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Pessimistic Optimal Choice for Risk-averse Agents

ABSTRACT

We propose a general framework for the analysis of dynamic optimization with risk-

averse agents, extending Whittle’s (Whittle, 1990) formulation of risk-sensitive optimal

control problems to accommodate time-discounting. We show how, within a Markovian

set-up, optimal risk-averse behavior is identified via a pessimistic choice mechanism and

described by simple recursive formulae. We apply this methodology to two distinct prob-

lems formulated respectively in discrete- and continuous-time. In the former, we extend

Svennson’s (Svennson, 1997) analysis of optimal monetary policy, showing that with a

risk-averse central bank the inflation forecast is not longer an explicit intermediate target,

the monetary authorities do not expect the inflation rate to mean revert to its target level

and apply a more aggressive Taylor rule than under risk-neutrality, while the inflation rate

is less volatile. In the latter, we investigate the optimal production policy of a monopo-

list which faces a demand schedule subject to stochastic shocks, once again showing that

risk-aversion induces her to act more aggressively.

JEL Classification Numbers: C61.

Keywords: Pessimistic Agents, Time-discounting, Linear Exponential Quadratic Gaussian.



Introduction

Under risk-neutrality optimal control problems can be easily solved employing well-established

results. Thus, in a linear quadratic set-up straightforward recursive formulae immediately yield

the optimal policy, while applying the certainty equivalence principle unknown variables can be

replaced by their maximum likelihood estimates. However, risk-aversion is an important aspect

of agents’ preferences, which heavily influences their actions, in particular when the economic

environment is complex and uncertain, and agents need to consider the future implications

of their decisions. Investigating the nexus between risk-aversion and agents’ behavior is a

challenge, in that optimal control problems are difficult to solve under risk-aversion.

Whittle (Whittle, 1990) introduces risk-aversion in the standard linear quadratic set-up and

shows that: i) the optimal policy is identified via a pessimistic choice mechanism; ii) modi-

fied (or risk-sensitive) certainty equivalence and separation principles hold; and iii) recursive

formulae describe the optimal policy. Despite its versatility, few researchers have employed

Whittle’s methodology in economics (exceptions are Mamaysky and Spiegel, 2002; van der

Ploeg, 2009, 2010; Vitale, 1995, 2012; Zhang, 2004). This is because an important limitation

of his methodology is that it does not consider time-discounting.

Hansen and Sargent (Hansen and Sargent, 1994, 1995, 2005) have introduced time-discounting

into risk-sensitive optimal control problems by formulating a recursive optimization criterion à

la Epstein and Zin. We modify their optimization criterion to accommodate time-discounting

within Whittle’s methodology. We are then able to reformulate Whittle’s pessimistic choice

mechanism, his risk-sensitive certainty equivalence and separation principles and the recursive

formulae for the optimal policy he derives. Importantly, following Whittle’s lead, we are also

able to analyze risk-sensitive optimal control problems with time-discounting under imperfect

state observation, a scenario that Hansen and Sargent do not explicitly consider and that their

recursive optimization criterion cannot accommodate.

This paper is organized as follows. In Section 1 we extend the class of Markovian linear

exponential quadratic Gaussian (LEQG) problems originally studied by Whittle to accommo-

date time-discounting by proposing a recursive optimization criterion which differs from that

put forward by Hansen and Sargent. The suggested recursive criterion allows: i) to apply,

with simple adjustments, Whittle’s methodology and derive recursive solution formulae for

the optimal policy; and ii) to solve LEQG problems with time-discounting (DLEQG problems

henceforth) when only noisy signals on the state variables are observed, a scenario which can-
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not be investigated using Hansen and Sargent’s recursive criterion. In this Section we also see

how the risk-sensitive certainty equivalence principle (risk-sensitive CEP) originally derived by

Whittle for the class of LEQG problems is maintained while the corresponding Riccati equa-

tion, which yields the optimal policy for the class of Markovian LEQG problems, is modified.

In the following Section we study the class of DLEQG problems under imperfect state obser-

vation. Here, Whittle’s risk-sensitive separation principle (risk-sensitive SP), which allows to

separate control and estimation, is reformulated for the class of DLEQG problems.

DLEQG problems can be formulated to deal with several issues in economics and finance.

Thus, Hansen and Sargent’s lead has been followed to analyze consumption, precautionary

savings and the real business cycle (see Hansen and Sargent, 2005; Hansen, Sargent, and

Tallarini, 1999; Luo, 2004; Luo and Young, 2010; Tallarini, 2000, among others). In Section 3

we illustrate how the formulation of LEQG problems with time-discounting we propose can be

applied to investigate output and inflation stabilization on the part of an independent central

bank.

Specifically, we extend Svensson’s (Svennson, 1997) analysis of optimal monetary policy to

the case in which the central bank is risk-averse.1 Because of risk-aversion the central bank

selects its monetary policy via the revised pessimistic choice mechanism. Then, as the standard

CEP cannot be applied: i) the inflation forecast is not longer an explicit intermediate target

when inflation targeting is the exclusive mission of the central bank; and ii) the monetary

authorities do not necessarily expect the inflation rate to mean revert to its target level when

the monetary policy is also aimed at output stabilization. We actually see that even without

output stabilization, a scenario in which the inflation forecast is always equal to its target

level under risk-neutrality, if the central bank is risk-averse it may well be that the monetary

authorities expect the inflation rate to wander away from the target level.

In addition, we find that the central bank follows a more aggressive Taylor rule under risk-

aversion. This results in a smaller volatility for the inflation rate, while the unconditional

variances of the output gap and the short-term interest rate are unaffected by risk-aversion.

This is interesting, because it means that empirically the impact of risk-aversion only appears

in a reduced variability for the inflation rate. Finally, we investigate the possibility that the

central bank observes the state variables with a time lag and employ within this context the

modified version of Whittle’s risk-sensitive SP, confirming the empirical implications derived

1van der Ploeg (2009) studies a similar extension of Svensson’s analysis. However, he introduces neither
time-discounting nor a recursive optimization criterion.
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under perfect state observation.

In the last two Sections of the paper we extend our analysis to consider non-homogeneous

DLEQG problems and their continuous-time limit. Thus, in Section 4 we introduce pre-

determined disturbances in the law of motion which regulates the dynamics of the state vec-

tor, showing how the recursive formulae for the optimal policy derived in Section 2 must be

modified. While, in Section 5 we consider the continuous-time limit of the Markovian DLEQG

problem formulated in discrete-time. Here, the optimal policy is characterized by a modified

version of the differential Riccati equation which applies to the LEQG formulation.

As an illustrative example of the Markovian DLEQG problem in continuous-time we con-

sider the optimal production policy of a risk-averse monopolist which faces a demand schedule

subject to stochastic shocks for the commodity she produces. Interestingly, risk-aversion makes

the monopolist more aggressive, in that she finds it optimal to systematically produce a larger

quantity than that selected by her risk-neutral counterpart. This is because, despite a larger

supply of the commodity depresses its price and jeopardizes future profits, it also reduces their

variability. Then, a risk-averse monopolist is willing to gain smaller profits on average to reduce

their variability and hence willing to produce a larger quantity of the commodity.

In both economic problems we investigate risk-aversion induces the optimizing agent to

act more aggressively. This may appear counter-intuitive as it contradicts results typically

obtained within static formulations. However, such a feature of the impact of risk-aversion on

the behavior of economic agents in dynamic optimization exercises appears elsewhere. Thus,

Holden and Subrahmanyam (1994) and Vitale (1995, 2012) find that risk-aversion makes a

privately informed strategic insider trade more aggressively in a sequential call auction market,

while the same trader would be more cautions in a one-shot call auction market. In other words,

a point which is worth emphasizing is that the Markovian DLEQG formulation allows to derive

implications of risk-aversion which are both general and stark. Indeed, not only risk-averse

agents are pessimistic, but also bold.
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1 LEQG Problems with Time-Discounting

We define a specific class of optimal control problems, which are characterized by: i) a Marko-

vian linear dynamic structure for a vector of state variables, zt; ii) a multi-normal distribution

for an innovation vector εt; and iii) a recursive optimization criterion à la Epstein and Zin.

Definition 1 An optimal control problem is said to be Markovian Linear Exponential Quadratic

Gaussian with time-discounting and perfect state observation if the following recursive opti-

mization

ρ

2
V t = min

ut

{ρ
2
ct + ln

(
Et

[
exp

(
δ
ρ

2
V t+1

)])}
, (1.1)

where ρ (with ρ > 0) is the coefficient of risk-aversion, δ (with 0 < δ < 1) is the time-

discounting factor, ct is the scalar-valued cost function and V t is the optimization criterion

(with terminal condition VT+1 = 0), is solved over the periods t = 1, 2, . . . , T with respect to

the free-valued control vector ut under the conditions that:

(i) the cost function ct is a quadratic form in the control vector, ut, and the state vector, zt,

ct = u′t Q ut + z′t R zt + 2 u′t S zt , positive definite in ut and zt ;

(ii) the vector of state variables, zt, is governed by the following linear plant equationf

zt = A zt−1 + B ut−1 + εt , where εt ∼N [0,N] , with εt ⊥ ε′t .

Imposing the condition that the recursive optimization is solved over a finite horizon T ensures

that the optimization criterion V t is well defined. However, thanks to time-discounting an

infinite horizon can be accommodated. Condition (i) that the cost function ct is positive

definite in the control and state vectors, while useful in finding a minimum in the recursive

optimization, is not necessary. Similarly, the assumption that the control vector is free-valued,

and hence not subject to any constraint, is also not strictly required for the existence of a

minimum in the recursive optimization and it could be disposed of. Nevertheless, it is extremely

useful in characterizing the optimal control path, in that it allows to derive recursive solutions

to the Markovian DLEQG problem.

In Definition 1 the Markovian DLEQG problem is time-homogeneous, in that neither the

plant equation nor the cost function explicitly depends on time t. However, this Definition
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can be adjusted to accommodate a non-homogenous plant equation and/or cost function, by

making any of the matrices A, B, N, Q, R and S time-dependent.

To confirm the validity of our Definition for the class of Markovian DLEQG problems we

notice that in the limit for ρ ↓ 0 the solution to the recursive optimization criterion (1.1)

converges to that for the standard dynamic programming recursion of a Markovian optimal

control problem with time-discounting. Indeed, the following result holds.

Lemma 1 Under perfect state observation, for ρ ↓ 0 the argmin in the recursive optimization

criterion (1.1) corresponds to the argmin in minut {ct + δEt [V t+1]}.

Proof. For ρ > 0, the recursion

ρ

2
V t = min

ut

{ρ
2
ct + ln

(
Et

[
exp

(
δ
ρ

2
V t+1

)])}
= ρ min

ut

{
1

2
ct +

1

ρ
ln
(
Et

[
exp

(
δ
ρ

2
V t+1

)])}
.

For ρ > 0, the argmin in the right hand side can be obtained by solving the following mini-

mization

min
ut

{
1

2
ct +

1

ρ
ln
(
Et

[
exp

(
δ
ρ

2
V t+1

)])}
. Hence, consider that

lim
ρ↓0

1

ρ
ln
(
Et

[
exp

(
δ
ρ

2
V t+1

)])
= lim

ρ↓0
δ

1

2

Et
[
exp

(
δ ρ2 V t+1

)
· V t+1

]
Et
[
exp

(
δ ρ2 V t+1

)] =
1

2
δ Et [V t+1] ,

where we have used the Hôpital’s rule and moved the derivative operator inside the expectation

operator. Thus, in the limit we can solve minut {ct + δ Et [V t+1]}. �

This result implies that if ct is a quadratic form in ut and zt, while the innovation vector εt is

normally distributed, the Markovian DLEQG problem converges to the corresponding Marko-

vian Linear Quadratic Gaussian problem with time-discounting (DLQG problem henceforth)

for ρ ↓ 0.

With respect to the formulation of the recursive optimization criterion proposed by Hansen

and Sargent (1994, 1995) in their analysis of Markovian DLEQG problems, in (1.1) we move

the discount factor inside the exponential function (so that rather than using δ ln(E[exp(X )])

we employ ln(E[exp(δX )])).2 By doing this we can easily transform the recursive optimization

criterion (1.1) into a formulation which allows to exploit a number of useful results derived by

2The two formulations are equivalent as also mentioned by Hansen and Sargent (1994).

5



Whittle (1990) for the class of LEQG problems.

In Whittle’s formulation of LEQG problems there is no time-discounting,3 so that in any

period t the criterion ln
(
Et
[
exp

(
ρC

2

)])
with C a time-separable cost function, C =

∑T
t=1 ct, is

minimized with respect to the control vector ut. To accommodate time-discounting a recursive

optimization criterion à la Epstein and Zin is called for. Despite we rely on an optimization

criterion which differs from that put forward by Whittle, we are able to preserve most of his

results with some minor adjustments.4

To show this we first state the following result:

Lemma 2 Under perfect state observation, the recursive optimization criterion (1.1) can be

equivalently formulated as follows,

ρ

2
V t = ln

(
min
ut

{
Et

[
exp

(ρ
2

(ct + δV t+1)
)]})

. (1.2)

Proof. Under perfect state observation we can write

exp
(ρ

2
V t

)
= exp

(
min
ut

{ρ
2
ct + ln

(
Et

[
exp

(
δ
ρ

2
V t+1

)])})

= min
ut

{
exp

(ρ
2
ct + ln

(
Et

[
exp

(
δ
ρ

2
V t+1

)]))}
= min

ut

{
Et

[
exp

(ρ
2

(ct + δV t+1)
)]}

, so that

ρ

2
V t = ln

(
min
ut

{
Et

[
exp

(ρ
2

(ct + δV t+1)
)]})

.�

Then, following Whittle we introduce the concept of discounted total stress function:

Definition 2 Under perfect state observation, the discounted total stress function, St, is given

by St ≡ ct − 1
ρ dt+1 + δV t+1, where dt is a per-period discrepancy function equal to ε′tN

−1εt

for t = 1, 2, . . . , T and 0 for t = T + 1.

3Another important difference is that he allows for negative values of the coefficient ρ, also considering a
risk-seeking formulation for the LEQG class. Differently from Whittle and Hansen and Sargent, we only consider
risk-averse behavior and consequently use the terms risk-averse and risk-sensitive interchangeably.

4For δ ↑ 1 Vt does not converge to Whittle’s optimization criterion, since in (1.1) the minimization argument
does not contain the past cost components, ch with h < t. However, under perfect state observation, for δ ↑ 1
the optimal policy for the recursive optimization criterion (1.1) converges to that for Whittle’s Markovian LEQG
problem, in that at time t ch, with h < t, is deterministic and constant with respect to ut.

6



This concept is similar to that of total stress function originally introduced by Whittle. Our

notion differs in two respects: firstly, it covers only periods t and t + 1; secondly, the period

t + 1 optimization criterion V t+1 is pre-multiplied by the discount factor δ. The discounted

total stress function is useful in that we can rely on the following Lemma, which adapts a

result firstly outlined by Whittle for the class of LEQG problems.

Lemma 3 In a Markovian DLEQG problem, under perfect state observation, if the optimiza-

tion criterion in t + 1, V t+1, is a quadratic form in the state vector zt+1 and the discounted

total stress function St satisfies a saddle point condition with respect to εt+1 and ut, so that

minut maxεt+1 St exists, the following proportionality condition holds,

min
ut

Et

[
exp

(ρ
2

(ct + δV t+1)
)]
∝ exp

(
ρ

2
min
ut

max
εt+1

St

)
,

where the proportionality constant is independent of the state vector zt, while the optimization

criterion V t is a quadratic form in zt equal to the extremized discounted total stress function

minut maxεt+1 St plus a constant independent of zt.

Proof. Firstly, we observe that if Q(u, ε) is a quadratic form which admits the saddle point

maxu minεQ(u, ε), then the following holds

min
u

∫
exp

[
− 1

2
Q(u, ε)

]
dε ∝ exp

[
− 1

2
max

u
min
ε

Q(u, ε)

]
.

Secondly, consider that under perfect state observation, if V t+1 is a quadratic form in zt+1, as

the latter is linearly dependent on εt+1,

min
ut

Et

[
exp

(ρ
2

(ct + δV t+1)
)]

∝ min
ut

∫
exp

(
ρ

2
(ct + δV t+1)− 1

2
ε′t+1N

−1εt+1

)
dεt+1

= min
ut

∫
exp

(
ρ
St

2

)
dεt+1 .

Now, since V t+1 can be expressed as a quadratic form in εt+1 and ut, so is St. If the discounted

total stress function in t admits the saddle point minut maxεt+1 St, then −St admits the saddle
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point in the aforementioned property. Exploiting this property we find that

min
ut

∫
exp

(
ρ
St

2

)
dεt+1 = min

ut

∫
exp

(
−1

2
(−ρSt)︸ ︷︷ ︸
Q(ut,εt+1)

)
dεt+1

∝ exp

(
−1

2
max

ut
min
εt+1

(−ρSt)

)
= exp

(
ρ

2
min
ut

max
εt+1

St

)
.

From the saddle point condition we establish that the extremized value of St will be a quadratic

form in zt, while V t will be equal to the extremized value of St plus a constant independent

of zt. �

The requirement that the discounted total stress function satisfies a saddle point condition

may actually not hold. As it will be clearer later, for a sufficiently large degree of risk-aversion

the discounted total stress function at time t will not be negative definite in εt+1 indicating

that the saddle point condition cannot be met and that the DLEQG problem does not present

a optimizing solution, in that the value of V t becomes infinite. In other words, while suggesting

a way to solving Markovian DLEQG problems, this Lemma also indicates that under extreme

circumstances such problems are not well-behaved and their optimization is meaningless.

As corollary of Lemma 3 we establish a simplified version of Whittle’s risk-sensitive certainty

equivalence principle (RSCEP) which is particularly useful in addressing Markovian DLEQG

problems.

Theorem 1 - (Risk-sensitive Certainty Equivalence Principle). In a Markovian DLEQG

problem, under perfect state observation, if the discounted total stress function St+j respects a

saddle point condition with respect to εt+j+1 and ut+j for j = 0, 1, . . . , T − t, the optimal value

of the vector ut is determined at time t by simultaneously minimizing St with respect to ut

and maximizing it with respect to εt+1. In other words, an optimal current decision is obtained

by minimizing with respect to the decision currently unmade, ut, and maximizing with respect

to the currently unobservable future innovation vector, εt+1. The extremized discounted stress

function is proportional to the recursive optimization criterion, V t ∝ minut maxεt+1 St.

Proof. Notice that in T cT is a positive definite quadratic form in uT , while VT+1 = dT+1 = 0.

This implies that ST is a quadratic form in uT and εT+1 and hence that the conditions to apply

Lemma 3 are met, so that the saddle point condition for ST yields the optimal control uT ,

with the extremized stress function, ST , and the minimization criterion, VT , both quadratic
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forms in zT . By backward induction the statement is established. �

Theorem 1 is particularly useful in that it suggests that, when the discounted total stress

function is well-behaved and hence the DLEQG problem admits a meaningful solution, to find

the optimal control vector in period t it is sufficient to impose a saddle point condition for St.

Indeed, first the discounted total stress function is maximized with respect to the innovation

vector εt+1 and then the resulting expression is minimized with respect to the control vector

ut, a procedure that Whittle refers to as extremization.5 An economic interpretation of such

extremization is that a risk-averse agent whose preferences are represented by the recursive

optimization criterion (1.1) attempts to hedge against the worst possible values for the vector

εt+1, by following a min-max strategy. Thus, she selects that policy ut which minimizes her

welfare loss (i.e. the discounted total stress) against the most unfavorable innovation vector

εt+1. Such an agent acts as though she were pessimistic, considering these adverse realizations

very likely. Consequently she tunes her actions on their impact on her welfare, applying what

we term a pessimistic choice mechanism.

Theorem 1 revises the certainty equivalence principle of the Markovian Linear Quadratic

Gaussian (LQG) problem: the normally distributed unobservable variables are no longer re-

placed by their maximum likelihood (ML) estimates, but by those that maximize the discounted

total stress function in order to compensate for risk-aversion. In other words, in the Marko-

vian LQG problem the separation principle between optimization of the control vector and

estimation of the unknown values applies, in that the control vector is chosen by minimizing

the criterion as it would be in the perfect information case, with the unobservable values re-

placed by their ML estimates. On the contrary, in the risk-sensitive case the derivation of

the optimal control vector and the optimal estimation of the unknown values are intertwined,

as the optimal control and optimal estimates are chosen in order to extremize the discounted

stress function. Indeed, differently from the Markovian LQG problem, uncertainty over the

innovation vector εt+1 conditions the optimal choice of the control vector, ut. Specifically,

the statistical characteristics of εt+1, and hence its covariance matrix N, influence the optimal

value of the vector ut. Viceversa, the cost function and the degree of risk-aversion affect the

optimal estimate of εt+1, which no longer corresponds to the ML estimate but it is given by

the maximum discounted total stress estimate (MDTSE).

5One should notice that in the perfect state observation εt+1 and zt+1 are interchangeable. This means that
at time t the extremization of the discounted total stress function can be equivalently conducted with respect
to period t + 1 state vector, zt+1. In other words, Theorem 1 could be equivalently reformulated with respect
to the future value of the state vector zt+1.
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Theorem 1 indicates that because of the recursive structure of the Markovian DLEQG

problem the extremization of the discounted total stress function can be undertaken recursively.

In particular, starting from T one proceeds backward imposing the saddle point conditions for

the stress function in periods T , T − 1, . . ., 1. In this respect, we adapt to the Markovian

DLEQG problem a result originally derived by Whittle.

Lemma 4 The saddle point conditions for the discounted total stress function St, with t = 1, 2,

. . . , T , can be satisfied by solving the following discounted future stress backward recursion,

Ft(zt) = min
ut

{
max
εt+1

[
ct −

1

ρ
dt+1 + δFt+1(zt+1)

]}
, (1.3)

with t = T, T − 1, . . . , 1, where Ft(zt), denoted as the extremized discounted future stress func-

tion, is a quadratic form in the state vector zt, Ft(zt) ≡ z′tΠtzt with ΠT+1 ≡ 0. The optimiza-

tion criterion in t is V t = κt + Ft(zt), where κt is independent of zt.

Proof. Let us start from t = T . By definition VT+1 = 0 and dT+1 = 0. Then, given that cT is

a quadratic form in uT and zT , we immediately see that: i) imposing the saddle point condition

for the discounted stress function in T , ST , is equivalent to solving recursion (1.3); and ii) there

exist a matrix ΠT such that the extremized discounted future stress is FT (zT ) ≡ z′TΠT zT and

a constant kT independent of zT such that exp(ρVT /2) = exp(1
2ρ[kT + FT (zT )]). Proceeding

backward, the optimal control vector in period T − 1 is obtained by imposing the following

saddle point condition,

min
uT−1

max
εT

ST−1 = min
uT−1

{
max
εT

[
cT−1 −

1

ρ
dT + δVT

]}
Since VT = kT + FT (zT ) and kT is independent of zT , this is equivalent to the saddle point

condition

min
uT−1

{
max
εT

[
cT−1 −

1

ρ
dT + δFT (zT )

]}
.

Given that cT−1 is a quadratic function in uT−1 and zT−1, dT is a quadratic form in εT and

FT (zT ) is a quadratic form in zT while this is linear in uT−1, zT−1 and εT , we find that the

result of this extremization is given by a quadratic form of zT−1, so that there exists a matrix

ΠT−1 such that FT−1(zT−1) = z′T−1ΠT zT−1 and exp(ρVT−1/2) = exp(1
2ρ[κT−1 + Ft(zT−1)]).

Then, by backward induction the statement is proved. �

In conclusion, a recursion similar to the Bellman equation for the value function of dynamic

programming is obtained: given the extremized discounted stress function at time t + 1, the
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optimal policy at time t is obtained by solving the discounted future stress recursion.6 Similarly

to the Markovian LQG problem, the extremized future stress function is a quadratic form in

the state vector, Ft(zt) = z′tΠtzt, while it can be established that the optimal policy is linear in

the state vector, ut = Ktzt, where Πt and Kt respect recursions which correspond to modified

versions of the Riccati recursions for the Markovian LQG problem.

Indeed, applying Lemma 4 we can establish the following Theorem, which extends Whittle’s

risk-sensitive Riccati equation to the class of Markovian DLEQG problems and reveals the

nexus with the common solutions to the standard Markovian LQG problem.

Theorem 2 - (Risk-sensitive Riccati Equation). If the matrix (δΠt+1)−1 − ρN is positive

definite, at time t the extremized discounted future stress function exists and it is given by

Ft(zt) = z′t Πt zt for the optimal control ut = Kt zt where (1.4)

Πt = R + A′Π̃t+1A − (S′ + A′Π̃t+1B)(Q + B′Π̃t+1B)−1(S + B′Π̃t+1A) , (1.5)

Kt = − (Q + B′Π̃t+1B)−1(S + B′Π̃t+1A) (1.6)

and Π̃t+1 = ((δΠt+1)−1 − ρN)−1 . (1.7)

Proof. In the Markovian DLEQG problem the future stress function Ft(zt) respects the double

recursion Ft = LL̃Ft+1, based on the following two operators

Lφ(z) = min
u

[c(z,u) + φ(Az +Bu)] and L̃φ(z) = max
ε

[φ(z + ε) − 1

ρ
ε′N−1ε] ,

where φ(z) = δz′Πz, so that L̃φ(z) = maxε [(z + ε)′δΠ(z + ε) − 1
ρε
′N−1ε]. Taking first

derivatives, we find that

ε̃ = − (δΠ − 1

ρ
N−1)−1δΠ z = − Π̆

−1
δΠ z ,

which pins down a maximum if Π̆ is negative definite, or equivalently if (δΠ)−1−ρN is positive

definite. Replacing this expression we conclude that L̃φ(z) = z′((δΠ)−1 − ρN)−1z = z′ Π̃ z.

For L̃φ(z) = z′Π̃ z, solution of the operator L yields the standard recursive formulae for Π and

6For δ ↑ 1 the discounted future stress recursion (1.3) converges to the recursion originally derived by Whittle
for the Markovian LEQG problem. This confirms that under perfect state observation, the optimal policy for
our recursive optimization criterion converges to that for Whittle’s Markovian LEQG problem for δ ↑ 1. In
other words, under perfect state observation, the DLEQG problem encompasses the LEQG one.
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K from the Markovian LQG problem where Π̃ = ((δΠ)−1 − ρN)−1 replaces Π. Thus, applying

the two operators at time t we obtain the recursive formulae for Πt and Kt presented in the

statement. Importantly, as the cost function ct is positive definite in ut and zt, Q + B′Π̃t+1B

is positive definite, so that the second order condition for minimization in the operator L holds,

Πt is positive semidefinite. �

It is worth noticing that with respect to the standard Riccati equation which applies to

the standard Markovian LQG problem with perfect state observation, the matrix Πt+1 is now

replaced by the modified matrix Π̃t+1.7 In other words, in the risk-sensitive case the optimal

policy retains a specification which is very similar to the one that would prevail in a risk-

neutral environment (with ρ = 0), in that only a correction for the impact of uncertainty and

risk-aversion must be inserted in the expressions for the recursions of Πt and Kt.

The requirement that the matrix (δΠt+1)−1 − ρN being positive definite derives from a

second order condition which must hold for the discounted total stress function St to satisfy the

saddle point condition imposed by Theorem 1. As noted by Whittle, whenever the cost function

ct is non-negative such condition fails for ρ large enough, indicating that the minimization

criterion V t is infinite and confirming our earlier claim that for a sufficiently large degree

of risk-aversion the DLEQG problem is not well-behaved and does not admit an optimizing

solution. An economic interpretation of the failure of the optimization problem is that in these

extreme circumstances the optimizing agent becomes so pessimistic as to consider her control

ineffective and hence useless.

Because of time-discounting it is possible to consider the limit case for T ↑ ∞, that is a

DLEQG problem with infinite horizon. As indicated by Hansen and Sargent (1994) there is

no certainty that for T ↑ ∞ the criterion V t is finite and hence the DLEQG may be not

well-defined. However, when a minimum is reached we can identify a stationary solution, in

that in the limit Πt → Π and Kt → K, where the limit matrices are determined by the fixed

point in the risk-sensitive Riccati equation,

Π = R + A′Π̃A − (S′ + A′Π̃B)(Q + B′Π̃B)−1(S + B′Π̃A) , (1.8)

with Π̃ ≡ ((δΠ)−1 − ρN)−1 . (1.9)

7With respect to the original result by Whittle for the LEQG problem two adjustments are required as
consequence of the introduction of time-discounting: i) the second order condition for the extremization of the
discounted future stress function requires that (δΠt+1)−1 − ρN, rather than Π−1

t+1 − ρN, is positive definite;

and ii) in the modified Riccati equation Π̃t+1 = ((δΠt+1)−1 − ρN)−1 replaces Π̃t+1 = (Π−1
t+1 − ρN)−1.
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2 The Recursive Criterion Under Imperfect State Observation

Hansen and Sargent do not consider the scenario in which only a noisy signal on the state

vector zt is observed at time t.8 In such a scenario the initial recursive criterion proposed in

equation (1.1) is not well-defined, as the cost function ct is no longer deterministic. However,

we can employ the recursive criterion in equation (1.2). Under imperfect state observation,

while no longer equivalent to the former one, this criterion is well-defined.

To allow for imperfect state observation we introduce the following modified Definition for

the class of Markovian DLEQG problems.

Definition 3 An optimal control problem is said to be Markovian Linear Exponential Quadratic

Gaussian with time-discounting and imperfect state observation if the recursion (1.2) is solved

over the periods t = 1, 2, . . . , T with respect to the free-valued control vector ut under the con-

ditions that:

(i) for t = 1, 2, . . . T , the cost function ct is a quadratic form in the control vector, ut, and the

state vector, zt, ct = u′tQut + z′tRzt + 2u′tSzt, positive definite in ut and zt;

(ii) the vector of state variables, zt, follows a linear plant equation zt = Azt−1 + But−1 + εt;

(iii) the vector of observable variables is given by

wt = C zt−1 + ηt ,

with ψt =

(
εt

ηt

)
∼ N

[(
0

0

)
,

(
N L

L′ M

)]
and ψt ⊥ ψt′.

As zt is now unobservable, the discounted stress function takes a new formulation. In partic-

ular, let ẑt−1 denote the expectation of the state vector zt−1 conditional on the information

contained in observation history Ht−1 = {h0,Ut−2,Wt−1}, with Ut−2 = (u1, . . . ,ut−2) and

Wt−1 = (w1, . . . ,wt−1), Ωt−1 the corresponding conditional covariance matrix and P the

covariance matrix for ψt, with

P =

(
N L′

L M

)
.

We then introduce the following Definition.

8Hansen and Sargent, in deriving recursive linear control rules for their optimization criterion, rely on results
developed by Jacobson (Jacobson, 1973, 1977) to analyze LEQG problems under perfect state observation.
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Definition 4 Under imperfect state observation, the discounted total stress function, St, is

given by St ≡ ct− 1
ρ (Dt−1 +dt+dt+1)+δV t+1, where dt is equal to ψ′tP

−1ψt for t = 1, 2, . . . T

and 0 for t = T + 1, while Dt−1 = (zt−1 − ẑt−1)′Ω−1
t−1 (zt−1 − ẑt−1).

We can then prove the following Lemma, which reformulates a result stated in Lemma 3 for

the perfect state observation scenario.

Lemma 5 In a Markovian DLEQG problem, under imperfect state observation, if the op-

timization criterion in t + 1, V t+1, is a quadratic form in the state vector zt+1 and the

discounted total stress function St satisfies a saddle point condition with respect to ξt (with

ξ′t ≡ (z′t−1− ẑ′t−1 ψ
′
t ψ
′
t+1)) and ut, so that minut maxξt St exists, the following proportionality

condition holds,

min
ut

Et

[
exp

(ρ
2

(ct + δV t+1)
)]
∝ exp

(
ρ

2
min
ut

max
ξt

St

)
,

where the proportionality constant is independent of the state vector zt, while the optimization

criterion V t is a quadratic form in zt equal to the extremized discounted total stress function

minut maxξt St plus a constant independent of zt.

Proof. Consider that under imperfect state observation V t+1 is still a function of zt+1, while

ct is function of zt. Since under imperfect state information zt and zt+1 can be expressed in

terms of the vector ξt, we have

min
ut

Et

[
exp

(ρ
2

(ct + δV t+1)
)]

∝ min
ut

∫
exp

(
ρ

2
(ct + δV t+1)− 1

2
ξ′tΥ

−1
t−1ξt

)
dξt ,

where Υt−1 denotes the covariance matrix of ξt conditional on observation history Ht−1. In

addition, since (zt−1 − ẑt−1)′ ⊥ ψ′t ⊥ ψ′t+1, we can write

min
ut

Et

[
exp

(ρ
2

(ct + δV t+1)
)]

∝ min
ut

∫
exp

(
ρ

2
(ct + δV t+1)− 1

2

(
ψ′t+1P

−1ψt+1 +

ψ′tP
−1ψt + (zt−1 − ẑt−1)′Ω−1

t−1 (zt−1 − ẑt−1)

))
dξt

= min
ut

∫
exp

(
ρ
St

2

)
dξt .

Then, we can proceed as in the Proof of Lemma 3. Since V t+1 is a quadratic function of zt+1,
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as the latter is linearly dependent on ξt and ut, St is a quadratic form in ξt and ut. If the

discounted total stress function respects the aforementioned saddle point condition, exploiting

the property of quadratic forms outlined in the Proof of Lemma 3, we conclude that

min
ut

∫
exp

(
ρ
St

2

)
dξt = min

ut

∫
exp

(
−1

2
(−ρSt)︸ ︷︷ ︸
Q(ut,ξt)

)
dξt

∝ exp

(
−1

2
max

ut
min
ξt

(−ρSt)

)
= exp

(
ρ

2
min
ut

max
ξt

St

)
,

where once again we have made use of the fact that −St admits a saddle point in ut and in ξt.

As the discounted total stress function St respects the saddle point condition, its extremized

value will be a quadratic form in zt and so will be V t. �

Lemma 5 suggests a revision of RSCEP outlined in Theorem 1.

Theorem 3 - (Risk-sensitive Certainty Equivalence Principle). In a Markovian DLEQG

problem, under imperfect state observation, if the discounted total stress function St+j respects

a saddle point condition with respect to ξt+j and ut+j for j = 0, 1, . . . , T − t, the optimal value

of the vector ut is determined at time t by simultaneously minimizing St with respect to ut and

maximizing it with respect to ξt. The extremized discounted stress function is proportional to

the recursive optimization criterion, V t ∝ minut maxξt St.

The vector ξt contains the vectors zt−1 − ẑt−1, εt, ηt, εt+1 and ηt+1 which at time t

are unknown. Following Whittle’s suggestion they can be expressed as linear functions of

the unobservable (at time t) state vectors zt−1, zt and zt+1 and signal vector wt+1. Then

the saddle-point condition for the discounted total stress function in t can be equivalently

expressed as follows,

min
ut

max
zt−1,zt,zt+1,wt+1

St .

By writing the saddle point condition in this way, we see that it can be satisfied proceeding

in two stages: in stage i), conditionally on the current state vector zt, the discounted total

stress function is extremized with respect to ut, zt−1, zt+1 and wt+1; in stage ii) the resulting

function is extremized with respect to zt. In fact, we notice that

min
ut

max
zt−1,zt,zt+1,wt+1

St ⇔ max
zt

{
min
ut

max
zt−1,zt+1,wt+1

St

}
.

In stage i), conditionally on zt, the extremization of the discounted stress function will be
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achieved by isolating terms in St which pertain to past and future. This allows a partial

separation between estimation and control. Specifically, let Pt(zt,Ht) denote the extremized

discounted past stress function defined as

Pt(zt,Ht) = max
zt−1

{
− 1

ρ

(
dt + Dt−1

)}
, (2.1)

where Ht is observation history at time t. Then, the following Lemma, which adapts to the

Markovian DLEQG problem a result originally derived by Whittle, holds.

Lemma 6 Under imperfect state observation, the extremization of the discounted stress func-

tion at time t, with t = 1, 2, . . . , T , can be obtained operating into two stages. Firstly, the

extremized discounted past and future stress functions, Pt(zt,Ht) and Ft(zt), are calculated

conditionally on the current vector, zt. Secondly, the saddle point for the discounted total

stress function St is achieved by maximizing Pt(zt,Ht) + Ft(zt) with respect to zt.

Proof. The discounted total stress function can be divided into two parts which contain values

respectively depending on past and future variables,

− 1

ρ

(
dt + Dt−1

)
and ct −

1

ρ
dt+1 + δV t+1 .

Hence, in stage i), extremizing St with respect to ut and zt−1, zt+1, wt+1, conditionally on

the current state vector zt, is equivalent to solving separately the two programs,

max
zt−1

{
− 1

ρ

(
dt + Dt−1

)}
and min

ut
max

zt+1,wt+1

{
ct −

1

ρ
dt+1 + δV t+1

}
.

As zt+1 and wt+1 are linearly dependent on εt+1 and ηt+1, the latter program can be re-written

as follows

min
ut

max
εt+1,ηt+1

{
ct −

1

ρ
dt+1 + δV t+1

}
.

The maximization of ct−(1/ρ)dt+1+V t+1 with respect to ηt+1 reduces to maxηt+1
{−(1/ρ)dt+1}

= −1
ρε
′
t+1N

−1εt+1. Importantly, this means that under imperfect state information the ex-

tremization, conditionally on zt, of the discounted total stress function, St, with respect to ut,

zt+1 and wt+1 is equivalent to the extremization of the discounted total stress function under

perfect state information with respect to ut and εt+1. Lemma 4 shows that this corresponds to

calculating the extremized discounted future stress function, Ft(zt), which yields the optimal

policy, u(zt), conditional on the state vector, zt.
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The former program instead corresponds to calculating the extremized discounted past

stress function in t, Pt(zt,Ht). This extremization identifies the optimal estimate for zt condi-

tionally on information up to time t. Estimation and control are then recoupled by maximizing

the sum Pt(zt,Ht) + Ft(zt) with respect to the current state vector zt. �

Theorem 3 and Lemma 6 extend to the class of Markovian DLEQG problems Whittle’s

risk-sensitive separation principle (RSSP) which allows to find the optimal policy by separating

estimation and control. In particular, if the conditions listed in Theorem 3 for the existence of

a meaningful solution to the DLEQG problem under imperfect state observation are met, this

is found through the following Theorem.

Theorem 4 - (Risk-sensitive Separation Principle). The extremized discounted past and fu-

ture stress functions Pt and Ft relate to estimation and control respectively, as the evaluation

of the former identifies the optimal estimate for the state vector zt conditional on past obser-

vations, while that of the latter pins down the control ut(zt) which would be optimal if zt were

known. The calculations of Pt and Ft are recoupled by maximizing Pt + Ft with respect to the

state vector zt so as to find the maximum discounted total stress estimate (MDTSE) z̆t for the

state vector zt.

- (Risk-sensitive Certainty Equivalence Principle). The optimal value of the control vector at

time t is then given by ut(z̆t).

As mentioned, conditionally on zt the extremized discounted future stress function, Ft,

respects the recursion (1.3) in Lemma 4. Then, Theorem 2 provides the conditional optimal

policy, ut(zt). The extremization of the discounted past stress function, Pt, is obtained via the

following Lemma.

Lemma 7 The extremized discounted past stress function is equal to Pt(zt,Ht) = −(1/ρ) (zt−
ẑt)
′Ω−1

t (zt − ẑt) + · · · , where · · · indicates terms independent of zt, while ẑt denotes the ML

estimate of the state vector zt, given by its expectation conditional on observation history Ht,

and Ωt the corresponding conditional covariance matrix.

Proof. Pt(zt,Ht) = maxzt−1 −1
ρ {dt + Dt−1} . Given the definition of Dt−1 this is equiva-

lent to maxzt−1
1
ρ log f(zt | Ht−1) where f(.) is the conditional density function of zt given

Ht−1. The maximum corresponds to Pt(zt,Ht) = −1
ρDt + · · · , where now · · · indicates terms

independent of zt. �
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The extremized discounted past stress function depends on the maximum likelihood esti-

mate (MLE) of the state vector zt. Given the noisy linear signal wt, from the Kalman filter

we see that this value respects the following recursion

ẑt = A ẑt−1 + B ut−1 + (L + AΩt−1 C′)(M + C Ωt−1 C′)−1 (wt − C ẑt−1) , (2.2)

where the conditional covariance matrix Ωt respects the Riccati recursion,

Ωt = N + A Ωt−1 A′ − (L + AΩt−1 C′)(M + C Ωt−1 C′)−1 (L′ + C Ωt−1 A′) .(2.3)

Importantly, Lemma 7 indicates that differently from what applies to the Markovian LEQG

problem studied by Whittle, in the extremization of the discounted past stress function no

adjustment is made to the MLE of zt to correct for the impact of risk-aversion. This is

because differently from Whittle’s formulation the extremized discounted past stress function

does not depend on the cost function ct.
9 However, estimation and control are still intertwined

as suggested in the discussion of Theorem 1. In fact, to re-couple the extremization of past

and future stress functions we apply Theorem 4 and calculate the sum Pt(zt,Ht) + Ft(zt).

The resulting function is then maximized with respect to the state vector zt to obtain the

maximum discounted total stress estimate (MDTSE), z̆t. Given that Pt(zt,Ht) + Ft(zt) =

−(1/ρ)(zt − ẑt)
′Ω−1

t (zt − ẑt) + z′tΠtz
′
t plus terms independent of zt, from the first derivative

of this sum with respect to zt it is immediate to see that, for Ω−1
t − ρΠt positive definite, z̆t

is given by the following expression

z̆t = (I − ρΩt Πt)
−1 ẑt, (2.4)

which is function of ρ and the matrix Πt. As the latter depends on the components of ct,

we see that the MDTSE z̆t is clearly affected by the shape of the cost function alongside the

degree of risk-aversion, confirming the close nexus between control and estimation for the class

of DLEQG problems. Finally, the optimal control vector under imperfect state observation

is given by Theorem 2 where z̆t replaces zt, i.e. ut = Kz̆t, where K is the matrix of optimal

coefficients presented in Theorem 2.

9Whittle shows that a maximum past stress estimate (MPSE) replaces the standard MLE in the expression
for Pt. Such MPSE is obtained by introducing an adjustment to the Kalman filter which accounts for the impact
of risk-aversion on the optimal estimation of the state vector zt.
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3 Monetary Policy for a Risk-averse Central Bank

We now apply this new formulation of the DLEQG problem to the issue of output and in-

flation stabilization on the part of an independent central bank. In particular, we refer to

a simple analytical framework developed by Svensson (Svennson, 1997) which describes the

optimal monetary policy of a central bank with an infinite-horizon, time-separable quadratic

cost function of inflation and output gap. We investigate an extension of Svensson’s analysis to

the scenario where the monetary authorities: i) face a risk-sensitive optimization criterion; and

ii) observe imperfectly inflation and output. This allows to see what happens when the CEP

cannot be applied as in the LQG problem investigated by Svensson and the actual values of the

state variables cannot be replaced by their expectations when they are imperfectly observed.

Svensson studies the optimal policy of a risk-neutral central bank which controls the short-

term (real) interest rate to minimize the expected value of the loss function Lt ≡
∑∞

i=0 δ
ict+i,

where the ct is a quadratic cost function in the inflation rate, πt, and the output gap yt,

ct ≡ π2
t + λy2

t , with 0 ≤ λ. The cost ct captures the loss in welfare the economy incurs in

period t when inflation and output deviates from first-best values, so that Lt represents a

social welfare loss function.10,11

The dynamics of the state variables, πt and yt, is given by the following system of equations

πt = πt−1 + αyt−1 + επt , (3.1)

yt = βyt−1 − γrt−1 + εyt , (3.2)

where rt is a short-term (real) interest rate and the coefficients α, β and γ are non-negative

constants. The variation in the inflation rate is increasing in lagged output, while the latter is

serially correlated and decreasing in the lagged (real) interest rate. As noted by Svensson the

short-term interest rate affects output with one lag and the inflation rate with two lags, this

discrepancy being an important feature of this model which is however consistent with ample

empirical evidence.

As in the plant equation the innovation terms επt and εyt follow independent white noise

processes, Svensson investigates a standard Markovian DLQG problem. However, while he

10The long-run natural output level is normalized to zero so that yt corresponds to output gap.
11The cost function should depend on the deviation of the inflation rate from a target level π∗. We postpone

the discussion of this more involving formulation to Section 4, where we show how the normalization introduced
here is inconsequential.
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envisages a risk-neutral central bank, it can be argued that monetary authorities are risk-

averse and mostly concerned with adverse shocks, such as those associated with a strong

deflation, which possess a large negative impact on social welfare. Thence, within Svensson’s

formulation it is important to determine the optimal monetary policy of a risk-averse central

bank which seeks to hedge against the most adverse economic conditions. We achieve this by

recasting Svensson’s formulation into the DLEQG framework we described in Section 1, in that

according to Theorem 1 within such framework the monetary authorities will act as though

they were pessimistic, choosing their monetary policy in order to minimize the social welfare

loss in the face the worst possible economic shocks.12

Then, we introduce the criterion V t and define the vector of state variables zt ≡ (πt yt)
′,

the vector of innovation terms εt ≡ (επt ε
y
t )
′ and the scalar control variable ut ≡ rt. We have

A ≡

(
1 α

0 β

)
, B ≡

(
0

− γ

)
, R ≡

(
1 0

0 λ

)
, Q ≡ S ≡ 0 , N ≡

(
σ2
π 0

0 σ2
y

)
.

As the optimization horizon is infinite we concentrate on the steady-state solution: by solving

the fixed point for the modified Riccati equation (1.8) we find that exp(ρV t/2) = exp(1
2ρ[k +

z′tΠzt]) and the optimal control is ut = Kzt, where k is a constant independent of zt,

Π =

 1 + δW αδW

αδW λ+ α2δW

 ,

W is a positive root of the following quadratic equation

δ

(
α2 − δ(α2 + λ)ρσ2

π

)
W 2 −

(
δ(α2 + λ) − λ(1 − δρσ2

π)

)
W − λ = 0

and

K =
1

γ

(
αδW

α2δW + λ− θρσ2
π

β +
α2δW

α2δW + λ− θρσ2
π

)
,

where θ = δ(λ + δ(α2 + λ)W ). This implies that the optimal monetary policy is reached by

12van der Ploeg (2009) introduces risk-aversion in an monetary policy model where the central bank minimizes
the expected value of an infinite-horizon, time-separable quadratic cost function of inflation and output gap, and
these state variables follow a dynamics similar to that described in equations (3.1) and (3.2). However, since he
does not allow for time-discounting in the time-separable cost function, his formulation cannot be considered a
direct extension of Svensson’s model. In his analysis van der Ploeg does not rely on a recursive criterion as the
one presented in equation (1.2), but he recasts Svensson’s model within Whittle’s LEQG framework.

20



setting the short-term (real) interest rate equal to

rt =
1

γ

αδW

α2δW + λ− θρσ2
π

πt +
1

γ

(
β +

α2δW

α2δW + λ− θρσ2
π

)
yt , (3.3)

a Taylor’s rule which clearly subsumes that derived by Svensson for ρ = 0, in that under

risk-neutrality,

W =
1

2

1 − (1− δ)λ
α2δ

+

√(
1 +

(1− δ)
α2δ

)2

+
4λ

α2


and

rt =
1

γ

αδW

α2δW + λ
πt +

1

γ

(
β +

α2δW

α2δW + λ

)
yt .

It is interesting to emphasize that similarities with Svensson’s solution appear. In particular,

denoting with πt+1|t the expectation at time t of the inflation rate in period t+1, we have that

πt+1|t = πt + αyt. It is immediate to verify that

rt =
1

γ

(
β yt +

αδW

α2δW + λ− θρσ2
π

πt+1|t

)
and that

exp

(
ρV t

2

)
= exp

(
ρ

2
[k + π2

t + λ y2
t + δWπ2

t+1|t]

)
,

so that the control path and the optimization criterion can be defined in terms of the inflation

forecast. In addition, denoting with πt+2|t the expectation at time t of the inflation rate in

period t+ 2, we find that at the optimum

πt+2|t = − 1

αδW

(
λ − θ ρ σ2

π

)
yt+1|t ,

where yt+1|t denotes the expectation at time t of period t+1 output gap. This condition implies

that the two-period ahead inflation forecast is equal to its target level insofar the one-period

ahead expected output gap is null.

However, significant differences also emerge between the risk-neutral and risk-averse sce-

narios. When λ = 0, and hence only inflation targeting motivates the monetary authorities,

the expectation of the inflation rate πt+2 in period t is always null for ρ = 0. As suggested
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by Svensson, in the risk-neutral scenario, for λ = 0 the inflation forecast becomes an explicit

intermediate target, in that the monetary policy is optimal insofar πt+2|t = 0. On the other

hand, in the risk-averse scenario, for λ = 0 at the optimum πt+2|t = αδρσ2
π yt+1|t 6= 0 (since

θ = α2δ2W for λ = 0). Because of risk-aversion, the standard CEP cannot be applied as in

the LQG problem investigated by Svensson and hence the inflation forecast is not longer an

explicit intermediate target when inflation targeting is the only mission of the central bank.

In addition, even when the monetary policy is also aimed at output stabilization (λ > 0),

in the risk-neutral scenario we see that inflation forecasts dampen out, in that for ρ = 0

πt+2|t = λ
α2δW+λ

πt+1|t. This indicates that under risk-neutrality with output stabilization,

as the inflation forecast slowly converges to zero, the central bank expects the inflation rate

to reach the target level in the long-run. This is not necessarily the case for ρ > 0, as now

πt+2|t = ( λ−θρσ2
π

α2δW+λ−θρσ2
π

)πt+1|t. Strikingly, the central bank may actually expect the inflation

rate to wander away from the target level even if λ is small or null, that is even if output

stabilization is not the main objective of its monetary policy. In fact, for λ = 0 we see that

for ρ > 0, πt+2|t = −δρσ2
π

1−δρσ2
π
πt+1|t, and hence for 1/2 < δρσ2

π < 1 abs(πt+2|t) > abs(πt+1|t). This

implies that even for λ = 0, a situation in which a risk-neutral central bank would employ

πt+2|t as an intermediate target and would set its value equal to zero, ie. equal to the optimal

level, a risk-averse central bank may expect the inflation forecast to wander away from zero.

Finally, risk-aversion conditions deeply the Taylor rule selected by the monetary authorities.

Figure 1 plots the inflation, kπ, and output gap, ky, coefficients in the optimal Taylor rule

described in equation (3.3), against the risk-aversion coefficient for values of ρ ranging from 0

to 3.13 As ρ = 0 corresponds to risk-neutrality we see that a risk-averse central bank follows

a more aggressive Taylor rule, in that the short-term (real) interest rate is more sensitive

to: i) departures of the inflation rate from its target level; and ii) swings in output from full

employment. While Figure 1 is obtained for a specific choice of parameters, numerical analysis

shows that the same conclusion is reached for all parametric constellations for which an optimal

monetary policy exists.

This result may appear counter-intuitive and hence surprising, in that one may conjecture

that a pessimistic agent will necessarily act more cautiously, selecting a more conservative

policy rule. However, a risk-averse central bank cares for the variability of the inflation rate and

the output gap and hence attempts to reduce it by reacting more aggressively to monetary and

13These coefficients are determined by: solving for the positive root of the quadratic equation which pins
down W ; and ii) inserting the resulting value in the vector K.
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Figure 1: The values of the state variable coefficients kπ and ky for α = 1.5, β = 0.9, δ = 0.95, γ = 2, λ = 1

and σ2
π = σ2

π = 0.05 are plotted against the risk-aversion coefficient ρ.

real shocks. In addition, it is worth noticing that this feature of the impact of risk-aversion is

not confined to the specific model we investigate. Indeed, we can list other multi-period models

with optimizing agents where risk-aversion makes them more rather than less aggressive (See,

for instance, Holden and Subrahmanyam, 1994; Vitale, 2012).

Despite risk-averse monetary authorities select a more aggressive Taylor rule, the short-term

(real) interest rate presents the same level of volatility which is observed under risk neutrality.

This suggests that it may be difficult to detect empirically the impact of risk-aversion on the

optimal monetary policy. In fact, if the monetary policy is analyzed on the basis of the moments

of the short-term interest rate that of a risk-averse central bank is observationally equivalent to

that of a risk-neutral one. To establish this result consider that in steady state, zt = Γzt−1+εt,

where Γ = A + BK. Therefore, zt = Λεt, with Λ = (I2 − Γ)−1, and hence Var[zt] = ΛNΛ′,

while Var[rt] = KΛNΛ′K′, in that rt = Kzt. Some tedious but straightforward algebra shows

that

Var[zt] =

 (1+αγκπ)2

α2γ2κ2π
σ2
π + 1

γ2κ2π
σ2
y − γ (1+αγκπ)κπ

α2γ2κ2π
σ2
π

− γ (1+αγκπ)κπ
α2γ2κ2π

σ2
π

1
α2 σ

2
π

 (3.4)
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and hence that

Var[rt] =
1

γ2

[(
1− β
α

)2

σ2
π + σ2

y

]
. (3.5)

This indicates that the unconditional variance of the short-term (real) interest rate is inde-

pendent of ρ, the risk-aversion coefficient, and that the monetary policy shows the same level

of volatility which prevails under risk-neutrality. The unconditional variances for the inflation

rate, πt, and the output gap, yt, explains how this is possible. In fact, the variance of the

latter is also independent of the risk-aversion coefficient, while that of the former is decreasing

in ρ.14 Then, in steady state, the smaller variability of the inflation rate under risk-aversion

(Var[πt] is smaller for ρ > 0) exactly compensates the augmented aggressiveness of the mone-

tary authorities, so that, even if κπ and κy are larger for ρ positive, the unconditional variance

of the short-term (real) interest rate remains the same.

Indeed, the values of the unconditional variances Var[πt] and Var[yt] indicate that empiri-

cally the risk-neutral and risk-averse scenarios only differ in the variability of the inflation rate.

While the unconditional variance of the output gap is unaffected by risk-aversion, that of the

inflation rate is smaller for ρ > 0, suggesting that a risk-averse central bank will appear to be

particularly concerned with the inflation rate volatility. This is because, given the specific lag

structure in the law of motion for the vector of state variables, zt, the variability of the inflation

rate represents the key factor in determining the welfare loss for the monetary authorities and

it is therefore the main driver of the central bank’s monetary policy.

Finally, before turning to the analysis of the imperfect information scenario, we should recall

that for ρ large enough the second order condition, reported in Theorem 2, that (δΠ)−1 − ρN
being positive definite is violated, indicating that no optimal monetary policy exists for an

extremely risk-averse central bank. In other words, an important non-linearity emerges in the

relation between risk-aversion and monetary policy: as ρ augments the monetary authorities

become more aggressive, but eventually their attempt to minimize their welfare loss completely

fails and no optimal monetary policy can be undertaken.

14In fact, κπ is increasing in ρ while the coefficients (1 + αγκπ)2/(α2γ2κ2
π) and 1/γ2κ2

π are both decreasing
in κπ.
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3.1 Imperfect State Observation

It is interesting to see what happens in the case the central bank observes imperfectly the state

variables. In the LQG case we know that thanks to the CEP it is sufficient to replace the state

vector with its ML estimate. This is not the case when the central bank is risk-averse as the

unobservable variables are replaced by those values which maximize the discounted total stress

function.

With respect to the monetary policy of the central bank, a realistic scenario is that in

which the monetary authorities observe the state variables with one lag. In this scenario the

formulation of the discounted total stress function is simplified, in that dt = ε′tN
−1εt for t =

1, 2, . . . , T . Then, the extremization of the discounted past stress is reached for zt−1 = ẑt−1 and

is given by Pt(zt,Ht) = −1
ρ ε
′
tN
−1εt + · · · , where once again + · · · denotes terms independent

of zt. Since in steady state Ft(zt) = z′tΠzt, in re-coupling past and future extremization we

solve

max
zt

{
−1

ρ
ε′tN

−1εt + z′tΠzt

}
.

Given that at time t the observable vector is wt = zt−1, the conditional expectation of the

state vector, zt, is ẑt = Azt−1 + But−1. Therefore, since we can write εt = zt − ẑt, we need to

solve

max
zt

{
−1

ρ
(zt − ẑt)

′N−1(zt − ẑt) + z′tΠzt

}
.

We immediately conclude that, for N−1− ρΠ positive definite, the maximum discounted total

stress estimate (MDTSE) žt is given by

z̆t = (I − ρN Π)−1ẑt .

As indicated in Theorem 4, the optimal control is obtained by inserting the MTSE, z̆t, into

the control rule which would prevail under perfect state observation. Within the monetary

policy example we find that in equation (3.3) the actual values of the inflation rate and output

gap are not replaced by their ML estimates, π̂t and ŷt, but by the following values which correct

for the impact of risk-aversion

 π̆t

y̆t

 =

 π̂t

ŷt

 + ρG

 π̂t

ŷt

 , where G =

 π1−det(Π)ρσ2
y

det(I2−ρNΠ)
σ2
π

π1,2

det(I2−ρNΠ)
σ2
π

π1,2

det(I2−ρNΠ)
σ2
y

π2−det(Π)ρσ2
π

det(I2−ρNΠ)
σ2
y

 ,
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Figure 2: The adjustments to the Taylor rule coefficients kπ and ky (i.e. the differences κIπ − κπ and κIy − κy)

are plotted against ρ for α = 1.5, β = 0.9, δ = 0.95, γ = 2, λ = 1 and σ2
π = σ2

π = 0.05.

while π1, π1,2 and π2 are the elements of matrix Π. This implies that the optimal Taylor rule

is given by a modified expression,

rt = K(I + ρG) ẑt = κIπ π̂t + κIy ŷt , (3.6)

where the vector ρKG contains adjustments to the Taylor rule coefficients induced by the

risk-aversion correction to the ML estimate of the vector zt. According to the values in the

matrix G, imperfect state observation may entail a more (or less) aggressive Taylor rule, in so

far the adjusted coefficients for inflation and output gap, κIπ and κIy, are larger (smaller) than

those which prevail under perfect state observation, κπ and κy.

In Figure 2 we plot the differences between the adjusted coefficients, κIπ and κIy, and the

unadjusted ones, κπ and κy, against the risk-aversion coefficient ρ. This plot proposes an

apparently counter-intuitive result. In fact, we see that, as the difference is positive for both

coefficients, the monetary authorities become even more aggressive when they observe with

a time lag inflation and output. That is, when facing a more uncertain environment, the

activism of the monetary authorities increases. As the adjustment to the Taylor rule coefficients

increase with ρ we also observe that such activism augments with the degree of risk-aversion

of the central bank. However, this increased activism is only apparent as the analysis of the

unconditional variance of the inflation rate, πt, output gap yt, and the short-term (real) interest
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Figure 3: The ratio (in percentage terms) between the unconditional variance of the inflation ratio Var[πt] and

its base value for ρ = 0 is plotted against ρ, under perfect and imperfect state observation, for α = 1.5, β = 0.9,

δ = 0.95, γ = 2, λ = 1 and σ2
π = σ2

π = 0.05.

rate, rt, reveals.

In fact, even under imperfect state observation the unconditional variance of the short-term

interest rate is independent of the risk-aversion coefficient, confirming that empirically it may

be difficult to appreciate the impact of risk-aversion on the monetary policy. To show this result

consider that under imperfect state observation zt = Azt−1+Ψẑt−1+εt, where Ψ = BKI (with

KI corresponding to the vector of Taylor’s rule coefficients under imperfect state observation,

KI = K(I + ρG)) and, as the state vector is observed with a lag, ẑt = Azt−1 + Ψẑt−1. Then,

ẑt = Φzt−1, where Φ = (I2 −Ψ)−1A. Replacing this expression in that for zt we find that

zt = Azt−1 +ΨΦ zt−2 +εt which we can also write as zt = ΛIεt, where ΛI = (I2−A−ΨΦ)−1.

We conclude that Var[zt] = ΛINΛ′I , while Var[ẑt] = ΦΛINΛ′IΦ
′, and that hence, since under

imperfect state observation ut = KI ẑt, Var[rt] = KIΦΛINΛ′IΦ
′K′I .

Once again some long but straightforward algebra shows that

VarI [zt] =


(

1 +
1 + γκIy −β

αγκIπ

)2

σ2
π +

(
1−γκIy
γκIπ

)2

σ2
y − 1

α

(
1 +

1 + γκIy −β
αγκIπ

)
σ2
π

− 1
α

(
1 +

1 + γκIy −β
αγκIπ

)
σ2
π

1
α2 σ

2
π

(3.7)
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and that

VarI [rt] =
1

γ2

[(
1− β
α

)2

σ2
π + σ2

y

]
. (3.8)

This shows that the unconditional variances of the short-term interest rate and the output gap

are equal to those which prevail under risk-neutrality and perfect state observation (VarI [rt] =

Var[rt] and VarI [yt] = Var[yt]), while the unconditional variance of the inflation rate is function

of the Taylor’s rule coefficients κIπ and κIy. As these coefficients depend on the risk-aversion

coefficient, VarI [πt] varies with ρ and indeed numerical analysis shows that such value decreases

with ρ, explaining why it is possible that for a larger ρ (and hence with a more aggressive

Taylor-rule) the variability of the short-term interest remains unchanged.

Thus, Figure 3 plots the ratio (in percentage terms) between the unconditional variance of

the inflation rate, Var[πt], and its base value for ρ = 0 in both the perfect state and imperfect

state scenarios.15 The plot clearly illustrates the reduction in the volatility of the inflation

rate in the presence of a risk-averse central bank in both scenarios. As the volatility of the

inflation rate is smaller under risk-aversion, and decreasing in ρ, a more aggressive Taylor rule

will not result in a more volatile short-term interest rate. We therefore conclude that in both

scenarios the impact of the central bank’s risk-aversion on its optimal monetary policy only

manifests via a reduced volatility in the inflation rate, as the variability of both output gap

and short-term interest rate is unaffected by ρ.

4 The Time-heterogeneous Formulation

In presenting the Markovian DLEQG problem we suggested that its formulation could be made

time-heterogeneous by introducing time-dependent matrices At, Bt, Nt, Qt, Rt and St in the

specification of the plant equation and the cost function. Treatment of this generalization

is straightforward. It is more involving the analysis of the formulation with deterministic

disturbance terms into the plant equation. In particular, assume the state vector respects the

following law of motion

zt = Azt−1 + But + µt + εt ,

15It should be noted that the base values for this unconditional variance differ between the two scenarios. In
correspondence with the parametric choice of Figure 1, the value of the unconditional variance of the inflation
rate under risk neutrality in the imperfect state scenario is about 4 times bigger than the corresponding value
for the perfect state scenario, VarIρ=0[πt] ≈ 4Varρ=0[πt].
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where the vector µt contains pre-determined values. These values are known in advance and

represent unexpected disturbances which modify the original plant equation introduced in

Definition 1.

Under perfect state observation, the pre-determined disturbance term µt implies that the

discounted future stress function is a non-homogenous quadratic form, Ft(zt) = z′tΠtzt−2ϑ′tzt

(with ϑt a vector of coefficients), so that Theorem 2 must be amended as follows.

Theorem 5 - (Risk-sensitive Riccati Equation). Under perfect state observation, if the matrix

(δΠt+1)−1 − ρN is positive definite and the state vector respects the linear plant equation with

pre-determined disturbances, at time t the extremized discounted future stress function is given

by

Ft(zt) = z′t Πt zt − 2ϑ′t zt for ut = Kt zt + (Q + B′Π̃t+1B)−1 B′ Π̃t+1 (Π−1
t+1 ϑt+1 − µt+1) ,

(4.1)
where

Πt = R + A′Π̃t+1A − (S′ + A′Π̃t+1B)(Q + B′Π̃t+1B)−1(S + B′Π̃t+1A) , (4.2)

Kt = − (Q + B′Π̃t+1B)−1(S + B′Π̃t+1A) , (4.3)

ϑt = Γ′t Π̃t+1(Π−1
t+1 ϑt+1 − µt+1) , (4.4)

with Γt = A + BKt and Π̃t+1 = ((δΠt+1)−1 − ρN)−1 . (4.5)

Proof. We just repeat the steps followed in the proof of Theorem 2. Recall that the discounted

future stress respects the double recursion Ft = LL̃Ft+1 based on the two operators

Lφ(z) = min
u

[c(z,u) + φ(Az +Bu + µ)] and L̃φ(z) = max
ε

[φ(z + ε) − 1

ρ
ε′N−1ε] ,

Thus, assume that φ(z) = δz′Π z − 2δϑ′ z, so that L̃φ(z) = maxε [(z + ε)′δΠ(z + ε) −
2δϑ′ (z + ε) − 1

ρε
′N−1ε]. Taking first derivatives, we find that

ε̃ = − (δΠ − 1

ρ
N−1)−1δΠ z + (δΠ − 1

ρ
N−1)−1δϑ ,

which pins down a maximum if (δΠ)−1 − ρN is positive definite. Replacing this expression

we conclude that L̃φ(z) = z′ Π̃ z − 2ϑ̃
′
z + · · · , where Π̃ = ((δΠ)−1 − ρN)−1, ϑ̃ = Π̃Π−1ϑ

and · · · denotes terms independent of z. For L̃φ(z) = z′Π̃ z − 2ϑ̃
′
z, solution of the operator
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L yields the standard recursive formulae for Π, K and ϑ from the Markovian LQG problem

with pre-determined disturbances where Π̃ = ((δΠ)−1 − ρN)−1 and ϑ̃ replace respectively

Π and ϑ. Specifically applying the double recursion Ft = LL̃Ft+1, we find that F (zt) =

z′tΠtzt − 2ϑ̃
′
t+1zt + · · · for ut = Ktzt + (Q + B′Π̃t+1B)−1B′(ϑ̃t+1 − Π̃t+1µt+1), where Kt =

−(Q + B′Π̃t+1B)−1(S + B′Π̃t+1A). Replacing ϑ̃t+1 with Π̃t+1Π
−1
t+1ϑt+1 we find the recursive

formulae presented in the statement. �

Theorem 5 indicates that in the presence of pre-determined disturbances the optimal policy

contains a risk-adjusted correction which takes into account their anticipated values. This also

implies that the optimal control vector is not longer a simple linear function of the state vector,

as an extra term enters into the optimal policy.

A second adjustment must be introduced under imperfect state observation, when pre-

determined disturbances enter into the plant equation for the state vector. In fact, as Theorem

4 and Lemma 7 still apply, in recoupling the extremized discounted past and future stress

function, the sum Pt(zt,Ht) + Ft(zt) is maximized with respect to zt to obtain the MDTSE,

z̆t. Given that Pt(zt,Ht) + Ft(zt) = −(1/ρ)(zt − ẑt)
′Ω−1

t (zt − ẑt) + z′tΠtz
′
t − 2ϑ′tzt plus terms

independent of zt, taking the first derivative of this sum with respect to zt we see that, for

Ω−1
t − ρΠt positive definite, z̆t is

z̆t = (I − ρΩt Πt)
−1 (ẑt − ρΩt ϑt), (4.6)

where ẑt is still the MLE of zt, which now, thanks to the presence of the pre-determined

disturbances, is given by

ẑt = A ẑt−1 + B ut−1 + µt + (L + AΩt−1 C′)(M + C Ωt−1 C′)−1 (wt − C ẑt−1) .(4.7)

4.1 Optimal Monetary Policy with a Positive Inflation Target

Our analysis of Svensson’s model for a risk-averse central bank offers an opportunity to apply

these results if we introduce the realistic assumption that the first-best value for the inflation

rate is some positive constant π∗. Assuming, as in Svensson’s original formulation, that at time

t ct = (πt − π∗)2 + λy2
t implies that we should modify the DLEQG problem we investigated in

Section 3. In particular define ςt = πt − π∗. Then, we can rewrite the linear equations (3.1)
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and (3.2) governing the dynamics of the inflation rate and output gap as follows

ςt = ςt−1 + αyt−1 + επt , (4.8)

yt = βyt−1 − γ(ιt−1 − π∗) + εyt , (4.9)

where now the control variable is the adjusted short-term real interest rate ιt ≡ rt+π∗ = it−ςt.
For z′t ≡ (ςt yt), we can rewrite the plant equation as

zt = Azt−1 + But + µt + εt ,

with A, B and εt as in Section 3 and µt ≡

(
0

γπ∗

)
. As before we concentrate on a steady state

solution. This is possible because the pre-determined disturbance terms are time-invariant. To

pin down the steady state solution we just consider that the recursive expression for the vector

ϑt must yield a fixed point, ϑ = Γ′ Π̃(Π−1ϑ− µ), which implies that

ϑ = −Π (Π−1 − Γ′ Π̃)−1 Γ′ Π̃µ .

Given the expressions for Γ Π̃ and µ it can be proved that ϑ = 0. Inserting this vector in

the expression for the optimal control in Theorem 5 we find after some manipulation that the

optimal adjusted short-term interest rate is ιt = κπςt + κyyt + π∗, where κπ and κy respect

the expressions given in Section 3. Given the definitions of ιt and ςt we conclude that the

short-term real interest rate is equal to

rt = κπ(πt − π∗) + κyyt , (4.10)

which corresponds to the Taylor rule derived in Section 3 for the inflation rate, πt, replaced

by its deviation from the optimal level, πt − π∗. Bar this adjustment, the optimal policy is

identical to that derived in Section 3. This is also true under imperfect state observation. In

fact, for ϑ = 0 we still have that if the monetary authorities observe the inflation rate and the

output gap with a lag, the MDTSE of the state vector, žt, respects the following expression

z̆t = (I − ρN Π)−1ẑt ,
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where now the MLE for zt is ẑt = Azt−1 + But−1 +µ. Given the expressions for A, B and µ,

and the definitions of zt and ιt, we have that this MLE can be written as in Section 3,

π̂t = πt−1 + α yt ,

ŷt = β yt−1 − γ rt−1 .

5 The Continuous-time Limit

To derive the continuous-time limit of the discrete-time formulation of the Markovian DLEQG

problem we have discussed so far, assume that the interval of time [0, T ] is divided in n

sub-periods of length ∆ = T/n. Then, let us adjust the plant equation in the discrete-time

formulation as follows,

zt = (I + A ∆)zt−1 + B ∆ ut−1 + εt ,

where εt ∼N (0,∆N), while in the recursive optimization criterion the per-period cost function

is ∆ct and the discount factor is δ∆. Then, for ∆ ↓ 0 the Markovian DLEQG problem converges

to its continuous-time analogue. The following result holds.

Theorem 6 In the continuous-time limit of the Markovian DLEQG problem, under perfect

state observation, the optimal policy is

u(t) = K(t) z(t) ,with (5.1)

K(t) = −Q−1 (S′ + B′Π(t)) , (5.2)

where the matrix Π(t) respects the following continuous-time risk-sensitive Riccati equation

dΠ(t)

d t
+ R + A′Π(t) + Π(t) A − (S′ + Π(t) B) Q−1 (S + B′Π(t))

+ ρΠ(t) N Π(t) + log δΠ(t) = 0 . (5.3)

Proof. Theorem 2 still applies when the time interval [0, T ] is divided in n sub-periods. The

extremized discounted future stress function is now Ft(zt) = z′tΠtzt for ut = Ktzt, with A, B,

Q, R and S in the recursive equations for Πt and Kt replaced respectively by I + A∆, B∆,
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Q∆, R∆ and S∆, and Π̃t+1 given by ((δ∆Πt+1)−1 − ρN∆)−1. In particular,

Kt = − (Q + ∆ B′ Π̃t+1 B)−1

(
S + B′ Π̃ (I + A ∆)

)
,

Πt = Π̃t+1 + ∆

(
R + K′t Q Kt + 2S′Kt + A′ Π̃t+1 + Π̃t+1 A + 2Π̃t+1 B Kt

)
+ o(∆2) .

Given the expressions for Kt and Π̃t+1 and that lim∆↓0 Π̃t+1 = lim∆↓0 Πt = Π(t), for ∆ ↓ 0

the Riccati difference equation for Πt converges to its continuous-time counterpart given in

(5.3). Then, the discounted future stress function in the continuous-time limit is F (z(t), t) =

z(t)′Π(t)z(t), while the optimal policy is u(t) = K(t)z(t) with K(t) = −Q−1(S′+ B′Π(t)). �

It is worth noticing that in the continuous-time limit the solution to the Markovian DLEQG

problem is simpler, in that for ∆ ↓ 0 the modified matrix Π̃t+1 converges to Πt. Indeed, this

is consequence of the fact that for ∆ ↓ 0 the stress function St always possesses a maximum in

εt+1 for εt+1 = 0. This implies that the positive-definiteness condition for the extremization

of the discounted total stress function in Theorem 2 is redundant. Furthermore, in the limit

(Q+∆BΠ̃t+1B
′) converges to Q, so that a sufficient condition for the existence of a solution to

the Markovian DLEQG problem is that such matrix is positive definite.16 This means that as

long as the cost function, ct, is positive definite in ut, in the continuous-time limit an optimal

policy for the Markovian DLEQG always exists, since the stress function St surely possesses a

saddle point. Finally, notice that with respect to the standard Riccati equation which applies

to the LQG problem in continuous-time, two extra terms appear in the modified (risk-averse)

version. The term ρΠ(t)NΠ(t) modifies the standard Riccati equation as in the Markovian

LEQG problem discussed by Whittle and captures the impact in continuous-time of risk-

aversion on the dynamics of the optimal policy. Similarly, the extra term log δΠ(t) captures

the impact of time-discounting. Interestingly the two terms enter separately into the modified

Riccati equation indicating that in the continuous-time limit the impact of risk-aversion and

time-discounting is clearly disjointed.

Under imperfect state information one should see how optimal control and estimation be-

haves for ∆ ↓ 0. It is immediate to see that Theorem 3 and Lemma 7 still apply, with the

qualification that the MLE of zt will be replaced by its continuous-time counter-part. The

continuous-time version of Kalman filter indicates that for w(t) = Cz(t) + η(t), the MLE of

16In the definition of the DLEQG problem we have introduced the assumption that ct is positive definite in
ut and zt. In the discrete formulation, when (δΠt+1)−1 − ρN is positive definite, this is a sufficient condition
for the existence a recursive solution of the DLEQG problem. In the continuous-time limit such condition is
relaxed to ct being positive definite in ut.
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the state vector respects the following expression,

d ẑ(t)

d t
= A ẑ(t) + B u(t) + (L + Ω(t) C′)M−1 (w(t) − C ẑ(t)) , (5.4)

where the conditional covariance matrix Ω(t) respects the new Riccati differential equation,

dΩ(t)

d t
= N + A Ω(t) + Ω(t) A′ − (L + Ω(t) C′)M−1 (L′ + C Ω(t) ) . (5.5)

Finally, re-coupling the extremization of the discounted past and future stress functions still

yields the MDTSE for the state vector. In the continuous-time limit this will still be given by

the usual expression

z̆(t) = (I − ρΩ(t) Π(t))−1 ẑ(t) . (5.6)

As in the discrete-time formulation we may wonder what happens when we consider the

continuous-time limit of the heterogeneous-time formulation discussed in Section 4. In this

case, the discrete-time plant equation assumes the following formulation

zt = (I + A ∆)zt−1 + B ∆ ut−1 + µt ∆ + εt .

For the continuous-time limit of the Markovian DLEQG problem the following result holds.17

Theorem 7 In the continuous-time limit of the Markovian DLEQG problem with pre-determined

disturbances, under perfect state observation, the optimal policy is

u(t) = K(t)z(t) + Q−1B′ϑ(t) , (5.7)

with K(t) = − Q−1 (S′ + B′Π(t)) , (5.8)

where the matrix Π(t) respects equation (5.3) and the vector ϑ(t) the following one

dϑ(t)

d t
+

(
log δ + Γ̃(t)′

)
ϑ(t) − Π(t)µ(t) = 0 , (5.9)

with Γ̃(t) = A − B Q−1 S −
(

B Q−1 B′ − ρN

)
Π(t) .

17The presence of the pre-determined disturbances will only add a pre-determined value in the expression for
the MLE of the state vector under imperfect state observation in equation (5.4).
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Proof. Theorem 5 still applies when the time interval [0, T ] is divided in n sub-periods. The

extremized discounted future stress function is now F (zt) = z′t Πt zt − 2ϑ′t zt + · · · for A, B,

Q, µt+1, R and S replaced respectively by I + A∆, B∆, Q∆, µt+1∆, R∆ and S∆ and Π̃t+1

given by ((δ∆Πt+1)−1 − ρN∆)−1. In particular, the optimal control vector is

ut = − (Q + ∆ B′ Π̃t+1 B)−1

(
S + B′ Π̃ (I + A ∆)

)
zt

+ (Q + ∆B′ Π̃t+1∆B)−1B′(ϑ̃t+1 − Π̃t+1µt+1 ∆) , where

Π̃t+1 = ((δ∆Πt+1)−1 − ρ∆ N)−1 and ϑ̃t+1 = Π̃t+1 Π−1
t+1 ϑt+1 .

While the matrix Πt respects the Riccati difference equation derived in the proof of Theorem

6, the vector ϑt respects the following difference equation

ϑ′t = ϑ̃
′
t+1 [ I + ∆ (A + B Kt) ] − ∆µ′t+1 Π̃t+1

− ∆ (ϑ̃t+1 − Π̃t+1µ∆)′B (Q + ∆B′ Π̃t+1∆B)−1[ Q Kt + S + B′ Π̃t+1 (I + A ∆) ] .

Given the expressions for Kt, ϑ̃t+1 and Π̃t+1 and that lim∆↓0 Π̃t+1 = lim∆↓0 Πt = Π(t) and

lim∆↓0 ϑ̃t+1 = lim∆↓0 ϑt = ϑ(t), for ∆ ↓ 0 the difference equation for ϑt converges to its

continuous-time counterpart given in (5.9). Then, the extremized discounted future stress

function in the continuous-time limit is F (z(t), t) = z(t)′Π(t) z(t)−2ϑ(t)′ z(t) + · · · , while the

optimal policy is u(t) = K(t)z(t) + Q−1B′ϑ(t) with K(t) = −Q−1(S′ + B′Π(t)). �

5.1 Optimal Production Policy for a Risk-averse Monopolist

To illustrate how the Markovian DLEQG formulation operates in continuous time we consider a

monopolist who produces a perishable commodity. Her profits at time t are equal to p(t)x(t)−
qx(t)2, where p(t) is the commodity price and x(t) the quantity produced. As q is a positive

constant production presents increasing marginal costs. We assume the demand schedule for

this commodity is linear in its price and its price variation,

xd(t) = ad − bd p(t) − cd
d p(t)

d t
+ εd(t) ,

where all coefficients are positive. This means that the demand for the commodity is decreasing

in both its price level and its price variation. Since the commodity is perishable, the monopolist

will choose the supplied quantity and accept any price which will clear the market. Resorting
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to the inverted demand function we obtain the following plant equation

d p(t)

d t
= a p(t) + b x(t) + µ + ε(t) , (5.10)

where a = −bd/cd, b = −1/cd (with a and b negative), while µ = ad/cd and ε(t) = −εd(t)/cd.
Because the demand for the commodity is subject to stochastic shocks the monopolist faces an

uncertain environment and will not be able to anticipate the profits her production decisions

will bring about in the future. Then, assuming she is risk-averse, her optimal production

problem can be casted within our Markovian DLEQG framework. For simplicity suppose

µ = 0, so that we restrict our analysis to a homogeneous formulation in which Q = q, R = 0,

S = −1/2, A = a, B = b, z = p and u = x.

Then, applying Theorem 6, we find that the optimal production policy respects the following

formulation,

x(t) = κ(t) p(t) , where (5.11)

κ(t) =
1

q

(
1

2
− b π(t)

)
and π(t) = − ζ1

b2

q − ρ σ2
ε

(
e
√
D(T−t) − 1

ζ1
ζ2
e
√
D(T−t) − 1

)
,

with σ2
ε the variance of εt, T the terminal date, D = (2a + b/q + log δ)2 − (1/q)( b

2

q − ρσ
2
ε )

and ζ1, ζ2 = −1
2(2a + b/q + log δ) ± 1

2

√
D. Inspection of this solution indicates that π(t) is

never positive, as the monopolist would stop her activity if she did not earn any profits from

her production. In addition, since for t ↑ T π(t) ↑ 0 and κ(t) ↑ 1/(2q), as the monopolist

approaches the final horizon of her optimization problem, her optimal policy converges to the

static solution, in which the monopolist chooses her production to maximizes her expected per-

period profits. On the contrary, for t ↓ −∞, π(t) ↓ −ζ2/(
b2

q − ρσ
2
ε ), while k(t) ↓ 1

q (1
2 + bζ2

b2/q−ρσ2
ε
),

indicating that the optimal policy converges to the stationary solution for the formulation with

infinite horizon.

In Figure 3 we plot the dynamics of the coefficients π(t) and κ(t) under a specific parametric

choice for ρ = 0 and 5 and δ = 1 and 0.5. This graphical representation clearly confirms that

in the dynamic optimization exercise the monopolist will be more cautious than in the static

formulation, as the slope of her production policy is smaller, κ(t) < (1/2q). Indeed, the

monopolist realizes that a larger quantity of the commodity brought to the market at time t

will jeopardize future profits. In fact, a larger quantity x(t) in t lowers the commodity price

p(t). Because of the inertia in the demand schedule, such reduction propagates through time,

36



0 0.2 0.4 0.6 0.8 1
‐0.35

‐0.3

‐0.25

‐0.2

‐0.15

‐0.1

‐0.05

0

Time, t

π(
t)

Riccati Function

 

 

ρ=5,δ=0.5
ρ=0,δ=0.5
ρ=5,δ=1
ρ=0,δ=1

0 0.2 0.4 0.6 0.8 1

1.5

1.6

1.7

1.8

1.9

2
Control Rule Function

Time, t

κ(
t)

 

 

ρ=5,δ=0.5
ρ=0,δ=0.5
ρ=5,δ=1
ρ=0,δ=1

Figure 3: The dynamics π(t) and κ(t) for T = 1, σ2
ε = 0.25, a = − 1, b = − 0.5 and q = 0.25.

so that a larger production today induces smaller prices and impaired profit opportunities

tomorrow. As the terminal date T approaches, future profits have a smaller impact on her

optimal policy and hence κ(t) converges to the static value 1/(2q).

Both time-discounting and risk-aversion condition the production policy.18 Unsurprisingly,

for δ smaller the monopolist becomes more aggressive, as she gives less weight to future profits

in determining her current production policy. This implies that the slope of the production

policy, κ(t), is larger for any t. Similarly, risk-aversion makes the monopolist more aggressive,

as κ(t) is larger for ρ = 5 than ρ = 0 throughout time.

Interestingly, the impact of risk-aversion is analogous to that described within Svennson’s

optimal policy model in Section 3. In the present context such impact can be explained

considering that a larger quantity x(t) in t will reduce both the expected value and the variance

of future profits. Clearly, differently from a risk-neutral agent, a risk-averse monopolist will

then be willing to accept smaller expected future profits to reduce their variance and will

consequently choose a more aggressive production policy.

18While the plots represented in Figure 3 are specific to the parametric constellation we have chosen, qualita-
tively similar results are obtained for other choices of such parameters. This suggests that Figure 3 represents
the general features of the impact of time-discounting and risk-aversion on the optimal policy of the monopolist.
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6 Concluding Remarks

The impact of risk-aversion on the behavior of economic agents is a crucial issue in economics,

in particular within dynamic problems where such agents are required to solve complicated

optimization exercises. We have proposed a comprehensive analysis of a specific class of optimal

control problems, termed the Discounted Linear Exponential Quadratic Gaussian (DLEQG),

where risk-averse agents optimize a recursive criterion à la Epstein and Zin defined over a

quadratic cost function in state and control vectors and a Markovian linear plant equation for

the state vector dictates the dynamics of the economic environment. The DLEQG class is a

generalization of Whittle’s (Whittle, 1990) Linear Exponential Quadratic Gaussian (LEQG)

class, which allows to accommodate time-discounting while preserving most of the results he

derived. Thus, his risk-sensitive certainty-equivalence (RSCEP) and separation (SP) principles

are reformulated, while his recursive formulae for the optimal control are modified to adapt

them to the DLEQG class.

Our analysis of the DLEQG class is also an improvement over the contribution of Hansen

and Sargent (Hansen and Sargent, 1994, 1995, 2005), as we are able to investigate DLEQG

problems where agents only observe noisy signals of the state variables. In addition, our revised

RSCEP confirms within the DLEQG class Whittle’s result that the optimal behavior of risk-

averse agents can be identified via a pessimistic choice mechanism, according to which the

control variables are chosen by applying a min-max strategy, so that agents minimize their

welfare loss against the most adverse shocks.

A possible conjecture is that amid an uncertain environment a pessimistic agent acts cau-

tiously, choosing conservative control rules. In effect, it is immediate to verify that within

static optimization problems under uncertainty risk-averse agents are less aggressive than their

risk-neutral counter-parts. Common intuition would then suggest that a similar result also

holds within fully dynamic optimization problems. The analysis of the two applications of

the DLEQG class we propose suggests the contrary. In fact, we see that within these fully

dynamic optimization problems risk-averse agents are bolder than their risk-neutral counter-

parts, a conclusion that clearly contradicts common intuition. In other words, our analysis

indicates that a pessimistic agent should not be confused with a cautious one, as we see that

pessimism induces such agent to act boldly.
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Appendix: Detailed Calculations

A Property of Quadratic Forms. Consider the quadratic form Q(u, ε), where

Q(u, ε) =

 u

ε

′  Qu u Qu ε

Qεu Qε ε

  u

ε

 .

Assume Q admits a minimum in ε in that Qε ε is positive definite. Then, the following holds,∫
exp

[
− 1

2
Q(u, ε)

]
d ε ∝ exp

[
− 1

2
min
ε

Q(u, ε)

]
.

This is because, for ε̂ the vector ε minimizing Q, we can write Q(u, ε) = Q(u, ε̂) + (ε− ε̂)′Qε ε(ε− ε̂).
In fact, consider that as Qε ε is positive definite and invertible, the minimum of Q with respect to ε is

obtained for ε̂ = −Q−1
ε ε Qεu u and is equal to Q(u, ε̂) = u′[Qu u − Qu εQ−1

ε ε Qεu]u. Then,

Q(u, ε)−Q(u, ε̂) = ε′Qε ε ε + ε′Qεu u + u′Qu ε ε + u′Qu εQ−1
ε ε Qεuu

= ε′Qε ε ε − ε′Qε ε ε̂ − ε̂′Qε ε ε + ε̂′Qε ε ε̂

= (ε − ε̂)′Qε ε (ε − ε̂) .

As Q(u, ε̂) = minε Q(u, ε) is a constant in the integration,∫
exp

[
− 1

2
Q(u, ε)

]
d ε = exp

[
− 1

2
min
ε

Q(u, ε)

]
×
∫

exp[− 1

2
(ε− ε̂)′Qε ε(ε− ε̂)] d ε .
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Therefore, the constant of proportionality in the aforementioned equality is
∫

exp(− 1
2 ∆′Qε ε∆) d∆.

Because Qε ε is positive definite, for ∆ integrated over Rn, this constant is given by (2π)n/2det(Qε ε)
−1/2,

where n is the dimension of ε, and hence it is independent of u.

Then, suppose that we solve the program minu

∫
exp

[
− 1

2 Q(u, ε)
]
. Assume that Q admits a saddle

point with respect to ε and u, so that maxu minε Q(u, ε) exists. This is the case if the two conditions

Qε ε > 0 and Qu u −Qu εQ
−1
ε εQεu < 0 hold Q. As a corollary of the former result we have

min
u

∫
exp

[
− 1

2
Q(u, ε)

]
d ε ∝ min

u
exp

[
− 1

2
min
ε

Q(u, ε)

]
= exp

[
− 1

2
max

u
min
ε

Q(u, ε)

]
.

It is worth noticing that the order of the extremizing operations is irrelevant in the determination of

the saddle point if the two conditions Qε ε > 0 and Qu u −Qu εQ
−1
ε εQεu < 0 hold. More importantly,

analogous results hold when Q is a non-homogeneous quadratic form, which depends on u and ε

alongside a third vector z, insofar it admits a saddle point maxu minε Q(u, ε, z).

The Discounted Future Stress Recursion. From Lemma 3 we know that if Vt+1 is a quadratic

form in zt+1,

exp

(
ρ

2
Vt

)
= constant× exp

(
ρ

2
min
ut

max
εt+1

St
)

= exp

(
ρ

2

[
γt + min

ut
max
εt+1

St
])

,

for γt a constant independent of zt. This implies that Vt = γt + minut maxεt+1 St. Then, assume that

Vt+1 = κt+1 + z′t+1Πt+1zt+1, where κt+1 is independent of zt+1. Considering that St = ct − 1
ρdt+1 +

δVt+1, it follows that

min
ut

max
εt+1

St = min
ut

{
max
εt+1

[
ct −

1

ρ
dt+1 + δκt+1 + δ z′t+1Πt+1zt+1

]}
= δκt+1 + min

ut

{
max
εt+1

[
ct −

1

ρ
dt+1 + δ z′t+1Πt+1zt+1

]}
= δκt+1 + z′tΠtzt = δκt+1 + Ft(zt) ,

so that Vt = γt + minut maxεt+1 St = κt + Ft(zt), with κt = γt + δκt+1 and Ft(zt) = z′tΠtzt.

The L̃-Recursion. Suppose φ(z) = δz′Πz, so that L̃φ(z) = maxε [(z + ε)′δΠ(z + ε) − 1
ρε
′N−1ε].

Taking first derivatives, we find that

2

(
δΠ − 1

ρ
N−1

)
ε + 2δΠ z = 0 ⇔ ε̃ = −

(
δΠ − 1

ρ
N−1

)−1

δΠ z = − Π̌
−1
δΠ z ,

which identifies a maximum for Π̌ negative definite. Plugging this formula in the expression for L̃φ(z),
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we find that

L̃φ(z) = − 1

ρ
ε̃′ N−1 ε̃ + (z + ε̃)′ δΠ (z + ε̃)

= − 1

ρ
z′ δΠ Π̌

−1
N−1 Π̌

−1
δΠ z + z′ (I − Π̌

−1
δΠ)′ δΠ (I − Π̌

−1
δΠ) z .

Now,

− 1

ρ
δΠ Π̌

−1
N−1 Π̌

−1
δΠ + (I − Π̌

−1
δΠ)′ δΠ (I − Π̌

−1
δΠ) =

− 1

ρ
δΠ Π̌

−1
N−1 Π̌

−1
δΠ + δΠ − 2 δΠ Π̌

−1
δΠ + δΠ Π̌

−1
δΠ Π̌

−1
δΠ =

δΠ − 2 δΠ Π̌
−1
δΠ + δΠ Π̌

−1
[
Π − 1

ρ
N−1

]
Π̌
−1
δΠ =

δΠ − 2 δΠ Π̌
−1
δΠ + δΠ Π̌

−1
δΠ = δΠ − δΠ Π̌

−1
δΠ = δΠ [I − Π̌

−1
δΠ] .

Notice that Π̌ = δΠ [I− 1
ρ (δΠ )−1 N−1] = δΠ [I− (ρNδΠ)−1], so that Π̌

−1
= [I− (ρNδΠ)−1]−1 (δΠ)−1

and

L̃φ(z) = z′δΠ [I − (I − (ρNδΠ)−1)−1] z .

Since for A invertible (I + A)−1 = I− (I + A)−1A, we find that

I − (I − (ρNδΠ)−1)−1 = (I − (ρNδΠ)−1)−1 (− ρNδΠ)−1 .

In addition since (I + A)−1 = (I + A−1)−1A−1, we also find that

(I − (ρNδΠ)−1)−1 = (I − ρNδΠ)−1(− ρNδΠ) , so that

δΠ [I − (I − (ρNδΠ)−1)−1] = δΠ (I − ρNδΠ)−1

= δΠ [((δΠ)−1 − ρN) δΠ]−1

= ((δΠ)−1 − ρN)−1 = Π̃ .

We conclude that L̃φ(z) = z′ Π̃ z.

Second Order Conditions for the L̃-Recursion. Consider that the second order condition for

the maximization in the L̃-recursion is that δΠ − 1
ρN−1 being negative definite. Now, as this is a

symmetric matrix, there exists a coordinate transformation which diagonalizes it. This matrix will be

negative definite iff all its eigenvalues are negative, or equivalently iff its elements on the main diagonal

are negative, suggesting that is possible to proceed as in the scalar case. Hence, δΠ − 1
ρN−1 < 0 is

equivalent to (δΠ)−1 − ρN > 0, as the elements on the main diagonal of the former matrix will be
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negative iff those on the latter are positive, or equivalently the former matrix is negative definite iff the

latter is positive definite. We then establish that a solution to the L̃-recursion exists if an only if Π̃,

the inverse of (δΠ)−1 − ρN, is positive definite.

Second Order Conditions for the L-Recursion. Suppose that Π is positive semi-definite and Q

and R are positive definite. This will be true if the cost function c is positive definite in u and z (that

Q and R are positive definite when the cost function is a positive definite quadratic form is obvious;

that in this case Π is also positive semi-definite will be shown below). Assume also that the condition

in Theorem 2 for the DLEQG problem to have a proper solution holds, so that Π̃ is positive definite.

In solving the L-recursion, standard result shows that the control is u = (Q + B′ Π̃ B)−1 (S +

B′ Π̃ A ). As Q and Π̃ are positive definite a minimum is certainly reached since the denominator in

the expression for the optimal control is also positive definite.

Then, suppose that in t+ 1 Πt+1 is positive semi-definite, while Π̃t+1 is positive definite. At time t,

plugging the optimal control vector into the L-recursion, standard algebra shows that Lφ(zt) = z′tΠtzt,

where

Πt = R + A′ Π̃t+1 A −
(
S′ + A′ Π̃t+1 B

) (
Q + B′ Π̃t+1 B

)−1 (
S + B′ Π̃t+1 A

)
.

Now, consider that

Lφ(zt) = min ut [c(zt,ut) + (A zt + B ut)
′ Π̃t+1 (A zt + B ut)] .

Hence, since the cost function c is a positive definite quadratic form in ut and zt and Π̃t+1 is positive

definite, Lφ(zt) is non-negative and therefore Πt must be positive semi-definite. As in T ΠT is equal

to 0, by induction we prove that in any period t the L-recursion has the solution discussed in the proof

of Theorem 2, as the second order condition of the minimization is always respected, while the matrix

Πt is positive semi-definite.

That the cost function c is a positive definite quadratic form in ut and zt is a sufficient condition for

the DLEQG problem to have the recursive solution presented in Theorem 2, but it is not necessary. If

this assumption is abandoned, it will be necessary to verify that the matrix Q + B′ Π̃t+1 B is positive

definite in any period t.

The L̃-Recursion with Deterministic Disturbances to the Plant Equation. Suppose φ(z) =

δz′Πz − 2δϑ′z, so that L̃φ(z) = maxε [(z + ε)′δΠ(z + ε) − 2δϑ′ (z + ε) − 1
ρε
′N−1ε]. Taking first

derivatives, we find that

2

(
δΠ − 1

ρ
N−1

)
ε+ 2δ (Π z− ϑ) = 0 ⇔ ε̃ = −

(
δΠ − 1

ρ
N−1

)−1

δΠ z +

(
δΠ − 1

ρ
N−1

)−1

δϑ ,

ie. ε̃ = ε̃o + ε̃e, with ε̃o = −Π̌
−1
δΠz and ε̃e = Π̌

−1
δϑ. Plugging this formula in the expression for
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L̃φ(z), we find that

L̃φ(z) = − 1

ρ
(ε̃o + ε̃e)

′ N−1 (ε̃o + ε̃e) + (z + ε̃o + ε̃e)
′ δΠ (z + ε̃o + ε̃e) + −2 δϑ′ (z + ε̃o + ε̃e)

= − 1

ρ
ε̃′o N−1 ε̃o + (z + ε̃o)

′ δΠ (z + ε̃o)︸ ︷︷ ︸
z′ Π̃ z with Π̃ = ((δΠ)−1− ρN)−1

− 1

ρ
ε̃′e N−1 ε̃e + ε̃′e δΠ ε̃e − 2 δϑ′ ε̃e︸ ︷︷ ︸

independent of z

− 2

ρ
ε̃′e N−1 ε̃o + 2 ε̃′e δΠ (z + ε̃o) − 2 δϑ′ (z + ε̃o) .

The last three terms can be re-written as follows,

−2

[
1

ρ
ε̃′e N−1 − ε̃′e δΠ + δϑ′

]
(z + ε̃o) +

2

ρ
ε̃′e N−1 z .

Given the expression for ε̃e we find that the sum in the squared brackets is equal to

−2

[
1

ρ
δϑ′ Π̌

−1
N−1 − δϑ′ Π̌

−1
δΠ + δϑ′

]
(z + ε̃o)

= −2 δϑ′

I − Π̌
−1
(
δΠ − 1

ρ
N−1

)
︸ ︷︷ ︸

Π̌

 (z + ε̃o) = 0 ,

while

2

ρ
ε̃′e N−1 z = − 2 δϑ′ Π̌

−1
(− ρN)−1 z ,

so that Lφ(z) = z′Π̃z− 2 ϑ̃
′
z + · · · , with ϑ̃ = δ (− ρN)−1 Π̌

−1
ϑ and · · · indicating terms independent

of z. Now

(− ρN)−1 Π̌
−1

= δ (− ρN)−1 (δΠ − (ρN)−1)−1

= (− ρN)−1 [(I + δ (− ρN) Π)(−ρN)−1)]−1

= (I − δ ρN Π)−1 ,

so that

ϑ̃ = δ (I − δ ρN Π)−1 ϑ

= δ ((δΠ)−1 − ρN)−1 (δΠ)−1 ϑ

= ((δΠ)−1 − ρN)−1 Π−1 ϑ = Π̃ Π−1 ϑ .
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The Continuous-time Limit. To derive the continuous-time limit of the Markovian DLEQG problem

divide the interval of time [0, T ] in n sub-periods of length ∆ = T/n. Then, the per-period cost function

is ∆ct, the plant equation for the state variable is zt = (I+A∆)zt−1+B∆ut−1+εt, with εt ∼N (0,∆N),

and the discount factor is δ∆. Under perfect state observation, the discounted total stress function is

redefined as follows St = ∆ct − (1/ρ)ε′t+1(∆N)−1εt+1 + δ∆Vt+1. Lemma 3 and Theorem 1 still hold,

and so does Lemma 4. This means that we can proceed along the proof of Theorem 2 to reformulate

its statement.

Consider hence that in the L̃-recursion, with φ(z) = z′Πz, a maximum is found for

ε̃ = −
(
δ∆ Π − 1

ρ
(∆ N)−1

)−1

δ∆ Π z , so that L̃φ(z) = z′ Π̃ z , with Π̃ = ((δ∆ Π)−1− ρ∆ N)−1 .

Importantly, in the limit for ∆ ↓ 0, for εt+1 6= 0, −(1/ρ)ε′t+1(∆N)−1εt+1 ↓ −∞ and hence a maximum

for the stress function St with respect to εt+1 is found for εt+1 = 0, irrespective of ct and Vt+1.

Similarly, whatever Π, in the limit, for ∆ ↓ 0, a maximum in the L̃-recursion above is found for ε̃ = 0.

Clearly, for ∆ ↓ 0, Π̃→ Π. As for the L-recursion, consider that we need to solve

min
u

[∆c + φ((I + A ∆)z + B ∆ u)] ,

where φ(z) = z′ Π̃ z and ∆c = u′Q ∆ u + z′R ∆ z + 2u′ S ∆ z. The first order condition is

2 ∆

(
Q u + ∆ B′ Π̃ B u + S z + B′ Π̃ (I + A ∆) z

)
= 0 , so that

u = K z with K = − (Q + ∆ B′ Π̃ B)−1

(
S + B′ Π̃ (I + A ∆)

)
.

For ∆ ↓ 0, as Π̃→ Π, K→ −Q−1 (S+B′Π). Thus, in the limit a sufficient condition for the DLEQG

problem to have the recursive solution discussed in Theorem 6 is that Q being positive definite. Inserting

the expression for u in the minimizing function we find Lφ(z) = z′Π− z, where

Π− = Π̃ + ∆

(
R + K′Q K + 2S′K + A′Π + Π̃ A + 2Π B K

)
+ ∆2

(
A′ Π̃ A + K′B Π̃ B K + 2A′ Π̃ B K

)
,

so that applying the double recursion in period t, Ft = LL̃Ft+1, we find that

Πt = Π̃t+1 + ∆

(
R + K′t Q Kt + 2S′Kt + A′ Π̃t+1 + Π̃t+1 A + 2Π̃t+1 B Kt

)
+ o(∆2) ,
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where Π̃t+1 = ((δ∆ Πt+1)−1 − ρ∆ N)−1 = δ∆ Πt+1 (I − ρ∆ N δ∆ Πt+1)−1. This implies that

Πt − Πt+1

∆
=

Π̃t+1 − Πt+1

∆
+

(
R + K′t Q Kt + 2S′Kt + A′ Π̃t+1 + Π̃t+1 A + 2Π̃t+1 B Kt

)
+
o(∆2)

∆

=
Π̃t+1 − Πt+1

∆
+ R + A′ Π̃t+1 + Π̃t+1 A +

(
K′t Q Kt + 2S′Kt + 2Π̃t+1 B Kt

)
+
o(∆2)

∆
.

Now, given the expression for Kt,(
K′t Q + 2 (S′ + Π̃t+1 B)

)
Kt = (S′ + Π̃t+1 B)

(
2I − (Q + ∆ B′Π̃t+1 B)−1 Q + o(∆)

)
Kt =

− (S′ + Π̃t+1 B)

(
2I − (Q + ∆ B′Π̃t+1 B)−1 Q + o(∆)

)
(Q + ∆ B′ Π̃t+1 B)−1

(
S + B′ Π̃t+1 (I + A ∆)

)
=

− (S′ + Π̃t+1 B)

(
2I − (Q + ∆ B′Π̃t+1 B)−1 Q

)
(Q + ∆ B′ Π̃t+1 B)−1

(
S + B′ Π̃t+1

)
+ o(∆) + o(∆2) .

Therefore, considering that lim∆↓0 Π̃n+1 = lim∆↓0 Πt+1 = Π(t), we conclude that

lim
∆↓0

(
K′t Q + 2 (S′ + Π̃t+1 B)

)
Kt = − (S′ + Π(t) B) Q−1 (S + B′Π(t)) .

In addition,

lim
∆↓0

Πt − Πt+1

∆
= −d Π(t)

d t
and lim

∆↓0
A′ Π̃t+1 + Π̃t+1 A = A′Π(t) + Π(t) A .

Finally, consider that

Π̃t+1 − Πt+1 = Πt+1

[
δ∆ (I − ρ∆ N δ∆ Πt+1)−1 − I

]
.

For ∆ small we can write (I− ρ∆ N δ∆ Πt+1)−1 = I + ρ∆ N δ∆ Πt+1 + o(∆2), so that

Π̃t+1 − Πt+1 = Πt+1

[
δ∆ (I + ρ∆ N δ∆ Πt+1) − I

]
+ o(∆2) .

Therefore,

Π̃t+1 − Πt+1

∆
=

(
δ∆ − 1

∆

)
Πt+1 + ρ δ2∆ Πt+1 N Πt+1 + o(∆) .

In conclusion, we find that

lim
∆↓0

Π̃t+1 − Πt+1

∆
= log(δ) Π(t) + ρΠ(t) N Π(t)
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and hence the continuous-time counterpart of the Riccati equation is

dΠ(t)

d t
+ R + A′Π(t) + Π(t) A − (S′ + Π(t) B) Q−1 (S + B′Π(t)) + ρΠ(t) N Π(t) + log δΠ(t) = 0 .

The Continuous-time Limit with Pre-determined Disturbances. Suppose that zt = (I +

A∆)zt−1 +B∆ut−1 +µt∆+εt. In discussing the Markovian DLEQG with pre-determined disturbances

we have seen that ut = ut,o+ut,e, where the former component corresponds to the solution in the time-

homogeneous formulation, while the latter is now given by

(Q + ∆B′ Π̃t+1∆B)−1B′(ϑ̃t+1 − Π̃t+1µ∆) where

Π̃t+1 = ((δ∆Πt+1)−1 − ρ∆ N)−1 and ϑ̃t+1 = Π̃t+1 Π−1
t+1 ϑt+1 .

Then, consider that

z′t Πt zt − 2ϑ′t zt + · · · = z′t R∆ zt + (ut,o + ut,e)
′Q∆ (ut,o + ut,e) + 2 z′t S

′∆ (ut,o + ut,e) +

[(I + A ∆)zt + B∆(ut,o + ut,e) + µt+1∆]′Π̃t+1 [(I + A ∆)zt + B∆(ut,o + ut,e) + µt+1∆] +

− 2 ϑ̃
′
t+1 [(I + A ∆)zt + B∆(ut,o + ut,e) + µt+1∆] + · · · = z′t R∆ zt + u′t,oQ∆ ut,o︸ ︷︷ ︸

function of ut,o

+

2 z′t S
′∆ ut,o + [(I + A ∆)zt + B∆ut,o]

′Π̃t+1 [(I + A ∆)zt + B∆ut,o]︸ ︷︷ ︸
function of ut,o

+

− 2 ϑ̃
′
t+1 [(I + A ∆)zt + B∆ut,o]︸ ︷︷ ︸

function of ut,o

+ u′t,eQ∆ ut,e + u′t,eB
′∆ Π̃t+1 B ∆ ut,e − 2 ϑ̃

′
t+1 B∆ut,e︸ ︷︷ ︸

independent of zt

+

− 2 ϑ̃
′
t+1 µt+1 ∆ + µ′t+1 ∆ Π̃t+1 µt+1 ∆ + 2µ′t+1 ∆ Π̃t+1 B ∆ut,e︸ ︷︷ ︸

independent of zt

+ 2u′t,eQ∆ ut,o +

2u′t,eS∆ zt + 2u′t,e B′∆ Π̃t+1 (I + A ∆)zt + 2µ′t+1 ∆ Π̃t+1 [I zt + A ∆ zt + B ∆ ut,o︸ ︷︷ ︸
o(∆2)

] .

So that, considering that ut,o = Ktzt, we see that z′tR∆zt plus the terms tagged as “functions of ut,o”

correspond to z′t Πt zt. Hence, considering that ut,o = Ktzt,

z′t Πt zt − 2ϑ′t zt + · · · = z′t Πt zt − 2 ϑ̃
′
t+1 [(I + A∆) + B ∆ Kt] zt +

+2∆ u′t,e[QKt + S + B′ Π̃t+1 (I + A ∆)] zt + 2∆µ′t+1 Π̃t+1 zt + o(∆2) + · · ·

where Πt respects the recursion identified in the time-homogeneous formulation. To determine ϑt
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consider that it respects the recursion

ϑ′t = ϑ̃
′
t+1 [ I + ∆ (A + B Kt) ] − ∆ u′t,e[ Q Kt + S + B′ Π̃t+1 (I + A ∆) ] − ∆µ′t+1 Π̃t+1 .

This is equivalent to

ϑt − ϑt+1

∆
=

ϑ̃t+1 − ϑt+1

∆
+ (A + B Kt)

′ ϑ̃t+1

− [ Q Kt + S + B′ Π̃t+1 (I + A ∆) ]′ ut,e − Π̃t+1 µt+1 .

Now, lim∆↓0 Π̃t+1 = lim∆↓0 Πt = Π(t), lim∆↓0 ϑ̃t+1 = lim∆↓0 ϑt = ϑ(t), lim∆↓0 µt+1 = µ(t),

lim∆↓0
ϑt−ϑt+1

∆ = −dϑ(t)
d t . In addition, lim∆↓0 Kt = −Q−1(S + B′Π(t)). We then conclude that

lim
∆↓0

Π̃t+1 µt+1 = Π(t)µ(t) , lim
∆↓0

(A + B Kt) = A − B Q−1 S − B Q−1 B′Π(t) ,

lim
∆↓0

Q Kt = − (S + B′Π(t)) , lim
∆↓0

B′ Π̃t+1 (I + A ∆) = B′Π(t) and hence

lim
∆↓0

[ Q Kt + S + B′ Π̃t+1 (I + A ∆) ] = 0 .

Since ϑ̃t+1 = Π̃t+1 Π−1
t+1 ϑt+1,

ϑ̃t+1 − ϑt+1 = (Π̃t+1 Π−1
t+1 − I)ϑt+1 .

In addition, Π̃t+1 = (I − ρ∆ δ∆ Πt+1 N)−1 δ∆ Πt+1, so that

(Π̃t+1 Π−1
t+1 − I) = (I − ρ∆ δ∆ Πt+1 N)−1 δ∆ − I .

Since for ∆ small we can write (I − ρ∆ δ∆ Πt+1 N)−1 = I + ρ∆ δ∆ Πt+1 N + o(∆2) we find that

(Π̃t+1 Π−1
t+1 − I) = (I + ρ∆ δ∆ Πt+1 N + o(∆2)) δ∆ − I

= (δ∆ − 1) I + ρ∆ δ2∆ Πt+1 N + o(∆2) . Thus,

ϑ̃t+1 − ϑt+1

∆
=

[
(δ∆ − 1)

∆
I + ρ δ2∆ Πt+1 N + o(∆)

]
ϑt+1

and hence

lim
∆↓0

ϑ̃t+1 − ϑt+1

∆
= log δϑ(t) + ρΠ(t) Nϑ(t) .
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Summing up terms we find that

dϑ(t)

d t
+ log δϑ(t) + ρΠ(t) Nϑ(t) + [A − B Q−1 S − B Q−1 B′Π(t)]′ ϑ(t) − Π(t)µ(t) = 0 ,

which can also be written as

dϑ(t)

d t
+ (log δ + Γ̃(t)′)ϑ(t) − Π(t)µ(t) = 0 , with

Γ̃(t) = A − B Q−1 S − (B Q−1 B′ − ρN )Π(t) .

Optimal Monetary Policy. In the stationary solution,

Π̃ = ((δΠ)−1 − ρN)−1 = δΠ (I2 − δ ρN Π)−1

= δΠ

 1− δρσ2
ππ1 −δρσ2

ππ1,2

−δρσ2
yπ1,2 1− δρσ2

yπ2

−1

=
δ

det(I2 − δ ρN Π)

 π1 π1,2

π1,2 π2

  1− δρσ2
yπ2 δρσ2

ππ1,2

δρσ2
yπ1,2 1− δρσ2

ππ1



=
δ

det(I2 − δ ρN Π)

(
(1− δρσ2

yπ2)π1 + δρσ2
yπ

2
1,2 π1,2

π1,2 (1− δρσ2
ππ1)π2 + δρσ2

ππ
2
1,2

)

=
δ

det(I2 − δ ρN Π)
Π̂ .

where

det(I2 − δ ρN Π) = 1− δρ(σ2
ππ1 + σ2

yπ2) + δ2 ρ2 det(Π)σ2
πσ

2
y .

It is immediate to check that B′Π̂B = γ2 π̂2, so that

(B′Π̃B)−1 =
1

δ

1

γ2

1

π̂2
det(I2 − δ ρN Π) , B(B′Π̃B)−1B′ = det(I2 − δ ρN Π)

 0 0

0 1
δ

1
π̂2

 .

Hence,

B(B′Π̃B)−1B′ Π̃ =

 0 0

1
δ
π̂1,2

π̂2
1

 , I2 − B(B′Π̃B)−1B′ Π̃ =

 1 0

− 1
δ
π̂1,2

π̂2
0

 .
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In the modified Riccati equation we have

Π = R + A′Π̃
(
I2 − B(B′Π̃B)−1B′ Π̃

)
A

=

 1 0

0 λ

 +
δ

det(I2 − δ ρN Π)

 1 0

α β

  π̂1 π̂1,2

π̂1,2 π̂2

 1 0

− π̂1,2

π̂2
0

  1 α

0 β



=

 1 0

0 λ

 +
δ

det(I2 − δ ρN Π)

 1 0

α β

  det(Π̂)
π̂2

0

0 0

 1 α

0 β



=

 1 0

0 λ

 + δ
det(Π̂)

det(I2 − δ ρN Π)

1

π̂2

(
1 α

α α2

)
.

Then we can define W = 1

det(I2−δ ρN Π)

(
π̂1 −

π̂2
1,2

π̂2

)
and conclude that

π1 = 1 + δW , π1,2 = α δW , π2 = λ + α2 δW .

Now,

π̂1 −
π̂2

1,2

π̂2
= π1 − δ ρdet(Π)σ2

y −
π2

1,2

π2 − δ ρdet(Π)σ2
π

=
(π1 − δ ρdet(Π)σ2

y) (π2 − δ ρdet(Π)σ2
π)− π2

1,2

π2 − δ ρdet(Π)σ2
π

=
det(Π)

[
1− δρ(σ2

ππ1 + σ2
yπ2) + δ2 ρ2 det(Π)σ2

πσ
2
y

]
π2 − δ ρdet(Π)σ2

π

=
det(Π) det(I2 − δ ρN Π)

π2 − δ ρdet(Π)σ2
π

,

so that W = det(Π)

π2−δ ρdet(Π)σ2
π

. Given the expressions for π1, π1,2 and π2, we have that det(Π) =

λ+ δ(α2 + λ)W , so that

W =
λ + δ (α2 + λ)W

λ (1− δρσ2
π) + δ

(
α2 − δ (α2 + λ) ρ σ2

π

)
W

.

Rearranging we find that

δ

(
α2 − δ(α2 + λ)ρσ2

π

)
W 2 −

(
δ(α2 + λ) − λ + δλρσ2

π)

)
W − λ = 0

50



whose roots are

W± =
δ(α2 + λ) − λ (1− δρσ2

π) ± ∆1/2

2 δ

(
α2 − δ(α2 + λ)ρσ2

π

) where

∆ =

(
δ(α2 +λ)−λ(1−δρσ2

π)

)2

+4δλ(α2−δ(α2 +λ)ρσ2
π

)
. For ρ = 0, ∆ =

(
δα2−(1−δ)λ)

)2

+4α2δλ,

while

W± =
1

2

(
1 − (1− δ)λ±∆1/2

α2δ

)
= =

1

2

1 − (1− δ)λ
α2δ

±

√(
1 +

(1− δ)
α2δ

)2

+
4λ

α2

 .

Only the positive root will be coherent with the conditions that the matrix Π̃ is positive definite. This

means that there is no indeterminacy in the stationary solution. To determine K consider that

B′Π̃A =
δ

det(I2 − δ ρN Π)
(0 − γ)

 π̂1 π̂1,2

π̂1,2 π̂2

 1 α

0 β


= − δ γ

det(I2 − δ ρN Π)
(π̂1,2 απ̂1,2 + βπ̂2) .

Given that K = −(B′Π̃B)−1B′Π̃A, we find that

K =
1

γ

(
π̂1,2

π̂2
α
π̂1,2

π̂2
+ β

)
.

Finally, since π̂1,2 = π1,2 = αδW and π̂2 = π2 − δdet(Π)ρσ2
π = λ + α2δW − δ(λ + δ(α2 + λ)W )ρσ2

π,

we find that

K =
1

γ

(
αδW

α2δW + λ− δ(λ+ δ(α2 + λ)W )ρσ2
π

β +
α2δW

α2δW + λ− δ(λ+ δ(α2 + λ)W )ρσ2
π

)
.

To reach a minimum δΠt+1 − (1/ρ)N−1 must be negative definite. This corresponds to the double

condition that

δπ1 −
1

ρ

1

σ2
π

< 0 , (δπ1 −
1

ρ

1

σ2
π

) (δπ2 −
1

ρ

1

σ2
y

) − δ2 π1,2 > 0 .
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The Recursive Optimization Criterion and the Inflation Forecast. Given the plant equation

for πt we immediately see that πt+1|t = πt + αyt. Then, consider that

z′tΠzt = (πt yt)

 1 + δW αδW

α+ δW λ+ α2δW

  πt

yt



= (πt yt)

 1 0

0 λ

  πt

yt

 + (πt yt)

 δW αδW

αδW α2δW

  πt

yt



= π2
t + λy2

t + δ W (πt yt)

 1

α

 (
1 α

)  πt

yt


= π2

t + λy2
t + δW (πt + αyt)

2 .

Immediately it follows that

exp
(ρ

2
Vt

)
= exp

(
ρ

2
[κ + π2

t + λ y2
t + δWπ2

t+1|t]

)
.

Inflation and Output Gap Forecast. Since πt+1|t = πt + αyt we find that

rt =
1

γ

(
β yt +

αδW

α2δW + λ− θρσ2
π

πt+1|t

)
Inserting this into the plant equation for output gap, we find that

yt+1|t = − α δ W

α2δW + λ− θρσ2
π

πt+1|t .

Since πt+2|t = πt+1|t + αyt+1|t and πt+1|t = −α
2δW+λ−θρσ2

π

αδW yt+1|t, we conclude that

πt+2|t = − 1

αδW

(
λ − θ ρ σ2

π

)
yt+1|t =

(
λ − θ ρ σ2

π

α2δW + λ− θρσ2
π

)
πt+1|t .

Unconditional Variance of Inflation, Output Gap and Short-term Interest Rate. By defini-

tion, considering that κy = β/γ + ακπ,

Γ = A + B K =

 1 α

0 β

 +

 0

− γ

 (
κπ

β
γ + ακπ

)

=

 1 α

0 β

 +

 0 0

− γκπ −β − αγκπ

 =

 1 α

− γκπ −αγκπ

 .
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Hence,

I2 − Γ =

 0 −α

γκπ 1 + αγκπ

 so that Λ = (I2 − Γ)−1 =
1

αγκπ

 1 + αγκπ α

− γκπ 0

 .

Now, Var[zt] = ΛNΛ′. Then, consider that

ΛN =
1

αγκπ

 1 + αγκπ α

− γκπ 0

  σ2
π 0

0 σ2
y

 =
1

αγκπ

 (1 + αγκπ)σ2
π ασ2

y

− γκπ σ2
π 0


so that

ΛNΛ′ =
1

(αγκπ)2

 (1 + αγκπ)σ2
π ασ2

y

− γκπ σ2
π 0

  1 + αγκπ − γκπ

α 0



=
1

(αγκπ)2

 (1 + αγκπ)2 σ2
π + α2σ2

y − γκπ(1 + αγκπ)σ2
π

− γκπ(1 + αγκπ)σ2
π γ2κ2

πσ
2
π

 ,

i.e.

Var[πt] =
(1 + αγκπ)2

(αγκπ)2
σ2
π +

1

(γκπ)2
σ2
y , Var[yt] =

1

α2
σ2
π .

Finally, Var[rt] = KVar[zt]K
′. Then, consider that

Var[zt] K
′ =

1

(αγκπ)2

 (1 + αγκπ)2 σ2
π + α2σ2

y − γκπ(1 + αγκπ)σ2
π

− γκπ(1 + αγκπ)σ2
π γ2κ2

πσ
2
π

  κπ

β
γ + ακπ



=
1

(αγκπ)2

 (1 + αγκπ)2 κπ σ
2
π + α2 κπσ

2
y − γκπ(1 + αγκπ)

(
β
γ + ακπ

)
σ2
π

− γκ2
π(1 + αγκπ)σ2

π + γ2κ2
π

(
β
γ + ακπ

)
σ2
π
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while

KVar[zt]K
′ =

1

(αγκπ)2

(
κπ

β
γ + ακπ

)
×

 (1 + αγκπ)2 κπ σ
2
π + α2 κπσ

2
y − γκπ(1 + αγκπ)

(
β
γ + ακπ

)
σ2
π

− γκ2
π(1 + αγκπ)σ2

π + γ2κ2
π

(
β
γ + ακπ

)
σ2
π



=
1

(αγκπ)2

(
α2κ2

πσ
2
y +

[
(1 + αγκπ)2κ2

π − 2 (1 + αγκπ)γκ2
π

(
β

γ
+ ακπ

)

+ γ2κ2
π

(
β

γ
+ ακπ

)2
]
σ2
π

)

=
1

γ2
σ2
y +

1

(αγ)2

[
(1 + αγκπ) − γ

(
β

γ
+ ακπ

)]2

σ2
π

=
1

γ2

[
σ2
y +

(
1 − β

α

)2

σ2
π

]
.

Optimal Monetary Policy with Imperfect State Observation. In the stationary solution, we

find that

z̆t = (I2 − ρNΠ)−1ẑt, where

(I2 − ρNΠ)−1 =
1

det(I2 − ρN Π)

(
1− ρσ2

yπ2 ρσ2
ππ1,2

ρσ2
yπ1,2 1− ρσ2

ππ1

)
,

so that

π̆t =

(
1− ρσ2

yπ2

det(I2 − ρNΠ)
π̂t +

ρ σ2
ππ1,2

det(I2 − ρNΠ)
ŷt

)
,

y̆t =

(
ρ σ2

yπ1,2

det(I2 − ρNΠ)
π̂t +

1− ρσ2
ππ1

det(I2 − ρNΠ)
ŷt

)
.

Given that

1− ρσ2
yπ2

det(I2 − ρNΠ)
= 1 +

π1 − det(Π)ρσ2
y

det(I2 − ρΠ)
ρ σ2

π ,

1− ρσ2
ππ1

det(I2 − ρNΠ)
= 1 +

π2 − det(Π)ρσ2
π

det(I2 − ρNΠ)
ρ σ2

y ,
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we conclude that the MTSE is

π̆t = π̂t +

(
π1 − det(Π)ρσ2

y

det(I2 − ρNΠ)
π̂t +

π1,2

det(I2 − ρNΠ)
ŷt

)
ρ σ2

π ,

y̆t = ŷt +

(
π1,2

det(I2 − ρNΠ)
π̂t +

π2 − det(Π)ρσ2
π

det(I2 − ρNΠ)
ŷt

)
ρ σ2

y .

Unconditional Variance of Inflation, Output Gap and Short-term Interest Rate Under

Imperfect State Observation. By definition Ψ = BKI . As B = (0,−γ), we can write

Ψ =

 0 0

−γκIπ −γκIy

 .

Hence,

I2 − Ψ =

 1 0

γκIπ 1 + γκIy

 and (I2 − Ψ)−1 =
1

1 + γκIy

 1 + γκIy 0

−γκIπ 1


while

Φ = (I2 − Ψ)−1 A =
1

1 + γκIy

 1 + γκIy 0

− γκIπ 1

  1 α

0 β

 =

 1 α

− γκIπ
1 + γκIy

β−αγκIπ
1 + γκIy

 .

Then,

Ψ Φ =

 0 0

− γκIπ − γκIy

  1 α

− γκIπ
1 + γκIy

β−αγκIπ
1 + γκIy

 =
1

1 + γκIy

 0 0

− γκIπ −αγκIπ − βγκIy

 .

Therefore,

I2 − A−Ψ Φ =

 0 −α

0 1− β

 − 1

1 + γκIy

 0 0

− γκIπ −αγκIπ − βγκIy



=
1

1 + γκIy

 0 −α(1 + γκIy)

γκIπ 1 − β + αγκIπ + γκIy


and

ΛI = (I2 − A−Ψ Φ)−1 =

 1 +
1 + γκIy−β
αγκIπ

1 + γκIy
γκIπ

− 1
α 0

 .
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Then,

ΛI N =

 1 +
1 + γκIy − β
αγκIπ

1 + γκIy
γκIπ

− 1
α 0

  σ2
π 0

0 σ2
y

 =


(

1 +
1 + γκIy − β
αγκIπ

)
σ2
π

1 + γκIy
γκIπ

σ2
y

− 1
α σ

2
π 0


and hence

VarI [zt] = ΛI N Λ′I =


(

1 +
1 + γκIy − β
αγκIπ

)
σ2
π

1 + γκIy
γκIπ

σ2
y

− 1
α σ

2
π 0

  1 +
1 + γκIy − β
αγκIπ

− 1
α

1 + γκIy
γκIπ

0



=


(

1 +
1 + γκIy − β
αγκIπ

)2

σ2
π +

(
1 + γκIy
γκIπ

)2

σ2
y − 1

α

(
1 +

1 + γκIy − β
αγκIπ

)
σ2
π

− 1
α

(
1 +

1 + γκIy − β
αγκIπ

)
σ2
π

1
α2 σ

2
π

 ,

from which we immediately conclude that VarI [yt] = Var[yt] = (1/α2)σ2
π. For the unconditional variance

of the short-term interest rate, consider first that

Φ ΛI =

 1 α

− γκIπ
1 + γκIy

β−αγκIπ
1 + γκIy

  1 +
1 + γκIy − β
αγκIπ

1 + γκIy
γκIπ

− 1
α 0



=


(

1 + γκIy − β
αγκIπ

)
1 + γκIy
γκIπ

− 1
α − 1

 .

Then,

KI Φ ΛI =
(
κIπ κIy

) 
(

1 + γκIy − β
αγκIπ

)
1 + γκIy
γκIπ

− 1
α − 1


=

(
1
αγ (1 − β) 1

γ

)
.

It follows that

KI Φ ΛI N =
(

1
αγ (1 − β) 1

γ

)  σ2
π 0

0 σ2
y


=

(
1
αγ (1 − β) σ2

π
1
γ σ

2
y

)
and hence that
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VarI [rt] = KI Φ ΛI N Λ′I Φ′KI

=
(

1
αγ (1 − β) σ2

π
1
γ σ

2
y

)  1
αγ (1 − β)

1
γ


=

1

(αγ)2
(1 − β)

2
σ2
π +

1

γ2
σ2
y ,

so that VarI [rt] = Var[rt].

Optimal Monetary Policy with Positive Inflation Target. For µt = µ,

ϑt = Γ′t Π̃t+1 (Π−1
t+1 ϑt+1 − µ) .

In steady state,

ϑ = Γ′ Π̃ (Π−1 ϑ − µ)

= Γ′ Π̃ Π−1 ϑ − Γ′ Π̃µ , so that

= − (I − Γ′ Π̃ Π−1)−1 Γ′ Π̃µ

= − [(Π − Γ′ Π̃) Π−1 ]−1 Γ′ Π̃µ

= −Π (Π − Γ′ Π̃)−1 Γ′ Π̃µ .

For Q = 0, ut = K zt + (B′Π̃B)−1B′Π̃(Π−1ϑ− µ), where

Π−1 ϑ − µ = − (Π − Γ′ Π̃)−1 Γ′ Π̃µ − µ

= − [I − (Π − Γ′ Π̃)−1 Γ′ Π̃ ]µ ,

so that ut = K zt + ue, where ue = −(B′Π̃B)−1B′Π̃µ− (B′Π̃B)−1B′Π̃(Π − Γ′Π̃)−1Γ′Π̃µ. Now,

(B′ Π̃ B)−1 =
1

δ

1

γ2

1

π̂2
det(I2 − δ ρN Π) ,

while

B′ Π̃ = (0 − γ)
δ

det(I2 − δ ρN Π)

 π̂1 π̂1,2

π̂1,2 π̂2


=

δ

det(I2 − δ ρN Π)

(
−γπ̂1,2 −γπ̂2

)
,
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so that

− (B′ Π̃ B)−1 B′ Π̃ =
1

γ

(
π̂1,2

π̂2
1

)
=

(
κπ

1

γ

)
,

in that κπ = π̂1,2/(γπ̂2). Hence, for µ =

(
0

γπ∗

)
, −(B′Π̃B)−1B′Π̃µ = π∗. In addition, consider that

Γ′Π̃ =
δ

det(I2 − δ ρN Π)

 1 − γ κπ

α −αγ κπ

  π̂1 π̂1,2

π̂1,2 π̂2


=

δ

det(I2 − δ ρN Π)

 π̂1 − γ κπ π̂1,2 π̂1,2 − γ κπ π̂2

α (π̂1 − γ κππ̂1,2) α (π̂1,2 − γ κπ π̂2)

 .

Since κπ = π̂1,2/(γπ̂2), Γ′Π̃ =

(
a 0

b 0

)
. Then,

Γ′ Π̃µ =

 0

0

 and hence

−(B′Π̃B)−1B′Π̃(Π − Γ′Π̃)−1Γ′Π̃µ = 0. We then conclude that ue = π∗ and that ϑ =

(
0

0

)
. This

means that

ιt = κπ ςt + κy yt + π∗ and F (zt) = z′t Π zt .

MLE for the state vector zt with Positive Inflation Target. Given the plant equation, ẑt =

A zt−1 + B ut−1 + µt, where z′t = (πt − π∗ yt) and µ′t = (0 γπ∗). Given A and B we have that

π̂t − π∗ = πt−1 − π∗ + α yt ,

ŷt = β yt−1 − γ ιt−1 + γ π∗ .

Since ιt = rt + π∗, we conclude that

π̂t = πt−1 + α yt ,

ŷt = β yt−1 − γ rt−1 .

Optimal Production Policy for Risk-averse Monopolist. Given that Q = q, R = 0, S = −1/2,

A = a, B = b, z = p and u = x, the continuous-time risk-sensitive Riccati equation is

d π(t)

d t
+ 2 a π(t) − 1

q

(
b π(t) − 1

2

)2

+ ρ σ2
ε π(t)2 + log δ π(t) = 0

58



which we can re-write as d π(t)
d t = h0 + h1π(t) + h2π(t)2, with h0 = 1/(4q), h1 = −(2a + b/q + log δ),

h2 = b2/q − ρσ2
ε , and transformed into a homogeneous ordinary differential equation of order two,

d2 y(t)

d2 t
− h1

d y(t)

d t
+ h0 h2 y(t) = 0 , with π(t) = − 1

h2

d y(t)
d t

y(t)
.

Assume then that y(t) = m exp(ζ t). We have a solution of the ODE iff

ζ2m exp(ζ t) − ζ h1m exp(ζ t) + h0 h2m exp(ζ t) = 0 , i.e. iff

mζ2 − mh1 ζ + mh0 h2 = 0 .

This admits two roots equal to ζ =

{
ζ1 = 1

2 h1 + 1
2

√
D

ζ2 = 1
2 h1 − 1

2

√
D

, with D = h2
1 − 4h0h2. Thus, y(t) =

m1 exp(ζ1 t) +m2 exp(ζ2 t). Given that π(t) = − 1
h2

d y(t)
d t

y(t) , we can write that

π(t) = − m1 ζ1 exp(ζ1 t) +m2 ζ2 exp(ζ2 t)

( b
2

q − ρ σ2
ε ) (m1 exp(ζ1 t) +m2 exp(ζ2 t))

.

We can impose the terminal condition π(T ) = 0 to find that

m1 ζ1 exp(ζ1 T ) +m2 ζ2 exp(ζ2 T ) = 0 ⇔ m2 = −ζ1
ζ2
m1 exp((ζ1− ζ2)T ) = −ζ1

ζ2
m1 exp(

√
D T ) .

Re-inserting this expression in that for π(t) we find that

π(t) = − 1

( b
2

q − ρ σ2
ε )

(
ζ1 exp(ζ1 t) − ζ1 exp(

√
D T ) exp(ζ2 t)

exp(ζ1 t) − ζ1
ζ2

exp(
√
D T ) exp(ζ2 t)

)

= − ζ1

( b
2

q − ρ σ2
ε )

(
1 − exp(

√
D T ) exp(−(ζ1 − ζ2) t)

1 − ζ1
ζ2

exp(
√
D T ) exp(−(ζ1 − ζ2) t)

)

= − ζ1

( b
2

q − ρ σ2
ε )

(
1 − exp(−

√
D (t− T ))

1 − ζ1
ζ2

exp(−
√
D (t− T ))

)

= − ζ1

( b
2

q − ρ σ2
ε )

(
exp(

√
D (T − t)) − 1

ζ1
ζ2

exp(
√
D (T − t)) − 1

)
,

as ζ1 − ζ2 = D. Notice, that for b2

q > ρσ2
ε 0 < ζ2 < ζ1. It immediately follows that π(t) < 0,

while for b2

q < ρσ2
ε , ζ2 < 0 < ζ1. Even in this case π(t) < 0 as ζ1

( b
2

q −ρ σ2
ε )

and exp(
√
D (T−t))−1

ζ1
ζ2

exp(
√
D (T−t))−1

change sign. Notice that for b2

q = ρσ2
ε , ζ2 = 0 and the solution turns degenerate and collapses to the

static solution. In fact, in this case ζ2 = 0 and ζ1 = h1, so that y(t) = m1 exp(h1t) + m2 and hence

d y(t)/d t = m1h1 exp(h1 t). Then, the terminal condition π(T ) = 0 entails that m1 = 0 and this on

turn implies that π(t) = 0.
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