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Abstract

Recent literature on panel data has emphasized the importance of accounting for time-varying
unobserved heterogeneity, which may stem either from time-varying omitted variables or
macro-level shocks that affect each individual unit differently. In this paper, we propose a
computationally convenient test for the null hypothesis of time-invariant individual effects.
The proposed test is an application of Hausman (1978) specification test procedure and can
be applied to generalized linear models for panel data, a wide class of models that includes
the Gaussian linear model and a variety of nonlinear models typically employed for discrete
or categorical outcomes. The basic idea is to compare fixed effects estimators defined as the
maximand of full and pairwise conditional likelihood functions. Thus, the proposed approach
requires no assumptions on the distribution of the individual effects and, most importantly,
it does not require them to be independent of the covariates in the model. We investigate the
finite sample properties of the test through a set of Monte Carlo experiments. Our results
show that the test performs quite well, with small size distortions and good power properties.
A health economics example based on data from the Health and Retirement Study is used
to illustrate the proposed test.
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1 Introduction

A distinctive feature of panel data modeling is the treatment of unobserved heterogeneity, which

is typically interpreted as the effect of unobservable factors on the outcome of interest. The

simplest way of dealing with this form of heterogeneity is to include in the model time-invariant

individual (i.e., unit-specific) effects. For a detailed treatment see Hsiao (2005), Wooldridge

(2010), and Arellano and Bonhomme (2011). Assuming that these effects are constant over

time, however, may be difficult to justify in certain applications. For example, Stowasser et al.

(2011) convincingly argue that the dynamic pattern of self-reported health status can be better

modeled by introducing a latent time-varying individual-specific health component. Clearly,

biased parameter estimates may result if the individual effects are assumed to be time-invariant

when in fact they are time-varying. This is especially true in the case of long panels.

A few studies have recently tried to relax the assumption of time-invariant individual ef-

fects by modeling unobserved heterogeneity as a unit-specific time-series process. In the case

of nonlinear panel data models, one strategy is to include time-varying random effects, treated

as continuous or discrete and assumed to be independent of the covariates. For example, Heiss

(2008) proposes a limited dependent variable model that relies on a sequence of time-varying

effects which are assumed to follow a first-order autoregressive process whith parameters that

are common across sample units, while Bartolucci and Farcomeni (2009) present a multivari-

ate extension of the dynamic logit model based on time-varying unit-specific effects which are

assumed to follow a time-homogeneous Markov chain for every sample unit.

These approaches have both pros and cons. Although the specification in Heiss (2008) is

parsimonious (it uses only one additional parameter with respect to a standard random-effects

model) and more easily justifiable (continuous random effects are perhaps more natural to con-

ceive in many applications), the discrete approach adopted by Bartolucci and Farcomeni (2009)

results in a model that is more flexible and tends to fit the data better; see Bartolucci et al.

(2011) for more detailed comments. On the other hand, both approaches are computationally

demanding. Further, the first approach requires strong parametric assumptions on the distribu-

tion of the random effects. Therefore, practitioners may find it useful to carry out a preliminary

test for the presence of time-invariant unobserved heterogeneity before estimating this type of

models.
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In this paper, we propose a computationally convenient test for the null hypothesis of time-

invariant individual effects in generalized linear models (GLMs) for panel data. This class

of models is quite broad and includes the Gaussian linear model and a variety of nonlinear

models typically employed for discrete or categorical outcomes, such as logit, probit, Poisson

and negative binomial regression models. The proposed test has power against a variety of

alternatives resulting in time-varying individual effects, such as omitted time-varying regressors,

failure of functional form assumptions, and general misspecification of the systematic part of

the model.

The basic idea of the test is to compare alternative estimators obtained by maximizing full

and pairwise conditional likelihood functions. Since our test is a pure specification test1 based

on the comparison of two alternative estimators of the same parameter vector, we shall refer to

it as a Hausman-like test. Unlike the standard version of the Hausman test (Hausman, 1978),

however, we compare estimators that are both inconsistent under the alternative. In fact, as

pointed out by Ruud (1984), what matters for a specification test to have power is that it is

based on estimators that diverge under the alternative (that is, their difference converges in

probability to a nonzero limit), and that the sampling variance of their difference is sufficiently

small. We argue that, since our alternative estimators depend on different functions of the

data, they generally converge in probability to different points in the parameter space when the

individual effects are time-varying. Clearly, when both estimators have the same asymptotic

biases, as in the case of a panel with only two waves, the test has no power.2

It is worth emphasizing three features of our test. First, it does not require assumptions

on the distribution of unobserved heterogeneity, nor it requires the latter to be independent of

the covariates in the model. Second, it can be easily implemented using standard statistical

software, as the computation of the test statistic only requires a quadratic form which involves

the difference of the parameter estimates and a consistent estimator of its asymptotic variance

matrix.3 Third, it does not require assumption on how time-invariant regressors enter the model,

as the conditional likelihood function does not depend on them.
1 A pure specification test is a testing procedure in which no structure is placed on the alternative hypothesis;

see Cox and Hinkley (1974) and Ruud (1984) for a detailed discussion.
2 See Holly (1982) and Newey (1985) for a detailed discussion of the conditions under which a specification

test is inconsistent.
3The proposed specification test has been implemented in a series of R and Stata functions which are available

from the corresponding author upon request.
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The remainder of this paper is organized as follows. Section 2 presents the statistical frame-

work and the proposed test. Section 3 investigates the small sample properties of the proposed

test through a set of Monte Carlo experiments. Our results show that the test performs quite

well, with small size distortions and good power properties. Section 4 provides an empirical

illustration based on data from the Health and Retirement Study. Finally, Section 5 offers some

conclusions.

2 The proposed approach

We assume that the data consist of a balanced panel where n units, randomly drawn from a

given population, are observed for T periods each. For each sample unit i = 1, . . . , n, we denote

by yi = (yi1, . . . , yiT ) the vector of observed outcomes and by Xi the T × k matrix of observed

covariates, with tth row equal to xit.

2.1 The statistical framework

Under the null hypothesis of time-invariant unobserved heterogeneity, our model is a standard

GLM (McCullagh and Nelder, 1989), that is, the conditional distribution of yit given Xi and the

individual effect αi is assumed to belong to the linear exponential family with density function

of the form

f(yit|Xi, αi) = f(yit|xit, αi) = exp
[
yitηit − b(ηit)

γ
+ c(yit, γ)

]
(1)

where ηit is a parameter that varies both across units and over time depending on the observed

covariates and the time-invariant individual effect, γ > 0 is a dispersion parameter treated here

as known, b(·) is a known, strictly convex and twice differentiable function, and c(·, γ) is a known

function. An important property of GLMs is that the conditional mean and variance of yit given

Xi and αi are respectively equal to µit = b′(ηit) and σ2
it = γ b′′(ηit). We further assume that

µit = h(αi +x′itβ), where h is an invertible function called the inverse link function and β is the

k × 1 vector of parameters of interest.

If the individual effect αi is time-invariant and the covariates are strictly exogenous condi-

tional on αi then, under certain conditions, inference about β may be based on the conditional

density of the data given a sufficient statistic for the time-invariant individual effect, such as

yi+ =
∑T

t=1 yit; see Chamberlain (1980), Diggle et al. (2002), and Sartori and Severini (2004).
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This conditional density depends only on β, not on αi. The resulting maximum likelihood esti-

mator of β, called the full conditional maximum likelihood (FCML) estimator and denoted by

β̂1, maximizes the full conditional log-likelihood function

L1(β) =
n∑

i=1
ln f(yi|Xi, yi+), (2)

where f(yi|Xi, yi+) is the multivariate density of the observed sequence of outcomes yi for

the ith unit conditional on the covariates in Xi and the sufficient statistic yi+ for αi. To

ensure the existence of the conditional likelihood (2), we restrict the inverse link function to

be canonical, namely such that h = b′, in which case ηit = αi + x′itβ. For example, h is

the log-odds transformation for the binomial regression model, the log transformation for the

Poisson regression model, and the identity function for the Gaussian linear model. Notice that

the existence of the conditional likelihood depends on the structure of the model and is not

guaranteed in general.

In order to construct a Hausman-like specification test, we need an alternative estimator of β

that is also consistent if the unit-specific effects are time-invariant but has different convergence

properties if they are time-varying. One such estimator, called the pairwise conditional maximum

likelihood (PCML) estimator and denoted here by β̂2, may be obtained by maximizing the

pairwise conditional log-likelihood function

L2(β) =
n∑

i=1

T∑
t=2

ln f(yi,t−1, yit|xi,t−1,xit, yi,t−1 + yit), (3)

where f(yi,t−1, yit|xi,t−1,xit, yi,t−1 + yit) is the bivariate density of an adjacent pair of outcomes

(yi,t−1, yit) conditional on the adjacent pair of covariates (xi,t−1,xit) and the sufficient statistic

yi,t−1 + yit for αi. When the inverse link h is canonical, this conditional density again depends

only on β, not on the individual effect. If T = 2, then L1(β) = L2(β), so β̂1 and β̂2 coincide.

It is easily shown that, under the null hypothesis of time-invariant individual effects, β̂1
p→ β0

and β̂2
p→ β0, where β0 denotes the true value of β. Thus, both estimators are consistent under

the null. Further, under the null,4

√
n

(
β̂1 − β0
β̂2 − β0

)
d→ N(0,W 0),

4 The asymptotic distribution of the conditional maximum likelihood estimator has been obtained elsewhere
under various sets of assumptions; see Andersen (1970), McFadden (1974), Huque and Katti (1976) and Pfanzagl
(1993) among others. For a formal proof of consistency and asymptotic normality of the pairwise conditional
likelihood estimator, see Appendix A.
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where the asymptotic variance-covariance matrix W 0 has the following structure

W 0 =
[
W 11 W 12
W 21 W 22

]
.

Notice that the difference W 22 −W 11 is a non-negative definite matrix because β̂2 is asymp-

totically inefficient relative to β̂1 since it discards some of the available information.

A consistent estimator of the asymptotic variance-covariance matrix W 0 is

Ŵ 0 =
[
H1 O
O H2

]−1 [
S11 S12
S21 S22

] [
H1 O
O H2

]−1

,

with

Hp = 1
n

∂2Lp(β̂p)
∂β ∂β′

, p = 1, 2,

and

Spq = 1
n

∂Lp(β̂p)
∂β

∂Lq(β̂q)
∂β′

, p, q = 1, 2.

Thus, the finite-sample variances of β̂1 and β̂2 may be estimated by n−1Ŵ 11 = n−1H−1
1 S11H

−1
1

and n−1Ŵ 22 = n−1H−1
2 S22H

−1
2 respectively, and their finite-sample covariance by n−1Ŵ 12 =

n−1H−1
1 S12H

−1
2 . Notice that, to account for the fact that outcomes are generally correlated

over time for the same sample unit, the estimates Spq must be cluster-robust.5

Under the alternative hypothesis of time-varying individual effects, neither β1 nor β2 are

consistent for β in general. Further, being based on different functions of the data when T > 2,

they will generally converge to different points in the parameter space. In fact, as pointed out

by Varin et al. (2011) and Xu and Reid (2012), β̂2 is more robust to violations of the assumption

of time-invariant unobserved heterogeneity than β̂1, as it only requires this assumption to be

satisfied for the two-dimensional conditional likelihood quantities.

2.2 The proposed test

The results in the previous section suggest a test that rejects the null hypothesis of time-invariant

unobserved heterogeneity for large value of the statistic

ξ̂ = n δ̂
′
V̂
−1
0 δ̂, (4)

where δ̂ = β̂1 − β̂2 and V̂ 0 = DŴ 0D
′, with D = (Ik,−Ik) and Ik the identity matrix of

size k, is a consistent estimator of the asymptotic variance matrix V 0 of δ̂. Notice that V̂ 0 is
5 See Moulton (1986) for a detailed discussion of cluster-robust variance-covariance matrices.

5



guaranteed to be positive definite, and that the resulting Hausman-like test is valid even when

the data are heteroskedastic or serially correlated (Cameron and Trivedi, 2005).

If the asymptotic variance matrix V 0 is nonsingular, then the test statistic ξ̂ exists with

probability approaching one for large values of n, and its asymptotic null distribution is χ2 with

number of degrees of freedom equal to k. Based on this result, we can test the null hypothesis

in the usual way and compute an asymptotic p-value measuring the evidence provided by the

sample against this hypothesis. It might be the case that the true asymptotic covariance matrix

is singular. This may happen when there exists a linear relationship between the estimator

contrasts which holds under the null hypothesis for all parameter values (Ruud, 1984). In this

case, if one replaces the inverse of V̂ 0 in (4) with a generalized inverse, then the asymptotic null

distribution of ξ̂ is still χ2 with number of degrees of freedom equal to the rank of V 0, but this

rank is now less than k.6

As pointed out by Verbeek and Nijman (1992), if both estimators converge to the same point

in the parameter space under the alternative, then the test completely loses its power. This is

clearly the case when T = 2. When T > 2, the two estimators are based on different functions

of the data, so δ̂ will generally have a nonzero probability limit under the alternative (Xu and

Reid, 2012), which means that our test will have power against a broad class of alternatives

resulting in time-varying individual effects, such as omitted time-varying regressors, failure of

functional form assumptions and general misspecification of the systematic part of the model.

2.3 Examples

In this section we provide more detail for some commonly used panel data GLMs in which the

dispersion parameter is known (or may be treated as known), namely the logit, ordered logit

and Poisson regression models, and the Gaussian linear model with known dispersion parameter.

We refer to Wooldridge (2010) and Hausman and Griliches (1984) for a detailed discussion of

conditional maximum likelihood estimation of other GLMs, such as the exponential and gamma

models for continuos nonnegative outcomes and the negative binomial (type I) model.
6 Generalized inverses are not unique, but Holly and Monfort (1986) show that all generalized inverses give

the same test statistic.
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2.3.1 Logit model

In this case, possible values of the sufficient statistic for αi are yi+ = 1, 2, . . . , T − 1, and the

elements of the conditional log-likelihood L1(β) are

f(yi|Xi, yi+) =
∏T

t=1 exp(yitx
′
itβ)∑

zi∈Zi+

∏T
t=1 exp(zitx′itβ)

, (5)

where Zi+ is the set of all T -dimensional vectors whose elements are equal to zero or one and

add up to yi+. The elements of the pairwise conditional log-likelihood L2(β) are instead

f(yi,t−1, yit|xi,t−1,xit, yi,t−1 + yit = 1) =
exp(yi,t−1x

′
i,t−1β + yitx

′
itβ)

exp(zi,t−1x′i,t−1β + zitx′itβ) , (6)

where zi,t−1 and zit are equal to zero or one and add up to one.

2.3.2 Ordered logit model

In this case, following Baetschmann et al. (2011), we consider the estimator that can be obtained

by using all possible dichotomizations y(j)
it of the ordinal outcome yit for each unit in the sample,

where

y
(j)
it = 1{yit > j − 1}, j = 1, . . . , J − 1,

with J > 2. Assuming that the unknown parameter vector is the same for all y(j)
it , the FCML

estimator maximizes

L1(β) =
n∑

i=1

J−1∑
j=1

ln f(y(j)
i |Xi, y

(j)
i+ ),

where f(y(j)
i |Xi, αi, y

(j)
i+ ) is specified as in (5) for each possible dichotomization of the ordered

outcome. The PCML estimator maximizes instead

L2(β) =
n∑

i=1

J−1∑
j=1

T∑
t=2

ln f(y(j)
i,t−1, y

(j)
it |Xi, y

(j)
i,t−1 + y

(j)
it = 1).

where f(y(j)
i,t−1, y

(j)
it |Xi, y

(j)
i,t−1 + y

(j)
it = 1) is specified as in (6).

2.3.3 Poisson model

In this case, the elements of the conditional log-likelihood L1(β) are

f(yi|Xi, yi+) = (
∑T

t=1 yit)!∏T
t=1 yit!

T∏
t=1

[
exp(x′itβ)∑T

t=1 exp(x′itβ)

]yit

. (7)
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As pointed out by Cameron and Trivedi (2005), this conditional log-likelihood is proportional to

the concentrated log-likelihood obtained by substituting α̂i =
∑T

t=1 yit/
∑T

t=1 exp(x′itβ) in the

unconditional log-likelihood. The elements of the pairwise conditional log-likelihood are instead

f(yi,t−1, yit|xi,t−1,xit, yi,t−1 + yit) =

= (yi,t−1 + yit)!
yi,t−1!yit!

[
exp(x′i,t−1β)

exp(x′i,t−1β) + exp(x′itβ)

]yi,t−1 [ exp(x′itβ)
exp(x′i,t−1β) + exp(x′itβ)

]yit

.

2.3.4 Gaussian linear model

In this case, the elements of the conditional log-likelihood L1(β) are

f(yi|Xi, yi+) = (2πγ)−T/2

(2πγ/T )−1/2 exp
[
− 1

2γ

T∑
t=1

(ỹit − x̃′itβ)2
]
,

where γ is the dispersion parameter, ỹit = yit− ȳi and x̃it = xit− x̄i, with ȳi = T−1∑T
t=1 yit and

x̄i = T−1∑T
t=1 xit. The resulting FCML estimator does not depend on the dispersion parameter

and can be shown to be equivalent to the within-group estimator

β̂1 =
[

n∑
i=1
X̃
′
iX̃i

]−1 n∑
i=1
X̃
′
iỹi,

where X̃i = LTXi, ỹi = LTyi, LT = IT −T−1JT is a T ×T symmetric idempotent matrix that

transforms a vector (matrix) into deviations from the average of its elements, IT is the identity

matrix, and JT is a matrix whose elements are all equal to one. A cluster-robust estimate of

the variance-covariance matrix of β̂1 is

V̂ (β̂1) =
[

n∑
i=1
X̃
′
iX̃i

]−1 [ n∑
i=1
X̃
′
iũiũ

′
iX̃i

] [
n∑

i=1
X̃
′
iX̃i

]−1

, (8)

where ũi = ỹi − X̃
′
iβ̂1.

The elements of the pairwise conditional log-likelihood L2(β) are instead

f(yi,t−1, yit|xi,t−1,xit, yi,t−1 + yit) = (2πγ)−1

(πγ)−1/2 exp
[
− 1

4γ (∆yit −∆x′itβ)2
]
,

where ∆yit = yit − yi,t−1 and ∆xit = xit − xi,t−1. The resulting PCML estimator again does

not depend on the dispersion parameter and is equivalent to the first-difference estimator

β̂2 =
[

n∑
i=1
X̌
′
iX̌i

]−1 n∑
i=1
X̌
′
iy̌i,

8



where X̌i = PXi, y̌i = Pyi and P is (T −1)×T matrix that transforms the vector (or matrix)

of all pairs of adjacent observations for each unit i into first differences. For example, when

T = 4, P is the following 3× 4 matrix

P =

 −1 1 0 0
0 −1 1 0
0 0 −1 1

 . (9)

A cluster-robust estimate of the variance-covariance matrix of β̂2 has the same form as (8) with

X̃i replaced by X̌i and ũi replaced by ǔi = y̌i − X̌
′
iβ̂2.

3 Monte Carlo evidence

We now present some Monte Carlo evidence about the size and power properties of the proposed

test. We analyze four commonly used GLMs, namely (i) the logit model, (ii) the ordered logit

model, (iii) the Poisson model, and (iv) the Gaussian linear model.

3.1 Setup

For logit and ordered logit models, the outcome of interest is generated as yit =
∑J−1

j=1 1{y∗it > τj},

where 1{A} is the indicator of the event A, the τj are thresholds, J ≥ 2 is the number of

outcome categories, and y∗it is a latent continuous variable which is assumed to obey the following

regression model

y∗it = αit + xitβ + εit, i = 1, . . . , n; t = 1, . . . , T, (10)

where the εit are independently and identically distributed (iid) errors with a standard logistic

distribution. We use τ1 = 0 for the binary logit case (J = 2) and τj = −2,−0.75, 0.75, 2 for

the ordinal logit case with J = 4 categories. For the Poisson model, we define the mean as

λit = exp(αit + xitβ) while, for the Gaussian linear model, we specify the following DGP

yit = αit + xitβ + εit, i = 1, . . . , n; t = 1, . . . , T,

where the εit are iid errors with a standard Gaussian distribution.

For all DGPs, xit is a scalar regressor and αit is an individual effect that follows a stationary

Gaussian first-order autoregressive process with zero mean and unit variance. Specifically, we

assume that

αit =
{
vi1, t = 1,
ραit−1 + (1− ρ2)1/2 vit, t = 2, . . . , T,

9



where the vit are iid standard Gaussian random variables. When ρ = 1, the unit-specific effects

are time-invariant, as αi1 = · · · = αiT with probability one. When ρ = 0, the αit collapse to

a Gaussian white noise with no persistence. Intermediate cases are obtained by letting ρ take

different value between 0 and 1. In our Monte Carlo experiments, we consider a set of eleven

equally spaced ρ values ranging from 0 to 1.

To allow for dependence between the unit-specific effects and the regressor, we generate the

latter as follows

xit = φαit + (1− φ2)1/2 zit,

where the zit are iid standard Gaussian random variables. Thus, xit has zero mean and unit

variance, and its correlation with αit is equal to φ.

Since the FCML and the PCML estimators are both inconsistent under model misspecifica-

tion, even when φ = 0, we consider the following design. In the baseline scenario, we assume

the absence of correlation between the individual effects and the regressor (φ = 0). We also set

β = 1, implying a low regression R2 (≈ 0.19) for the latent model (10).7 We also consider two

departures from the baseline:

(i) φ = 0 and β = 2, that is, no correlation between xit and αit and a high latent regression

R2 (≈ 0.48);

(ii) φ = 0.5 and β = 1, that is, positive correlation between xit and αit and a low latent

regression R2 (≈ 0.19).

For the Poisson and Gaussian models (Sections 2.3.3 and 2.3.4), the FCML and the PCML

estimators are always consistent, even when the unobserved heterogeneity is time-varying, pro-

vided that there is no correlation between the unit-specific effects and the regressor. Since our

test has no power in this case, we do not report results for φ = 0. Thus, our baseline scenario

has a low degree of correlation (φ = 0.1) and the only departure from the baseline is obtained

by setting φ = 0.5. In both cases, we set β = 1.

For each value of ρ and each scenario, we investigate the behavior of the test for two different

sample sizes (n = 1, 000 and 4,000) and three different panel lengths (T = 5, 7 and 10), for a

total of 11 × 2 × 3 × 3 = 198 experiments in the case of logit and ordered logit models, and
7 Since the individual effects have unit variance and the εit have variance equal to π2/3, if β = 1 then the

regression R2 of the latent model (10) is equal to β2/(1 + β2 + π2/3) = 0.189. If β = 2, then R2 = 0.482.
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11×2×3×2 = 132 experiments for Poisson and Gaussian models. The sample sizes are selected

with an eye to the empirical illustration in Section 4. Size and power of the test are computed

using 1, 000 replications of each experiment.

3.2 Results

Tables 1 and 2 present the empirical size of our test for all the GLMs considered, along with the

Monte Carlo mean and standard deviation of the test statistic under all scenarios considered.8

In line with the asymptotic properties of the two estimators under the null hypothesis (ρ = 1),

the size distortion of the test is always very small and not statistically different from zero.

However, the test presents a slight tendency to over-reject.

As for power, results are presented in tabular form in Tables 3–6 for selected values of ρ,

and are summarized graphically in Figures 1–4. In the baseline scenario (φ = 0 and β = 1 for

logit and ordered logit models, φ = 0.1 and β = 1 for Poisson and Gaussian linear models),

the empirical power of the test is very low for short panels (T = 3) but increases rapidly as

the longitudinal dimension increases. The relationship between the empirical power and the

autocorrelation coefficient is inversely U -shaped, with evidence of skewness for higher values of

ρ. As expected, in the extreme case of no persistence (ρ = 0), αit collapses to a Gaussian white

noise and the test has no power at all.

An intuitive explanation for this behaviour is linked to the robustness of the pairwise con-

ditional estimator to the violation of the time-invariant unobserved heterogeneity assumption.

Indeed, as noted by Varin (2008), the maximand of a slightly misspecified pairwise log-likelihood

may be closer to the true parameter value than that from a roughly specified high-dimensional

log-likelihood. In our case, provided that T > 2, the pairwise conditional log-likelihood will be

slightly misspecified when ρ is close to one (i.e., high persistence) and always “less misspecified”

than the full conditional log-likelihood as T increases. Apart from marginal differences, this ev-

idence is consistent across scenarios and model specifications, and is stronger when the sample

size n is large.

Looking at the first variant scenario for logit and ordered logit models, that is when it is
8 Notice that we have also ran all the described experiments assuming a discrete distribution for αit. In

particular we have used a three-state first-order homogeneous Markov chain with zero mean and unit variance.
Since we got comparable (qualitatively and quantitatively) evidence, we deliberately do not report simulation
results for this case. This alternative output is available from the authors upon request.
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imposed that a large portion of the total variability is explained by the true model for the latent

outcome, there seems to be evidence of a slight increase in the empirical power, especially for

the ordered logit case.

Finally, a much higher power is observed for the more realistic case when the regressor and

the unit-specific effects are moderately correlated (φ = 0.5). This evidence is stronger for the

Poisson and the Gaussian linear models in which, except for the case of very short panels and

low autoregressive coefficient, the empirical power of the test seems to be always greater than

seventy percent.

4 Empirical illustration

In this Section, we illustrate our testing procedure through an empirical application to self-rated

health status (SRHS) of the elderly American population based on data from the Health and

Retirement Study (HRS), a longitudinal survey that interviews every two years a representative

sample of over 26,000 Americans aged 50 and older.

4.1 The data

We employ the RAND HRS Data File (Version L), a user-friendly version of the data produced

by the RAND Center for the Study of Aging and containing all waves from 1992 to 2010 (T = 10).

We restrict attention to the subset of n = 4, 094 individuals who responded to all waves (this

gives a total of 40,940 observations). SRHS is measured on a 5-point ordered scale (poor, fair,

good, very good, excellent). We also transform the original variable into a binary indicator that

is equal to one if SRHS is good or better, and is equal to zero otherwise. Our covariates include

a set of socio-demographic characteristics (gender, age, education and ethnicity), the number of

doctor visits and the body mass index (BMI). Definitions and summary statistics of all variables

considered are presented in Table 7.9

Following Heiss (2008), we estimate logit and ordered logit models for SRHS in wave 10. In

addition to our set of covariates we also include lagged values of SRHS (Table 8). This simple

exercise gives an idea of the SRHS correlation pattern over a longer period of time and highlights

two interesting points: (i) the coefficients on most lags are strongly statistically different from
9 Notice that, due to a failure in the AR(1) ordered logit model convergence, we are forced to drop outliers in

the distribution of BMI and doctor visits. We use the method of percentiles. Since it does not seem to be outliers
in the left tail, we drop out only values > 99.9 percentile, losing 37 individuals (370 observations).

12



zero, and (ii) they get smaller in size as the lag length increases. This suggests a model where

SRHS depends on unobserved “true” health status, which follows some time-series process with

declining autocorrelation.10

4.2 Results

We consider two model specifications. The first (Model M1) includes as regressors a constant

term, age (specified as age splines), BMI and the number of GP visits. The second (Model M2)

adds to Model M1 a set of wave dummies.

Tables 9 reports the four sets of estimates which are used to construct the test statistic for the

logit and the ordered logit models respectively. The top panel shows the full conditional maxi-

mum likelihood estimates for the two model specifications, whereas the bottom panel reports the

corresponding pairwise estimates. The key point here is that, regardless of the model type and

specification, we strongly reject the null hypothesis of time-invariant unobserved heterogeneity

confirming the results in Heiss (2008) even for this longer release of the HRS panel.

Given these results, we estimate the latent AR(1) random-effects logit and ordered logit

models proposed by Heiss (2008), to which we refer the reader interested in more details.11

Tables 10 shows the estimates under the two model specifications in which we also include the

same time-invariant socio-demographic covariates as in Heiss (2008) application. It is worth

emphasizing that omitting these covariates in performing our test (Tables 9) does not affect its

power since, being time-invariant, they are eliminated from the conditional likelihood function.

The estimated ρ is close to 0.95, basically the same value found by Heiss (2008), and appears

to be strongly statistically significant regardless of the model type and specification. Hence, a

better model for this data may be based on the assumption that SRHS depends on unobservable

“true” health which follows some time-series process with declining autocorrelation.
10 See Heiss (2008) for a detailed discussion. An alternative to the approach in Heiss (2008) would be a

random-effects model with state dependence. However, state dependence in SRHS is not very convincing from
a theoretical point of view. In fact, lagged outcomes can causally affect current outcome in a model of female
labor force participation (Hyslop, 1999), this causality is less plausible in the case of SRHS, as it implies that the
simple perception of own health affects future true health status.

11The estimation is performed using the arldv Stata package produced by Florian Heiss. The likelihood
function of this model does not have a closed-form solution, so estimation involves numerical integration. We use
50 integration points.
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5 Conclusions

This paper proposes a computationally convenient Hausman-like specification test for the null

hypothesis of time-invariant unobserved heterogeneity in GLMs for panel data against the al-

ternative of time-varying unobserved heterogeneity of unspecified form. The test is based on

the comparison of alternative fixed effects estimators defined as maximand of full and pairwise

conditional likelihood functions.

The finite-sample properties of the proposed test are investigated via a set of Monte Carlo

experiments. Our results suggest that the test generally performs well, showing small size

distortions and good power properties especially when n > 1, 000 and T > 5 (common sample

sizes in economic applications).

Our test is attractive because: (i) computation of the test statistic only requires a quadratic

form which involves the difference of the parameter estimates and an estimator of its asymptotic

variance matrix, (ii) the test does not require assumptions on the distribution of the individual

effects, (iii) it allows the individual effects to be correlated with the observed explanatory vari-

ables, (iv) it can be used regardless of the nature of the dependent variable, and (v) it can be

easily implemented using existing software for fixed effects panel data models.

We provide an empirical illustration using the same model for SRHS as Heiss (2008) but

exploiting a longer balanced panel from the HRS. The null hypothesis of time-invariant un-

observed heterogeneity is rejected for both logit and ordered logit specifications of the model,

thus confirming the results in Heiss (2008) while using a procedure that is both simpler and

more robust. We conclude that a better model for this data may be based on the assumption

that SRHS depends on unobservable “true” health which follows some time-series process with

decaying autocorrelation.
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Table 8: Logit and ordered logit models for SRHS in wave 10 on past SRHS.

logit ologit
Age -0.043 *** -0.029 ***
Female 0.045 0.043
High school 0.192 0.018
Some college -0.007 -0.029
College degree+ 0.303 ** 0.089
Non white -0.186 -0.021
SRHS wave 9 1.632 *** 0.870 ***
SRHS wave 8 0.946 *** 0.608 ***
SRHS wave 7 0.709 *** 0.305 ***
SRHS wave 6 0.415 *** 0.259 ***
SRHS wave 5 0.325 ** 0.122 **
SRHS wave 4 0.197 0.061
SRHS wave 3 0.182 0.017
SRHS wave 2 0.338 ** 0.104 **
SRHS wave 1 0.108 0.022
Constant -2.366 *** -
cut-off1 - 1.492 **
cut-off2 - 3.860 ***
cut-off3 - 6.369 ***
cut-off4 - 9.399 ***
Obs 4094 4094
Log-lik -1447.37 -4324.98

Significance levels: * p < 10%; ** p < 5%, *** p < 1%
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Figure 1: Power curves for the logit model.

Figure 2: Power curves for the ordered logit model.
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Figure 3: Power curves for the Poisson model.

Figure 4: Power curves for the Gaussian linear model.
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A Asymptotic properties of the pairwise conditional maximum
likelihood estimator

In this appendix we provide formal arguments to establish the asymptotic properties (with

n→∞ and fixed T ) of the pairwise conditional maximum likelihood (PCML) estimator.

A.1 Asymptotics under H0

The pairwise conditional log-likelihood function,

L2(θ) =
n∑

i=1

T∑
t=2

ln pθ(yi,t−1, yit|yi,t−1 + yit), (A.1)

is a specific type of composite log-likelihood function formed by the sum of log-conditional

probabilities where pθ(yi,t−1, yit|yi,t−1 + yit) is defined as in equation (5) but for each single

pair of consecutive observations in the sample. Note that the parameter vector θ has been

added as a subscript to p(.|.) in order to indicate that this probability depends on θ. As

pointed out by Lindsay (1988), each component of L2(θ) is a standard log-likelihood object.

Since the asymptotic properties of the conditional maximum likelihood estimator have been

proved elsewhere under different sets of assumptions (Andersen, 1970; McFadden, 1974; Huque

and Katti, 1976; Pfanzagl, 1993), we discuss the asymptotic properties of the PCML estimator

assuming consistency and asymptotic normality of the standard conditional maximum likelihood

estimator defined for each single pair of consecutive observations in the sample.

Let us denote with θ0 the true parameter vector and with θ̂ a generic point in the parameter

space Θ. Being the PCML estimator an M-estimator, the following theorem gives sufficient

conditions that guarantee its consistency.

Theorem 1. If (i) θ0 is an interior point of a compact set Θ; (ii) the sequence of random

functions {Q̂n} converges in probability uniformly on Θ to a continuous function Q0; (iii) Q0

attains a unique maximum on Θ at θ0; then θ̂n exists and is unique with probability approaching

one as n→∞ and θ̂n
p→ θ0.

Proof: If we denote the CML estimator’s criterion function for the subsample defined by a

single pair of consecutive observations t and t− 1 as

Q̂t
n (θ) = n−1

n∑
i=1

ln pθ(yi,t−1, yit|yi,t−1 + yit),
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then the criterion function of the PCML estimator can be expressed as

Q̂n (θ) = n−1
n∑

i=1

T∑
t=2

Q̂t
n (θ) .

When p(.|.) is logistic, it can be show by standard asymptotic results that each Q̂t
n (θ) converges

in probability uniformly to a continuous function Qt
0 (θ) defined as

Qt
0 (θ) = E0[ln pθ(yi,t−1, yit|yi,t−1 + yit)],

where E0[.] denotes the expected value under the true model. Then,

Q0 (θ) = E0

[
T∑

t=2
ln pθ(yi,t−1, yit|yi,t−1 + yit)

]

=
T∑

t=2
E0[ln pθ(yi,t−1, yit|yi,t−1 + yit)]

=
T∑

t=2
Qt

0 (θ) .

Therefore, by linearity of the expected value and the fact that each term in Q̂n (θ) converges

in probability uniformly on Θ to its population counterpart, Q̂n (θ) converges in probability

uniformly on Θ to Q0 (θ).

The third condition requires θ0 to be the unique maximizer of Q0 (θ), so it suffices to show

that θ0 is the unique maximizer of Qt
0 (θ) for all t = 2, . . . , T . Since in a conditional maximum

likelihood framework θ0 is identified (and this is a sufficient condition for a unique maximum),

under the same regularity conditions θ0 uniquely maximizes each Qt
0 (θ), which complete the

proof. �

Theorem 2. If the assumptions of the Theorem 1 are satisfied and each subsample CML esti-

mator
√
n(θ̂CMLE − θ0) d→ N (0, J−1

0 ), then
√
n(θ̂P CMLE − θ0) d→ N (0, A−1

0 B0A
−1
0 ).

Proof: The proof of this result is based on the mean value theorem assuming that all the

T − 1 subsample CML estimators are asymptotically normally distributed. Let us denote the

θ̂
P CMLE estimator with θ̃. Since θ̃ is an extremum estimator and the conditional log-likelihood

is twice differentiable, then

n∑
i=1

T∑
t=2
∇ ln p

θ̃
(yi,t−1, yit|yi,t−1 + yit) = 0,
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where ∇ denotes the vector of first derivatives with respect to θ. By the mean value theorem,

n∑
i=1

T∑
t=2
∇ ln pθ0

(yi,t−1, yit|yi,t−1 + yit) +
[

n∑
i=1

T∑
t=2
∇2 ln pθ̄(yi,t−1, yit|yi,t−1 + yit)

]
(θ̃ − θ0) = 0,

where θ̄ is a point on the line joining θ̃ with θ0 and ∇2 denotes the Hessian of the objective

function. We can rearrange the previous equation as

√
n(θ̃ − θ0) = −

[
T∑

t=2

1
n

n∑
i=1
∇2 ln pθ̄(yi,t−1, yit|yi,t−1 + yit)

]−1

×

×
T∑

t=2

[
1√
n

n∑
i=1
∇ ln pθ0

(yi,t−1, yit|yi,t−1 + yit)
]
.

Since
√
n(θ̂CMLE − θ0) d→ N (0, J−1

0 ) as n→∞, we have that

1√
n

n∑
i=1
∇ ln pθ0

(yi,t−1, yit|yi,t−1 + yit)
d−→ N (0, J0)

and
1
n

n∑
i=1
∇2 ln pθ̄(yi,t−1, yit|yi,t−1 + yit)

p−→ J−1
0 .

It then follows from Slutzky theorem and the closeness property of linear combination of Gaus-

sian random variables that
√
n(θ̃ − θ0) is asymptotically distributed as a Gaussian random

variable with mean zero and asymptotic variance A−1
0 B0A

−1
0 , where

A0 = −
T∑

t=2
E0
[
∇2 ln pθ0

(yi,t−1, yit|yi,t−1 + yit)
]
,

and

B0 = E0

[
T∑

t=2
∇ ln pθ0

(yi,t−1, yit|yi,t−1 + yit)
] [

T∑
t=2
∇ ln pθ0

(yi,t−1, yit|yi,t−1 + yit)
]′
.

�
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