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Abstract

We propose a strategy for ranking scientific journals starting from a set of avail-

able quantitative indicators that represent imperfect measures of the unobservable

“value” of the journals of interest. After discretizing the available indicators, we

estimate a latent class model for polytomous item response data and use the es-

timated model to classify each journal. We apply the proposed approach to data

from the Research Evaluation Exercise (VQR) carried out in Italy with reference

to the period 2004–2010, focusing on the sub-area consisting of Statistics and Fi-

nancial Mathematics. Using four quantitative indicators of the journals’ scientific

value (IF, IF5, AIS, h-index), some of which not available for all journals, we derive

a complete ordering of the journals according to their latent value. We show that

the proposed methodology is relatively simple to implement, even when the aim is

to classify journals into finite ordered groups of a fixed size. Finally, we analyze the

robustness of the obtained ranking with respect to different discretization rules.

Keywords: Classification; Finite Mixture Models; Graded Response Model; Re-

search Evaluation; VQR.
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1 Introduction

There is a growing interest in issues surrounding the classification of scientific journals

for evaluating research institutions or individual researchers. In fact, evaluation systems

partially based on journal rankings have been recently introduced in various countries,

for example in Australia by the Australian Research Council (ARC), in France by the

“Agence d’Évaluation de la Recherche et de l’Enseignement Supérieur” (AERES), and in

Italy by the “Agenzia di Valutazione del Sistema Universitario e della Ricerca” (ANVUR).

There are by now many indicators which allow one to obtain a complete ordering of

scientific journals, such as the Impact Factor (IF), the 5-year Impact Factor (IF5), the

Article Influence Score (AIS), or the h-index, just to name a few, which are derived using

commonly available databases such ISI-Thomson-Reuters, Scopus, or Google Scholar; see,

among others, Garfield (2006), Bergstrom and West (2008), and Althouse et al. (2009). In

a recent paper, Zimmermann (2012) describes 35 different indicators which can been used

to rank journals. While different indicators may induce different rankings of a given set

of journals, there is disagreement on whether there exists a single best general indicator

and, if so, what this indicator is.

The aim of this paper is to propose a strategy for obtaining a unique ranking of

scientific journals using a set of indicators of the value of a journal. There are several

approaches for reducing a set of journal value indicators into a single ranking. One

approach is Principal Component Analysis (PCA), which aims at extracting the latent

value of each journal (e.g., Bollen et al., 2009). Another approach consists of taking

some type of average of the rankings induced by the different indicators (e.g., the RePEc

ranking of economic journals employs the harmonic mean of ranks after dropping the

best and worst values). Relative to these approaches, the strategy that we propose has

several advantages. First, it may be simply implemented on the basis of a meaningful

statistical model. Second, it is able to produce a complete ordering of the journals. Third,
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it provides a measure of the reliability of each indicator for classifying the journals in the

chosen list. Finally, it can be applied with partially missing indicators’ information.

Starting from the consideration that the scientific value of a journal is an unobserv-

able (or latent) variable, we adopt a latent class version of the Graded Response Model

(Samejima, 1969, 1996), which is commonly used in education for the analysis of polyto-

mous item response data. After suitably discretizing the observed indicators, the model

is estimated by maximum likelihood (ML) using readily available implementations of

the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). Notice that our

methodology is semiparametric in nature, since no assumption is made on the distribution

of the unobserved latent value. Moreover, when a journal’s unobserved value is intrin-

sically multidimensional, our procedure collapses the different dimensions into a unique

underlying measure in a natural way, as it will be discussed in the sequel.

We apply our approach to data from the Research Evaluation Exercise (“Valutazione

della Qualità della Ricerca” or VQR) carried out in Italy with reference to the period 2004–

2010. This evaluation exercise involves all state universities, private universities granting

publicly recognized academic degrees, and public research institutions. Researchers af-

filiated to these structures must submit for evaluation a number of research products

(i.e., journal articles, books, book chapters, patents, etc.) published, or more generally

produced, during the period 2004–2010. The typical number of products submitted by

each researcher is three. The evaluation exercise is organized in 14 evaluation areas cor-

responding to broadly defined academic fields (e.g., Mathematics, Law, Economics and

Statistics) and is carried out by a public agency (ANVUR) through Groups of Experts of

Evaluation (GEV), one for each area. In most areas, journal articles are the main research

products submitted to evaluation and, for each area, an important preliminary step is the

ranking of the journals in which these articles have been published.

Using data on a number of quantitative indicators of the value of a journal – namely

3



the impact factor (IF), the 5-year impact factor (IF5), the article influence score (AIS),

and the h-index – some of which are missing for certain journals, we derive a complete

ordering of all the journals included in the list for the sub-area Statistics and Financial

Mathematics. This sub-area belongs to the area Economics and Statistics and its products

are evaluated by one of the GEVs, named hereafter GEV13. As we show through our

application, the proposed methodology can handle missing data, is relatively simple to

implement, and gives reasonable results. We discuss the robustness of the estimated

ranking to different rule for discretizing the available indicators, and how to deal with the

requirement that journals must be classified in ordered groups of a priori fixed size (e.g.,

this is indicated by the ANVUR guidelines).

The remainder of the paper is organized as follows. Section 2 describes the proposed

ranking strategy. Section 3 presents the results obtained using the data from the Italian

VQR 2004–2010 for the sub-area Statistics and Financial Mathematics. Finally, Section 4

provides some conclusions.

2 Proposed ranking strategy

Let n and r respectively denote the number of journals to be ranked and the number of

indicators on which the ranking is to be based. In our case r = 4, since the available

indicators are the IF, the IF5, and the AIS obtained from Thompson Reuters, plus the

h-index obtained from Google Scholar. Also let xij be the value of indicator j for journal

i, with i = 1, . . . , n and j = 1, . . . , r. Note that the value of an indicator may be missing

for some journals. In our data, this occurs for IF, IF5, and AIS, but never for the h-index.

Our strategy for ranking scientific journals is based on first discretizing the above

indicators and then applying a statistical model for polytomous item response data. More

precisely, let qj1, . . . , qj,s−1 be a set of cutoffs or threshold values for the jth indicator xij,
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for example its quartiles or deciles, and define

yij =
s−1∑
m=0

m · 1{qjm < xij ≤ qj,m+1}, i = 1, . . . , n, (1)

where qj0 = −∞, qjs = ∞, and 1{A} is the indicator function of the event A. Thus, yij

is equal to 0 if xij ≤ qj1, is equal to 1 if qj1 < xij ≤ qj2, and so on until yij = s − 1 if

xij > qj,s−1. Clearly, if the value of xij is missing for some i and j, then the value of yij

is also missing.

The main advantage of discretizing the available indicators, rather than working di-

rectly with the original values xij, is that we can use existing models with a straightforward

interpretation and can rely on available software. Further, discretizing the observed in-

dicators offers some robustness to measurement errors. However, since the way in which

the available indicators are discretized is essentially arbitrary, it is important to asses the

sensitivity of the results to the assumed discretization, as we will show in the application.

2.1 Statistical model

In this section we discuss our statistical model for the outcomes yij and show how to use

it to predict the latent value of every journal in the given list. Our model is based on

assumptions that typically characterize Item Response Theory (IRT) models (Hambleton

and Swaminathan, 1985). We first consider the case where these outcomes are observable

for all i = 1, . . . , n and j = 1, . . . , r, so there is no missing data problem. We collect

the r outcomes corresponding to the ith sample unit (i.e., journal) into the r-dimensional

vector yi = (yi1, . . . , yir), where yij = 0, . . . , s− 1 for all i and j.

The IRT model that we propose is based on the following assumptions:

1. For every sample unit i = 1, . . . , n, the variables yi1, . . . , yir are conditionally inde-

pendent given a latent variable ui.
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2. The conditional distribution of every yij given ui satisfies

log
p(yij ≥ m|ui)
p(yij < m|ui)

= αj(ui − βjm), m = 1, . . . , s− 1, (2)

as in the Graded Response Model (Samejima, 1969).

3. The latent variables u1, . . . , un are independent and have the same discrete distri-

bution with k support points ξ1, . . . , ξk and corresponding probabilities π1, . . . , πk,

with πh = p(ui = ξh).

The first assumption, known as local independence, is typical of IRT models (Hamble-

ton and Swaminathan, 1985). In the present context, it allows us to interpret the latent

variable ui as the intrinsic value of a journal, a latent construct which is the analog of

the unobservable “ability” of an examinee in cases where the data are derived from the

administration of test items. This assumption means that if we knew the value of ui for

the ith sample unit, then knowing the value of the jth indicator would not be useful to

predict the value of any other indicator, since all the relevant information to capture the

true value of a journal is already contained in ui.

The second assumption formalizes our interpretation of the latent variable ui. In par-

ticular, if the parameter αj is positive, then the distribution of yij stochastically increases

with ui. In fact, parametrization (2) is based on the so-called cumulative logits (see

Agresti, 2002, among others), which generalize the standard logits for binary outcomes

to the case of ordinal outcomes. In practice, this means that the probability distribution

of yij moves its mass towards higher classes as ui increases. It is also worth noting that,

in terms of the original outcomes xij, assumption (2) may equivalently be expressed as

log
p(xij ≥ qjm|ui)
p(xij < qjm|ui)

= αj(ui − βjm), m = 1, . . . , s− 1.

In this regard, the parameter αj, known in the IRT literature as the discriminating index,

measures the sensitivity of the distribution of yij to changes in ui, that in our context, is the
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latent value of a journal. The interpretation of the parameters βjm is context-specific. For

example, in the educational context, they are interpreted as the levels of difficulty of the

various items. As another interpretation of the model parameters, suppose that xij = γj +

δjui + εij, where δj 6= 0 and εij is a zero-mean random variable distributed independently

of ui with a logistic distribution. Combining this model with the discretization rule (1)

gives (2) with αj = δj and βjm = (qjm − γj)/δj.

According to the third assumption, the distribution of each latent variable ui is

discrete. Since both the support points ξ1, . . . , ξk and the corresponding probabilities

π1, . . . , πk are parameters to be estimated, this assumption avoids specifying a parametric

distribution for the latent variable. In this sense, our model is semiparametric in nature;

see Lindsay et al. (1991) for a simpler semiparametric model for binary outcomes for-

mulated along the same lines. As it will be clear in the following, if the aim is that of

best approximating the distribution of ui, then the number of support points k may be

chosen on the basis of the observed data through a suitable selection criterion, such as

the Bayesian Information Criterion (Schwarz, 1978). In other contexts, for instance when

the size of each clusters is not constrained in advance, this number may be fixed a priori

(see also the discussion at the end of Section 3).

Notice that the third assumption implicitly requires a journal’s latent value to be uni-

dimensional. While the unobserved value of a journal may have more than one dimension,

as discussed for example by Bollen et al. (2009), undimensionality is a required assumption

if we want to obtain a unique ranking of journals. Unidimensionality of the latent value

may however be tested against multidimensionaly (see Bartolucci, 2007, among others).

Also notice that, by the third assumption, the latent variables u1, . . . , un are also

mutually independent, so the response vectors y1, . . . ,yn are independent across sample

units. This independence assumption may restrictive in some cases, for example when

the discretized outcomes yij are constructed using as cutoffs the sample quantiles, which
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necessary depend on the overall distribution of the data. However, we expect that minor

failures of this assumption should not significantly affect the results of the analyses based

on the proposed approach, especially when the sample size n is large. On the other hand,

relaxing this assumption would lead to a much more complex model.

Given our assumptions, the model parameters are the support points ξh and the corre-

sponding probabilities πh, h = 1, . . . , k, the discriminant indices αj, j = 1, . . . , r, and the

cutoffs βjm, j = 1, . . . , r, m = 1, . . . , s − 1. However, due to the identifying constraints

α1 = 0 and β11 = 0 and the fact that
∑k

h=1 πh = 1, the number of free parameters is only

#park = k + (k − 1) + (r − 1) + [r(s− 1)− 1] = 2k + rs− 3. (3)

Notice that we can alternatively impose the identifying constraints, as we do in our

application below, by standardizing the latent distribution to have zero mean and unit

variance.

As already mentioned, our model is of the IRT type. In fact, it may be seen as a finite

mixture version of the Graded Response Model, which is well known in the IRT literature

(Samejima, 1969, 1996). The finite mixture nature of the model derives from considering

the distribution of the latent variable as discrete.

Under the above three assumptions, the manifest distribution of yi may be expressed

as

p(yi) =
k∑

h=1

πh

r∏
j=1

p(yij|ui = ξh), (4)

where p(yij|ui) is the conditional probability of the outcome yij, which satisfies (2). This

manifest distribution is key for ML estimation of the model parameters.

It is also important to notice that the posterior distribution of ui, namely the condi-

tional distribution of ui given yi, has the following probability mass function

p(ui|yi) =
πh

∏r
j=1 p(yij|ui)
p(yi)

. (5)
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This probability is used to assign every sample unit to a given group (or latent class). In

particular, once the model has been estimated, unit i is assigned to group h if

h = argmax
g=1,...,k

p(ui = ξg|yi). (6)

Moreover, we can predict the value of ui using the mean of the posterior distribution of

ui, or posterior mean, which is defined as follows

ûi =
k∑

h=1

ξhp(ui = ξh|yi). (7)

When there are missing data, we compute the manifest distribution of the vector of

observed outcomes as

p(yi) =
k∑

h=1

πh

r∏
mij=0,j=1

p(yij|ui = ξh),

where mij is an indicator variable equal to 1 if yij is missing and to 0 if it is observed.

We rely on this expression for ML estimation. This amounts to assuming that the data

are Missing-at-Random (MAR) in the sense of Little and Rubin (2002). In our context,

MAR implies that the event that the value of an indicator – say IF5 – is missing may

be predicted by the observable indicators, in our case the h-index. We consider this

assumption realistic enough since missing values of certain indicators tend to be observed

for journals with a lower reputation, as measured by the level of the h-index.

2.2 Likelihood inference

Given observations on a set of n journals, consisting of the discrete outcomes yij, i =

1, . . . , n, j = 1, . . . , r, the sample log-likelihood is

`(θ) =
n∑

i=1

log p(yi),

where θ is the vector containing all the model parameters and p(yi) is the manifest

probability of the response vector yi, computed according to (4) and depending on θ.
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In order to maximize `(θ) with respect to θ, we use the version of the EM algorithm

(Dempster et al., 1977) implemented as described in Bacci et al. (2012), to which we refer

for details. This implementation is available in the R package MultiLCIRT (Bartolucci

et al., 2013).

First of all, denoting by zhi the (unobserved) indicator equal to 1 if ui = ξh and to 0

otherwise, the complete sample log-likelihood is equal to

`∗(θ) =
k∑

h=1

n∑
i=1

zhi log

[
πh

r∏
j=1

p(yij|ui = ξh)

]
. (8)

The EM algorithm alternates between the following two steps until convergence:

E-step: Compute the conditional expected value of `∗(θ) given the observed data and

the current value of the parameters.

M-step: Maximize the above expected value with respect to θ to get an updated estimate

of the parameter vector.

The E-step consists of computing, for every h and i, the expected value of zhi given yi

through the posterior probabilities in (5), and then substituting these expected values in

(8). At the M-step, the resulting function is maximized with respect to θ. The existence

of a closed-form solution for the estimates of the probabilities πh makes the maximization

problem easier, whereas updating the other parameters only requires simple iterative

algorithms.

Finally, in applying the model we need a suitable criterion for choosing the number k

of support points (or latent classes) of the distribution of ui when this value is not a priori

fixed. We refer to McLachlan and Peel (2000), Chapter 6, for an overview of the available

criteria in the general context of finite mixture models, and to Dias (2006) for a more

recent specific review of latent class models. To prevent selecting too many latent classes,

we use the Bayesian Information Criterion (BIC) of Schwarz (1978), which is based on
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minimization of the index

BICk = −2`(θ̂k) + log(n) #park, (9)

where θ̂k is the ML estimate of θ under the model with k latent classes and #park is the

corresponding number of parameters, which is defined in (3). The quality of the choice

may be measured by the entropy index

Ek = −
n∑

i=1

k∑
h=1

p̂(ui = ξh|yi) log[p̂(ui = ξh|yi)],

which lies between 0 (perfect clustering) and n log(k).

3 Application

We apply our approach to the list of scientific journals for the sub-area Statistics and

Financial Mathematics published by GEV13, available at the web page of ANVUR. The

list was created starting from all journals in the ISI-JCR Social Science Edition of Thom-

son Reuters Web of Science that belong to the core subject categories for GEV 13. It

also includes many journals in the ISI-JCR Science Edition that belong to subject cat-

egories which are considered relevant to the area. The initial list was expanded using

the list of journals, provided by CINECA (a non-profit consortium formed by 54 Italian

universities), in which at least one Italian researcher belonging to the area has published

in 2004–2010.

To avoid different rankings across sub-areas, GEV13 assigned each journal in the list to

one and only one of its four sub-areas (Business; Economics; Economic History; Statistics

and Financial Mathematics). This led to excluding from the the list for the sub-area

Statistics and Financial Mathematics of a very small number of journals assigned to other

sub-areas based on their prevalent content. One example is Econometrica, assigned to

the sub-area Economics.

For each of the n = 445 journals in the sub-area Statistics and Financial Mathematics,

we have r = 4 indicators, namely the IF, the IF5, the AIS, and the h-index. Table 1 shows
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descriptive statistics for these four indicators, the distribution of which is represented in

Figure 1, Table 2 shows their correlation matrix, while Table 3 shows summaries of the

distribution of the h-index for ISI and non-ISI journals, namely the minimum (Min), the

lower quartile (Q.25), the median (Q.50), the mean, the upper quartile (Q.75) and the

maximum (Max). The large differences between the distribution of the h-index for ISI

and non-ISI journals provide a strong justification for our MAR assumption.

3.1 Model fitting

As discussed at the beginning of Section 2, the first step of our journal ranking strategy

consists of discretizing the observed indicators. We present two alternative discretizations:

one uses as cutoffs the sample quartiles (s = 4), the other uses the sample deciles (s =

10). Given the discretized outcomes yij, we fit our model for increasing values of k. In

particular, we increase the value of k until the BIC index (9) does not become smaller

than that computed for the previous value of k. To avoid local maxima of the sample

log-likelihood, following the current literature on latent class and finite mixture models

we use two types of initialization (deterministic and random) of the EM algorithm. The

results, for both s = 4 (quartiles) and s = 10 (deciles), are shown in Table 4.

Table 4 suggests two models for the data, one with k = 4 when s = 4 (Model 1) and

one with k = 7 when s = 10 (Model 2). The entropy index for Model 1 is E4 = 135.71,

corresponding to 22.0% of the maximum value of 616.90, while for Model 2 is E7 = 213.48,

corresponding to 20.8% of the maximum value of 1024.65. The estimated distribution of

the latent variable (support points and probabilities) under the two models is shown

in Table 5. To facilitate the comparison between models and to provide a sensitivity

analysis on the number of support points, the table also shows the distribution of the

latent variable when k = 4 and s = 10 (Model 3). The support points are in increasing

order, so they identify groups of journals of increasing value. Notice that we used the

standardization of the latent trait as identifiability constraint.
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When k = 4, the estimated distributions of the latent variable are rather similar using

quartiles (Model 1) or deciles (Model 3). The two distributions are especially close in

terms of estimated probabilities at every support point, with the probability of the four

ordered groups of journals about equal to 50% for the first group, 20% for the second and

third groups, and 10% for the last group (the best journals). The distribution when k = 7

(and s = 10) is not directly comparable with the distribution when s = 4. However, we

can compare the overall rankings by examining the predicted values of ui in the three

cases, computed using (7). Figure 2 shows the scatterplot of the maximum posterior

probabilities, while Figure 3 shows the scatterplot of the predicted latent values.

The Pearson (Spearman) correlation coefficients between the predicted latent values

from Model 1 and Model 2 is equal to .974 (.944), between the predicted latent values from

Model 1 and Model 3 is equal to .968 (.928), and between the predicted latent values from

Model 1 and Model 3 is equal to .985 (.985). This suggests that, apart from rescaling, the

predicted latent values from the three models are very close to each other and provide a

very similar ranking of the journals.

3.2 Classification

We now compare the classification of the journals into four ordered categories which are

obtained by the three different models, and contrast them with that provided by GEV13.

GEV13 adopts a classification based on four groups of journals of size 216, 36, 81, and

112 respectively, so the relative weight of each group is close to that suggested by the

VQR rules, namely 20%, 20%, 10% and 50%. However, if we use k = 4 and classify the

journals on the basis of their maximum posterior probability – see expression (6) – we do

not obtain groups with size equal to that used by GEV13, neither with s = 4 nor s = 10.

Furthermore, fixing the probabilities πh to values equal to the required proportions does

not solve the problem, since the number of journals that are assigned to each class based

on the maximum posterior probability can be very different from the target number.
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To create classes of journals of the same size as the classification adopted by GEV13, we

first order the journals according to the predicted value ûi of the latent value ui. We then

include the first 216 journal of the ordered list in the first class, the second 36 journal in

the second class, and so on. Table 6 reports the corresponding cross-classifications, while

Table 7 reports Cohen’s κ index of agreement.

Overall, we observe a strong agreement between the classifications of the journals

obtained under different values of s and k. In particular, the percentage of journals that

change classification ranges from 7.9% (comparison between Model 2 and Model 3) to

11.5% (comparison between Model 1 and Model 3). The good agreement between the

three models is confirmed by the values of Cohen’s κ indix.

As for the comparison between these classifications and that set up by GEV13, the

percentage of disagreement is somewhat higher and ranges from 18.4% (comparison with

Model 2) to 22.0% (comparison with Model 1). We have to consider, however, that the

classification produced by GEV13 does not use the IF as indicator, and uses the h-index

alone as a predictor of IF5 and AIS when these indicators are missing.

3.3 Discriminant indices

The proposed approach also allows us to assess the quality of an indicator, as a measure of

the latent value of a journal, using the estimates of the discriminant indices αj in equation

(2), reported in Table 8.

Notice that, as frequently happens with these models, some estimates take rather

extreme values; the distribution of the estimator is actually known to be highly skewed.

Table 9 presents the confidence intervals for the discriminant index from Model 1 (s =

4, k = 4), obtained through a parametric bootstrap, while Table 10 presents the confidence

intervals for the ratios αj2/αj1 , which may be used to compare the different bibliometric

indicators. The null hypothesis H0 : αj2/αj1 = 1 that two indicators j1 and j2 have the

same discriminant power may be tested by checking if 1 is contained in the confidence
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interval.

Our results suggest that, at least in our sample, the IF5 has a significantly higher

discriminant power than the other bibliometric indicators; while the AIS and the h-index

do not have a significantly different discriminant power. This agrees with the results in

Chang et al. (2010) who, using data from the ISI database of citations from all fields in

Sciences and Social Sciences, conclude that the AIS does not add very much compared to

more traditional indicators such as the IF5.

3.4 An alternative clustering model

The approach in the previous sections is based on discretizing the observed indicators xij,

which are transformed into the categorical responses yij. In this section we compare this

approach with an alternative approach based on directly modeling the distribution of the

continuous indicators xij as a finite mixture.

The model that we consider can be described as follows:

• For every journal i, the latent variables xi1, . . . , xir are conditionally independent

given ui.

• Given ui, each variable xij satisfies the linear model

xij = γj + δjui + σjεij, i = 1, . . . , n, j = 1, . . . , r,

where the εij are independently identically distributed standard Gaussian errors.

• The latent variables u1, . . . , un are independent and have the same discrete distri-

bution with k support points ξ1, . . . , ξk and corresponding probabilities π1, . . . , πk.

This finite mixture of normal distributions may be fitted by a standard EM algorithm.

We apply this model to both the original data (without any transformation of the indica-

tors) and the transformed data (via a log transformation to account for skewness). BIC
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leads to selecting k = 6 components with the original data and k = 9 components with

the log-transformed data. Table 12 below shows the distribution of the latent variable for

the two models with the chosen number of classes while Figure 4 shows the scatterplot of

the predicted latent values. The Pearson and Spearman correlation coefficients between

the predicted latent values from the two models are equal to .723 and .810 respectively.

We finally use the two estimated models to classify the journals into four classes with

the same sizes as the GEV13 classes, namely 216, 36, 81, and 112 journals. In general,

it appears that classifications are not very robust with respect to transformations of the

response outcomes. In our sample, the normal mixture approach is rather sensitive to the

parametric assumptions, a finding which is in agreement with the evidence in Shentu and

Xie (2010) that discretizing continuous observations may increase the robustness of the

model with respect to model misspecifications and contaminations.

4 Conclusions

We propose a method for ranking scientific journals based on a latent variable model for

polytomous item responses. The latent variable, assumed to be discrete and interpreted

as the unobservable “value” of a journal, is predicted on the basis of indicators, such as

the IF, IF5, AIS and h-index, that are discretized to avoid strong parametric assumptions.

We also show how to deal with missing values of some of these indicators.

The main advantage of our approach is that it relies on a well principled statistical

model that has some nonparametric features. In particular, our approach does not require

to specify a parametric model for the distribution of the latent variable representing a

journal’s value, which is instead treated as discrete with an arbitrary number of support

points that identify groups of journals with similar characteristics. In practice, the number

of groups is chosen on the basis of the observed data through a statistical criterion, such

as BIC. Therefore, in a context of classification, we can decide a suitable number of groups
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of homogenous journals in the light of the data. The method also provides an estimate of

the size of each of these groups.

As an outcome of the proposed approach, the mean of the posterior distribution of

the latent variable provides a prediction on a continuous scale of the latent value of each

journal in the given list, so journals can be univocally ordered, the distance between any

pair of journals can be compared, and journals can be classified into any arbitrary number

of classes of a given size. Another relevant feature of the proposed approach is that it

allows us to assess the discriminant power of each indicator, that is, the sensitivity and

reliability of each indicator in the relationship with the latent value of a journal. For

example, in the data we analyze we find that the IF5 appears to be the most reliable

indicator of the value of a journal among the indicators that are used in this study.

It is important to recall that our approach is based on discretization of quantitative

indicators, so the results of the analysis may depend on the choice of cutoffs adopted for

this discretization. In an application, it is therefore important to asses the sensitivity of

the results to the adopted discretization. As we shown in our application, which deals

with the list of journals in the sub-area Statistics and Financial Mathematics of the Italian

Research Evaluation Exercise, robustness can be checked by replicating the analysis with

different discretizations and then comparing the results obtained. The results in our

applications turn out to be fairly robust to different discretizations.

Our analyisis can be easily extended to handle the case where different indicators have

different numbers of categories (so as to include, for instance, binary indicators), and

to employ discriminant indices which are category-dependent. Further theoretical and

empirical analysis could investigate the reliability of the estimates of the discriminant

indices, given the high skewness in the bootstrap samples. A general comparison between

our approach with the normal mixture model for the original outcomes is likely to be very

useful. Finally, our method could be applied to other lists of journals in different fields.
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Science and Classification, pages 91–99. Springer, New York.

Garfield, E. (2006). The history and meaning of the journal impact factor. Journal of the

American Medical Association, 295:90–93.

Hambleton, R. K. and Swaminathan, H. (1985). Item Response Theory: Principles and

Applications. Kluwer Nijhoff, Boston.

Lindsay, B., Clogg, C., and Greco, J. (1991). Semiparametric estimation in the rasch

model and related exponential response models, including a simple latent class model

for item analysis. Journal of the American Statistical Association, 86:96–107.

Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data. Wiley

Series in Probability and Statistics. Wiley, New York, 2nd edition.

McLachlan, G. J. and Peel, D. (2000). Finite Mixture Models. Wiley, New York.

Samejima, F. (1969). Estimation of ability using a response pattern of graded scores.

Psychometrika Monograph, 17.

Samejima, F. (1996). Evaluation of mathematical models for ordered polychotomous

responses. Behaviormetrika, 23:17–35.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6:461–464.

Shentu, Y. and Xie, M. (2010). A note on dichotomization of continuous response variable

in the presence of contamination and model misspecification. Statistics in Medicine,

29:2200–2214.

Zimmermann, C. (2012). Academic rankings with RePEc. Technical report, Federal

Reserve Bank of St. Louis Working Paper 2012-023A, St. Louis, MO.

19



Table 1: Descriptive statistics for the observed indicators.

IF IF5 AIS h-index
Missing values (%) 43.8 52.6 52.6 0
Mean 1.056 1.472 .946 19.77
Variance .418 .751 .480 267.59
Skewness index 1.325 1.526 1.938 1.575
Quartile 1st .586 .840 .506 7.0

2nd .954 1.284 .721 14.0
3rd 1.381 1.867 1.203 28.0

Decile 1st .370 .590 .313 4.0
2nd .521 .766 .454 6.0
3rd .643 .967 .553 9.0
4th .754 1.108 .660 12.0
5th .954 1.284 .721 14.0
6th 1.088 1.467 .871 19.0
7th 1.257 1.741 1.026 24.0
8th 1.561 2.132 1.362 32.0
9th 1.906 2.513 1.892 42.6

Table 2: Correlation matrix of the observed indicators.

IF IF5 AIS h-index
IF 1.000 .899 .693 .556
IF5 .899 1.000 .795 .579
AIS .693 .795 1.000 .485
h-index .556 .579 .485 1.000

Table 3: Summaries of the distribution of the h-index for ISI and non-ISI journals.

Journals # Min Q.25 Q.50 Mean Q.75 Max
non-ISI 195 3 4.0 7.0 8.45 12.0 26
ISI (only IF) 39 1 9.0 14.0 14.82 17.5 46
ISI (IF, IF5 & AIS) 211 1 19.0 28.0 31.14 40.0 108

Table 4: Results from a preliminary model fit with s = 4 (quartiles) and s = 10 (deciles).

s = 4 s = 10

k `(θ̂k) #park BICk `(θ̂k) #park BICk

1 -1544.9 12 3163.0 -2564.3 36 5348.0
2 -1343.8 17 2791.2 -2347.7 41 4945.4
3 -1293.0 19 2702.0 -2271.2 43 4804.6
4 -1273.6 21 2675.2 -2233.2 45 4740.7
5 -1271.0 23 2682.3 -2216.8 47 4720.2
6 -2206.5 49 4711.9
7 -2197.2 51 4705.5
8 -2194.7 53 4712.7
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Table 5: Estimated distribution of the latent variable for Model 1 (s = 4, k = 4), Model 2

(s = 10, k = 4) and Model 3 (s = 10, k = 7).

Model 1 Model 2 Model 3

h ξ̂h π̂h ξ̂h π̂h ξ̂h π̂h
1 -.840 .537 -.924 .478 -.997 .401
2 .288 .178 .169 .216 -.274 .156
3 1.092 .182 1.015 .194 .327 .123
4 1.941 .104 1.851 .113 .785 .123
5 1.229 .098
6 1.621 .058
7 2.208 .041

Table 6: Cross-classification of the journals in four groups (c1, c2, c3, c4) of size equal to

that used by GEV13.

Model 2 Model 3 GEV13
c1 c2 c3 c4 c1 c2 c3 c4 c1 c2 c3 c4

Model 1 c1 208 1 7 0 203 10 3 0 189 17 10 0
c2 8 22 6 0 13 16 7 0 27 5 4 0
c3 0 13 65 3 0 10 67 4 0 14 54 13
c4 0 0 3 109 0 0 4 108 0 0 13 99

Model 2 c1 211 5 0 0 197 13 6 0
c2 5 21 10 0 19 12 5 0
c3 0 10 70 1 0 11 56 14
c4 0 0 1 111 0 0 14 98

Model 3 c1 200 12 4 0
c2 14 11 10 1
c3 2 13 52 14
c4 0 0 15 97
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Table 7: Cohen’s κ index (standard errors in parentheses).

Model 2 Model 3 GEV13
Model 1 unweighted κ .8607 .8267 .6670

(.0207) (.0228) (.0297)
linear weights κ .9211 .9113 .8225

(.0126) (.0123) (.0173)
quadratic weights κ .9574 .9587 .9120

(.0609) (.0614) (.0619)
Model 2 unweighted κ .8913 .7214

(.0185) (.0278)
linear weights κ .9474 .8554

(.0091) (.0153)
quadratic weights κ .9780 .9312

(.0609) (.0618)
Model 3 unweighted κ .7112

(.0282)
linear weights κ .8488

(.0157)
quadratic weights κ .9271

(.0615)

Table 8: Estimated discriminant indices.

j Model 1 Model 2 Model 3
1 IF 3.772 4.194 5.150
2 IF5 6.740 12.645 39.424
3 AIS 2.103 2.199 2.438
4 h-index 2.626 2.251 2.264

Table 9: Confidence intervals for the estimated discriminant indices for Model 1.

j estimate 95%-interval
1 IF 3.772 3.140 5.921
2 IF5 6.740 5.156 88.164
3 AIS 2.103 1.449 2.489
4 h-index 2.626 2.090 3.256

Table 10: Confidence intervals for the ratios αj2/αj1 for Model 1.

j1 j2 comparison estimate 95%-interval
1 2 IF5 vs. IF 1.787∗ 1.089 23.885
1 3 AIS vs. IF .558∗ .340 .660
1 4 h-index vs. IF .696∗ .414 .938
2 3 AIS vs. IF5 .312∗ .018 .394
2 4 h-index vs. IF5 .390∗ .031 .498
3 4 h-index vs. AIS 1.248 .928 1.803
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Table 11: Preliminary fit for the original and the log-transformed data.

original scale log-transformed data

k `(θ̂k) #park BICk `(θ̂k) #park BICk

1 -2612.2 8 5273.1 -1394.6 8 2838.0
2 -2396.9 13 4873.2 -1120.6 13 2320.4
3 -2309.5 15 4710.5 -1019.3 15 2130.1
4 -2268.0 17 4639.6 -942.7 17 1989.1
5 -2237.5 19 4590.8 -909.5 19 1934.9
6 -2217.1 21 4562.3 -880.8 21 1889.7
7 -2211.5 23 4563.3 -857.9 23 1856.1
8 -842.0 25 1836.4
9 -835.0 27 1834.7

10 -830.9 29 1838.7

Table 12: Estimated distribution of the latent variable for the original and the log-

transformed data.

original log-transformed

h ξ̂h π̂h ξ̂h π̂h
1 -.687 .539 -2.906 .008
2 .149 .259 -1.471 .217
3 .961 .109 -.504 .113
4 1.939 .069 -.063 .170
5 3.323 .017 .358 .156
6 5.321 .007 .730 .141
7 1.049 .095
8 1.396 .078
9 1.889 .023

Table 13: Agreement between journal classifications.

log-transformed GEV13
c1 c2 c3 c4 c1 c2 c3 c4

original c1 187 14 15 0 173 22 20 1
c2 28 0 8 0 28 1 6 1
c3 1 22 57 1 15 13 40 13
c4 0 0 1 111 0 0 15 97

log-transformed c1 196 14 6 0
c2 20 11 5 0
c3 0 11 55 15
c4 0 0 15 97
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Table 14: Cohen’s κ index (standard errors in parentheses).

log-transformed GEV13
original unweighted κ .6942 .5447

(.0288) (.0329)
linear weights κ .8258 .7173

(.0684) (.0671)
quadratic weights κ .9051 .8281

(.0613) (.0614)
log-transformed unweighted κ .7078

(.0283)
linear weights κ .8488

(.0690)
quadratic weights κ .9285

(.0619)
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Figure 1: Scatterplot of the observed indicators.
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Figure 2: Scatterplot of the maximum posterior probabilities.
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Figure 3: Scatterplot of the predicted latent values.
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Figure 4: Scatterplot of the predicted latent values for the original (pred1) and the log-

transformed (pred2) data.
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