theo-

retically that this is true in all cases. Once the recursive system is computed for all

t = 1, . . . , T , the only condition left to do is to verify that the value obtained for Σ0

is the correct one. However, unlike in Kyle (1985), the recursive equation for Σt is

not linear, and therefore the parameters cannot be simply rescaled. Instead, one must

34Numerically, it should be of the order of ∆t.
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numerically modify the initial choice of ΣT until the correct value of Σ0 is reached.

I.2 Discrete Time Benchmark Model

We use the notations from Section 2. Denote by Iqt = {∆zτ}τ≤t∪{∆yτ}τ≤t−1 the dealer’s

information set just before trading at t, and by Ipt = {∆zτ}τ≤t∪{∆yτ}τ≤t = Iqt ∪{∆yt}

the information set just after trading at t. The zero profit condition for the competitive

dealer translates into the formulas

qt = E(vt | Iqt ), pt = E(vt | Ipt ). (I.34)

We also denote

Σt = Var(vt | Ipt ), Ωt = Var(vt | Iqt ). (I.35)

The next result shows that if the pricing rule is linear, the speculator’s strategy is

also linear, and furthermore it only has a forecast error component, βt(vt − qt)∆t.

Theorem 3. Any linear equilibrium must be of the form

∆xt = βt(vt − qt)∆t,

pt = qt + λt∆yt,

qt = pt−1 + µt−1∆zt,

(I.36)

for t = 1, . . . , T , where by convention p0 = 0, and βt, γt, λt, µt, Ωt, and Σt are constants
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that satisfy

λt =
βtΣt

σ2
u

,

µt =
σ2
v

σ2
v + σ2

e

,

Ωt =
Σtσ

2
u

σ2
u − β2

t Σt∆t
,

Σt−1 = Σt +
β2
t Σ

2
t

σ2
u − β2

t Σt∆t
∆t− σ2

vσ
2
e

σ2
v + σ2

e

∆t.

(I.37)

The value function of the speculator is quadratic for all t = 1, . . . , T :

πt = αt−1(vt − qt)2 + δt−1. (I.38)

The coefficients of the optimal trading strategy and the value function satisfy

βt∆t =
1− 2αtλt

2λt(1− αtλt)
,

αt−1 = βt∆t(1− λtβt∆t) + αt(1− λtβt∆t)2,

δt−1 = αt
(
λ2
tσ

2
u + µ2

t (σ
2
v + σ2

e)
)
∆t+ δt.

(I.39)

The terminal conditions are

αT = δT = 0. (I.40)

The second order condition is

λt(1− αtλt) > 0. (I.41)

Given Σ0, conditions (I.37)–(I.41) are necessary and sufficient for the existence of a

linear equilibrium.

Proof. First, we show that equations (I.37) are equivalent to the zero profit conditions

of the dealer. Second, we show that equations (I.39)–(I.41) are equivalent to the specu-

lator’s strategy being optimal.
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Zero Profit of dealer: Start with with the dealer’s update due to the order flow at

t = 1, . . . , T . Conditional on Iqt , vt has a normal distribution, vt|Iqt ∼ N (qt,Ωt). The

aggregate order flow at t is of the form ∆yt = βt(vt − qt)∆t+ ∆ut. Denote by

Φt = Cov(vt − qt,∆yt) = βtΩt∆t. (I.42)

Then, conditional on Ipt = Iqt ∪ {∆yt}, vt ∼ N (pt,Σt), with

pt = qt + λt∆yt,

λt = Φt Var(∆yt)
−1 =

βtΩt

β2
t Ωt∆t+ σ2

u

,

Σt = Var(vt − qt)− Φt Var(∆yt)
−1Φ′t = Ωt −

β2
t Ω

2
t

β2
t Ωt∆t+ σ2

u

∆t

=
Ωtσ

2
u

β2
t Ωt∆t+ σ2

u

.

(I.43)

To obtain the equation for λt, note that the above equations for λt and Σt imply λt
Σt

= βt
σ2
u
.

The equation for Ωt is obtained by solving for Σt in the last equation of (I.43).

Next, consider the dealer’s update at t = 1, . . . , T due to the signal ∆zt = ∆vt+∆et.

From vt−1|Ipt−1 ∼ N (pt−1,Σt−1), we have vt|Ipt−1 ∼ N (pt−1,Σt−1 + σ2
v∆t). Denote by

Ψt = Cov(vt − pt−1,∆zt) = σ2
v∆t. (I.44)

Then, conditional on Iqt = Ipt−1 ∪ {∆zt}, vt|I
q
t ∼ N (qt,Ωt), with

qt = pt−1 + µt∆zt,

µt = Ψt Var(∆zt)
−1 =

σ2
v

σ2
v + σ2

e

,

Ωt = Var(vt − pt−1)−Ψt Var(∆zt)
−1Ψ′t = Σt−1 + σ2

v∆t−
σ4
v

σ2
v + σ2

e

∆t

= Σt−1 +
σ2
vσ

2
e

σ2
v + σ2

e

∆t.

(I.45)
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Thus, we prove the equation for µt. Note that equation (I.45) gives a formula for Σt−1 as

a function of Ωt, and we already proved the formula for Ωt as a function of Σt in (I.37).

We therefore get Σt−1 as a function of Σt, which is the last equation in (I.37).

Optimal Strategy of Speculator: At each t = 1, . . . , T , the speculator maximizes

the expected profit: πt = max
∑T

τ=t E
(
(vT − pτ )∆xτ

)
. We prove by backward induction

that the value function is quadratic and of the form given in (I.38): πt = αt−1(vt−qt)2 +

δt−1. At the last decision point (t = T ) the next value function is zero, i.e., αT = δT = 0,

which are the terminal conditions (I.40). In the induction step, if t = 1, . . . , T − 1,

we assume that πt+1 is of the desired form. The Bellman principle of intertemporal

optimization implies

πt = max
∆x

E
(

(vt − pt)∆x+ πt+1 | Iqt , vt,∆vt
)
. (I.46)

The last two equations in (I.36) show that the quote qt evolves by qt+1 = qt + lt∆yt +

µt∆zt+1. This implies that the speculator’s choice of ∆x affects the trading price and

the next quote by

pt = qt + λt(∆x+ ∆ut),

qt+1 = qt + λt(∆x+ ∆ut) + µt∆zt+1.

(I.47)

Substituting these into the Bellman equation, we get

πt = max
∆x

E
(

∆x(vt − qt − λt∆x− λt∆ut)

+ αt(vt + ∆vt+1 − qt − λt∆x− λt∆ut − µt∆zt+1)2 + δt

)
= max

∆x
∆x(vt − qt − λt∆x)

+ αt

(
(vt − qt − λt∆x)2 + (λ2

tσ
2
u + µ2

t (σ
2
v + σ2

e))∆t
)

+ δt.

(I.48)
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The first order condition with respect to ∆x is

∆x =
1− 2αtλt

2λt(1− αtλt)
(vt − qt), (I.49)

and the second order condition for a maximum is λt(1 − αtλt) > 0, which is (I.41).

Thus, the optimal ∆x is indeed of the form ∆xt = βt(vt − qt)∆t, where βt∆t satisfies

equation (I.39). We substitute ∆xt in the formula for πt to obtain

πt =
(
βt∆t(1−λtβt∆t)+αt(1−λtβt∆t)2

)
(vt− qt)2 + αt

(
λ2
tσ

2
u+µ2

t (σ
2
v +σ2

e)
)
∆t + δt.

(I.50)

This proves that indeed πt is of the form πt = αt−1(vt − qt)2 + δt−1, with αt−1 and δt−1

as in (I.39).

Equations (I.37) and (I.39) form a system of equations. As before, it is solved

backwards, starting from the boundary conditions (I.40), and so that Σt = Σ0 at t = 0.
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