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Abstract

This paper examines how financial crises affect the ability of agents to learn about economic

fundamentals, and how this in turn affects the transmission of financial shocks through the economy.

To this end, we introduce a model where noise in the financial market drives business cycles.

Agents endogenously learn about fundamentals from market prices, but financial constraints

systematically destroy the informational capacity of prices in financial crises. This is because

financially constrained agents stop responding to available information, reducing the efficiency

of prices in aggregating information that is dispersed across the economy. As a result, times of

financial crisis are marked by both endogenously increasing uncertainty and increasingly persistent

pessimism, providing a powerful amplification mechanism for financial shocks. Importantly, this

mechanism is inherently nonlinear. Whereas small or positive financial shocks have only a little

influence on the economy, unusually adverse shocks virtually shut down market learning and

result in over -proportionally severe and persistent crashes—characterized by substantial losses in

employment, output, and asset prices; and high levels of uncertainty, volatility, and risk premia.
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1 Introduction

Financial crises are often associated with high levels of uncertainty.1 At the same time, many

observers believe that uncertainty is not only a symptom, but also an amplifier of crises. As IMF

chief economist Olivier Blanchard phrases it: “Crises feed uncertainty. And uncertainty affects

behavior, which feeds the crisis.” What is more, he continuous that if “a magic wand (were) to

remove uncertainty... (then) the crisis would largely go away.”2 This suggests that understanding

the extreme nature of financial crises requires to think about uncertainty as being endogenous to

the state of the economy.

This paper explores the idea that uncertainty is endogenous in nature, studying a macroeconomic

model where agents learn about economic fundamentals from market prices. The presence of financial

frictions endogenously determines the efficiency of the pricing mechanism in aggregating available

information and thereby governs uncertainty among agents. Within this framework, we investigate

how the endogenous nature of uncertainty affects the transmission of financial shocks through the

economy.

Preview of the model The analysis is based on a stylized two-sector economy. In a production

sector, entrepreneurs produce a single consumption good, using labor provided by workers as the only

input factor; and in a financial sector, both workers and entrepreneurs trade an asset whose returns

correlate with the economy’s average productivity (the exogenous fundamental of the economy).

The model is built on two assumptions. First, fluctuations in the financial market affect the

real sector via financial frictions. Specifically, we assume that entrepreneurs must borrow in order

to pay their workers and that, as in Kiyotaki and Moore (1997), all debt must be secured with

collateral. Having entrepreneurs use the financial asset as collateral, this creates a cap on hiring

which tightens as asset prices tumble. Second, we assume that agents cannot observe the economy’s

average productivity directly. Instead they endogenously learn about productivity by observing the

market-clearing prices in both sectors, which aggregate exogenously available information that is

dispersed across the economy.

Results The interaction of endogenous learning and financial frictions produces a number of novel

insights.

First, in response to adverse financial shocks, financial frictions systematically destroy the real

economy’s “informational capacities” (i.e., less can be learned from observing the production sector).

This is because when entrepreneurs become financially constrained, they cease to respond to available

information. Wages therefore become less efficient in aggregating information that is dispersed across

the real sector.3 This reduces overall learning and increases uncertainty among agents in times of

1In particular, both business outlooks and asset returns are considered being highly uncertain during crisis times.
2This quote is taken from a guest article written by Olivier Blanchard for The Economist, January 31, 2009.
3In a richer model, the efficiency in aggregating information would not only be reduced for wages (the only price

affected by entrepreneurs’ production choices in our model), but for all prices that vary with the economy’s production.
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financial distress.

Second, the endogenous nature of the real economy’s informational capacities gives rise to two

information-based mechanisms that amplify adverse financial shocks.4 To begin with, note that

agents optimally respond to wages becoming less informative by shifting weight to other sources

of information. In particular, agents pay closer attention to the asset prices as they tumble. This

amplifies pessimism among agents, tightens financial constraints even more, and creates a harmful

feedback loop. At the same time, with little to learn from the real economy, agents also increase the

weight they give to prior information, causing pessimism to become inherently persistent. Through

the financial market the persistence of pessimism then tightens future constraints, which in turn

inhibit future learning, throwing the economy into a “pessimism trap”. Importantly, both of these

mechanisms are inextricably tied to the endogenous nature of uncertainty—were one to remove

uncertainty during a financial crisis (using the “magic wand” imagined by Olivier Blanchard), the

crisis would indeed largely go away.

Third, while the bulk of the literature on financial frictions discusses amplification mechanisms

that are symmetric,5 the information-based amplification mechanisms just described are inherently

asymmetric. That is, whereas adverse financial shocks inhibit learning and have an amplified and

persistent impact on the economy, positive financial shocks improve learning and have a de-amplified

and non-persistent impact.

More generally, we find that the more negative a financial shock, the greater are both the

amplification and the persistence of the shock. In particular, while the amplification and persistence

of small shocks is negligible, rare adverse (“tail”) shocks virtually destroy the real economy’s

informational capacities and entail highly amplified and persistent crashes. This non-linearity (or

convexity) provides a novel theoretical explanation for why fluctuations in the financial market

appear to have only a small impact on the real economy during “normal times”, whereas unusually

adverse financial shocks propagate persistently throughout the whole economy.

Our theoretical results explain six key characteristics of financial crises, namely: (i) amplified

and (ii) persistent losses in output, employment, and asset prices; (iii) high uncertainty; (iv) highly

diverse views on the state and fate of the economy; (v) volatile asset prices; and (vi) large risk

premia. We have already discussed the first three characteristics. To continue, highly diverse views

are another consequence of agents responding optimally to wages becoming less informative. That

is, as less can be learned from observing the real sector, agents increasingly rely on private sources

of information, which are inherently diverse. At the same time, as discussed above, agents also

pay more attention to asset prices. As in any rational expectations equilibrium, this implies that

4To sharpen our results, we abstract from any risk-related mechanisms or any other mechanisms that directly
translate increases in uncertainty into real effects. However, including any such mechanism only amplifies our findings,
which we illustrate in Section 7.3 where we extend the model to study the effects of risk-aversion.

5This is, for instance, true for the seminal contributions by Kiyotaki and Moore (1997) and Bernanke, Gertler and
Gilchrist (1999), and most of the literature thereafter. An important exception are Brunnermeier and Sannikov (2012),
who consider an economy with a financial sector, in which shocks have similar nonlinear effects. See the literature
review for details.
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asset prices become more exposed to noisy demand shocks within the financial market, increasing

volatility. Lastly, when agents are risk-averse, risk premia on asset prices fluctuate with uncertainty,

too.

Methodological contribution The information loss in our model is inextricably tied to endoge-

nous learning governed by nonlinear laws of motion.6 That is, agents learn about the fundamental

not only through linear signals but also through nonlinear ones. More specifically, we show that, in

virtue of financial frictions, real sector prices (in the presence of noisy demand) are informationally

equivalent to observing a perturbed, concave function of the fundamental. The slope of the function

is decreasing in the “constrainedness” of the economy. In a general theorem, we then prove that

“well-behaved” concave signals generally result in higher uncertainty when the signal realizes in flatter

regions. This theorem applies to a large class of information structures and holds independent of the

specifics of our model.

One technical challenge in analyzing the dynamic properties of our model is that nonlinear

Gaussian signal structures generally do not pair with conjugate prior distributions. To address this

problem, we develop a quasi-Gaussian framework, departing from the assumption that the small

additive noise terms included in the nonlinear signals are normally distributed. In particular, we

construct the noise terms in such a way that the nonlinear signals behave as if they were linear

normal signals with a state-dependent signal precision. Within this framework, our general theorem

then maps every state of the economy to a unique signal precision, which is decreasing in the

economy’s constrainedness. Because, in the limit of signals becoming linear, the state-dependent

signal precision becomes state-independent, quasi-Gaussian signals can be understood as a natural

extension of the standard linear Gaussian framework to the case of nonlinear signals.

Related literature At a methodological level, the two building blocks of our model relate this

paper to two strands of modern macroeconomics. First, there is a large literature on financial frictions

that demonstrates how small shocks can get amplified through the financial system. In particular,

our formalization of credit constraints is based on Kiyotaki and Moore (1997).7 We contribute to

this literature by identifying a new informational role of financial frictions that complements the

constraining role known from previous works. Throughout the paper, we highlight the consequences

of this new informational mechanism by comparing our model to the counterfactual case where the

constraining role of credit constraints remains intact, but all informational effects of frictions are shut

6Mertens (2011) and Hassan and Mertens (2011) also analyze a model with heterogeneous information and nonlinear
laws of motion. However, in their paper, the information structure is such that nonlinearities are transformed away
and agents actually update according to linear prices, avoiding endogenous uncertainty.

7More recent studies based on credit constraints include, e.g., Krishnamurthy (2003); Iacoviello (2005); Kiyotaki and
Moore (2008); Gertler and Karadi (2011); and Gertler and Kiyotaki (2011). Important contributions that are based on
other financial frictions include, e.g., Bernanke and Gertler (1989); Carlstrom and Fuerst (1997); and Bernanke, Gertler
and Gilchrist (1996, 1999), which develop a costly state verification approach; and Kurlat (2010); Bigio (2011, 2012);
and Boissay, Collard and Smets (2012), which consider frictions originating in adverse selection. See Appendix B.2 for
a discussion how the ideas developed in this paper can be applied to the costly-state-verification and adverse selection
approaches.
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down. As with the majority of the financial frictions literature, we find that in this counterfactual

case, shocks symmetrically and linearly affect the economy. That is, both adverse and positive shocks

are amplified through financial frictions in exactly the same way. In contrast, our findings that

amplification is asymmetric and nonlinear is a novel feature of the information-based mechanism

introduced in this paper.8

Second, our paper closely connects to an emerging literature on heterogeneous information in

macroeconomics (see, e.g., Morris and Shin, 2002 and Woodford, 2003).9 From a methodological

perspective, we contribute to this literature by showing how learning from nonlinear signals gives rise

to endogenous uncertainty and by embedding nonlinear signals in a conjugate prior framework. From

an applied perspective, our paper is similar to Angeletos, Lorenzoni and Pavan (2010) who also study

how learning from the real sector affects the financial market, but do not consider how in the presence

of financial constraints the financial market feeds back to the information aggregation and how that

causes learning to collapse during financial crises. Perhaps closest to our model is a framework by

La’O (2010), which also combines informational with financial frictions. However, because La’O

resolves all dispersion of information at the time agents learn from financially constrained markets,

posterior uncertainty in her model is completely determined by the exogenous amount of information

available to the economy, ruling out the informational mechanism that drives our results.10

At a more applied level, our paper also relates to a recent literature following Bloom (2009)

that puts forth the idea of uncertainty-driven business cycles resulting from exogenous uncertainty

shocks.11 Our approach relates to these works in two ways. First, we provide a microfoundation for

why uncertainty increases specifically during times of financial distress, which is also when empirical

measures of uncertainty are highest. An important insight from our microfoundation is that the

endogenous nature of uncertainty unleashes a powerful feedback loop, which is absent in business

cycles that are driven by exogenous uncertainty shocks. Therefore, in contrast to Bloom, who finds

that uncertainty shocks give rise to rapid drops and rebounds in economic activity, we find that high

uncertainty goes along with amplified and persistent crises. Second, the literature on exogenous

uncertainty shocks complements our findings in that it discusses a number of additional channels,

absent in our model, by which increases in uncertainty may propagate through the economy. In

particular, Christiano, Motto and Rostagno (2009) and Gilchrist, Sim and Zakraǰsek (2010) illustrate

how fluctuations in uncertainty are amplified through a combination of risk-aversion and financial

8An important exception are Brunnermeier and Sannikov (2012), who consider an economy with a financial sector,
in which shocks have similar nonlinear effects. While the findings of Brunnermeier and Sannikov are similar in spirit,
their mechanism is, however, not. In particular, information in their model is perfect and uncertainty is constant over
time.

9More recent contributions to the dispersed information literature with a macroeconmic focus include Adam (2007);
Angeletos and Pavan (2004, 2007, 2009); Amato and Shin (2006); Morris and Shin (2006); Amador and Weill (2008);
Lorenzoni (2009, 2010); Hellwig and Veldkamp (2009); Hassan and Mertens (2011); Goldstein, Ozdenoren and Yuan
(2011); and Angeletos and La’O (2012a,b).

10We also differ from La’O (2010) in that we focus on business cycle dynamics, whereas La’O studies the (static)
composition of output and price volatility in fundamental and noise shocks in a single period model.

11See also Sim (2008); Bachmann and Bayer (2009); and Bloom et al. (2012).
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frictions and have strong effects on the real sector.12

Finally, our finding that financial frictions destroy information relates to Van Nieuwerburgh

and Veldkamp (2006), who consider a different mechanism that also implies that learning from the

real sector varies across states of the economy. More specifically, Van Nieuwerburgh and Veldkamp

observe that learning about total factor productivity is slow in recessions, when total production

is perturbed by additive noise. The reason is that the noise in signals contributes relatively more

to output when output is low, leading to higher uncertainty during recessions (see also, Veldkamp,

2005 and Ordoñez, 2010). The mechanism studied in this paper differs from the mechanisms in

these papers in that the efficiency of learning is governed by the degree to which the economy is

constrained rather than the level of output. As outlined above, this difference leads to a number

of important implications for the transmission of financial shocks. Apart from this, our paper also

differs in that it considers learning from price signals and provides an explicit foundation for why

prices vary in their informational content in times of financial distress. This approach is shared

with two related contributions by Yuan (2005) and Albagli (2011). However, both papers focus on

financial markets and do not include a real sector, preventing them from analyzing the transmission

of financial shocks through the economy, which is at the core of our contribution.13

Outline The plan for the rest of the paper is as follows. The next section introduces the model

economy. Section 3 examines how financial frictions affect the ability of agents to learn from

market prices. Section 4 characterizes the full equilibrium. Section 5 then explores how shocks are

transmitted through the economy. Section 6 illustrates our theoretical results with a numerical

example. Section 7 points out some further empirical predictions, and Section 8 provides further

insights on how real (fundamental-driven) business cycles affect uncertainty. Section 9 concludes.

2 The model

Our model is based on two ingredients: financial frictions and endogenous learning. In the interest

of analytical tractability, we make a number of simplifying assumptions. In particular, we focus

on labor as a single input good, so that learning from the real sector takes the form of extracting

information from the market clearing wage. Nonetheless, our analysis can be applied to any other

price that varies with entrepreneurs’ optimal production choices, and is meant to more generally

capture the idea that agents learn about business conditions by observing the real sector. Also, we

focus on a single, stylized financial friction to model spillovers from the financial market. However,

12While risk-related transmission mechanisms of uncertainty are clearly important, we abstract from them in our
baseline model in order to highlight the role of the information-based feedback mechanism at the core of our paper. As
we illustrate in Section 7.3, including risk-considerations, however, amplifies our findings.

13Bachmann and Moscarini (2011) also introduce a framework in which the cross-sectional dispersion of beliefs
increases during crises, but posterior uncertainty remains constant. Also, there is a growing literature on rational
inattention, which is based on the idea that learning is costly, leading agents to endogenously pick their desired level of
uncertainty (see, e.g., Sims, 2003, 2006; Maćkowiak and Wiederholt, 2009, 2010; and Woodford, 2009).
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while the model heavily rests on the constraining role of asset prices, it is irrelevant by which financial

friction this is explained (see Appendix B.2).

Preferences and technologies Consider a discrete time, infinite horizon economy with a con-

tinuum 1 of risk-neutral, one-period lived agents. A proportion m of each generation’s agents

are farmers, while the remaining 1−m are gatherers. With a slight abuse of notation, we use F
and G to denote the set of farmers and gatherers at a given date, respectively. Both farmers and

gatherers consume a single consumption good, a perishable fruit, which is produced using two distinct

technologies. First, there is an entirely exogenous production unit. In reference to Lucas (1978) it is

helpful to think about this unit as a “tree” (or asset), which bears a random number Ãt of fruits

and comes in a total supply of 1, equally distributed across each generation. Second, farmers have

access to a “field” which transforms labor input nit into additional fruits. The production function

for field work is given by

F (Ãit, nit) = Ãit log(nit),

where Ãit is an idiosyncratic random productivity parameter of farmer i ∈ F at date t.

For simplicity, farmers are excluded from doing fieldwork themselves, but may employ gatherers

for the purpose of cultivating their fields. Gatherer i’s disutility of working is given by v : R+ → R+,

a twice differentiable, increasing, and strictly convex function, with v′(0) = 0 and limn→∞ v
′(n) =∞.

Gatherer i thus wishes to maximize the quantity

E {c̃it − v(nit)|Iit} , (1)

and farmer i wishes to maximize

E {c̃it|Iit} , (2)

where c̃it represents consumption of fruits, and E {·|Iit} is an expectations operator given information

set Iit.14

Field productivities {Ãit : i ∈ F} are taken to be lognormally distributed, so that log(Ãit) ≡ θ̃it
has a normal distribution with mean θ̃t and variance 1/τξ, and where the average log productivity θ̃t

follows a first-order autoregressive process:

θ̃t = ρθ̃t−1 + ε̃t,

where ε̃t is Gaussian noise with variance 1/τε. The dividend from fruit trees is assumed to be

positively correlated with the average productivity and is given by

log(Ãt) = γ0 + γ1θ̃t + ũt,

14Throughout, we differentiate between stochastic variables and their realizations by accentuating the stochastic
version with a tilde (“∼”).
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where (γ0, γ1) ∈ R× R+ and ũt is an independent (of θ̃t) random variable that possibly introduces

additional noise to dividend payments.

Markets and credit constraints There are two types of markets operating at date t. First, a

competitive labor market matches demand and supply for field work and determines the market

clearing wage wt. Second, a competitive stock market determines ownership of fruit trees and pins

down an asset price qt. Shares on trees are assumed to be perfectly divisible and entitle its owners to

claim all Ãt fruits falling from the corresponding tree. In both markets, current period consumption

serves as the unit of account. Furthermore, we simplify the analysis by ruling out margin trading

and short selling of trees, effectively restricting asset holdings of agent i to 0 ≤ xit ≤ 1.15

We now describe the financial friction in our economy. Following Kiyotaki and Moore (1997),

we assume that farmers lack the means to commit to paying their wage debt after production is

sunk. As a consequence, gatherers refuse to do field work unless they are provided a security by

farmers in exchange for their labor.16 We assume that fruits harvested from fields are nontradeable,

so that fields itself cannot be used as an security.17 Instead, farmers may use trees as collateral to

pay gatherers. Also, we simplify the problem of how to account the value of collateral by assuming

that the asset market operates at least twice: A first time parallel to the labor market, ensuring that

all information that is possibly aggregated by trading trees is already available when the value of

collateral is determined; and a second time after production is realized and wages are paid, so that

the value of collateral is based on the current market price qt for trees. These assumptions jointly

imply that the wage debt of a farmer i at date t is bounded from above by the market value of his

asset holdings xitqt, constraining labor demand to satisfy

nit ≤ (qt/wt)xit. (3)

Information The average productivity takes the role of the “fundamental” in our economy. More

generally, θ̃t is meant to reflect the “profitability” of investments, comprising, e.g., technology shocks

15This specification is adopted from Albagli, Hellwig and Tsyvinski (2011) and in combination with our assumptions
on noisy asset demand (see below), it keeps the law of motion of asset prices tractable within a conjugate prior
framework. Further note, that these no-borrowing constraints are consistent with the lack of commitment power that
we impose as a key friction on the labor market.

16Our assumption that farmers cannot commit to paying their wage bill is based on theoretical arguments developed
by Hart and Moore (1994, 1998). In their 1994 paper, such commitment problem arises from the possibility to
renegotiate wages at any point during the production process. Accordingly, if farmers are indispensable for reaping
the benefits of field work (e.g., because fruits harvested on fields are nontransferable, as we assume in our setting),
then the outside option of gatherers is reduced to the value of collateral, and farmers could renegotiate a smaller wage
whenever the wage bill exceeds the value of collateral. Alternatively, if, as in their 1998 paper, farmers can “run away”
after production is harvested, gatherers are likewise left with only the value of collateralized assets. In both cases,
in anticipation of the moral hazard, gatherers will not accept an outstanding wage debt that exceeds the value of
collateral.

17This assumption is again based on Hart and Moore’s (1994) rationale for why farmers cannot commit to paying
their wages in the first place: If farmers are indispensable for operating field production, then fields are naturally
worthless to gatherers (see also, Footnote 16).

7



and aggregated business conditions. Agents base their expectations about θ̃t on the information

Iit = {sit} ∪ {ws, qs}ts=1,

which, in addition to the publicly observable history of prices {ws, qs}ts=1, contains a private signal s̃it,

which reveals the true average productivity θ̃t perturbed by some independent Gaussian noise ξ̃it

with variance 1/τξ:

s̃it = θ̃t + ξ̃it.

For simplicity, {s̃it}i∈F is assumed to be perfectly correlated with farmers’ productivities {θ̃it}i∈F ,

so that by learning the realization of s̃it a farmer also learns the productivity of his field.

Furthermore, to prevent θ̃t from being perfectly revealed by the market, prices wt and qt are

perturbed by noise traders with stochastic asset demand Φ(
√
τξ (η̃t−µ)) and labor demand Ψθt,qt(ω̃t).

Here η̃t and ω̃t are independent Gaussian noise with variances 1/τη and 1/τω, Φ is the cumulative

standard normal distribution, µ is a constant which we conveniently set to offset the risk related

components contained in q̃t,
18 and Ψθt,qt : R→ R is a function that transforms ω̃t into a random

variable Ψ̃t which may depend on the realizations of θ̃t and q̃t. Noisy asset demand Φ (
√
τξ (η̃t − µ))

is divided between the two occurrences of the asset market in a fixed ratio of 1−m to m.

Note that to illustrate the precise conditions for which our main theorem holds, we deliberately

keep Ψθt,qt as general as possible for now, restricted only by the assumptions below. In addition,

this generality, later grants us the freedom that is necessary to generalize the standard conjugate

Gaussian framework and to extend it to the case of nonlinear learning.

Distributional assumptions As it will be seen, one key feature of this model is that the amount

of information that is aggregated from the real sector through the labor market varies with the

state of the economy. To define the conditions for which our characterization of learning holds, it

is convenient to first introduce normalized versions of labor demand and supply, χds and χst , which

describe them relative to the upper bound on labor as given by equation (3),19

χdt = log

(
m
∫
F nit di

qt/wt

)
and χst = log

(
(1−m)

∫
G nit di

qt/wt

)
;

18Although agents are risk-neutral in the model economy, the lognormal distribution of dividends implies that the
asset price q̃t behaves as if agents were risk-seeking with respect to the fundamental θ̃t. By setting µ to γ1/2 times
the cross-sectional information dispersion (i.e., µ = γ1/(2τξ)), the risk-discount is exactly offset by the bias in noise
traders’ demand, yielding an asset price that behaves as if agents were risk-neutral with respect to θ̃t and noise traders
were unbiased. Also note that by transforming η̃t into Φ(

√
τξ (η̃t − µ)) ∈ [0, 1], noise traders’ demand matches the

support of endogenous asset demand, ensuring the existence of a market clearing price. The unbiased version of this
specification (with µ = 0) is adopted from Albagli, Hellwig and Tsyvinski (2011) and keeps the law of motion of asset
prices tractable within a conjugate prior framework (see also, Footnote 15).

19Here we anticipate that in equilibrium all farmers will hold xit = 1 assets at the time the labor market operates,
so that the collateral constraint is given by nit ≤ qt/wt.
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and define

χmt = log

(
exp(θt)/wt
qt/wt

)
= θt − log(qt),

which corresponds to the unconstrained relative demand of the median-productivity farmer. In-

tuitively, χdt measures the fraction of farmers operating at their collateral constraint and provides

a useful proxy for the constrainedness of the economy. Note that, even after observing wt and

qt, χ̃
d
t |(wt, qt) is a nondegenerate random number that, via optimal labor demand, depends on θ̃t.

In the next section, it will be seen that forming the posterior χ̃dt |χst conveniently summarizes the

information that can be extracted from the labor market.

To develop an intuition for the conditions under which our main results hold, it is helpful to

define them in terms of the posterior χ̃dt |χst . Would there be no market noise, then labor demand

would equal labor supply and we would have that χ̃dt |χst = χst . Accordingly, the properties of the

random variable χ̃dt |χst reflect how the market noise Ψ̃t correlates with the state of the economy.

In the following, we impose two restrictions on these properties. Importantly, even though χ̃dt |χst
arises endogenously, it is possible to map these restrictions on χ̃dt |χst back into assumptions about

the exogenous noise term Ψ̃t (for details, see Appendix B.3).20

With this in mind, we impose the following key restriction:21

Property 1. Var{χ̃dt |χst} is constant for all χst ∈ R.

Property 1 ensures that the amount of information about the normalized labor demand χ̃dt that

is contained in the market clearing wage w̃t is constant throughout all states of the economy. In

Proposition 1, we show that this specification is equivalent to requiring that, in the absence of credit

constraints, uncertainty about θ̃t behaves exactly like in a standard economy where it is constant

over time. This ensures that there is no time dependency of uncertainty inherent to the stochastic

process Ψ̃t, so that any variation of uncertainty will be the result of credit constraints.

Additionally, we shall also require the following regularity condition:

Property 2. It holds that

(i) χ̃dt |χst satisfies the monotone likelihood ratio property (MLRP) with respect to χst , or

(ii) χ̃mt |χst belongs to a location-scale family of distributions; i.e., χ̃mt |χst = α1(χst ) +α2(χst )X̃ where

X̃ is a non-degenerate, square-integrable random variable with mean zero and α1 : supp(χ̃st )→ R
increasing.

This property states that observing a higher labor supply allows for the statistical inference

that also the corresponding fundamental labor demand (net of market noise Ψ̃t) is higher in the

20The bottom line is that there exists a monotone transformation of Ψ̃t that directly enters the updating problem of
agents which gives rise to χ̃dt |χst . By “backward-engineering” Bayes’ law, any assumption on the posterior distribution,
can therefore also be traced back to an assumption in terms of the signal structure defined by Ψ̃t.

21Note that in Properties 1 and 2, the conditional distributions χ̃dt |χst and χ̃mt |χst are meant to denote posterior
distributions that result from a flat prior.
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sense of stochastic ordering. This is the natural analogue to the case without market noise, where

fundamental demand exactly equals supply. More specifically, Property 2 specifies two alternative

ordering criterion. In case (i), we adopt the commonly used monotone likelihood ratio property.22

In case (ii), we state an alternative distributional assumption which gives rise to a specific class of

“location-scale” posteriors. Here, α1(χst ) is the mean of the posterior and (α2(χst ))
2 is proportional to

the posterior variance, where the ordering takes the form of assuming that α1 is increasing. While it

will be seen that tighter financial constraints imply an higher uncertainty in both cases, introducing

the more specific location-scale setting allows us later to focus on a conjugate Gaussian framework

for analyzing the dynamics of this economy.

Timing The timing of events within one period can be summarized as follows:

1. The random variables {ε̃t, {ξ̃it : i ∈ [0, 1]}} are realized and agents learn the realizations of s̃it.

2. Noise traders’ demand and supply {η̃t, ω̃t} realize, the labor and asset market operate.

3. Field production takes place, farmers choose whether or not to pay their wage bill, and

gatherers seize collaterals if farmers default on their wage debt.

4. The asset market operates again.

5. Fruits from trees are gathered and consumption takes place.

6. A new generation replaces the old one and period t+ 1 begins.

Equilibrium definition Because of the assumption that agents cannot trade on margin, farmers

are prevented from sidestepping collateral constraints by buying additional trees. Accordingly,

the only benefit of holding trees that is reflected in the market clearing price qt is the expected

dividend payoff. Moreover, a simple arbitrage argument then implies that trees are traded at the

same price in both openings of the asset market at any date t. In appendix B.1, we show that

without loss of generality we can treat the two asset markets as if all assets were traded in a single

pooled market that operates parallel to the labor market, and where labor demand of all farmers

is constrained to satisfy nit ≤ qt/wt. Accordingly, the information {Iit : i ∈ [0, 1]} defined in the

preceding paragraphs is the basis for all labor supply {nit : i ∈ G}, labor demand {nit : i ∈ F}, and

asset demand choices {xit : i ∈ [0, 1]} at date t. Given these considerations, a competitive rational

expectations equilibrium is then defined in the usual manner.

Definition 1. Given a stochastic process of shocks {ε̃t, η̃t, ω̃t, {ξ̃it : i ∈ [0, 1]}}, an equilibrium in

this economy is a stochastic process of choices {x̃it, ñit : i ∈ [0, 1]} and prices {w̃t, q̃t}, such that:

1. {x̃it, ñit : i ∈ [0, 1]} maximize expected utility (1) and (2) given {w̃t, q̃t} and {s̃it : i ∈ [0, 1]};
22Formally, MLRP states that χst < χ̂st implies that Prob(χ̃dt |χst )/Prob(χ̃dt |χ̂st ) is decreasing in χ̃dt .
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2. markets clear, i.e.,

(1−m)

∫
G
ñit di = m

∫
F
ñit di+ Ψθ̃t,q̃t

(ω̃t) (4)

and ∫ 1

0
x̃it di+ Φ(

√
τξ (η̃t − µ)) = 1; (5)

3. expectations in (1) and (2) are formed optimally given {w̃t, q̃t} and {s̃it} = {θ̃t + ξ̃it}.

3 Learning with financial frictions

In this section, we explore the key mechanism of this paper. It will be seen how learning from the

real sector breaks down when financial constraints are tight.

Agents learn from the real sector via the endogenous history of market prices {w̃t, q̃t}. Hereby,

asset prices play a dual role. On the one hand, changes in q̃t tighten financial constraints and thereby

affect the problem of extracting information from w̃t. On the other hand, q̃t is also a source of

information on its own. In the next section, it will be seen that this latter problem of extracting

information from q̃t is standard. For now, we therefore focus on the novel problem of extracting

information from w̃t, by studying how an exogenously given asset price q̄—without any informational

content on its own—constrains farmers’ choices and how this affects the information aggregation.

From the market clearing condition (4), we have that w̃t solves

(1−m)v′−1(w̃t) = n(w̃t, q̄, θ̃t) + Ψ̃t,

where v′−1(w̃t) is the optimal labor supply of a single gatherer, min{Ait, q̄}/wt is the optimal labor

demand of a single farmer with productivity Ait, and

n(w̃t, q̄, θ̃t) =
m

w̃t

∫ ∞
−∞

min{exp(z), q̄} dΦ(
√
τξ (z − θ̃t)), (6)

is the aggregated labor demand. Transforming noisy labor demand from an additive perturbation Ψ̃t

to a multiplicative perturbation ψ̃t of farmers’ labor demand,23 the market clearing condition can be

rewritten as

χ̃st = χ̃dt + ψ̃t, (7)

where χ̃st and χ̃dt are normalized labor supply and demand as defined in the previous section.

Conditional on any realization of (w̃t, q̃t), χ̃
s
t is a publicly known number. Learning from the

real sector is therefore equivalent to observing a signal χ̃st which communicates the true value of χ̃dt
23Formally, ψ̃t = log(Ψ̃t/nt + 1); e.g., ψt = 0.01 refers to approximately an one percent amplification of fundamental

labor demand nt = n(wt, qt, θt).
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perturbed by ψ̃t. This amounts to a nonlinear signal structure. To see this, note that

χ̃dt = H(θ̃t − log(q̄)),

where H : R→ R− is defined by H(x) = log(n(1, 1, x)). The key observation is that H is increasing

and concave. Intuitively, aggregated labor demand is obviously increasing in the average productivity.

However, as an increasing number of farmers is operating at their collateral constraint (i.e., as

(θt − log(q̄)) increases), fewer farmers respond to changes in their productivities. Aggregating thus

implies that aggregated labor demand χ̃dt = H(θ̃t − log(q̄)) is also less responsive to changes in the

fundamental θ̃t. Hence the concavity of H.

3.1 Signal extraction without credit constraints

Before proceeding to our main theorem, it is insightful to first consider the limit case where

all farmers are unconstrained. Formally, let q̄ → ∞. Then H ′ → 1 for all θt ∈ R, so that

Var{θ̃t|χst} = Var{χ̃dt |χst}. Property 1 therefore exactly ensures that learning in the absence of credit

constraints yields a posterior uncertainty that is constant over time.

Proposition 1. Absent credit constraints, Var{θ̃t|χst} = Var{χ̃dt |χst}; i.e., Var{θ̃t|χst} is constant if

and only if Property 1 holds.

Proof. In the appendix.

By Proposition 1, uncertainty is constant in any unconstrained version of our economy. Any

variations in uncertainty are therefore the exclusive result of learning in the presence of credit

constraints.

3.2 Signal extraction with credit constraints

We now address how credit constraints affect learning from the real sector. We have already discussed

that financial constraints give rise to a concave signal structure. The following theorem states that

independently from the specific properties of our model, such a signal structure always leads to

signals with a precision that decreases as the signal realizes in flatter regions.24

Theorem 1. Let s̃, θ̃ and ε̃ be three non-degenerate random variables, and let f be an increasing

function defined on the convex hull of the support of θ̃, such that s̃ = f(θ̃) + ε̃ and θ̃, f(θ̃) square-

integrable. Furthermore suppose that either f(θ̃)|s satisfies the monotone likelihood ratio property

with respect to s; or θ̃|s = α1(s) + α2(s)X̃ for some non-degenerate, square-integrable random

variable X̃ and some functions α1, α2 defined on the support of s̃ and α1 increasing. Then

1. Var{θ̃|s} is increasing in s if f is concave and Var{f(θ̃)|s} is nondecreasing in s,

24For readability, we state the theorem for increasing functions f only, but it is straightforward to generalize it to all
monotonic f , leading to the opposite predictions for Var{θ̃|s} if f is decreasing.
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2. Var{θ̃|s} is decreasing in s if f is convex and Var{f(θ̃)|s} is nonincreasing in s.

In both cases, the monotonicity of Var{θ̃|s} is strict whenever f is strictly concave or convex.

Proof. In the appendix.

The intuition behind this theorem is quiet straightforward. When a signal s̃ realizes in flatter

regions, then a “well-behaved” signal structure allows for the posterior belief that also the fundamen-

tal θ̃ takes values for which f is flat.25 But then, a Bayesian must also believe that the realization

of s̃ is largely driven by noise ε̃ rather than by the fundamental θ̃. Hence the increase in posterior

uncertainty.

Framed in terms of our model, this reasoning translates into wage signals that are largely driven

by noisy demand fluctuations rather than fundamentals whenever the economy is in a constrained

state. Formally, we have:

Proposition 2. Var{θ̃t|χst} is strictly increasing in χst .

Proof. In the appendix.

The role of Proposition 2 in this paper cannot be overstated. It precisely tells us how and when

uncertainty about θ̃t is fluctuating in the economy. In particular, it establishes that uncertainty rises

after negative shocks to q̃t, which is at the core of all our results.

3.3 Quasi-Gaussian signal structure

Proposition 2 is inextricably tied to learning through the nonlinear function H. Unfortunately,

learning from nonlinear Gaussian signals generally leads to posterior distributions that do not

conjugate with the corresponding priors, making the dynamic analysis highly intractable. To address

this problem, we henceforth restrict ourselves to information structures that satisfy case (ii) of

Property 2 with X̃ being a standard normal random variable. Under this assumption, beliefs of

agents evolve as if agents observed a Gaussian signal with a state-dependent signal precision τυ.

Using this approach of informationally equivalent Gaussian signals, we are able to embed the idea of

time-varying uncertainty in a convenient framework with conjugate Gaussian priors.

Lemma 1. Suppose Property 2(ii) holds with X̃ being standard normally distributed. Then, given

a normal prior over θ̃t, observing χ̃st = χst is equivalent to observing a signal θ̃t + υ̃t with realiza-

tion α1(χst )+ log(q̄), where υ̃t is Gaussian noise with variance 1/τυ(θt+υt− log(q̄)) and τυ : R→ R+

is strictly decreasing, limz→−∞ τυ(z) = 1/Var{χ̃dt |χst}, and limz→∞ τυ(z) = 0.

Proof. In the appendix.

25By “well-behaved”, we refer to the assumption that either f(θ̃|s) are ordered according to the MLRP property—
which then in Milgrom’s (1981) language implies that “good news” for s̃ is also “good news” for f(θ̃) and, hence, for
θ̃—or, alternatively, that the first moment of the posterior distribution of θ̃ is increasing in s—similarly implying that
good news for s̃ is good news for θ̃.
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Figure 1: Endogenous signal precision.

The “quasi-Gaussian” signal structure that follows from Lemma 1 effectively decomposes the

inference problem of agents into a straightforward interpretation of a Gaussian signal and a com-

putational intensive calculation of the relevant signal precision. The benefit of this decomposition

is that agents’ beliefs can be computed straightforward within a conjugate prior framework. The

computational intensive part, on the other hand, only has to be solved by the model analyst. However,

applying the results from Proposition 2, we know that τυ is decreasing as the economy gets more

constrained, enabling us to derive all of our results analytically without the need to solve the exact

inference problem.

Figure 1 illustrates the properties of τυ that follow from Lemma 1: (i) τυ is decreasing as the

economy gets more constrained (i.e., as α1(χst ) = θt + υt − log(q̄) increases, reflecting either tighter

credit conditions, or an increased labor demand relative to existing credit conditions); (ii) τυ converges

to 1/Var{χ̃dt |χst} = const as the economy gets completely unconstrained (i.e, no information is lost

when all farmers are unconstrained); and (iii) τυ converges towards zero, so that the signal gets

completely uninformative, as the economy becomes fully constrained.

4 Equilibrium characterization

Equipped with the quasi-Gaussian representation, we are now ready to characterize the equilibrium.

We proceed in two steps. First, we fix the information structure (by fixing τυ) and analyze the resulting

signal extraction problem taking into account all signals. Because parts of agents’ information is

extracted from endogenous asset prices, this step involves finding the “usual” fixed point between a

perceived law of motion of q̃t and its actual behavior. Second, allowing the information structure

to vary with the state of the economy, we then establish the full informational equilibrium where
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information is simultaneously aggregated from labor and asset markets and where prices in both

markets are consistent with the resulting beliefs.26

4.1 Signal extraction from the financial market

From Lemma 1 it follows that we can focus on Normal posteriors. Accordingly, let bt ≡ E{θ̃t|Iit \sit}
and 1/πt ≡ Var{θ̃t|Iit \ sit} denote the posterior mean and variance that result from observing the

public history of market prices up to date t. Further let bit ≡ E{θ̃t|Iit} and 1/π̄t ≡ Var{θ̃t|Iit}
denote the first two posterior moments given information set Iit (i.e., including the private signal s̃it),

where in anticipation of the results below, we drop the subscript i from the posterior precision π̄t.

Then optimal asset demand is given by

xit =


1 if E{Ãt|bit, π̄t} > qt,

[0, 1] if E{Ãt|bit, π̄t} = qt,

0 if E{Ãt|bit, π̄t} < qt,

where E{Ãt|bit, π̄t} = exp(γ0 + γ1bit + γ2
1/(2π̄t)).

27 Aggregating, adding noise traders’ demand, and

rearranging yields the market clearing condition

Φ(σ−1
t (bmt(qt)− b̄t)) = Φ(

√
τξ (η̃t − µ)),

where bmt(qt) is the belief of the marginal trader with E{Ãt|bmt, π̄t} = qt, b̄t is the average be-

lief
∫
bit di, and σ2

t = Var{bit} is the cross-sectional dispersion of beliefs. This pins down the

marginal traders’ belief bmt = σt
√
τξ (η̃t − µ) + b̄t and the equilibrium price. Given any conjectured

law of motion for the market clearing price, this price also serves as an endogenous signal. In

equilibrium the beliefs resulting from interpreting this signal have to give rise to optimal asset

demands that yield an actual law of motion equal to the conjectured one. This fixed-point problem

has a log-linear solution, which is established in the following lemma (for a detailed derivation, see,

e.g., Hellwig (1980)).

Lemma 2. Fix any τυ. Then there exists a unique log-linear asset price

qt = exp{γ1(b̄t + π̄−1
t τξηt) + γ0} (8)

26Formally, agents post labor and asset demand schedules that are fully contingent on both prices. Agents therefore
learn from observing prices in the labor and asset market simultaneously and the resulting beliefs have to be consistent
with the market clearing prices on both markets.

27Here we assume without loss of generality that ũt is constant zero. Suppose it is not. Then by the independence
of ũt we have that E{Ãt|bit, π̄t} = E{exp(ũt)} exp(γ0 + γ1bit + γ2

1/(2π̄t)) = exp(γ′0 + γ1bit + γ2
1/(2π̄t)), where γ′0 =

γ0 + log(E{exp(ũt)}) and, hence, any nonzero random noise ũt can be absorbed by the constant γ0.
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which clears the asset market, where

b̄t = π̄−1
t ×

[
τξ τη τυ π̂t−1

]
×


θt

θt + ηt

θt + υt

ρbt−1

 ,
π̄t = τξ + τη + τυ + π̂t−1,

π̂t−1 =
πt−1τε

πt−1 + ρ2τε
,

and where (bt, πt) are given by (b̄t, π̄t) after setting τξ = 0.

Proof. In the appendix.

Given a public history summarized by bt−1 and πt−1, and given a signal precision τυ, this lemma

characterizes the unique log-linear relationship between the asset price at date t and the stochastic

variables θ̃t, η̃t, and υ̃t. The equilibrium price increases in all three variables, not just in the

fundamental. The reason is that positive noisy demand realizations on the asset and labor market

falsely suggest that the fundamental increased. The exact weight that is put on these sources of

information, however, depends on the signal precision τυ. Intuitively, as the real sector aggregates

less information, less weight is placed on real sector prices, and vice versa. We also see that posterior

uncertainty 1/π̄t is increasing as the signal precision τυ of the labor market decreases.

4.2 General informational equilibrium

To characterize the full informational equilibrium that takes into account the mutual dependence

of signal precision and asset price, define gq : R2
+ × R4 → R, such that log(qt) = gq(τυ,Ωt) as

given by (8), and define gτ : R+ × R5 → R+, such that τυ(θt + υt − log(qt)) = gτ (log(qt),Ωt) is the

signal precision defined in Lemma 1. Here, Ωt ≡ (πt−1, bt−1, θt, ηt, υt) is the vector of state variables

in period t. Then the informational equilibrium can be computed pointwise for any state of the

economy Ωt, by solving the fixed-point problem28

gτ (·,Ωt)− g−1
q (·,Ωt) = 0. (9)

The following proposition establishes the existence of a solution to this problem for all possible

states Ωt and, hence, the existence of an informational equilibrium.

Proposition 3. For all Ωt ∈ R+ × R4, there exists a solution to the fixed-point problem (9). The

solution is unique for all Ωt inside a set Ξ ⊂ R+ × R4. In particular, it is unique for all Ωt that

28For expositional reasons, we abstract from the non-generic case where gq is flat throughout the main body of the
paper. The case where g−1

q does not exist is carefully treated in all formal proofs.
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satisfy

(γ1 − 1)(θt + υt) < M1

or

θt + υt < M2 + γ−1
1 log(qt|τυ→0)

where M1,M2 ∈ R are parameters defined by the primitives of the model. In contrast, if Ωt /∈ Ξ, the

economy is in a “sunspot” state where (9) has multiple solutions.

Proof. In the appendix.

Proposition 3 implies that for any initial state Ω0 the equilibrium dynamics of the model economy

can be computed recursively by computing a solution to (9) given Ωt and then using Lemma 2 to

determine Ωt+1. As long as {Ωs}ts=1 ∈ Ξt, this pins down a unique equilibrium path. This is the

case as long as the information aggregated in the labor and asset market is not too conflicting. In

states where the labor market signals a realizations for θ̃t that is sufficiently more optimistic than

what is suggested by the asset market, the equilibrium gives rise to self-fulfilling sunspots: If agents

coordinate on interpreting the conflicting information in an optimistic way, asset prices will be

little constraining, so that observing the “good” labor market news will be sufficiently informative

to justify an optimistic interpretation. On the other hand, if agents interpret the evidence in a

pessimistic way, the resulting financial constraints will obscure the “good” news from the labor

market and the pessimistic interpretation is indeed justified.

Because the findings in this paper generally carry over to sunspot regimes (but require a

more subtle distinction between cases), we focus throughout most of this paper on paths where

{Ωs}ts=1 ∈ Ξt. A brief illustration of equilibrium behavior in sunspot regimes can be found in

Appendix B.4.

5 Transmission of shocks

We now explore how random shocks to the economy are propagated through the informational

equilibrium. In the next two subsections, it will be seen how shocks are statically amplified or

de-amplified depending on their size and composition. In Section 5.3, it will be seen that a similar

distinction divides shocks in those that are dynamically persistent, and others that are non-persistent.

5.1 Static asymmetries: Amplifying and de-amplifying shocks

Consider the solution to the fixed point problem (9). We say that a shock is amplified through

the endogenous information structure if and only if its absolute impact on qt is larger than in the

hypothetical benchmark in which τυ is fixed at the level it would attain in the absence of shocks. By

that definition, which shocks are amplified and which shocks are de-amplified upon impact?
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For answering this question, it is useful to define τ̊υ ≡ τυ(−γ0) to be the precision of υt in the

absence of shocks.29 In the benchmark case, the market-clearing price then reads q̊t ≡ exp(gq (̊τυ,Ωt)).

Contrast this with the case, where τυ adjusts endogenously to the asset price. Then the endogeneity

of the information structure unfolds a feedback loop. Intuitively, the benchmark price q̊t can be

seen as the “initial” impact of the shock. In response to this change in q̃t and also in response to

the shock itself (compare Lemma 1), τυ is now changing to τ1
υ ≡ gτ (log(q̊t),Ωt). However, unless

τ1
υ = τ̊υ, agents who optimally form expectations respond to such changes in τυ by re-weighting the

available sources of information, leading to an asset price q1
t , and so on.

To answer which shocks are amplified, we need to compare the equilibrium of this feedback

loop—i.e., the solution q∗t to (9)—with q̊t. Observe that the two directions of the feedback loop

can be summarized by (i) the sign of ∂gq/∂τυ (how do changes in τυ feed back to qt), and (ii) the

sign of {τ1
υ − τ̊υ} (after a single “cycle” through the feedback loop, how does τυ change in response

to q0
t ).

30 Combining, we have four cases to consider, summarized by Figure 2. If gq is increasing

in τυ and τ1
υ < τ̊υ, then g−1

q intersects with gτ to the left of log(q̊t) and we have that q∗t < q̊t (see

Panel a). Likewise, if gq is increasing in τυ and τ1
υ > τ̊υ, then q∗t > q̊t (see Panel b). A similar

reasoning establishes the opposite relationship if gq is decreasing in τυ (see Panels c and d).

So what determines the signs of ∂gq/∂τυ and {τ1
υ − τ̊υ}? From Lemma 2, we have that

sign

{
∂gq
∂τυ

}
= sign

 ∂

∂τυ

π̄−1
t

[
τξ + τη τυ π̂t−1

]
×

θt + ηt

θt + υt

ρbt−1





= sign {−(θt + ηt) + δ1(θt + υt)} ,

where δ1 : R→ R is defined by

δ1(x) = (τξ + τη)
−1(−b̌t−1 + π̌t−1x)

with b̌t−1 = ρbt−1π̂t−1 and π̌t−1 = τξ + τη + π̂t−1. Here, δ−1
1 (θt + ηt) is the residual asset price,

which would obtain if there were no labor market signal. It includes all information that is inferred

from other sources than wt—i.e., the prior bt−1, the idiosyncratic signals {sit}, and news extracted

from qt itself. Weighting these sources against θt + υt—the information extracted from wt—then

pins down the equilibrium price. Intuitively, if θt + υt is larger than δ−1
1 (θt + ηt), then if agents

increase the weight on wt, they become more optimistic. As a result, gq is increasing in τυ exactly if

θt + ηt < δ1(θt + υt).

To determine the sign of {τ1
υ − τ̊υ}, we apply the transformation τ−1

υ . Since τυ is decreasing, the

term is positive exactly if θt + υt − log(q̊t) < −γ0, or if θt + ηt > δ2(θt + υt), where δ2 : R → R is

29I.e., for θt = ηt = υt = 0 and bt−1 = 0, implying log(qt) = γ0 and, hence, τ̊υ = τυ(−γ0).
30Here we exploit that, as formally shown in the proof to Proposition 4, sign{τ1υ − τ̊υ} = sign{τ∗υ − τ̊υ}, allowing us

to use sign{τ1υ − τ̊υ} to determine the qualitative effects of the feedback loop on q∗t .
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Figure 2: Location of equilibrium asset price relative to the counterfactual price.

defined by

δ2(x) = (τξ + τη)
−1(−b̌t−1 + γ−1

1 (π̌t−1 + (1− γ1)̊τυ)x).

Note that δ2 is decreasing, if and only if γ1 > π̆t−1/τ̊υ + 1. This reflects the case, where asset prices

have a strong enough impact on τυ to compensate for any direct impact of θt + υt. By contrast, if

γ1 is sufficiently small, then any effect that a positive realization of θ̃t + υ̃t has on qt is dominated

by additional labor demand. Thus the economy is effectively more constrained and generates less

information as θt + υt increases, which translates into a positively sloped δ2.

We are now ready to address the key question in this section. Based on the affine functions

δ1 and δ2, we can assign each state Ωt one of the four cases depicted in Figure 2. If we also take

into account whether q̊t is increased or decreased relative to the no-shock price γ0, we can therefore

determine whether endogenous information amplifies or de-amplifies the impact of shocks in period t.

More specifically, when q̊t is increased compared to γ0, then endogenous uncertainty amplifies the

impact of Ωt if q∗t > q̊t, and de-amplifies (or, possibly, reverses) the impact if q∗t < q̊t. The converse

holds true if q̊t is decreased compared to the no-shock case. Comparing log(q̊t) with γ0, we find that

log(q̊t) > γ0 exactly if θt + ηt > δ3(θt + υt), where δ3 : R→ R is defined by

δ3(x) = (τξ + τη)
−1(−b̌t−1 − τ̊υx).
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Figure 3: Impact asymmetries. Note: Shocks in regions A and B have an overall positive impact on q̊t, shocks in
regions C and D have an overall negative impact. Shocks in regions B and C are endogenously amplified, shocks in
regions A and D are endogenously de-amplified.

The state space Ωt is thus divided into amplification and de-amplification regimes by lines δ1, δ2,

and δ3. The following proposition formalizes this result.

Proposition 4. (a) Suppose that γ1 > 1 and θt + ηt > δ3(θt + υt), that is, log(q̊t) > γ0. Then

q∗t > q̊t, so that the impact of Ωt is amplified if and only if

δ1(θt + υt) < θt + ηt < δ2(θt + υt),

where the inequalities are reversed for γ1 < 1.

(b) Suppose that γ1 > 1 and θt + ηt < δ3(θt + υt), so that log(q̊t) < γ0. Then q∗t < q̊t, so that the

impact of Ωt is de-amplified, if and only if

δ1(θt + υt) > θt + ηt > δ2(θt + υt),

where the inequalities are reversed for γ1 < 1.

Proof. In the appendix.

Figure 3 illustrates the proposition. For all realizations of θ̃t, η̃t, and υ̃t that fall north-east of
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Figure 4: Schematic illustration of feedback loop in the special case of financial shocks.

δ3, the combined impact on q̊t is positive, so that log(q̊t) > γ0. For these shocks, the impact of

Ωt compared to the exogenous uncertainty benchmark is de-amplified in region A and amplified

in region B. Note that region A is split into two separate areas. The one to the north-west of B

corresponds to the case depicted in Panel (d) of Figure 2, and the one to the south-east corresponds

to Panel (a). Region B corresponds to either Panel (b) or (c), depending on the value of γ1. If

γ1 > 1, δ2 is steeper than δ1, and all Ωt in the area bounded by these two lines are amplified by

a decreasing gq as depicted in Panel (c). If γ1 < 1, then δ2 has a smaller slope than δ1, and Ωt is

amplified as depicted in Panel (b).

For realizations of θ̃t, η̃t, and υ̃t that fall south-west of δ3, the combined impact has a negative

effect on q̊t, implying log(q̊t) < γ0. In that case, realizations within region C are amplified—

corresponding to the cases in Panel (a) in the south-east of region D, and Panel (d) in the north-west

of region D. Realizations within region D are de-amplified—corresponding to Panel (b) if γ1 > 1,

and Panel (c) if γ1 < 1.

Macroeconomists are often interested in the special case where the economy is hit by a single

shock, shutting down all other stochastic channels through which the economy is impacted. Since δ1

and δ2 both have a finite slope, any state in which |ηt| is sufficiently large compared to |θt| and |υt| is
unambiguously amplified for ηt < 0 and de-amplified for ηt > 0. In particular, this adverse feedback

loop applies to any financial “impulse” shocks; i.e., shocks along the vertical dashed axis through

the origin of Figure 3. (See Figure 4 for a schematic illustration of the feedback loop induced by

financial shocks.)

Corollary 1. In the limit as θt → 0, υt → 0, and bt−1 → 0, financial shocks are amplified if ηt < 0

and de-amplified if ηt > 0.

Similarly, because bt−1 vertically shifts the origin of δ1, δ2, and δ3, any prior pessimism is

amplified and any prior optimism is de-amplified along an impulse response path.

21



Corollary 2. In the limit as θt → 0, ηt → 0, and υt → 0, prior beliefs are amplified if bt−1 < 0 and

de-amplified if bt−1 > 0.

The case where the economy is perturbed by a single shock on the labor market (i.e., shocks

along the horizontal dashed axis through the origin of Figure 3) is less clear. This is because for

large γ1 the slope of δ2 becomes negative (but never steeper than the slope of δ3). Formally, this

leads to the following result.

Corollary 3. In the limit as θt → 0, ηt → 0, and bt−1 → 0, labor shocks are amplified if υt < 0 and

de-amplified if υt > 0 if and only if γ1 < π̌t−1/τ̊υ + 1. Otherwise, the converse holds true.

5.2 Static asymmetries: Non-proportionality in scale

Proposition 4 divides the state space into amplifying and de-amplifying regimes. It is silent, however,

on how the degree of amplification or de-amplification changes within these regimes. We now address

this question. In particular, we are interested in how the degree of amplification and de-amplification

changes as shocks realize “further away” from the origin, Ot ≡ (0,−b̆t−1/(τξ + τη)), of Figure 3.

The following proposition establishes that both the degree of amplification in amplification regimes

and the degree of de-amplification in de-amplification regimes monotonically increases as shocks are

scaled up relative to Ot.

Proposition 5. Consider any combination of shocks (θt + υt, θt + ηt) ≡ St + Ot. Then scaling

up these shocks to aSt +Ot, a > 1, increases amplification in amplification regimes and decreases

amplification in de-amplification regimes. Formally, that is, log(q∗t )− log(q̊t) decreases in a if and

only if sign{θt + ηt − δ1(θt + υt)} = sign{θt + ηt − δ2(θt + υt)}.

Proof. In the appendix.

Proposition 5 states that “scaling up” the combination of shocks that hit the economy at time t,

implies that amplification or de-amplification of these shocks is both more pronounced. The reason

is that absolute larger shocks lead to larger changes in uncertainty and hence to more pronounced

amplification and de-amplification loops, respectively. Figure 5 illustrates these nonlinearities by

plotting contours of the degree of amplification {log(q∗t )− log(q̊t)}× sign(log(q̊t)). Negative contours

(dashed lines) thus correspond to de-amplification regimes, positive contours (solid lines) correspond

to amplification regimes. By Proposition 5, these contours are increasing towards the origin in

de-amplification regimes, and are decreasing towards the origin in amplification regimes.

5.3 Dynamic asymmetries: Persistence and non-persistence of beliefs

We now consider the effect of changes in τυ on the persistence of shocks. Because our model abstracts

from all intertemporal links other than the fundamental process of θ̃t, the only channel through
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Figure 5: Amplification contours. Note: Positive contours (amplification regimes) are plotted solid, negative contours
(de-amplification regimes) are dashed. Arrows point into the direction of increasing (more amplifying) contours.

which Ωt may affect future periods other than through the autocorrelation of θ̃t, is through the

persistence of public beliefs. For all s > 0, we define the persistence of belief bt onto bt+s as

Λt,t+s =
∂bt+s
∂bt

.

In the following, we focus on the specific signal structure underlying our model, but it is worth

noting that the arguments generalize to arbitrary quasi-Gaussian signal structures (see the formal

proof of Proposition 6). From Lemma 2, we have that

bt = π−1
t ×

[
τη τυ,t π̂t−1

]
×

θt + ηt

θt + υt

ρbt−1

 . (10)

Recursively substituting and differentiating thus yields

Λt,t+s =

t+s∏
q=t+1

λq,
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where λt ≡ ρπ̂t−1/πt. We are interested in the effect of an increase in uncertainty in period t on the

persistence Λt−r,t+s for r, s ≥ 0. Suppose τυ,t changes by a differential dτυ,t. Consider the special

case where r = 0. Then

dΛt,t+s
dτυ,t

= Λt,t+s ×
t+s∑
q=t+1

 1

λq

∂λq
∂πq−1

q−1∏
p=t+1

∂πp
∂πp−1

 .

Here, the only term with a nontrivial sign is ∂λq/∂πq−1. However, because ∂πq/∂πq−1 = ∂π̂q−1/∂πq−1,

we have
∂λq
∂πq−1

=
∂π̂q−1

∂πq−1

τη + τυ,q
π2
t

> 0,

establishing that dΛt,t+s/dτυ,t > 0. This reflects that more precise information in period t is

unambiguously more relevant for forming future beliefs. Contrast this with the case where s = 0.

Then
dΛt−r,t
dτυ,t

=
Λt−r,t
λt

× ∂λt
∂πt

< 0.

Now, an increase in period t’s information unambiguously decreases the weight on prior information.

So how do these two opposing effects add up in the general case where r, s > 0? The following

proposition establishes that the decrease in weight on prior information always dominates all increases

in future weights.

Proposition 6. Λt−r,t+s is decreasing in τυ,t for all r, s > 0.

Proof. In the appendix.

Because τυ is decreased in financial crises, Proposition 6 implies that financial crises are inherently

persistent. Intuitively, as the economy receives less news about the current state of the economy,

more weight is put on prior information—which during a financial crisis is generally pessimistic.

In turn, the asset market continues to constrain the real economy in future periods and, hence,

continues to impede learning about θ̃t, throwing the economy into a “pessimism trap”. In contrast,

τυ increases during financial booms, making them inherently non-persistent. Moreover, as larger

shocks have stronger effects on τυ, persistence and non-persistence are increasing when shocks are

“scaled up” as in Proposition 5.

More precisely, from Lemma 2, we have that for θt = υt = 0,

bt+s = π−1
t ×

[
τη π̂t−1

]
×

[
ηt

ρbt−1

]
× Λt,t+s

= (ρπ̂t−1)−1 ×
[
τη π̂t−1

]
×

[
ηt

ρbt−1

]
× Λt−1,t+s.

Applying Proposition 6 then yields the formal result.

24



Corollary 4. For θt = υt = 0, a financial shock ηt is persistent (compared to the fixed-τυ benchmark)

if and only if ηt < −b̆t−1/(τξ + τη). Otherwise, ηt is non-persistent. Moreover, “scaling up” ηt as in

Proposition 5 increases the persistence and non-persistence, respectively.

5.4 Summary

The information-based feedback mechanism underlying our equilibrium creates two types of asymme-

tries. On the one hand, shocks are either amplified or de-amplified. On the other hand, shocks are

also either persistent or non-persistent. In particular, our findings imply that adverse financial shocks

are amplified and persistent, while positive financial shocks are de-amplified and non-persistent.

Moreover, the underlying mechanisms are highly nonlinear, implying that “scaling up” a shock gives

rise to more pronounced (de-)amplification and (non-)persistence, respectively. In consequence, the

impact of small shocks is only little amplified and barely persistent, whereas rare adverse shocks

virtually destroy the informational capacities of the real sector and thereby induce highly amplified

and persistent crashes.

6 Illustration: Impulse responses to financial shocks

In this section, we illustrate our theoretical results using simulated impulse response paths to financial

shocks. To highlight the informational role of credit constraints, we contrast the impulse responses

with counterfactual paths where τυ is fixed at its steady state level, but credit constraints continue

to constrain the economy. The only difference between our model and the counterfactual responses

is that uncertainty is removed—just as if we were to use the “magic wand” imagined by Blanchard.31

6.1 Impulse responses to financial shocks

Consider the economy’s response to a nonzero realization of noisy asset demand η̃t and, for simplicity,

suppose that the economy is in its steady state prior to the arrival of the shock.32 From (10),

bt+s = (τη/πt) Λt,t+s × ηt, (11)

where {πt+s} are recursively defined by {τυ,t+s} and {qt+s} solving (9), pinning down all other model

variables. In particular, by Lemma 2:

Corollary 5. If ηt < 0 (>), then for all s ≥ 0, bt+s and qt+s are strictly smaller (larger) than their

steady state levels in, both, the model and the counterfactual.

31See the quote in the beginning of the introduction.
32As usual, we define the steady state as the situation where true productivity θt equals its unconditional expectation

and there are no noisy perturbations (θt = ηt = υt = 0). Yet, agents are unaware of these realizations and beliefs
are formed rationally. Prior expectations are undistorted (bt−1 = 0) and prior uncertainty is fixed at its stochastic
steady state value given the corresponding steady state signal precision (for details see Hamilton, 1994, Ch. 13.5). To
streamline the illustration in this section, we also focus on financial noise shocks. For noise that originates in the real
sector (i.e., nonzero realizations of υ̃t), similar results hold for γ1 < π̆steady state/τ̊υ + 1 (see Corollary 3 for details).
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Moreover, by Lemma 1:

Corollary 6. If ηt < 0 (>), then for all s ≥ 0, τυ,t+s and πt+s are strictly smaller (larger) than

their steady state level in the model, but are constant in the counterfactual.

Because the information-based amplification mechanisms crucially depend on the variability of

τυ, it will be seen that this difference drives a wedge between the model and the counterfactual.

Spillovers to real sector To provide a simple closed form solution for the “real” variables of the

model, consider the special case where v(nit) = n2
it/2 and α1(χst ) = H−1(χst ). This specification of α1

ensures that wages will be unperturbed along the impulse response path; i.e., if υt = 0, then ψt = 0,

so that gatherers’ labor supply equals farmers’ labor demand nt.
33 From (7), we then have that

wt =
nt

1−m
=

[
qt exp(χdt )

1−m

]1/2

,

along the impulse response path. Because χdt = H(θt − log(qt)) is increasing in θt − log(qt) with a

slope smaller than unity, it follows that wt and nt are increasing in qt. Moreover, field output is

given by

yt = m

∫ ∞
−∞

exp(z) (min{z, log(qt)} − log(wt)) dΦ(
√
τξ z),

along the impulse response path. Substituting wt, output yt can be shown to be increasing in qt,

too. That is, tighter financial constraints spill over to the real sector, so that the “real” variables are

decreased along the impulse response path, too:

Corollary 7. If ηt < 0 (>), then for all s ≥ 0, wt+s, nt+s and yt+s are strictly smaller (larger)

than their steady state levels in, both, the model and the counterfactual.

Parametrization We setm = 1
2 , implying an equal mass of gatherers and farmers, and set ρ = 0.98,

τ−0.5
ε = 1

3 , and, τ−0.5
ξ = 2, corresponding to a persistent and predictable process for the average

log-productivity θ̃t, with a strong cross-sectional dispersion of {θ̃it}. The standard deviations

of market noise, τ−0.5
ω and τ−0.5

η , are set, so that perturbations are high in the financial sector,

τ−0.5
η = 4, and low in the real sector. Because τ−0.5

ω only matters through Var{χ̃dt |χst}, we directly

set Var{χ̃dt |χst} = 4, avoiding the need to specify Ψθ̃t,q̃t
. Finally, we use γ0 and γ1 to specify the

fraction of firms that is constrained in the steady state and the relative amplitude of asset price

fluctuations compared to productivity. We set γ0, so that approximately 2.5 percent of firms are

constrained in the steady state (γ0 = 4). To emphasize the theoretical results, we pronounce the

importance of financial fluctuations by setting γ1 to 125, implying a relative amplitude that is about

two to three times as high as its empirical counterpart.34

33To see this, recall that by Lemma 1, θ̃t + υ̃t = α1(χst ) + log(qt). For υt = 0, α1 = H−1 thus implies that
χst = H(θt − log(qt)) = χdt . Hence, ψt = 0 by (7).

34With more conservative parameters choices for γ1, we need unrealistically large financial shocks in order to see a
notable amplification. In Section 7.3, we illustrate how small levels of risk aversion provide further amplification that
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6.2 Amplification and persistence of financial crises

We first illustrate our results on the persistence of financial shocks. From Corollaries 1, 2, 4, and

Proposition 5 it follows that:

Corollary 8. For all ηt 6= 0 and s ≥ 0, b̄t+s, qt+s, wt+s, nt+s, and yt+s are strictly smaller in the

model economy than in the counterfactual. I.e., financial crises are more persistent than in the

counterfactual, whereas financial booms are less persistent than in the counterfactual.

In Figure 6, we plot the responses of the asset price (normalized to log(qt+s/qsteady state)),

employment nt+s, output yt+s, the fraction of constrained farmers in the economy (i.e., farmers

with nit+s = qt+s/wt+s), and the endogenous signal precision τυ,t+s to an adverse (left column)

and positive (right column) realization of η̃t. In both columns, we consider a rare tail shock with

a magnitude of 2.5 standard errors. With a quarterly interpretation of time, these shocks each

correspond to events that occur roughly once every 40 years. As becomes more clear below, the large

shock size considered here is important for the effects established in Corollary 8 to be economically

significant. In all plots, the solid lines correspond to the responses in the model economy and the

dashed lines correspond to the fixed-τυ counterfactual.35

Consider first the case of financial crisis in the left column. Qualitatively, asset prices (row 1),

employment (row 2), and output (row 3) all decline after a negative financial shock. The causal link

between these responses are the financial constraints, implying that an increased fraction of farmers

is financially constrained (row 4) after an initial decrease in the asset price, leading to the decline in

employment and output. Note that—as known from the financial frictions literature—the contagion

of the real sector is present in the counterfactual economy as well. We call this the constraining

effect of credit constraints.

In addition to this constraining effect, our theoretical results suggest a novel informational effect

of credit constraints. This effect results from the variations in the signal precision as seen in row 5.

By fixing the precision in the counterfactual economy, the difference between our model and the

counterfactual exactly amounts to this novel informational effect. As can be seen, this informational

effect of credit constraints virtually shuts down the informational capacities of the real sector. This

throws the economy in a “pessimism trap” that induces an amplified and highly persistent response

to the considered shock. In contrast, removing uncertainty in the counterfactual, agents quickly

substitutes for high values of γ1, yielding similar responses for much smaller values of γ1.
35Note that asset prices and output in the first and third row are truncated at ±20 and 30, respectively, omitting

the initial impact of the shock. The initial impact on log(qt) amounts to -98 (49) in the model and -63 (63) in the
counterfactual in the bust (boom) case. Note that the impact for the endogenous uncertainty model is higher than in
the exogenous uncertainty benchmark, reflecting the initial amplification established in Corollary 1. Underlying the
strong initial impact in, both, the model and the counterfactual is a dual role of financial shocks. First, a negative
realization of noise traders’ demand has a direct impact on the asset price in period t and, hence, also a direct impact
on economic constraints of the real sector. Second, the perturbation of asset prices also plays an informational role,
effecting the beliefs of agents in the economy. Because, the second effect persists over time, while the first effect only
applies to period t, this leads to a “discontinuity” between initial impact and the response of the economy starting in
period t+ 1. Here, we choose to omit the initial impact to make the graphs more readable.
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learn about the noisy character of the crisis, and the crisis largely goes away as has been suggested

by Olivier Blanchard.

6.3 De-amplification and non-persistence of financial booms

In contrast, after a positive financial shock (depicted in the right column of Figure 6), the model’s

response is less persistent than the counterfactual. This is because in financial booms, the real

sector aggregates more information, so that agents learn faster about the bullish character of a

non-fundamental boom (recall Proposition 6). Importantly, this implies that financial booms have

necessarily smaller spillover effects on the real sector than financial crises.36 (Note the small scale of

the y-axis in the right column of Figure 6, when comparing the spillover effects to the left column).

6.4 Convexity of crises

In fact, by Proposition 5 and Corollary 4, the asymmetry between booms and busts generalizes to a

non-linearity which, in particular, implies a general convexity of financial crises. The more negative

a financial shock, the more information is destroyed and, hence, the more amplified and persistent

is the resulting crisis. To illustrate this convexity, consider the half-life of average beliefs in our

economy; i.e., the time s it takes until agents in the economy are half as pessimistic as they were at

the time the shock hit the economy. In the counterfactual—as in any standard model—shocks are

scale-independent, so that the half-life measure is independent of the shock size. That is, scaling up

an initial shock leads to a proportional response along the whole response path, so that the relative

realizations of beliefs across time remain unchanged. In contrast to this, the non-linearity of our

model implies that larger shocks have an over -proportionally severe effect, resulting in a convexity

of financial crises.

Corollary 9. Suppose the economy is in its steady state and let T1/2(ηt) denote the half-life of

average beliefs in the economy along an impulse response path to a financial shock ηt; i.e., the time s

it takes, such that b̄t+r ≤ b̄t/2 for all r ≥ s. Then it holds that T1/2 is (weakly) decreasing in ηt.

Note that because of the discrete nature of the half-life, it is necessarily locally constant almost

everywhere, so that T1/2 is only weakly decreasing. (Still, from our more general earlier results we

know that crises are strictly more persistent as shocks get larger.)

In Figure 7, we plot the half-life in our model economy for negative financial shocks of different

sizes. For our baseline simulations with a 2.5 standard error shock, the half-life is 9 quarters, while,

in the conterfactual economy, any financial shock leads to a half-life of only 2 quarters.

36Nonlinearities in output and employment are responsible for parts of the asymmetry between the real variables
during a financial boom compared to a financial bust. However, the responses for asset prices are necessarily perfectly
symmetric in the counterfactual. This implies that the model’s responses during a financial boom are bounded above
by the responses of the counterfactual that are symmetric to the responses of the counterfactual during a crises. This
then further implies that additionally to nonlinearities in output and employment, spillovers caused by the financial
market are also necessarily less pronounced during a financial boom than during a bust.
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Figure 7: Half-life of adverse financial shocks.

From Proposition 5 it follows that small financial shocks, which are more frequent, have half-life

periods that are similar to the exogenous uncertainty counterfactual, so that for small shocks our

model behaves similar to models that only reflect the constraining role of credit constraints. However,

in the event of a rare negative shock, the feedback loop and pessimism trap studied in Section 5

drive a significant wedge between the predictions of our model and those of the counterfactual.

7 Further empirical predictions

In this section, we point out some further implications of the endogeneity of the information structure.

In particular, we show that common proxies of uncertainty, such as the dispersion of beliefs (as can

be, for instance, measured by the survey of professional forecasters), risk premia and volatility of

financial markets all increase in crisis times.

7.1 Dispersion of beliefs

One “measure of uncertainty” that is commonly used in the empirical literature is the diversity

of beliefs in the economy. From Lemma 2 we know that the cross-section of beliefs is normally

distributed around b̄t with standard deviation σt =
√
τξ/π̄t. Here, an individual agent’s uncertainty

1/π̄t = 1/(πt + τξ) co-moves with the economy’s (public) uncertainty 1/πt. In particular, when

the economy is caught in a pessimism trap, agents increasingly refer to their own, private signals,

creating a large dispersion in beliefs. On the other hand, during financial booms, public information

becomes more valuable compared to private information, which reduces the dispersion of beliefs. In

sum, opinions are aligned in booms and dispersed in crises.

Corollary 10. If ηt < 0 (>), then for all s ≥ 0, the cross-sectional dispersion of beliefs σt+s =
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√
τξ/(πt+s + τξ) is strictly larger (smaller) than its steady state level in the model, but is constant in

the counterfactual.

7.2 Stochastic volatility

Another commonly used measure for uncertainty is the volatility of asset prices. During credit crises,

high uncertainty induces volatile asset market behavior, as seen from the perspective of an outside

observer. The reason is that, as the real sector becomes less informative, agents place more weight

on signals from the financial market. This means that the asset price is more exposed to financial

market noise and thus subject to larger volatility.37

Corollary 11. Var{log(q̃t)|Ωt \ ηt} is decreasing in πt. Hence, if ηt < 0 (>), then for all s ≥ 0, the

volatility Var{log(q̃t)|Ωt \ ηt} is strictly larger (smaller) than its steady state level in the model, but

is constant in the counterfactual.

7.3 Risk premium

Yet another natural consequence of high uncertainty in financial crises are large risk premia.

Although agents in our model are risk-neutral with respect to exp(θ̃t), we can simulate any

risk-attitude towards θ̃t by shifting the realization of noisy asset demand shocks η̃t by a constant µ.

In the baseline model, we use this feature to clear the model from any risk effects on the asset price,

so that the price only reflects the first moment of agents’ expectations (see also Footnote 18). Here,

we apply this feature to obtain an equilibrium asset price which behaves as if agents exhibited risk

preferences.

More specifically, suppose that we set µ to µ′ + r/τξ, where µ′ denotes our baseline choice of

µ that induces risk-neutral behavior, and r > 0. Then, the equilibrium asset price qt reflects a

risk-averse attitude towards θ̃t. In particular, one can show that in this case, all previous results

hold exactly, except that qt as defined by (8) is replaced by qrt , which relates to qt as follows:

R−1
t ≡

qrt
qt

= exp{−rγ1π
−1
t },

where Rt is the risk premium associated with each unit of the Lucas tree that is traded in t. Given

this specification, Corollary 6 immediately implies that the risk premium is increased along the

impulse response path.

Corollary 12. Suppose r > 0 and ηt < 0 (>). Then for all s ≥ 0, the risk premium Rt is strictly

larger (smaller) than its steady state level in the model, but is constant in the counterfactual.

37For technical reasons, we here focus on the conditional volatility of asset prices; i.e., the volatility of asset prices
that is induced by noise originating in the financial market. Computing the unconditional volatility would require us
to integrate out the distribution of noise in the labor market. While our quasi-Gaussian transformation is aimed at
making the updating problem of agents tractable, there is no analytical solution available for computing the actual
distribution of labor market noise (see also the discussion around Lemma 1).
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Figure 8: Volatility and risk premium response to an adverse financial shock.

Figure 8 re-plots the economy’s response to an adverse financial shock of 2.5 standard errors for

r = 1
2 . In row 1, we plot asset prices (again, normalized as log returns) and the corresponding risk

premium (in logs). The response of the risk premium is hump-shaped. This is because the loss of

information that results from tighter constraints on the real sector (see third row) slowly increases

the posterior uncertainty. Accordingly, log assets returns in the first periods after impact mainly

reflect the pessimism that is induced through learning. However, while in the case without risk

aversion, prices monotonically increase as pessimism ebbs away, prices now further reflect the general

uncertainty that characterizes a credit crisis in our model. Accordingly, as uncertainty increases

along the crisis path, asset prices are more and more repressed by this increased uncertainty.

This additional downward pressure of prices tends to tighten financial constraints on the real

sector even further and, therefore, introduces additional amplification. Note that in our numerical

simulation this additional amplification is somewhat obscured by a change in the model parameters.38

38Because of the additional amplification due to risk-aversion, responses in the baseline parametrization lead to a
crisis that spans more than a century. Here, we therefore reduce the value of γ1 to 30, implying a relative amplitude of
asset price fluctuations compared to productivity that is roughly in line with its empirical counterpart. We also set
γ0 = 7 in order to target again a fraction of 2.5 percent of farmers who are constrained in the steady state.
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8 Uncertainty and real business cycles

So far, we have analyzed how agents learn in the presence of credit constraints, and how this affects

the transmission of shocks through the economy. The effect of non-financial shocks on uncertainty

has, however, only played a role in the background of our analysis in Section 5. In this section, we

fill this gap. In particular, the following proposition states how fundamental (productivity) shocks

affect uncertainty.

Proposition 7. It holds that for γ1 = 1, the level of θt has no direct impact on τυ. All what is

relevant is the relative difference between θt and the average beliefs b̄t. More precisely, τυ is increasing

in the optimism (b̄t − θt) in the economy. In contrast, when γ1 6= 1, in addition to this relative belief

effect, τυ also depends on the level of θt. More precisely, τυ is increasing in θt if γ1 > 1, and is

decreasing if γ1 < 1.

Proof. In the appendix.

The first part of the proposition emphasizes what is driving the information loss during financial

crises. When the economy is governed by pessimism—i.e., beliefs are relatively low compared to

the fundamental θt— then credit constraints are tight compared to the desired investment levels of

farmers, destroying the informational capacities of the real sector.

If γ1 = 1, optimism and pessimism are the only determinants of uncertainty. For γ1 6= 1, however,

uncertainty is also driven by absolute productivity levels.

More specifically, when financial dividends are highly sensitive to fundamentals in the real sector

(γ1 > 1), asset prices are more responsive to changes in θt than is labor demand. As a result,

positive shocks to θ̃t are effectively relaxing financial constraints, so that uncertainty is high when

productivity is low and low when productivity is high. This negative relationship between uncertainty

and absolute productivity levels is similarly to models where agents learn about productivity from

production levels that are perturbed by a constant variance noise term as in Van Nieuwerburgh

and Veldkamp (2006). From an empirical perspective, in developed economies, asset prices indeed

fluctuate strongly across the business cycle and exhibit an amplitude that is larger than that of

employment, suggesting that the case of γ1 > 1 applies to countries such as the United States.

In contrast, when financial returns are less sensitive to changes in fundamental productivity

(γ1 < 1), asset prices adjust less to productivity shocks than labor demand, implying that less

information is aggregated during “real” booms. This might be the case for underdeveloped financial

sectors that are constantly operating at their maximal capacity (so that financial conditions do not

respond to news about the real sector). Accordingly, during a boom, it is commonly known that

all firms operate at their full financial capacities, but exactly this prevents market observers from

developing a deeper understanding of how productive the economy really is.
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9 Concluding remarks

In this paper, we propose a novel mechanism that restricts the ability of agents to learn from the

real sector during financial crises. Incorporating this idea into a dynamic macroeconomic model with

a financial sector, we show that the transmission of financial shocks is inherently asymmetric and

nonlinear. While fluctuations on the financial market have only little impact on the economy during

“normal times”, unusually adverse shocks destroy the informational capacities of the economy and

therefore lead to disproportionally severe and persistent crises.

At a methodological level, we show that a combination of informational and financial frictions

gives rise to a nonlinear signal structure, which explains why learning is less efficient in crisis times.

Specifically, we establish that learning from “concave” signals leads to higher posterior uncertainty

whenever the signal realizes in “flatter” regions. In a general theorem, this is shown to hold for a

large class of information structures and to hold independently of the specific properties of our model.

Equipped with these results, we then further demonstrate how learning from nonlinear signals can

be incorporated within an analytically tractable conjugate Gaussian framework.

Going beyond our main results, our model also provides a number of further predictions that are

in principle accessible to an empirical verification. In particular, we show that both uncertainty and

also common empirical proxies of uncertainty (such as the dispersion of beliefs, the volatility of asset

prices, and risk premia) increase during financial crises.

While these predictions are in line with conventional wisdom and stylized facts, a systematic

empirical analysis on the causal links seems to be an important direction for future research. Another

promising road along these lines is to directly examine how the informational capacity of the economy

changes across different states of the world. In particular, applying the empirical methods recently

developed by Coibion and Gorodnichenko (2012), a natural investigation suggested by our model is

to examine the impact of credit conditions on the persistence of beliefs.

A Mathematical appendix

A.1 Proof of Proposition 1

As q̄ → ∞, xit = exp(θit)/wt and hence χ̃dt = log{
∫∞
−∞ exp(z) dΦ(

√
τξ (z − θ̃t))} − log(q̄) = θ̃t +

1/(2τξ)− log(q̄). Therefore, Var{θ̃t|wt} = Var{χ̃dt |wt} = Var{χ̃dt |χst}, where the last equality follows

since χ̃st is a monotone transformation of w̃t.

A.2 Proof of Theorem 1

We separate the proof into two steps. Lemma 3 establishes that Var{θ̃|s} = α2(s)2 Var{X̃} is

increasing in s if we are in the case where θ̃|s = α1(s) + α2(s)X̃ and where f is concave (the case

where f is convex follows analogue). Lemma 5 establishes the corresponding results for the case

where f(θ̃)|s is ordered by the MLRP.
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A.2.1 Location-scale distributions under concave transformations

Lemma 3. Let g : R→ R be a differentiable, (strictly) increasing, and (strictly) concave function

and X̃ a square-integrable, non-degenerate random variable with mean zero over R. Then, for any

positive number v > 0, there exists a unique, differentiable function α21 : R→ R++ such that

Var{g(α1 +
√
α21(α1)X̃)} = v ∀α1 ∈ R.

Moreover, α21 is (strictly) increasing. When g = H, α21 has limits limα1→−∞ α21(α1) =

(Var{X̃})−1v, limα1→∞ α21(α1) =∞.

Proof. We only show the “strict” version of the lemma. Define G(α1, α2) = Var{g(α1 +
√
α2X̃} − v.

G is clearly differentiable in both arguments. We start by establishing that Gα1 < 0 and Gα2 > 0.

Suppose α̌1 < α̂1 ∈ R. Define ǧ(x) = g(α̌1 + x
√
α2) and ĝ(x) analogously. The function ǧ

induces the density Fǧ(X)(y) = FX(ǧ−1(y)) of ǧ(X̃). Similarly we find Fĝ(X)(y). This means,

Fǧ(X)(y) = Fĝ(X)(k(y)), where it is straightforward to check that k(y) ≡ ĝ(ǧ−1(y)) is a differentiable

contraction mapping with k(y0) = E{ĝ(X)} for some y0. In particular, k satisfies the condition in

Lemma 4 and thus G(α̌1, α2) > G(α̂1, α2). This proves Gα1 < 0.

For Gα2 > 0, take α̌2 < α̂2 ∈ R and define ǧ(x) = g(α1 +x
√
α̌2) and ĝ(x) analogously. Proceeding

as before, we find that Fĝ(X)(y) = Fǧ(X)(k(y)) with k(y) = g(αg−1(y)), α =
√
α̌2/α̂2 < 1. Here, k

need not be a contraction mapping in general. Still, for y ≤ y∗ with k(y∗) = y∗, k′(y) ≤ α < 1 and

k(y) ≤ y for y > y∗. Also, there exists a (unique) y0 such that k(y0) = E{ǧ(X)} < g(0) = k(y∗).

Using these two properties, the following inequalities hold,

|k(y)− k(y0)| = |k(y)− k(y∗)|+ |k(y∗)− k(y0)| ≤ |y − y∗|+ α|y∗ − y0| < |y − y0|

if y > y∗, and

|k(y)− k(y0)| ≤ α|y − y0| ≤ |y − y0|

if y ≤ y∗, ensuring that Lemma 4 is applicable. Consequently, G(α1, α̂2) > G(α1, α̌2) and Gα2 > 0.

Now turn to the existence of α21. For large α2, G(α1,α2) goes to infinity as can be seen by the

inequality

Var{g(α1 +
√
α2X̃} ≥ Var{g′(α1)

√
α2 min{X̃, 0}} = α2 · const.

Also, G(α1, 0) = −v < 0, that is, by continuity of G and its monotonicity in α2, a unique

α2 ≡ α21(α1) ∈ R++ must exist, with G(α1, α21(α1)) = 0. By the implicit function theorem, α21

is continuous and differentiable with α′21(α1) = −Gα1/Gα2 > 0. When g = H, it becomes almost
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linear for large negative values of α1, i.e.

v = lim
α1→−∞

Var{H(α1 −
√
α21(α1)X̃)} = lim

α1→−∞
Var{α1 −H(α1 −

√
α21(α1)X̃)}

= Var{
√

lim
α1→−∞

α21(α1)X̃}

= lim
α1→−∞

α21(α1)VarX̃

and thus limα1→−∞ α21(α1) = (VarX̃)−1v. Similarly, since limα1→∞G(α1, α2) = −v for any level of

α2, limα1→∞ α21(α1) =∞.

The main rationale behind the previous proof was to compare the variances of a random variable

X̃ (in our case, this was ǧ(X̃) or ĝ(X̃)) and its transform k(X̃) with k satisfying some regularity

conditions. When these conditions are merely that k be a contraction mapping, the result is obvious

and most textbooks (see for example, ) mention it. In our case, however, a (much) more general

result is needed since the second set of regularity conditions we derive in Lemma 3 clearly allow for

functions with slopes larger than one.

Lemma 4. Let X̃, Ỹ be two random variables over an interval I ⊆ R with cumulative distributions

functions FX , FY , and k : I → R be an increasing function such that FY (x) = FX(k(x)) and

|k(x) − E{X̃})| ≤ |x − x0| for all x ∈ I and a given x0 ∈ I. Then, Var{X̃} ≤ Var{Ỹ }. If

|k(x)− E{X̃}| < |x− x0| somewhere in the support of X̃ the inequality is strict.

Proof. We only show the “strict” version of the lemma. Without loss of generality we may assume

E{X̃} = 0, I = R (proof is analogous for any other interval) and x0 = 0 (Var{Ỹ } is invariant

under shifts x 7→ x+ x0). First note, that we can restrict our attention to functions k = k+ with

k+(x) = x for all x ≤ 0. This is the case since any k with k(0) = 0 can be split up into two functions,

k−and k+, which are just the identity on the positive (negative) side of zero and k on the other.

We recover the result for general k by constructing an intermediate random variable Ỹ+with cdf

FY+(x) = FX(k+(x)). The intermediate random variable Ỹ has then mean E{Ỹ } ≥ 0 = E{X̃}
and variance Var{Ỹ } ≥ Var{X̃}. Now, FY (x) = FX(k(x)) = FX(k+(k−(x))) = FY+(k−(x)), and

thus F−Y (x) = F−Y+(−k−(−x)). The function −k−(−·) is the identity on the negative side of

zero and the mean of −Ỹ is also negative. We can use the “reduced” result shown below and get

Var{Ỹ } = Var{−Ỹ } ≥ Var{−Ỹ+} = Var{Ỹ+} ≥ Var{X̃}.
Second, it is sufficient to prove the result for functions k+ which are not only the identity for

negative values of x but also above a certain (possibly large) level M > 0. This is without loss of

generality by a standard limit argument.

Third, even simpler functions may be used to accomplish the proof, namely functions kz,c of the

36



form

kz,c(x) =


x x > z + c

z z < x ≤ z + c

x x ≤ z

z > 0, c > 0.

These functions only slightly differ from the identity but still they are very effective in that they are

the building blocks of more general functions k+. More precisely, any k+with an upper bound of

M > 0 can be decomposed as follows,

k+ = lim
n→∞

kk+(Nh),Nh−k+(Nh) ◦ . . . ◦ kk+(2h),2h−k+(2h) ◦ kk+(h),h−k+(h) h ≡ M

N
,N = 2n (12)

where the limit holds under the sup-norm. Hence fix z > 0 and consider the random variable Ỹc

given by cdf FYc(x) = FX(kz,c(x)). We would like to show that g(c) ≡ VarỸc−VarX̃ is strictly larger

than zero for c > 0. Clearly g(0) = 0. Straightforward computation shows that

g′(c) = 2(z + c)(∆−∆2) + 2∆

∫ z+c

z
x dFX(x) ≥ 0, (13)

where ∆ = FX(z + c)−FX(z) ≥ 0. Given our assumption that |k(x)−E{X̃}| < |x− x0| somewhere

in the support of X̃, the approximation in (12) will always involve functions kz,c such that ∆ > 0

and (13) is strict.39 Therefore, Var{X̃} < Var{Ỹ }.

A.2.2 MLRP distributions under concave transformations

Lemma 5. Let I ⊆ R be a nonempty (and possibly unbounded) real interval, let X1, X2 be two

random variables over I which exhibit the monotone likelihood ratio property, i.e. f2/f1 is increasing

with fi being the (possibly degenerate) density of Xi, and let g be an increasing continuous function

defined on I.

1. Var{g(X1)} ≤ Var{g(X2)} if g is convex and Var{X2} ≤ Var{X1} <∞.

2. Var{g(X1)} ≥ Var{g(X2)} if g is concave and Var{X1} ≤ Var{X2} <∞.

In both cases, the inequality is strict whenever f2/f1 is strictly increasing and g is strictly convex or

concave somewhere in the support of f2.

Proof. We restrict ourselves to I = [a, b] and distributions of X1, X2 with finite support. It is

straightforward to generalize the result first to continuous distributions and then to arbitrary,

possibly unbounded intervals. Moreover, it is sufficient to prove the result solely for increasing

convex functions g since all other cases can be reduced to this case by flipping g either vertically or

39Because VarỸ is monotonic in k—the closer k is to the identity, the closer Var{Ỹ } is to Var{X̃}—the “strictness”
does not vanish in the limit of (12). It rather becomes larger with every increase in n.

37



horizontally. We will prove the result for functions g of the form

gz,c(x) = x+ (c− 1)(x− z) 1{x≥z}, z ∈ R, c ≥ 1.

The general case follows by iteration,

g(x) = lim
N→∞

(
gg(zN ),g′(zN )/g′(zN−1) ◦ . . . ◦ gg(z1),g′(z1)/g′(z0)

)
(g′(z0)(x− z0) + g(z0)),

where zi = a+ i(b− a)/N . To have MLRP well-defined for pairs of discrete distributions, assume

X1 and X2 share a common support {x1 < x2 < . . . < xN}, N ∈ N , and assign probability weights

(pi) and (qi) to the respective nodes. MLRP then translates to

0 ≤ q1

p1
≤ q2

p2
≤ . . . ≤ qN

pN
≤ ∞.

Now define H : RN → R by

H(y1, . . . , yN ) =
∑

(qi − pi)y2
i −

(∑
qiyi

)2
+
(∑

piyi

)2
.

Note that H((xi)) = Var{X2} −Var{X1} ≥ 0. By regarding the first two derivatives with respect

to c we will now show that

h(c) ≡ H((gz,(c+1)(xi))i) ≥ 0 ∀z ∈ R, c ≥ 0.

Assume z ∈ [xj−1, xj). Then, h(c) is a quadratic polynomial in c ≥ 0 with the following two

derivatives at c = 0,

h′(0) = 2
N∑
i=j

qi(xi − z)(xi − µ2)− 2
N∑
i=j

pi(xi − z)(xi − µ1)

≡ 2Bz − 2Az (14)

and

h′′(0) = 2

 N∑
i=j

qi(xi − z)2 −

 N∑
i=j

qi(xi − z)

2− 2

 N∑
i=j

pi(xi − z)2 −

 N∑
i=j

pi(xi − z)

2
≡ 2Dz − 2Cz. (15)

If we can show that both expressions are nonnegative, we are done since h(0) = Var{X2}−Var{X1} ≥
0 by assumption.
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1st derivative. First note that Bz and Az are continuous and piecewise linear in z ∈ [x1, xN ] with

Bx1 −Ax1 ≥ 0 and BxN −AxN = 0. We will show that Bz −Az is single-peaked or quasi-concave on

[x1, xN ], meaning it is impossible for Bz −Az to first drop below 0 and then rise again to 0 at the

right boundary xN . More precisely, we claim that if the derivative B′z −A′z is nonpositive at some

point z, it stays nonpositive thereafter, preventing u-shaped behavior.

Suppose z ∈ [xj−1, xj) and B′z ≤ A′z, i.e.

−B′z =
∑
i≥j

qi(xi − µ2) ≥
∑
i≥j

pi(xi − µ1) = −A′z. (16)

It is sufficient to show that B′z ≤ A′z also in the next interval [xj , xj+1). The rest follows by iteration.

We distinguish between three cases. First, assume qj(xj − µ2) ≤ pj(xj − µ1). Then, by omitting

the terms with i = j on both sides of (16) we only increase the inequality and trivially get that

−B′z ≥ −A′z for all z ∈ [xj , xj+1). Note that we are automatically in the first case whenever

µ2 ≥ xj ≥ µ1. Second, assume qj(xj − µ2) > pj(xj − µ1) and xj > µ2 ≥ µ1. Thus, using MLRP, we

have for all i > j,
qi
pi
≥ qj
pj
≥ xj − µ1

xj − µ2
>
xi − µ1

xi − µ2
,

where the last inequality follows since x 7→ (x − µ1)/(x − µ2) is decreasing when µ2 > µ1 (which

follows from MLRP). By xi > xj > µ2 this is easily rearranged to qi(xi − µ2) > pi(xi − µ1) for all

i > j. After summing over all i > j we obtain for z ∈ [xj , xj+1),

−B′z =
∑
i>j

qi(xi − µ2) >
∑
i>j

pi(xi − µ1) = −A′z.

Third, assume qj(xj − µ2) > pj(xj − µ1) and µ2 ≥ µ1 > xj . In a fashion similar to before we find

that for all i < j
qi
pi
≤ qj
pj
≤ µ1 − xj
µ2 − xj

<
µ1 − xi
µ2 − xi

,

and so qi(µ2−xi) < pi(µ1−xi) for all i < j. Using
∑N

i=1 qi(xi−µ2) = 0 we see that for z ∈ [xj−1, xj),

−B′z =
∑
i≥j

qi(xi − µ2) =
∑
i<j

qi(µ2 − xi) <
∑
i<j

pi(µ1 − xi) = −A′z,

contradicting our assumption. The third case is therefore not possible given the assumption. This

concludes the proof that h′(0) ≥ 0 for all possible z.

2nd derivative. Again, note that Cz and Dz are both continuous in z ∈ [x1, xN ]. However, other

than before, these two functions are no longer piecewise linear but piecewise quadratic and therefore

require a more subtle treatment. First, note that Dz − Cz is quasi-concave on each sub-interval

[xj−1, xj ]. Suppose this did not hold. This means, the constant second derivative D′′z − C ′′z must be
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positive,

0.5D′′z = F2(xj−1)(1− F2(xj−1)) > F1(xj−1)(1− F1(xj−1)) = 0.5C ′′z , (17)

where Fi denotes the cumulative distribution function of Xi. At the same time, the first derivatives

D′z − C ′z at the left and right boundaries must be negative and positive, respectively. Let us regard

the right boundary. A positive first derivative implies,

lim
z↗xj

0.5D′z = −F2(xj−1)
∑
i≥j

qi(xi − xj) > −F1(xj−1)
∑
i≥j

pi(xi − xj) = lim
z↗xj

0.5C ′z. (18)

It is a well-known feature of MLRP that the corresponding conditional distributions (Xi−xj)|(Xi ≥
xj) satisfy MLRP again. Necessarily, the conditional means must be ordered again,40

(1− F2(xj−1))−1
∑
i≥j

qi(xi − xj) ≥ (1− F1(xj−1))−1
∑
i≥j

pi(xi − xj).

Now, we multiply this nonnegative inequality with (17) to obtain,

F2(xj−1)
∑
i≥j

qi(xi − xj) ≥ F1(xj−1)
∑
i≥j

pi(xi − xj),

contradicting (18) and establishing quasi-concavity of Dz − Cz on each interval [xj−1, xj).

The quasi-concavity on the intervals allows us to restrict our attention to z’s that lie on the

interval boundaries, i.e. it is sufficient to prove Dj ≥ Cj where, with slight abuse of notation, we

write Dj for Dxj and similarly for Cj . Still, D1 ≥ C1 and DN = CN .

We will now show the claim Dj ≥ Cj by induction over N . It is trivial for N = 2. In the

following, suppose it holds for N − 1 points in the support of X1 and X2. To show it for N points,

assume the contrary is true, namely there exists a j such that Cj > Dj while at the same time

Var{X2} ≥ Var{X1}. We will try to increase Var{X1} relative to Var{X2} as much as possible but

eventually see that it is not possible that the former exceeds the latter.

Define δ = x2 − x1 and rewrite

C1 = Var{X1} = δ2(p1 − p2
1) + 2δp1s1 + C0

1 ,

where s1 =
∑

i>3 pi(xi − x2). C0
1 is the variance of X1 when we collapse x1 and x2 by reducing their

distance δ to zero. Similar results emerge for D1 = Var{X2}, s2 and D0
1. By the induction hypothesis

we must have C0
1 > D0

1, otherwise Dj would have to be larger than Cj . Note that s1 and s2 are

independent of the actual levels of p1 and p2. From Lemma 6 we can infer that p1(1−p1) ≥ q1(1−q1)

(otherwise we already have our contradiction Dj ≥ Cj), thus for C1 to be possibly larger than D1,

we would certainly need s2 > s1.

Now, let us study how these expressions change if we shift mass from x2 to x1. Since p2 does not

40Note that 1− F2(xj−1) is precisely
∑
i≥j qi and the same holds for F1.

40



enter C1 directly,41 a mass increase towards x1 by one percent yields

p1
∂C1

∂p1
= C1 − C0

1 − δ2p2
1 ≥ 0 (19)

q1
∂D1

∂q1
= D1 −D0

1 − δ2q2
1. (20)

Here, the positivity of the bottom derivative relies on the fact that q1 ≤ 0.5 (which is true if

p1−p2
1 ≥ q1− q2

1 and p1 ≥ q1) and therefore δ2q1(1−2q1) ≥ 0. In virtue of the positivity, we increase

q1 to make D1 as large as possible without violating MLRP, i.e. we set

q1 = p1χ ≡ p1
1−

∑
i>2 qi

1−
∑

i>2 pi
.

The ratio χ here guarantees that p1/q1 = p2/q2. In other words, we used the positivity of (19) to

reduce the two degrees of freedom of the two mass shifts to one. Precisely by percentage shifts up

or down, we can now control how much weight both distributions lay on x1, thereby keeping our

equated MLRP condition p1/q1 = p2/q2 intact. The overall effect of these remaining percentage

shifts on D1 − C1 is a comparison of (19) and (20).

First, assume p1∂C1/∂p1 ≥ q1∂D1/∂q1. Then, adding the two inequalities C0
1 > D0

1 and

δ2p2
1 ≥ δ2q2

1 to this yields C1 > D1, a contradiction to our assumption Var{X2} ≥ Var{X1}. Now,

suppose p1∂C1/∂p1 < q1∂D1/∂q1. This means, we increase D1−C1 by moving more weight from x2

to x1 until there is nothing left at x2, i.e. p2 = q1 = 0. This is equivalent to omitting x2, so, again,

we know by the induction hypothesis that D1 ≥ C1, another contradiction. In sum, we have shown

that Dj ≥ Cj for all j whenever Var{X2} ≥ Var{X1}, completing the proof.

Lemma 6. Let (pi)1≤i≤N , (qi)1≤i≤N , (Cj)2≤j≤N , and (Dj)2≤j≤N be specified as above.

If p1 − p2
1 ≤ q1 − q2

1 then Dj ≥ Cj for all j ≥ 2 and N ≥ 2.

Proof. Note that, since p1 ≥ q1 by MLRP, p1 must be larger than 0.5. In particular, for any ` ≥ 1,

F1(x`)(1− F1(x`)) ≤ F2(x`)(1− F2(x`)). (21)

If F2(x`) ≥ 0.5 this immediately holds since F1(x`) ≥ F2(x`) by MLRP so both F2(x`) and

F2(x`) are in the decreasing region of x 7→ x(1 − x). Now suppose F2(x`) < 0.5. We know that

0.5 ≥ F2(x`) ≥ q1 ≥ 1 − p1 and all three are in the increasing region, i.e. F2(x`)(1 − F2(x`)) ≥
p1(1−p1) ≥ F1(x`)(1−F1(x`)), where the last inequality follows from the fact that F1(x`) ≥ p1 ≥ 0.5,

so both are in the decreasing region. This establishes (21).

The proof itself works by induction over N . The result is immediate if N = 2. Assume it holds

for distributions with a support of N − 1 points. We define δ = xN − xN−1 and rewrite

Cj = δ2pN (1− pN ) + 2δpNr1 + C0
j ,

41Notice that C0
1 only the depends on the sum p1 + p2 and is invariant under mass shifts from one to the other.
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where r1 =
(∑

j<i<N pi(xN−1 − xi) + (xN−1 − xj)F1(xj)
)
≥ 0. C0

j denotes the N − 1 points analog

of Cj where we collapse points xN and xN−1 by reducing their distance δ to zero. Similar results

emerge for Dj , r2 and D0
j . By the induction hypothesis we must have D0

j ≥ C0
j . Note that

r1 and r2 are independent of the actual levels of pN and pN−1. From (21) we can infer that

pN (1− pN ) ≤ qN (1− qN ), thus if Cj was bigger than Dj , we would certainly need r1 > r2.

Now, let us study how these expressions change if we shift mass from xN−1 to xN . Since pN−1

does not enter Cj directly,42 a mass increase towards xN by one percent yields

pN
∂Cj
∂pN

= Cj − C0
j − δ2p2

N ≥ 0 (22)

qN
∂Dj

∂qN
= Dj −D0

j − δ2q2
N . (23)

Here, the positivity of the upper derivative relies on the fact that pN ≤ 1− p1 ≤ 0.5 and therefore

δ2pN (1 − 2pN ) ≥ 0. In virtue of the positivity, we increase pN to make Cj as large as possible

without violating MLRP, i.e. we set

pN = qNχ ≡ qN
1−

∑
i<N−1 pi

1−
∑

i<N−1 qi
.

The ratio χ here guarantees that pN/qN = pN−1/qN−1. In other words, we used the positivity of

(22) to reduce the two degrees of freedom of the two mass shifts to one. Precisely by percentage shifts

up or down, we can now control how much weight both distributions lay on xN , thereby keeping

our equated MLRP condition pN/qN = pN−1/qN−1 intact. The overall effect of these remaining

percentage shifts on Dj − Cj is a comparison of (22) and (23).

First, assume pN∂Cj/∂pN ≤ qN∂Dj/∂qN . Then, adding the two inequalities C0
j ≤ D0

j and

δ2p2
N ≤ δ2q2

N yields Cj ≤ Dj and we are done. Now, suppose pN∂Cj/∂pN > qN∂Dj/∂qN . This

means, we increase Cj −Dj by moving more weight from xN−1 to xN until there is nothing left

at xN−1, i.e. pN−1 = qN−1 = 0. This is equivalent to omitting xN−1, so, again, we know by the

induction hypothesis that Dj ≥ Cj . In sum, we have shown that there is no way in which Cj could

exceed Dj , for any j ≥ 2 and any N ≥ 2.

A.3 Proof of Proposition 2

It is straightforward to show that H is increasing concave. Hence, given Properties 1 and 2,

we can apply Theorem 1. In case (i) of Property 2, the claim then follows directly from the

theorem. In case (ii), the theorem yields that Var{χ̃mt |χst} is increasing in χst , implying that

Var{θ̃t|χst} = Var{θ̃t − log(q̄)|χst} = Var{χ̃mt |χst} is also increasing in χst .

42Notice that C0
j only the depends on the sum pN−1 + pN and is invariant under mass shifts from one to the other.
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A.4 Proof of Lemma 1

First, note that χ̃mt = θ̃t − log(qt), so that given a flat prior43 over θ̃t, the posterior belief θ̃t|χst is

normally distributed around α1(χst ) + log(q̄) with variance α2(χst )
2 by Property 2 (ii). This is exactly

the same posterior belief a Bayesian updater would hold after observing a Gaussian signal θ̃t+ υ̃t with

realization α1(χst ) + log(q̄) and variance τ−1
υ = α2(χst )

2 ≡ α21(α1(χst )) = α21(θt + υt − log(q̄)). Note

that τυ is increasing and has the desired limiting properties by Lemma 3. Thus, an observer with a

flat prior updates his information given χst as if the signal he receives is Gaussian with a constant

variance that happens to be τ−1
υ . The crucial step is now to show that given this informational

equivalence holds for a flat prior distribution of θ̃t, it continues to hold for any normal prior over θ̃t.

Suppose an observer holds a normal prior over θ̃t as given by a pdf p(θ) = φθ0,τ−1
0

(θ) and receives

some signal s with pdf q(s|θ) such that he would have updated to an s-dependent normal posterior

p0(θ|s) = φµ(s),τ(s)−1(θ) had he held a flat prior p0(θ) = 1 over θ̃t. This means,

p0(θ|s) =
q(s|θ)∫
q(s|z) dz

.

Therefore, the updated posterior pdf p(θ|s) given a normal prior can be written as

p(θ|s) =
q(s|θ)p(θ)∫
q(s|z)p(z) dz

=
p0(θ|s)p(θ)∫
p0(z|s)p(z) dz

,

which is just a normal pdf with mean (τ0 + τ(s))−1(τ0θ0 + τ(s)µ(s)) and variance (τ0 + τ(s))−1.

This is exactly the posterior distribution a Bayesian updater infers from observing the realization

µ(s) of a Gaussian signal θ̃t + υ̃t where τυ = τ(s).

A.5 Proof of Lemma 2

To verify the fixed point note that given the law of motion (8), q̃t is informationally equivalent to a

signal

θ̃t + δηη̃t + δυυ̃t,

where δη =
τξ+τη

τξ+τη+τυ
and δυ = τυ

τξ+τη+τυ
. Straightforward application of Bayes rule yields

bit = π̄−1
t ×

[
τξ τη τυ π̂t−1

]
×


θt + ξit

θt + ηt

θt + υt

ρbt−1

 (24)

when solving the inference problem including the private signal s̃it, and yields bt as stated in

the lemma when considering only the publicly observable history of prices. Aggregating over i,

43We use the flat prior merely for simplicity. The argument goes through for any normal prior with a variance larger
than some (constant) upper bound.
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substituting into the equilibrium price as pinned down by the marginal trader

qt = E{Ãt|bit, π̄t} = exp{γ0 + γ1(σt
√
τξ (η̃t − µ) + b̄t + γ1/(2π̄t))},

noting that (24) implies a cross-sectional variation σ2
t = Var{bit} = τξ/π̄

2
t , and using µ = γ1/(2τξ)

verifies that the mapping (8) is indeed a fixed point.

Uniqueness follows from following the same steps above, but leaving δη and δυ unspecified.

Solving the resulting system of equations yields two solutions. The first one being the one stated

in the lemma and the second one being δη = δυ = 0. Note that the second solution implies that

rational beliefs and, hence, market prices are invariant to the realization of noisy asset demand η̃t.

Therefore, δη = δυ = 0 clearly violates market clearing for almost all realizations of η̃t, implying

uniqueness of the first solution.

A.6 Proof of Proposition 3

Please note that the notation in this proof is currently inconsistent with the notation in the main

body of the paper and needs to be adjusted. We are sorry for any confusion arising from that.

Existence

To show the existence of a solution to the fixed point problem (9), we first derive the inverse of gq.

We used gq to describe the functional form of the log-linear equilibrium asset price qt, defined in

equation (8). It can be rewritten in terms of τυ, r ≡ log(qt)|τυ→0, and s ≡ γ1(θt + υt) + γ0,

log(qt) = gq(τυ,Ωt) = (1− τυ
π̄t

)r +
τυ
π̄t
s.

Dropping the second argument Ωt for simplicity from now on, the inverse reads

g−1
q (log(qt)) = (π̄t|τυ→0)

log(qt)− r
s− log(qt)

. (25)

Evidently, g−1
q is only defined for log(qt) between r and s whenever r 6= s . Then, its range is

found to be [0,∞), i.e. gτ (log(qt))− g−1
q (log(qt)) attains gτ (r) > 0 for log(qt) = r and converges to

−∞ for log(qt)→ s. By the intermediate value theorem, there exists a value for log(qt) such that

gτ (log(qt))− g−1
q (log(qt)) = 0. For r = s, g−1

q is not well-defined, so we cannot study the problem in

terms of (9). Instead, we consider the usual form of the fixed point equation, gq(gτ (log(qt))) = log(qt).

Obviously, since gq = r, log(qt) = r is the unique fixed point if r = s.

Uniqueness

Let δ = s− r. For δ < 0, g−1
q is strictly decreasing and gτ − g−1

q is strictly increasing. Thus, a unique

fixed point exists if δ < 0. The case δ = 0 is discussed above. Given these considerations, we see
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that there must be a non-empty set Ξ ⊂ R+ ×R4 characterizing all parameter constellations Ωt that

lead to unique equilibria. Bear in mind that r and s are just combinations of different components

of Ωt that we use to describe the influence of Ωt on gq(log(qt)). Since the set {Ωt | δ ≤ 0} entirely

lies in Ξ, we now derive bounds for the case δ > 0.

Bound 1 In virtue of (25), the fixed-point equation (9) is equivalent to

(s− s̊− z)(1 +
τυ(−z)
π̄t|τυ→0

)− s = −r, (26)

where s̊ ≡ (s− γ0)/γ1 and z ≡ log(qt)− s̊ ∈ (r − s̊, s− s̊). This has a unique solution for any value

of r if the left hand side is strictly decreasing for all z ∈ (r, s), i.e.

s− s̊ < f(s− s̊) ≡ inf
z∈(−∞,s−s̊)

π̄t|τυ→0 + τυ(−z)
−τ ′υ(−z)

+ z. (27)

It is evident that the function f is increasing. Apart from that, we show in Lemma 7 below that

there exists a unique bound s∗ such that below s∗, f(s) > s while f(s∗) = s∗. Note that this also

implies that f(s) > −∞ for any s. Using s∗ the condition for uniqueness independent of r becomes

s− s̊ < s∗, or, split according to the signs of γ1 − 1,

γ1(θt + υt) + γ0 = s < M, for γ1 > 1

γ1(θt + υt) + γ0 = s > M, for γ1 < 1

M0 > 0, for γ1 = 1,

where M = (γ1s
∗ − γ0)/ | γ1 − 1 | and M0 = γ1s

∗ − γ0. Interestingly, the uniqueness condition for

γ1 = 1 is independent of s, i.e. whenever M0 > 0, any equilibrium is unique. On the other hand, for

M0 < 0, we always find some values for r such that the equilibrium is not unique, irrespective of s.

Linearly redefining M establishes the desired bounds on θt + υt.

Bound 2 Similar to (26), the fixed-point equation (9) can be rewritten to

δ
π̄t|τυ→0

τυ(−z) + π̄t|τυ→0
+ z = s− s̊, (28)

with δ, z, s, s̊ as above. Now suppose γ1 6= 1. To find an upper bound δ∗ for s− r that establishes

uniqueness independent of s, we set δ∗ to the largest level need to have that the left hand side of

(28) is increasing, i.e.

δ∗ ≡ inf
z∈R

(τυ(−z) + π̄t|τυ→0)2

−τ ′υ(−z) π̄t|τυ→0
> 0.

It now holds that, whenever δ = γ1(θt + υt) + γ0 − log(qt)|τυ→0 < δ∗, the left hand side of (28) is

strictly increasing and hence has a unique solution. The bound δ∗ is by construction the largest with
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this property. The inequality stated in the proposition can be derived by a linear transformation.

Let us regard the special case γ1 = 1. Here, we can do better than δ∗. Since s− s̊ is constant at

γ0/γ1, to ensure uniqueness δ must only be small enough for (28) to have a unique solution if the

right hand side equals γ0/γ1, i.e.

δ < δ∗∗ ≡ sup{δ | (28) has a unique solution for s− s̊ = γ0/γ1}.

Clearly, δ∗∗ ≥ δ∗ > 0.

Lemma 7. The following two statements hold:

1. As x→∞, x τ ′υ(x)→ 0.

2. Let f be as defined in (27). Then, lims→−∞ f(s)− s > 0 while lims→∞ f(s)− s < 0.

Proof. We first show part 1. Recall that τυ(x) = 1/συ(x)2 is defined by the following implicit

equation,

Var{H(συ(x)X̃ + x)} = σ2
c , (29)

where X̃ is standard normally distributed and we denote Var{χ̃d | χs} by σ2
c . Note that H is similar

to a standard kink function H̊ = min{·, 0} in that they are almost equal outside the area around

the kink where H is smooth while H̊ is not. Now, for x large enough, the probability mass of the

distribution of συ(x)X̃ + x that is assigned to the area around the kink becomes arbitrarily small.

Therefore, for large x, the solution συ of (29) behaves exactly like the solution σ̊υ to the implicit

equation

Var{H̊ (̊συ(x)X̃ + x)} = σ2
c . (30)

In contrast to (29), we can analytically compute the variance on the left hand side of (30),

Var{H̊ (̊συ(x)X̃ + x)} = σ̊υ(x)2F (x/σ̊υ(x)),

where F (β) = 1− Φ(β)− φ(β)2 + β2(Φ(β)− Φ(β)2)− βφ(β)(2Φ(β)− 1). Substituting this in (30),

the implicit definition for τυ(x) reads,

F
(√

τυ(x)x2
)

= σ2
c τυ(x).

Differentiating this with respect to x yields,

F ′

2
(τυ(x))−1/2(x τ ′υ(x) + 2τυ(x)) = σ2

c τ
′
υ(x). (31)

Regard the signs on both sides of (31): F ′(β) = −2(φ(β)−β(1−Φ(β)))Φ(β) < 0 due to the standard

bound on the tails of Φ, 1 − Φ(β) < |β|−1φ(β), and τ ′υ(x) < 0 as we saw in Proposition 2. This
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immediately implies that x τ ′υ(x) + 2τυ(x) must be positive, or in other words,

0 > xτ ′υ(x) > −2τυ(x),

which establishes part 1 of the lemma for we know τυ(x) converges to 0 as x tends to infinity (see

Lemma 1).

In (27), we defined the function f such that

f(−s) = inf
z>−s

π̄t|τυ→0 + τυ(z)

−τ ′υ(z)
− z.

The first claimed property lims→−∞ f(s)− s = lims→∞ f(−s) + s > 0 means that there exists an

s̄ > 0 such that for any s > s̄, z ≥ s,

s >
π̄t|τυ→0 + τυ(z)

τ ′υ(z)
+ z ⇐⇒ −(z − s)τ ′υ(z) < π̄t|τυ→0 + τυ(−z).

But the left hand side of the second equation is smaller than −z τ ′υ(z) —which we know tends to 0

from part 1—and therefore has to be smaller than π̄t|τυ→0 for large values of z.

The second property lims→∞ f(s)− s < 0 is equivalent to finding a s̄ > 0 such that for any s > s̄

there exists a z ≤ s for which

π̄t|τυ→0 + τυ(−z)
−τ ′υ(−z)

+ z < s ⇐⇒ π̄t|τυ→0 + τυ(−z)− z τ ′υ(−z) < −s τ ′υ(−z).

Trivially, for z = 0 the right hand side of the second equation diverges to ∞ for large values of s

while the rest remains constant. Thus we can just pick a s̄ > 0 that is large enough. This establishes

the second property of part 2.

A.7 Proof of Proposition 4

The proof follows largely from the discussion in the main body of the paper; details are coming soon.

A.8 Proof of Proposition 5

Let (θt + υt, θt + ηt) = aSt +Ot ≡ a · (x, y) + (0, z), with z ≡ −b̆t−1/(τξ + τη). Then, differentiating

∆ ≡ log(q∗t )− log(q̊t) = gq(τ
∗
υ ,Ωt)− gq (̊τυ,Ωt) with respect to a yields

d∆

da
=
∂∆

∂a
+
∂gq(τ

∗
υ ,Ωt)

∂τ∗υ

dτ∗υ
da

. (32)

Consider the first term first. From Lemma 2, we have that

gq(τ
∗
υ ,Ωt) = aγ1(y(τξ + τη) + xτ∗υ )/π̄∗,
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and analogous for τ̊υ. Substituting in ∆, differentiating, and rearranging, we get

∂∆

∂a
=

γ1

π̄∗˚̄π(τξ + τη)
× 1

τ̊υ − τ∗υ
× [y + z − δ1(x)] .

From the definitions of x, y, and z, y + z − δ1(x) is positive if and only if θt + ηt > δ1(θt + υt).

Moreover, τ̊υ − τ∗υ is positive if and only if θt + ηt < δ2(θt + υt). Thus ∂∆/∂a < 0 if and only if

sign{θt+ηt-δ1(θt+υt)}=sign{θt+ηt-δ2(θt+υt)}.
Consider now the second term of (32). Substituting log(q∗t ) = gq(τ

∗
υ ,Ωt) into (9) and implicit

differentiating yields

dτ∗υ
da

=
x− ∂gq

∂a
∂gq
∂τυ
− ∂g−1

τ
∂τυ

. (33)

As illustrated in Figure 2,
∂gq
∂τυ

< ∂g−1
τ

∂τυ
at the fixed point, so that the denominator is necessarily

negative. Again, substituting for ∂gq(τ
∗
υ ,Ωt)/∂a, the numerator simplifies to

x− ∂gq
∂a

= −
γ1(τξ + τη)

π̄∗
× [y + z − δ∗2(x)],

where

δ∗2(x) = (τξ + τη)
−1(−b̆t−1 + γ−1

1 (π̆t−1 + (1− γ1)τ∗υ )x)

is defined such that θt + ηt < δ∗2(θt + υt) if and only if τ̊υ − τ∗υ > 0. Hence, since it also holds

that τ̊υ − τ∗υ > 0 if and only if τ̊υ − τ1
υ > 0, we have that from the definitions of x, y, and z,

−[y + z − δ∗2(x)]—and, hence, the numerator of (33)—is positive if and only if θt + ηt < δ2(θt + υt).

Taken together, we thus have that dτ∗υ/da is negative if and only if θt + ηt < δ2(θt + υt). Moreover,

in Section 5.1, we show that ∂gq/∂τυ > 0 if and only if θt + ηt < δ1(θt + υt). Hence, like the first

term, the second term of (32) is negative if and only if sign{θt+ηt-δ1(θt+υt)}=sign{θt+ηt-δ2(θt+υt)},
completing the proof.

A.9 Proof of Proposition 6

We consider a generic information structure given by

st = H ′θt + ψt, ψt ∼ N(0,Ψt),

where H ′ is a m× 1-vector and Ψt is a positive-semidefinite, symmetric m×m matrix. Note that st

is informationally equivalent to s̄t = BtH
′θt + ψ̄t with ψ̄t ∼ N(0, BtΨtB

′
t) for all invertible Bt which

match the number of rows in H ′. In particular, we can choose Bt, such that BtH
′ = (1, · · · , 1)′ and

Ψ̄t ≡ BtΨtB
′
t is diagonal.44

44To see this, let Lt be the lower Cholesky factor of Ψt. Then for all diagonal At, we have that AtL
−1
t ΨtL

′−1
t A′t is

diagonal. Hence, setting At = diag(L−1
t H ′)−1 and defining Bt ≡ AtL−1

t yields the desired result.
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Accordingly, suppose without loss of generality that

st = (1, · · · , 1)′θt + ψt, ψt ∼ N(0,diag(τt)
−1),

where τt is a m× 1-vector of strictly positive signal precisions. Then posterior beliefs at time t are

given by

bt =
1

πt

m∑
i=0

τt,ist,i and πt =
m∑
i=0

τt,i,

where the subscript i denotes the i-th element of vectors τt and st with the convention that

τt,0 = π̂t−1 ≡ (ρ2τε + πt−1)−1τεπt−1 and st,0 = ρbt−1. Accordingly, λt = ρπ̂t−1/πt, matching exactly

the definition in the special case discussed in the main body of the text.

Without loss of generality, consider a generic change of τt,1 by a differential dτt,1. Then for

r, s > 0,

dΛt−r,t+s
dτt,1

= Λt−r,t+s ×

 1

λt

∂λt
∂πt

+
t+s∑
q=t+1

 1

λq

∂λq
∂πq−1

q−1∏
p=t+1

∂πp
∂πp−1

 ,

or, after computing the individual terms and dividing by Λt−r,t+s > 0,

− 1

πt
+

t+s∑
q=t+1

 π̂q−1

π2
q−1πq

(
ρ2

m∑
i=1

τq,i

)
q−1∏
p=t+1

(
ρπ̂p−1

πp−1

)2
 . (34)

To show that (34) is negative, we proceed in two steps.

Step 1 We claim that (34) is maximized by setting τo,1 →∞ for all o > t. We prove this claim by

proceeding recursively. For o = s, the term is obviously increasing in τs,1 since

∂

∂τs,1

{∑m
i=1 τs,i
πs

}
=

∂

∂τs,1

{∑m
i=1 τs,i∑m
i=0 τs,i

}
> 0.

Hence, suppose that τo,1 →∞ for all o > n. Then, π̂o → τε and πo →∞. Thus, differentiating (34)

with respect to τn,1, n > t, simplifies to

∂

∂τn,1


n+1∑
q=n

 π̂q−1

π2
q−1πq

(
ρ2

m∑
i=1

τq,i

)
q−1∏
p=t+1

(
ρπ̂p−1

πp−1

)2


=
∂

∂πn

{
πn − π̂n−1

π̂n−1πn
+
ρ2π̂n
π2
n

}
×

n∏
p=t+1

(
ρπ̂p−1

πp−1

)2

=

(
πn − ρ2π̂n

π2
n

)2

×
n∏

p=t+1

(
ρπ̂p−1

πp−1

)2

> 0,

verifying the claim.
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Step 2 By step 1, it is sufficient to show that (34) is negative if τo,1 →∞ for all o > t. Accordingly,

(34) simplifies to

−πt − ρ
2π̂t

π2
t

= − π̂t
τεπt

< 0,

completing the proof.

A.10 Proof of Proposition 7

The proof follows from the discussion in Section 5.1 (in particular the discussion involving δ2); details

are coming soon.

B Supplementary material

B.1 Pooled asset market

First, we prove that in any equilibrium the market clearing price must be the same in both occurrences

of the asset market. Suppose the contrary holds and the market clearing price in the first asset

market is larger than the price in the second market.45 Then, given that no informational gains

are possible between the two market instances, all gatherers find it optimal to sell their asset (tree)

in the first market. Yet, total asset demand is always smaller than 1 −m in the first market, a

contradiction. Suppose now the price in the first market is smaller than the price in the second

market. Consequently, all agents find it optimal not to sell assets in the first market. Again, this is

incompatible with market clearing since total asset demand is always strictly positive. Thus, in any

equilibrium, the two occurrences of the asset market share the same market price.

To show the equivalence of the two separated markets to one pooled market we need to show

that any equilibrium in the separated markets is also an equilibrium in the pooled market and vice

versa. Consider an equilibrium in the separate markets. From above we know that there is a single

market clearing price equating supply and demand in both markets. This price must also be an

equilibrium price in the pooled market for it obviously equates total supply and total demand. Vice

versa, suppose a price is an equilibrium price in the pooled market. We construct an equilibrium

candidate for the separate markets by letting all gatherers who trade in the pooled equilibrium trade

in the first market and all farmers who trade in the pooled equilibrium trade in the second market.

Indeed, this is an equilibrium with the pooled price since the fraction of trading agents must be the

same across farmers and gatherers and nobody has an incentive to change his marketplace.

The last argument also implies that there is an equilibrium where the relevant collateral constraint

for all farmers is given by nit ≤ qt/wt. Since selling assets on the first market and ending up

constrained is dominated for all farmers by waiting and selling assets on the second market, we

45Note that the price in the second market can be forecasted by the time the first market operates because (i) no
exogenous information realizes between the two markets, and (ii) all information aggregated by the second market
price is already aggregated by the first.
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conclude that every separate asset market equilibrium can be represented by a pooled asset market

that operates parallel to the labor market in which nit ≤ qt/wt is exogenously imposed on all farmers.

B.2 Endogenous learning with alternative financial frictions

For demonstrating how endogenous learning interacts with other financial frictions, we consider four

toy models. To be consistent with the structure of the model, all frictions are sited at the firm-level.

However, one could also shift constraints to a separate financial sector, which then constrains the

real sector depending on the state of the economy. In the following, our strategy is to set up simple

versions of these alternative frictions and solve these model fragments up to a point where Theorem 1

is applicable.

Cash-in-advance constraints Consider a continuum of entrepreneurs with an investment op-

portunity that for an initial investment of ki pays

F (Ãi, ki) = Ãi log(ki) + Ãiγ,

where log(Ãi) ∼ N (θ, 1/τξ). Let p denote the price per unit of investment and assume that

investments have to be paid in advance using cash. For the purpose of raising cash, entrepreneurs

may sell claims on the investment return on a financial market. For simplicity, assume that each

entrepreneur is exogenously endowed with γ units and that claims can only be written on the return

Ãiγ of these units (e.g., because ki is unobservable or noncontractable). The timing is as follows:

1. Entrepreneurs choose to sell claims on any fraction xi ∈ [0, 1] of γ on the financial market.

2. The financial market operates and yields an equilibrium price q per claim. (Each share entitles

its owner to claim the return of γ units).

3. Entrepreneurs learn the realization of Ãi and decide how much to invest, subject to the

cash-in-advance constraint ki ≤ (q/p)xi.

For any reasonable specification of the financial market, it should be clear that whenever agents on

the financial market and entrepreneurs start out with a common prior, then entrepreneurs optimally

set xi = 1. Then given p, each entrepreneur optimally sets ki = min{Ai, q}/p, so that aggregated

demand kd is similar to (6). Without specifying the details of the capital supply side, assume that

there exists a noisy pricing function p̃ = f(k̃d, ψ̃) that clears the market and which is increasing in

both arguments (ψ̃ being some random variable). Given these assumption, there trivially exists a

transform of ψ̃ which gives rise to a concave signal structure that, given the appropriate assumptions

on the random variable ψ̃, is isomorphic to the one resulting from our baseline model.

Skin-in-the-game constraints A common generalization of the above cash-in-advance approach

is to allow entrepreneurs to give out claims on profits, but assume that in order to provide the
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right incentives, entrepreneurs must have some “skin-in-the-game” that exogenously restricts the

maximal number of shares that can be issued to xi ≤ x̄ < 1. Keeping the timing identical to our

cash-in-advance setup, the difference is now that claims on the financial market are defined on

expected entrepreneurs profits:

E{Π(Ãi, xi, p̃, q)|Ij} ≡ E{F (Ãi, k
∗
i (Ãi, p̃))− k∗i (Ãi, p̃)p̃+ xiq|Ij}.

Assuming risk-neutrality on the financial market (and some bounds on traders’ asset demands that,

as in our baseline setup, ensure the existence of a market clearing price), the equilibrium price will

be given by the marginal trader m’s expectation

q = E{Π(Ãi, xi, p̃, q)|Im}

= (1− xi)−1E{F (Ãi, k
∗
i (Ãi, p̃))− k∗i (Ãi, p̃)p̃|Im}.

Suppose again that prior information ensures that entrepreneurs optimally set xi = x̄. For any x̄ < 1,

we thus have that q amounts to a finite number that for well-behaved F , Ãi and p̃,46 is increasing in

E(Ãi|Im). Based on the previous cash-in-advance setting, our results can therefore also be extended

to such more general skin-in-the-game settings.

Costly state verification // To be written47 //

Adverse selection // To be written48 //

B.3 Distributional assumptions

To clarify the conditions under which Theorem 1 is applicable to our model, we state them in terms

of properties of the posterior distribution χ̃dt |χst . Here we illustrate how these properties of χ̃dt |χst
can be mapped into assumptions on the distribution of Ψ̃t.

46Here, we implicitly assume that as long as the “skin-in-the-game” constraint is fulfilled, entrepreneurs choose
k∗i (θi) = arg max{F (θ, ki)−kip}. Then, we in particular require that F is increasing in θi and that F −kp is concavely
increasing in k and has an interior solution.

47On an intuitive level: As firms’ internal funding decreases, standard auditing models imply that the markup
over the risk-free rate increases, implying that firms invest less and are less responsive to the price of output. It is
straightforward to extent such frameworks to the case where the return to investments also depends on an unobserved
(to the financial market) state: e.g., F (ki, Ai) = Aiki with log(Ai) ∼ N (θ, σ2). With such log-normal specification,
the production function transforms to the “standard” setting where F (ki, θ, ωi) = pωiki with p = exp(θ + σ2/2) and
ωi ∼ N (−σ2/2, σ2). That is, one can absorb θ into the output price. Assuming that firms are matched to lenders
with zero bargaining power who learn θ upon matching and finance through an exogenous financial market, this is
equivalent to the setting at the core of, e.g., Carlstrom and Fuerst (1997). In particular, higher effective interest rates
imply that firms’ investment choices respond less to θ as firms have less internal funds ni to finance ki (i.e., as ki − ni
increases). Accordingly, the ability of any outside observer (like the financial market), who observes a noisy signal of
(aggregate) k, is impeded during financial crises.

48On an intuitive level: Suppose there are two types of firms that differ in their probability of defaulting. Adopt one
of the standard adverse selection setups. Then in a state of crisis, good firms are crowded out. But if good firms are
more likely to succeed, then they will also be more respondent to any change in fundamentals (which affect profits in
the non-default state), reducing overall responsiveness to the fundamental during financial crises.
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From χ̃st |χst to Ψ̃t Consider an arbitrary posterior density function P (χdt |χst ) given a flat prior over

χ̃dt . Trivially, we can choose P (χdt |χst ) to satisfy Properties 1 and 2 (an example is the quasi-Gaussian

posterior we use throughout most of the paper). By Bayes’ law, reverse engineering gives the

corresponding conditions on P (χst |χdt ):

P (χdt |χst ) =
P (χst |χdt )∫
P (χst |χ̂d)dχ̂d

.

Rearranging yields

P (χst |χdt ) = g(χst )P (χdt |χst ), (35)

where g is indeterminate (i.e., arbitrary).

That is, any P (χst |χdt ) that is consistent with (35) implements the chosen posterior P (χdt |χst ). In

particular note that because of the indeterminacy of g, there are infinite many improper conditional

distributions P (χst |χdt ) that are consistent with our assumptions on P (χdt |χst ). Lets for now not

worry whether there exists any g which guarantees the existence of a proper signal structure (but

see below). Then in order to transform P (χst |χdt ) into a distribution of ψ̃t, recall that

χ̃st = χ̃dt + ψ̃t.

Then, from (35),

P (ψt|χdt ) = P (χst − χdt |χdt ),

yielding the following CDF for ψ̃t|χdt

P (ψt ≤ z|χdt ) =

∫ z+χdt

−∞
P (χs|χdt ) dχs

=

∫ z+χdt

−∞
g(χs)P (χdt |χs)) dχs. (36)

Condition (36) defines the distributional assumptions on ψ̃t that lead to the posterior distribution

P (χdt |χst ). It can be seen that any consistent distribution of ψ̃t necessarily varies with the state

of the world χdt . But since ψ̃t is explicitly allowed to be dependent on θ̃t and q̃t (and thus on

χ̃dt = H(θ̃t− log(q̃t))), the above distribution is well in line with our model specifications.49 Moreover,

by setting z →∞, we see that the distribution of ψ̃t is also proper whenever P (χst |χdt ) is proper.

Existence of a proper signal structure For a class of conditional distributions to be proper,

we need that there exists some function g, such that:∫
P (χs|χdt )dχs = 1,

49Because w̃t and ñdt can both be written as functions of θ̃t and q̃t and Ψ̃t, we can also transform ψ̃t back to
Ψ̃t = (exp(ψ̃t)− 1)ñst .
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or ∫
g(χs)P (χdt |χs)dχs = 1 (37)

for all χdt ∈ supp(χdt ). This problem turns out to be quite challenging (it is equivalent to solving a

Fredholm integral equation of kind 1). For the special case where Property 2b holds with X̃ ∼ N (0, 1)

(the baseline setup in the paper), we can verify the existence numerically. More specifically, we use

an algorithm that ensures that with a probability arbitrary close to 1, the economy realizes in a

state such that P (χst |χdt ) integrates arbitrary close to 1.50 Based on our algorithm, we conjecture

that—even if there does not exist an exact solution—there always exists a signal structure which is

in this sense “almost” proper.

In summary, we conclude that there always exists an improper signal structure in line with

Properties 1 and 2. The question whether there also exists a proper signal structure is analytically

unclear. However, even if there does not exist a proper signal structure, then for the quasi-Gaussian

case covered in most of the paper, our numerical algorithm suggests that there always exists an

“almost proper” one. This would then suggest that there also exists an almost identical proper signal

structure, which does not satisfy our assumptions, but for which the results in our paper nevertheless

describe an arbitrary accurate solution. Or, alternatively, that there exists an almost identical proper

signal structure, which does not satisfy our assumptions, but for which the results in our paper

describe the exact solution given that agents make arbitrary small errors by erroneously holding

Gaussian beliefs.

B.4 Sunspot regimes

// To be written //
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