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Abstract

This paper proposes a procedure for efficient estimation of the trimmed mean of a random variable
conditional on a set of covariates. For concreteness, the paper focuses on a financial application
where the trimmed mean of interest corresponds to the conditional expected shortfall, which is
known to be a coherent risk measure. The proposed class of estimators is based on representing the
estimand as an integral of the conditional quantile function. Relative to the simple analog estimator
that weights all conditional quantiles equally, asymptotic efficiency gains may be attained by giving
different weights to the different conditional quantiles while penalizing excessive departures from
uniform weighting. The approach presented here allows for either parametric or nonparametric
modeling of the conditional quantiles and the weights, but is essentially nonparametric in spirit.
The paper establishes the asymptotic properties of the proposed class of estimators. Their finite
sample properties are illustrated through a set of Monte Carlo experiments and an empirical
application.
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1. Introduction

Quantile regression, introduced by Roger Koenker and Gib Bassett (Koenker and Bassett [19]),

has gradually evolved from a robust alternative to least squares to a way of summarizing the

conditional distribution of a random variable given a set of covariates. As such, it can be used

in a large variety of situations. In this paper we employ quantile regression methods to estimate

the trimmed mean of a random variable of interest conditional on a set of covariates. Trimmed

means are widely used as alternative location parameters to the ordinary mean because of their

robustness and their superior properties under certain types of censoring. They are usually not
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of direct interest, however, in the sense that, absent other considerations such as robustness or

censoring, one would be perfectly happy with the ordinary mean. Here we focus instead on a

financial application where the trimmed mean is of substantive interest in itself as a coherent

measure of risk.

Specifically, let Yt be a continuous random variable that represents the uncertain return on a

single asset or a portfolio of assets between time t and time t+1 , and let Xt be a set of covariates

that represent the relevant information available up to time t. This information typically consists

of lagged values of other financial or nonfinancial variables, possibly including lagged values of Yt

itself. Let f(y |x) and Q(α |x), with 0 < α < 1, respectively denote the conditional density and

the αth conditional quantile of Yt given Xt = x. Then the trimmed mean of interest is

τ0(α |x) = 1

α

∫ Q(α |x)

−∞
y f(y |x) dy, (1.1)

namely the mean over the left tail of the conditional distribution of Yt up to the αth quantile.

In the financial literature, this is known as the α-level conditional expected shortfall (CES) of Yt,

with α typically set to .05 or .10. The negative CES corresponds to the loss expected when Xt = x

from holding the asset or the portfolio, given that the loss exceeds the αth conditional quantile of

Yt, a quantity known in the financial literature as the (1 − α)-percent conditional Value-at-Risk

(VaR). The CES provides a natural way of incorporating information on economic and market

conditions into a measure of potential loss that is continuous in α and, unlike the VaR, is always

coherent, that is, it simultaneously satisfies sub-additivity, monotonicity, positive homogeneity

and translation invariance (Artzer et al. [4]). For further references, see Acerbi and Tasche [1],

Delbaen [13], and Bertsimas et al. [6], among others.

Most existing estimators of the CES are plug-in estimators based either on (1.1) or on alternative

characterizations. Cai and Wang [8] proposed a class of nonparametric estimators obtained by

replacing the density in (1.1) with a kernel based estimate. Their estimators, called weighted

double kernel local linear (WDKLL) estimators, combine the attractive features of the double-

kernel local linear estimator of Fan and Gijbels [14] with those of the weighted Nadaraya-Watson

estimators of Hall et al. [17], especially its monotonicity and good boundary behavior. Their main

drawback is computational complexity and the fact that their rate of convergence is slow and

decays rapidly with the number of covariates reflecting the curse-of-dimensionality problem.

Peracchi and Tanase [25] proposed a class of semiparametric estimators based on the following
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equivalent representation of the CES

τ0(α |x) = Q(α |x)− 1

α

∫ Q(α |x)

−∞
F (y |x) dy,

where F (y |x) =
∫ y
−∞ f(u |x)du is the conditional distribution function (CDF) of Yt. These estima-

tors, called integrated conditional distribution function (ICDF) estimators, combine a parametric

or semi-parametric estimator of the CDF with a quantile regression estimator of the (1−α)-percent

conditional VaR.

Another class of semi-parametric estimators, also proposed by Peracchi and Tanase [25], is

based on the equivalent representation of the CES as an integral of the conditional quantile function

(CQF), that is,

τ0(α |x) = 1

α

∫ α

0
Q(p |x) dp.

These estimators, called integrated conditional quantile function (ICQF) estimators, are of the

form

τ̂0J (α |x) = α−1
J∑

j=1

(pj − pj−1)Q̂j(x),

where Q̂j(x) is an estimator of the conditional quantile Q(pj |x) and pj is a point in the interval

(0, α]. Notice that, unlike the L-estimators analyzed by Koenker [20], which are based on a fixed

grid of pj points, an ICQF estimator is based on a grid of points whose number J and location is

allowed to depend on the data. A closely related estimator has recently been suggested byWang and

Zhou (2010) for estimating the conditional mean of a monotone transformation of a random variable

Yt. They assume a heteroskedastic regression model for Yt and exploit the property of equivariance

to monotone transformations of the quantile function. Their estimator of the conditional mean is

based on integrating the estimated CQF over a trimmed interval, where the trimming proportion

vanishes as the sample size increases. They assume independent and identically distributed data,

an assumption that we weaken here in order to deal with financial applications.

This paper generalizes the ICQF estimator by introducing a weighting scheme that weighs the

J conditional quantile estimates differently. Estimators of this type are called weighted integrated

conditional quantile function (WICQF) estimators. Intuitively, introducing nonuniform weights

enables one to compensate the inefficiency of quantile estimators at extreme quantiles by giving

more weight to the quantiles near α, which are more precisely estimated. The idea of introducing a

set of weights to increase asymptotic efficiency when estimating a population parameter of interest

is widely used in parametric and nonparametric statistics, and is a key feature of generalized
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method of moments and minimum distance methods. Of course, weighting may also introduce

bias, which we control by penalizing excessive departures from uniform weighting.

Koenker (2005) proposed a weighted version of the linear quantile regression estimator with

the aim of improving efficiency. The difference with respect to our approach is substantial: in

his approach the weights enter the minimization problem that defines the estimator. We instead

proceed on a two-step basis: first we estimate all the necessary quantiles (not necessarily via

linear quantile regression), then we average them using a set of weights chosen via a minimum

penalized variance criterion. Although we focus on estimating the CES, our method applies with

minor changes to more general trimmed means, for example two-sided trimmed means with limits

defined by conditional quantiles or other functions of Xt.

Asymptotically, a WICQF estimator corresponds to replacing the CDF in the definition of

the CES by a transformation W (F (y |x) |x), which is itself a CDF if the function W (· |x) is

nondecreasing on (0, α]. The use of a transformed version of the CDF in the definition of the CES

may be related to the theory of non-expected utility of Yaari [29] and Prelec [26], where modifying

the distribution of the returns accommodates risk aversion of the investor. We do not pursue

this subjective interpretation and confine ourselves to weighting as a way of improving asymptotic

efficiency of estimation.

ICQF and WICQF estimators depend crucially on the underlying estimates of the CQF. An

important drawback of conventional quantile regression estimators is the fact that they do not

guarantee monotonicity. When using linear quantile regression estimators, the linearity assumption

is an additional problem because its failure may lead to bias. Despite this problem, linear quantile

regression estimators are widely used because of parsimony, computational convenience, and the

fact that they remain asymptotically normal under model misspecification (Angrist et al. [3]).

They can also be used as preliminary nonmonotonic curves to be rearranged according to the

method recently proposed by Chernozhukov et al. [11]. For these reasons, although presenting the

asymptotic results for arbitrary estimators of the CQF, in the Monte Carlo and in the empirical

exercise, we focus on the case when the quantile regression model is linear, or at least linear in the

parameters.

The remainder of the paper is organized as follows. Section 2 formally defines the class of

WICQF estimators. Section 3 analyzes their asymptotic properties. Section 4 discusses how to

choose an optimal estimator. Section 5 presents the results of a set of Monte Carlo experiments.

Section 6 presents an application to real data to highlight the potentials of our procedure. Finally,

Section 7 concludes. All proofs are collected in the appendix.
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2. Definition of WICQF estimators

Let the uncertain return on a given asset or portfolio between time t and time t+1 be represented

by a continuous random variable Yt with values in Y, and let the information about Yt available

up to time t be represented by a K-dimensional random vector Xt = (Xt1, . . . , XtK) with values

in X . We assume that the data {(Xt, Yt), t = 1, . . . , T} is a sample from a stationary strongly-

mixing time series. This assumptions, which covers the case when the data are independent and

identically distributed (iid), is relevant for the Monte Carlo simulations in Section 5 and the

financial application in Section 6, where Xt includes lagged values of Yt. Let F (y |x) = Pr{Yt ≤

y |Xt = x}, f(y |x) = (∂/∂y)F (y |x) and Q(α |x) = inf{y : F (y |x) ≥ α}, α ∈ (0, 1), respectively

denote the CDF, the conditional density and the CQF of Yt given Xt = x.

A WICQF estimator of the CES is any estimator of the form

τ̂J(α |x) =
J∑

j=1

wj(x)Q̂j(x), (2.1)

where wj(x) is the weight assigned to an estimate Q̂j(x) of the pjth conditional quantile of Yt given

Xt = x and the pj are grid points such that 0 < p1 < · · · < pJ = α. The weights wj(x) may be

negative but must add up to one. An ICQF estimator is a special case of (2.1) corresponding to

uniform weights wj(x) = (pj − pj−1)/α. Both the weights wj(x) and the number and location of

the grid points may depend on the data. To keep things simple, this dependence is momentarily

ignored. From now on, we also drop the explicit reference to α and simply write a WICQF estimator

as τJ(x).

Of particular interest are WICQF estimators based on linear quantile regression estimators of

the form Q̂j(x) = β̂⊤
j x, where

β̂j = argmin
β

T∑
t=1

ℓpj (Yt − β⊤Xt)

and ℓp(u) = u(p − 11{u < 0}) is the asymmetric absolute loss function (see Koenker [20]). If the

true conditional quantiles are not linear in x, a linear quantile regression estimator only gives the

best linear approximation to the CQF relative to a particular measure of deviation (Angrist et

al. [3]). The resulting ICQF estimator takes the particularly simple form τ̂J(x) = β̄J(x)
⊤x, where

β̄J(x) =
∑J

j=1wj(x)β̂j .
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3. Asymptotic properties

Construction of a WICQF estimator requires the choice of J grid points p1, . . . , pJ in the

interval (0, α], estimators Q̂1(x), . . . , Q̂J(x) of the J conditional quantiles, and a set of weights

w1(x), . . . , wJ(x). All these choices affect the asymptotic properties of an estimator.

Let Q̂(p |x) be any function defined on (0, 1) × X , that coincides with Q̂j(x) when p = pj .

As in Angrist et al. [3], we assume that, for all p ∈ (0, 1), the pth estimated conditional quantile

Q̂(p |x) converges in probability as T → ∞, uniformly in x, to a function Q∗(p |x) that may or

may not coincide with the pth population conditional quantile Q(p |x), that is, the difference

Q∗(p |Xt)−Q(p |Xt) may be nonzero with positive probability.

As for the weights, we assume that wj(x) = W (pj |x) − W (pj−1 |x) for al j, where W (p |x)

is a continuously differentiable function on (0, α) × X , with W (0 |x) = 0 and W (α |x) = 1 for all

x ∈ X . We say that weights are uniform if they do not depend on x and are proportional to the

distance between two consecutive grid points. This implies that uniform weights are of the form

wj = (pj − pj−1)/α, j = 1, . . . , J , with p0 = 0. A special case of uniform weights are the constant

weights corresponding to wj = J−1 for all j.

In order to study the asymptotic properties of WICQF estimator, it is useful to decompose the

estimation error τ̂J(x)− τ0(x) as follows

τ̂J(x)− τ0(x) = [τ̂J(x)− τ∗J (x)] + [τ∗J (x)− τJ(x)] + [τJ(x)− τ0J (x)] + [τ0J (x)− τ0(x)], (3.1)

with

τ∗J (x) =

J∑
j=1

wj(x)Q
∗
j (x),

τJ(x) =

J∑
j=1

wj(x)Qj(x),

and

τ0J (x) =

J∑
j=1

ujQj(x),

where u1, . . . , uJ denotes the set of uniform weights. Consistency of τ̂J(x) for the CES τ0(x)

requires all four terms on the right-hand side of (3.1) to be negligible. Let us examine each of these

terms in turn.

The first component in (3.1),

τ̂J(x)− τ∗J (x) =
J∑

j=1

wj(x)[Q̂j(x)−Q∗
j (x)],
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reflects the sampling error. The next result implies that, in general, this component is negligible

for large T .

Theorem 1. Let Q̂(p |x) be an estimator of Q∗(p |x) that is rT -consistent for all p ∈ (0, α],

where rT is a divergent sequence, and assume that for every J-tuple (p1, . . . , pJ) the random vector

{rT [Q̂j(x)−Q∗
j (x)], j = 1, . . . , J}, converges in distribution to a multivariate Gaussian vector with

mean zero and covariance matrix V (x). Then

rT [τ̂J(x)− τ∗J (x)]
d→N (0,w(x)⊤V (x)w(x)),

where w(x)⊤ = (w1(x), . . . , wJ(x)).

The second component in (3.1),

τ∗J (x)− τJ(x) =

J∑
j=1

wj(x)[Q
∗
j (x)−Qj(x)], (3.2)

reflects the bias that arises when the assumed model for the CQF is incorrectly specified There is

clearly a trade-off between simplicity and tractability on the one hand, and bias on the other hand.

A linear model for the CQF is particularly simple and tractable, but is likely to be misspecified.

One way to overcome this problem is to consider more flexible estimators of Qj(x). For example,

a semiparametric estimator may be obtained by inverting the monotone CDF estimator proposed

by Foresi and Peracchi [16] and further discussed in Peracchi [24]. Nonparametric estimators

based on inversion of kernel based estimators of the CDF may also be used. Examples include the

weighted Nadaraya-Watson estimator of Cai (2002), the double-kernel local linear estimator of Yu

and Jones (1998), and the WDKLL estimator of Cai and Wang (2008). In general, semiparametric

estimators of the CQF represent a reasonable compromise between flexibility and tractability,

while nonparametric methods suffer dramatically the increase of the number of regressors due to

the curse-of-dimensionality problem. From now on we assume that (3.2) is either zero or negligible

relative to the other terms in (3.1).

The third component in (3.1),

τJ(x)− τ0J (x) =
J∑

j=1

[wj(x)− uj ]Qj(x),

reflects the bias due to the use of nonuniform weights. This component is negligible if the weight

function wj(x) is not far from uniform weighting. The penalization criterion described in Section 4

aims at controlling this term.
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Finally, the last component in (3.1),

τ0J (x)− τ0(x) =
J∑

j=1

ujQj(x)−
1

α

∫ α

0
Q(p |x) dp,

reflects the bias due to approximating the integral τ0(x) by the finite sum τ0J (x). This component

is nonzero in general, unless J is allowed to grow with the sample size in such a way that the

length of all intervals pj − pj−1 goes to zero at a proper rate. The next theorem gives the order of

magnitude of the approximation error τ0J (x)− τ0(x) for a specific choice of weights, namely

uj =

{
p1/α, if j = 1,

(1− u1)/(J − 1), if j = 2, . . . , J.
(3.3)

In this case

τ0J (x) =
1− u1
J − 1

J∑
j=2

Qj(x) + u1Q1(x).

Constant weights are a special case corresponding to the choice u1 = J−1.

Theorem 2. Assume that the function Q(p |x) is continuously differentiable in p for all x with

derivative q(p |x) = (∂/∂p)Q(p |x). Also assume that Q(p |x) ≤ c|x|γ [p(1 − p)]−a for some 0 <

a < 1 − ε, γ > 0 and q(p |x) ≤ c|x|γ [p(1 − p)]−a−1 for all p ∈ (0, p1], where |x| = max1≤k≤K |xk|.

Then, [τ0J (x)− τ0(x)] ≤ O(|x|γ (p1−a
1 + Ja−1)).

When the dimension of the grid increases with the sample size then, under appropriate regularity

conditions, the limiting distribution of rT [τ̂J(x)− τJ(x)] is still Gaussian with asymptotic variance

σ2 =

∫ α

0

∫ α

0
w(p |x)w(s |x)V (p, s |x)dp ds, (3.4)

where V (p, s |x) is the asymptotic covariance between Q̂(p |x) and Q̂(s |x), with p, s ∈ (0, α]. The

necessary regularity conditions depend on the nature of the estimator Q̂j(x) and the behavior of

the CQF and its derivative near zero. In particular, both Q(p |x) and q(p |x) should not grow

too fast in absolute value as p approaches zero. We also assume that there is no misspecification,

namely that for all p, |Q(p |x)−Q∗(p |x)| is zero, or at least negligible compared to the other terms

in (3.1).

The following theorem establishes asymptotic normality of rescaled difference rT [τ̂J(x)−τ0(x)].

The proof relies on the existence of a Bahadur representation for the estimator Q̂(p |x). This

representation is available for many families of estimators, such as nonparametric M -estimators of

the unknown function m(x) = argminθ E[ρ(Y, θ) |X = x] (Cheng and De Gooijer [9]). The special
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case ρ(Y, θ) = ℓp(Y − θ), corresponding to the p-th conditional quantile, is studied by Honda [18].

Although nonstandard convergence rates could also be considered, here we confine ourselves to the

standard rate rT =
√
T .

Theorem 3. Assume that the following conditions hold.

(i) The sequence {p1, . . . , pJ} of grid points is such that, for some 0 ≤ b ≤ 1/4,

p1 = O
(
T−1/(1+4b)

)
and J ≥ O(p−1

1 ). (3.5)

(ii) There exist γ > 0, c > 0, 0 < a < 1/2 − 2b + ε and α0 ≤ α such that, for all p ∈ (0, α0],

|Q(p |x)| ≤ c|x|γ [p(1− p)]−a and q(p |x) ≤ c|x|γ [p(1− p)]−a−1.

(iii) The weighting function W (p |x) is continuously differentiable in p with derivative w(p |x).

Moreover, the weights wj(x) = W (pj |x)−W (pj−1 |x) are such that
∑J

j=1[wj(x)/uj−1]2uj ≤

|x|2h2T , where the weights uj satisfy (3.3) and hT = o(T−1/2−εJ−a/2).

(iv) For all x, the estimator Q̂(p |x) is
√
T -consistent for Q(p |x) uniformly on (0, α]. In addition,

for some sequence of positive numbers, δT → 0,

√
T [Q̂(p |x)−Q(p |x)] = 1√

T

T∑
t=1

Gt(p |x) +OP (δT ),

where, for all x, Gt(· |x) is a sequence of zero-mean random functions defined on (0, α] and the

process T−1/2
∑T

t=1Gt(· |x) is asymptotically Gaussian with covariance function V (p, s |x),

with V (p, p |x) ≤ c[p(1− p)]−2a−1|x|2γ.

Then, for all x such that |x| ≤ O(log T ),
√
T (τ̂J(x)− τ0(x)) →d N (0, σ2), with σ2 given by (3.4).

Condition (i) allows to control the approximation error rate. Condition (ii) implies the main

assumptions of Theorem 2. Condition (iii) requires the weights wj(x) to lie within a small dis-

tance from the uniform weights uj , in order to control for the bias induced by weighting. Con-

dition (iv) guarantees asymptotic normality of the dominating term in (3.1) and, because of the
√
T -consistency requirement, excludes the problem of misspecification. Throughout the paper, the

orders of magnitude oP (·) and OP (·) are intended in the outer measure sense whenever measur-

ability of the random elements involved is not guaranteed. The existence of an asymptotically

Gaussian Bahadur representation for the quantile process has to be checked for specific choices

of Q̂(p |x) and additional moment conditions may be needed for a central limit theorem to be

applicable.
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As an example, consider the case when Q(p |x) = β(p)⊤x. Assume that the data generating

process is stationary and strongly mixing, which corresponds to the (possibly) heteroskedastic

model

Yt = β(p)⊤Xt + Ut(p),

where the error Ut(p) has p-th quantile equal to zero conditional on Xt. Replace Conditions (ii)

and (iv) of Theorem 3 by the following:

(ii.1) Condition (ii) holds for γ = 1, 0 < a < 1/2− 2b+ ε and ε/2 ≤ b < 1/4. For all α0 > 0 and

p ∈ [α0, 1− α0], the coefficient β(p) belongs to a compact set.

(iv.1) The mixing coefficient αt is asymptotically decaying at the rate λ < −2r/(r − 2) for some

r > 2. For all x, the conditional density of Ut(p) given Xt = x is absolutely continuous and

bounded on a bounded interval. Further, E(p− 11{Yt − β(p)⊤Xt < 0})Xt = 0 for all p ∈ (0, α]

and all t, and max1≤t≤T max1≤k≤K E |Xtk|r
′
< ∞, where r′ = max{r, 3 + η} for some η > 0.

(iv.2) The following matrices are positive definite for all T and all p, s ∈ (0, α]:

ΣT (p, s) = E
[
T−1

∑T
t=1(p− 11{Yt < β(p)⊤Xt})(s− 11{Yt < β(s)⊤Xt})XtX

⊤
t

]
,

DT = E
[
T−1

∑
tXtX

⊤
t

]
and JT (p) = E

[
T−1

∑
t f(β(p)

⊤Xt |Xt)XtX
⊤
t

]
.

As T → ∞, the limits ΣT (p, s) → Σ(p, s), DT → D and JT (p) → J(p) exist and are positive

definite.

One can show, by adapting the argument in Wang and Zhou [28], that the conclusion of

Theorem 3 holds with

V (p, s |x) = x⊤[J−1(p)Σ(p, s)J−1(s)]x.

4. Optimal WICQF estimators

This section presents our proposal for the optimal choice of the weights defining an WICQF

estimator. Although the number of grid points is now allowed to depend on the sample size T ,

we do not make explicit this dependence. For notational simplicity we also omit the dependence

of the weights and the covariance matrix V on x. Thus, we denote by w = (w1, . . . , wJ)
⊤ the

vector of weights, by Q = (Q1(x), . . . , QJ(x))
⊤ the vector of population conditional quantiles, and

by Q̂ = (Q̂1(x), . . . , Q̂J(x))
⊤ the vector of estimated conditional quantiles. With this notation,

we can write the WICQF estimator as τ̂J = w⊤Q̂ and its discrete population counterpart by

τJ = w⊤Q.
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An optimal set of weights may be obtained by minimizing the asymptotic variance of a WICQF

estimator subject to two constraints. The first constraint is correct specification of the model for the

CQF. This constraint may be approximately satisfied by choosing some flexible conditional quantile

estimator. The second constraint, necessary for consistency of the WICQF estimator, requires that,

asymptotically, (w−u)⊤Q = 0 for large enough J , where u = (u1, . . . , uJ) is the vector of uniform

weights. Imposing this constraint directly would give the trivial solution w∗ = u. To avoid this

difficulty, we choose the optimal weights by minimizing a penalized asymptotic variance criterion,

that is, we solve the problem

min
w:w⊤ı=1

w⊤V w + c(w − u)⊤A(w − u), (4.1)

where c is a nonnegative constant, A a symmetric positive definite matrix to be chosen by the

investigator, and u is the J-dimensional vector of uniform weights.

The constant c captures the trade-off between asymptotic efficiency and consistency of the

WICQF estimator. The smaller is c, the smaller is the importance that we attribute to consistency

for the CES. Indeed, for c = 0 problem (4.1) coincides with the minimization of the asymptotic

variance over all vectors satisfying w⊤ı = 1. If instead c → ∞, then only the penalization matters,

so the optimal vector of weights is the vector of uniform weights and we obtain the ICQF estimator.

As for the matrix A, three interesting special cases are A = I, A = QQ⊤, and A = diag[u−1
j ].

In the first case, the penalization acts on the Euclidean distance between the vector w and the

vector u of uniform weights. The second case corresponds instead to penalizing directly large

differences between the WICQF estimator and the unweighted ICQF estimator. The third case

implies that (w − u)⊤A(w − u) =
∑

j(wj/uj − 1)2uj , so the penalty term in (4.1) becomes a

χ2-type divergence between the probability mass functions w and u.

The next result characterizes the solution to problem (4.1).

Theorem 4. The vector of asymptotically optimal weights is

w∗
c =

(V + cA)−1ı

ı⊤(V + cA)−1ı
+ c

[
I − (V + cA)−1ıı⊤

ı⊤(V + cA)−1ı

]
(V + cA)−1Au. (4.2)

When c = 0, the vector of asymptotically optimal weights is just w∗
0 = (ı⊤V −1ı)−1V −1ı,

irrespective of A. This corresponds to the unpenalized minimum asymptotic variance estimator,

which is not in general consistent for the CES. Another interesting special case is when u = J−1ı,

the vector of constant weights, and A = I. In this case, the vector of asymptotically optimal

weights is

w∗
c =

(V + cI)−1ı

ı⊤(V + cI)−1ı
. (4.3)
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In fact, there is no loss of generality in confining attention to the case of constant weights, because an

analogous simplification of the formula of the vector of asymptotically optimal weights is obtained

for an arbitrary set of uniform weights u by choosing A = diag[u−1
j ]. In this case, Au = ı and

formula (4.2) simplifies to w∗
c = [ı⊤(V +cA)−1ı]−1(V +cA)−1ı. Thus, from now on, we set A = I

and u = J−1ı. Notice that the order of magnitude of c in the case of A = diag[u−1
j ] is different: if

in fact we chose u = J−1ı, then A = diag[u−1
j ] = JI, so the above formula for w∗

c coincides with

formula (4.3) for w∗
c′ , with c′ = J c.

Since V and Q are unknown, in practice we replace them with consistent estimates V̂ and Q̂.

The resulting vector of weights is denoted by ŵ∗
c , so our feasible asymptotically optimal estimator

is τ̃J = ŵ∗⊤
c Q̂ =

∑J
j=1 ŵ

∗
j Q̂j . The asymptotic error of this estimator is

plim(τ̃J − τ0J ) = plim

[
(V̂ + cI)−1ı

ı⊤(V̂ + cI)−1ı
− ı

J

]⊤
Q,

which can be written

plim(τ̃J − τ0J ) = plim(ŵ∗
c −w∗

c)
⊤Q+ (w∗

c − J−1ı)⊤Q. (4.4)

The first term in (4.4) is asymptotically negligible if V̂ is consistent for V at a rate faster than ∥Q∥

or, if Condition (i) and (ii) of Theorem 3 are satisfied, faster than O(Ja). This occurs independently

of c, in fact even for c = 0. However, large values of c will increase the rate of convergence because,

for large enough c, both ŵ∗
c and w∗

c approach the uniform weights ı/J regardless of the distance

between V and V̂ . The second term of (4.4) depends instead crucially on c. The following theorem

gives bounds on the rate of convergence of this term.

Theorem 5. Under Conditions (i) and (ii) of Theorem 3, (w∗
c−J−1ı)⊤Q ≤ O

(
Ja |x|γ [λ(V ) + c]−1

)
,

where λ(V ) is the minimum eigenvalue of the matrix V .

It follows immediately from Theorem 5 that condition (iii) of Theorem 3 is satisfied if c grows

faster than J−aT−1/2.

5. Monte Carlo experiments

To ensure comparability with the results in Cai and Wang [8], the design of our set of Monte

Carlo experiments follows closely their design. Thus, we consider two models that correspond to

Model I and Model II of Cai and Wang [8].
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The first model is an AR(1)-ARCH(1) model of the form Yt = α0 + α1Yt−1 + σtUt, where

σ2
t = γ0 + γ1U

2
t−1 and the Ut are iid N (0, 1) random variables. The vector of model parameters

is θ = (α0, α1, γ0, γ1). Since only Yt−1 and Yt−2 contain information useful to predict Yt, we can

set Xt = (Yt−1, Yt−2) and x = (y1, y2). The pth conditional quantile of Yt given Xt = x for

this model is of the form Q(p |x) = µ(x) + Φ−1(p)σ(x), where µ(x) = α0 + α1y1 and σ(x) =

[γ0 + γ1(y1 − α0 − α1y2)
2]1/2. Thus, the CES is of the form

τ(α |x) = µ(x)− ϕ(Φ−1(α))

α
σ(x),

where ϕ and Φ respectively denote the density and the distribution function of the standard normal

distribution.

The second model is of the form Yt = α0+α1Yt−1+α2Yt−2+σtUt, as for an AR(2) process, where

σ2
t = γ0+γ1Y

2
t−1+γ2Y

2
t−2 and the Ut are iidN (0, 1) random variables. We shall refer to this model as

the heteroskedastic AR(2) model. The vector of model parameters is now θ = (α0, α1, α2, γ0, γ1, γ2).

The CQF and the CES for this model have the same general form as that for the AR(1)-ARCH(1)

model, except that now µ(x) = α0 + α1y1 + α2y2 and σ(x) = (γ0 + γ1y
2
1 + γ2y

2
2)

1/2.

For each model, we consider three alternative parametric specifications for the conditional

quantiles. The first is the “naive” specification Q∗(p |x) = β0 + β1y1. This specification is clearly

incorrect since the conditional quantiles of Yt depend nonlinearly on both Yt−1 and Yt−2. The

second is the “linear-with-interaction” specification Q∗(p |x) = β0 + β1y1 + β2y2 + β3y1y2. The

third is the quadratic specification Q∗(p |x) = β0 + β1y1 + β2y2 + β3y
2
1 + β4y

2
2 + β5y1y2, which is

likely to provide a better approximation to the conditional quantiles of Yt.

Our Monte Carlo design is as follows:

1. We select the key parameters, namely the level α, the parameters in the two models, the

number N and location of the points x at which the CES is evaluated, the sample size T , the

number M of Monte Carlo replications, the size J and location p1, . . . , pJ of the grid points in

the interval (0, α], and the values of the penalty parameter c for WICQF estimators. The level

α and the model parameters are as in Cai and Wang [8], namely α = .05, θ = (.01, .62, .15, .65)

for the AR(1)-ARCH(1) model and θ = (0, .63,−.47, .5, .23, .30) for the heteroskedastic AR(2)

model. To evaluate the CES, we choose n = 11 equally spaced points y1 and y2 between -1

and 1 (extremes included), and consider all N = n2 = 121 pairs of the form x = (y1, y2).

As for the sample size, we set T = 500. As for the number of grid points, we consider both

J = 5 and J = 10. Following condition (3.5) in Theorem 3, we choose p1 = αT−1/(1+4b) and

pj = p1 + (α − p1)(j − 1)/(J − 1), j = 2, . . . , J , with b equal to either .05 or .1. Finally,
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after experimenting with the penalty parameter c, we select c = 0.01 for the AR(1)-ARCH(1)

model and c = 0.1 for the heteroskedastic AR(2) model.

2. We recursively generate T +100 observations Xt = (Yt−1, Yt−2) from each of the two models,

starting from σ2
0 = U0 = 0 for the AR(1)-ARCH(1) model and Y0 = Y−1 = 0 for the

heteroskedastic AR(2) model. To avoid nonstationarity issues, we keep the last T of them.

3. For each model, we use the data {(Xt, Yt)} to construct the nonparametric WDKLL estimator

of Cai and Wang [8]. We also estimate the coefficients β̂j of the three alternative parametric

specifications of the conditional quantiles and we construct an estimator Ω̂ of the asymptotic

variance of the estimated quantile regression coefficients by the moving-blocks bootstrap

(Fitzenberger [15]), with blocks equal to 5% of the sample size T .

4. For each model, each specification of the conditional quantiles, and each evaluation point x,

we form the vector Q̂(x) = (Q̂1(x), . . . , Q̂J(x)) and use the matrix Ω̂ to construct the matrix

V̂ (x) = (I ⊗x)⊤Ω̂(I ⊗x). We also construct the ICQF estimator τ̂0J (x) = u⊤Q̂(x), where u

is the vector of uniform weights (3.3).

5. For each evaluation point x and each value of the penalty parameter c, we compute the

asymptotically optimal weights ŵ∗
c(x) and the associated asymptotically optimal WICQF

estimator τ̃J(x) = ŵ∗
c(x)

⊤Q̂(x).

6. We repeat steps 2.–5. M = 500 times (as in Cai and Wang [8]), and save the results.

Figure 1 shows the α-level CES corresponding to our two models for α = .05 and different pairs

x = (y1, y2) in the interval [−1, 1] × [−1, 1]. Notice that the probability that the pair (Yt−1, Yt−2)

belongs to this interval is about 85 percent for the AR(1)-ARCH(1) model and is about 65 percent

for the heteroskedastic AR(2) model.

To avoid cluttering the paper with numerical tables, we present graphical summaries of our

Monte Carlo experiments. Detailed tabulations of the results are available from the authors upon

request. Figure 2 compares the nonparametric WDKLL estimator with our ICQF and WICQF

estimators based on the “naive” specification of conditional quantiles. The left and right columns

correspond, respectively, to the AR(1)-ARCH(1) model and the heteroskedastic AR(2) model, while

the rows correspond to alternative choices of the parameters b and J , namely (b = .1, J = 10),

(b = .05, J = 10) and (b = .1, J = 5). The various estimators are compared based on their Monte

Carlo mean absolute deviation error (MADE). Using the root mean squared error (RMSE) as

performance criterion produces very similar results. In the case of the AR(1)-ARCH(1) model,

the WDKLL is always the worst estimator, except when y1 is close to zero. The ICQF estimator
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is the best when y1 is large in absolute value, the WICQF estimator with c = .01 is the best

when y1 is close to zero, while the WICQF estimator with c = 0 is the best when y1 is close to

.50 in absolute value. Results are reversed in the case of the heteroskedastic AR(2) model, as

the WDKLL estimator now dominates the ICQF estimator, does better than the WICQF with

c = .10 over most of y1 range, and does slightly better than the WICQF estimator with c = 0

for values of y1 close to zero. Notice that, for large values of y1, the performance of the WKDLL

estimator tends to deteriorate while that of the ICQF and WICQF estimators tends to improve.

Qualitatively, results do not change when we increase b from .05 to .10, or we reduce J from 10 to

5. In general, increasing b reduces the RMSE and the MADE, while reducing J increases them.

Figures 3–6 present the results for the the ICQF and WICQF estimators with “linear-with-

interaction” and quadratic specification of the conditional quantiles. The format of each figure is

the same. The columns plot the Monte Carlo MADE of three alternative estimators corresponding

to each model. The alternative estimators are the WICQF estimator with c = 0 (first column), the

WICQF estimator with c = .01 for the AR(1)-ARCH(1) model and c = .10 for the heteroskedastic

AR(2) model (second column), and the ICQF estimator, corresponding to the WICQF estimator

with c = ∞ (third column). The rows correspond instead to three alternative choices of the

parameters b and J , namely (b = .1, J = 10), (b = .05, J = 10) and (b = .1, J = 5).

Figure 3 shows the results for the AR(1)-ARCH(1) model when the conditional quantiles are

specified as “linear-with-interaction”. The ICQF estimator is the best when y1 is large in absolute

value, unless y2 is also large in absolute value, in which case the WICQF estimator with c = 0

tends to be the best. The latter estimator also tends to be the best when y1 is close to zero but y2

is large in absolute value. The WICQF estimator with c = .01 is instead the best when either y1

and y2 are both large in absolute value, or y2 is close to zero.

Figure 4 shows the results for the AR(1)-ARCH(1) model when the conditional quantiles are

specified as quadratic. In this case, the performance of all estimators improves substantially. The

IQCF estimator tends to be the best in general, unless y1 and y2 are both close to zero or y2 is

large in absolute value. The WICQF estimator with c = 0 is almost always the worst estimator.

Figure 5 shows the results for the heteroskedastic AR(2) model when the conditional quantiles

are specified as “linear-with-interaction”. In this case, the ICQF estimator is always dominated

by the WICQF estimator with c = .01, which is itself always dominated by the WICQF estimator

with c = 0.

Finally, Figure 6 shows the results for the heteroskedastic AR(2) model when the conditional

quantiles are specified as quadratic. Again, the performance of all estimators improves substan-
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tially. The ICQF estimator is always the worst, although it does better than the WICQF estimator

with c = 0 when y1 and y2 are both large in absolute value. The WICQF estimator with c = 0

is the best when either y1 is close to zero, unless y2 is large in absolute value, or y1 is large in

absolute value but y2 is close to zero. The WICQF estimator with c = .01 is the best when either

y1 or y2 are large in absolute value.

6. Empirical application

This section considers an application based on daily stock market data. Specifically, we use

daily data on the returns on the Euro Stoxx 50, Europe’s leading blue-chip index for the Eurozone,

to construct one-day ahead forecasts of the CES at level α = .05. Raw daily data range from

December 30, 1994, to October 29, 2010.

The outcome variable Yt is the daily return, defined as the logarithmic difference in the stock

index between day t+1 and day t, computed excluding weekends and holidays, while the covariates

in Xt consist of lagged daily returns. The length of the raw series allow us to include periods of

exceptionally high and low returns, such as those that characterize the market swings of the last

two years. Daily returns are plotted in Figure 7. In total, we have 3,225 observations. The

mean and median of the returns are equal to 0.27 10−4 and 4.6 10−4 respectively, their standard

deviation is equal to 1.4 percent, and their first and last percentiles are equal to −4.5 and 3.8

percent respectively.

We compare the results obtained for the nonparametric WDKLL estimator, the ICQF estimator

and two WICQF estimators. The WKDLL estimator is computed using a grid of 251 equally-

spaced points in the interval [-.125,.125], whereas for the ICQF and WICQF estimators we set

b = .10 and J = 10. For the ICQF and WICQF estimators, we use the same specifications of

the conditional quantiles that we used in our Monte Carlo experiments, namely “naive” (which

includes only the first lag of the returns), “linear-with-interaction” (which adds as regressors the

second lag of the returns and the cross product of the first and second lag) and quadratic (which

includes as regressors the first two lags of the returns, their cross product and their squares). For

the WICQF estimators, we show results using increasing values of the penalty parameter, namely

c = 0, c = 10−5, c = 10−4, c = 10−3 and c = 10−2.

The conditional quantiles and the CES are estimated using rolling samples of size T0 = 500, the

same sample size as in our Monte Carlo experiments. For each t = T0, . . . , T−1, the estimated CES

evaluated at the current value of the covariates is then used to form one-day-ahead forecasts of the

shortfall. The forecast ability of the various estimators is compared by looking at the distribution

16



of their forecast error for all quantile violation events. Following McNeil and Frey [23], the forecast

error is defined as the difference between the return observed next day and the forecast of the

shortfall, while a quantile violation event is a case when the realized return is lower than the

corresponding predicted α-level quantile. McNeil and Frey [23] formally test for unbiasedness of

forecasts by looking at how large is the average forecast error. We do not use their test, but simply

present a few summaries of the distribution of the forecast error.

Table 1 presents, for each estimator, the number of quantile violation events along with the

mean, the median (Med), the standard deviation (SD), the root mean square error (RMSE),

the mean absolute deviation error (MADE), and the first (Q1) and last (Q99) percentiles of the

forecast error computed for these quantile violation events. The WKDLL estimator produces very

volatile estimates, with many outliers, which result in large outliers in the forecast error. For

the ICQF and WICQF estimators, the best results are obtained under the quadratic specification

of the conditional quantiles. The corresponding forecast error is always the closest to zero, has

the smallest variability and, consequently, the smallest RMSE and MADE. Comparing WICQF

estimators with different values of the penalty parameter c, the mean and the median forecast

error decrease (in absolute value) as c increases, while the standard deviation of the forecast error

increases, as one would expect based on our previous results. As a consequence, WICQF estimators

with a finite positive value of c enjoy a slight advantage in terms of RMSE over the ICQF estimator

and the WICQF estimator with c = 0.

7. Conclusions

In this paper we propose the general class of WICQF estimators of the α-level CES. These

estimators are obtained by integrating the estimated CQF over a possibly data-dependent interval

using different weights for different quantiles, thus attaining higher asymptotic efficiency relative

to the case when no weighs are used while, at the same time, controlling for bias. We also provide

asymptotic results that open the way to inference.

Our Monte Carlo evidence shows that it does matter how the conditional quantiles are specified.

Even in the “naive” case, however, our WICQF estimators compare well with the nonparametric

WDKLL estimator of Cai and Wang [8] despite their severe bias due to misspecification of the

CQF. Substantial improvements in the properties of WICQF estimators are obtained by using

more flexible parametric specifications of the conditional quantiles. This is because adding more

flexibility reduces one of the terms entering their asymptotic bias, namely τ∗J (x) − τJ(x) in the

decomposition (3.1).
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Our empirical application to daily stock returns confirms the good properties of our WICQF

estimators in practice. The U -shaped pattern of their RMSE of forecast reflects the different

behavior of its two components, one decreasing (the squared bias) and the other increasing (the

variance) with the value of the penalization constant.

18



References

[1] Acerbi, C., Tasche, D., 2002. On the coherence of expected shortfall. Journal of Banking and Finance 26,
1487–1503.

[2] Acerbi, C., 2002. Spectral measures of risk: A coherent representation of subjective risk aversion. Journal of
Banking and Finance 26, 1505–1518.

[3] Angrist, J., Chernozhukov, V., Fernández-Val, I., 2006. Quantile regression under misspecification, with an
application to the U.S. wage structure. Econometrica 74, 539–563.

[4] Artzner, P., Delbaen, F., Eber, J.-M., Heath, D., 1999. Coherent measures of risk. Mathematical Finance 9,
203–228.

[5] Bassett, G.W., Koenker, R., Kordas, G., 2004. Pessimistic portfolio allocation and Choquet expected utility.
Journal of Financial Econometrics 2, 477–492.

[6] Bertsimas, D., Lauprete, G.J., Samarov, A., 2004. Shortfall as a risk measure: Properties, optimization and
applications. Journal of Economic Dynamics & Control 28, 1353–1381.

[7] Cai, Z., 2002. Regression quantiles for time series. Econometric Theory 18, 169–192.
[8] Cai Z., Wang X., 2008. Nonparametric estimation of conditional VaR and expected shortfall. Journal of Econo-

metrics 2008, 120–130.
[9] Cheng, Y., De Gooijer, J.G., 2009. Bahadur representation for the nonparametric M-estimator under alpha-

mixing dependence. Statistics 43, 443–462.
[10] Chernozhukov, V., 2005. Extremal quantile regression. Annals of Statistics, 33, 806–839.
[11] Chernozhukov, V., Fernandez-Val, I., Galichon, A., 2010. Quantile and probability curves without crossing.

Econometrica, 1093–1125.
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Table 1: Summary statistics of the empirical distribution of the one-step-ahead forecast error (expressed in percentage
points) for quantile violation events and alternative estimators of the CES over 2,724 rolling windows. The level α is
equal to .05. For WICQF estimators, conditional quantiles are specified as (i) “naive”, (ii) “linear-with-interaction”,
and (iii) quadratic.

Estimator Obs. Mean Med SD RMSE MADE Q1 Q99

WKDLL 155 1.96 -0.25 6.21 6.51 3.79 -5.15 27.47

(i)
WICQF (c = 0) 187 -0.97 -0.64 1.16 1.51 1.07 -5.01 1.03
WICQF (c = 10−5) 187 -0.57 -0.23 1.11 1.25 0.82 -4.54 1.09
WICQF (c = 10−4) 187 -0.44 -0.15 1.09 1.18 0.79 -4.27 1.19
WICQF (c = 10−3) 187 -0.41 -0.14 1.10 1.17 0.79 -4.23 1.30
WICQF (c = 10−2) 187 -0.41 -0.14 1.10 1.17 0.79 -4.22 1.34
ICQF 187 -0.41 -0.14 1.10 1.17 0.79 -4.22 1.35

(ii)
WICQF (c = 0) 193 -0.99 -0.68 1.09 1.47 1.06 -4.47 0.79
WICQF (c = 10−5) 193 -0.68 -0.38 1.11 1.30 0.86 -4.73 0.78
WICQF (c = 10−4) 193 -0.54 -0.22 1.11 1.23 0.81 -4.73 1.02
WICQF (c = 10−3) 193 -0.48 -0.20 1.12 1.22 0.81 -4.74 1.17
WICQF (c = 10−2) 193 -0.47 -0.17 1.13 1.22 0.81 -4.74 1.30
ICQF 193 -0.47 -0.17 1.13 1.22 0.81 -4.74 1.33

(iii)
WICQF (c = 0) 189 -0.80 -0.64 0.94 1.24 0.91 -3.30 1.33
WICQF (c = 10−5) 189 -0.51 -0.40 0.97 1.10 0.77 -3.17 1.11
WICQF (c = 10−4) 189 -0.40 -0.27 1.00 1.11 0.75 -3.14 1.93
WICQF (c = 10−3) 189 -0.36 -0.26 1.04 1.10 0.75 -3.11 2.47
WICQF (c = 10−2) 189 -0.35 -0.26 1.06 1.11 0.75 -3.12 2.63
ICQF 189 -0.35 -0.26 1.06 1.11 0.75 -3.12 2.65
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Figure 1: CES at level α for the AR(1)-ARCH(1) model (left panel) and the heteroskedastic AR(2) model (right
panel) for α = .05 and different values of (y1, y2).
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Figure 2: Monte Carlo MADE of alternative estimators of the α-level CES for the AR(1)-ARCH(1) model (left panel)
and the heteroskedastic AR(2) model (right panel) with α = .05, different values of y1 and “naive” specification of
the conditional quantiles. The rows of the table correspond, respectively, to (b = .1, J = 10), (b = .05, J = 10) and
(b = .1, J = 5).
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Figure 3: Monte Carlo MADE of alternative estimators of the α-level CES for the AR(1)-ARCH(1) model with
α = .05 and “linear-with-interaction” specification of the conditional quantiles. The rows of the table correspond,
respectively, to (b = .1, J = 10), (b = .05, J = 10) and (b = .1, J = 5).
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Figure 4: Monte Carlo MADE of alternative estimators of the α-level CES for the AR(1)-ARCH(1) model with
α = .05 and quadratic specification of the conditional quantiles. The rows of the table correspond, respectively, to
(b = .1, J = 10), (b = .05, J = 10) and (b = .1, J = 5).
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Figure 5: Monte Carlo MADE of alternative estimators of the α-level CES for the heteroskeastic AR(2) model with
α = .05 and “linear-with-interaction” specification of the conditional quantiles. The rows of the table correspond,
respectively, to (b = .1, J = 10), (b = .05, J = 10) and (b = .1, J = 5).
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Figure 6: Monte Carlo MADE of alternative estimators of the α-level CES for the heteroskedastic AR(2) model with
α = .05 and quadratic specification of the conditional quantiles. The rows of the table correspond, respectively, to
(b = .1, J = 10), (b = .05, J = 10) and (b = .1, J = 5).
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Figure 7: Daily returns on the Euro Stoxx 50 index between January 3, 1995, and October 29, 2010.
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Appendix A.

Proof of Theorem 2

From uj = (pj − pj−1)/α, we have

τ0J (x) =
J∑

j=1

ujQj(x) =
1

α

J∑
j=1

∫ pj

pj−1

Qj(x) dp.

Thus, by a Taylor expansion of Q(p |x) around Qj(x),

|τ0J − τ0| = α−1

∣∣∣∣∣∣
J∑

j=1

∫ pj

pj−1

[Qj(x)−Q(p |x)] dp

∣∣∣∣∣∣
= α−1

∣∣∣∣∣∣
J∑

j=1

∫ pj

pj−1

[Qj(x)−Qj(x) + (pj − p)qj(x) +R(p |x)] dp

∣∣∣∣∣∣
≤ α−1

∣∣∣∣∣∣
J∑

j=1

(pj − pj−1)
2

2
qj(x)(1 +O(1))

∣∣∣∣∣∣ ,
where R(p |x) is a remainder term such that R(p |x) ≤ O((pj − pj−1)qj(p)) for all p ∈ (pj−1, pj ].

Because |qj(x)| ≤ c|x|γ(pj(1− pj))
−a−1, we have

|τ0J − τ0| ≤ c(2α)−1
J∑

j=1

(pj − pj−1)
2|x|γ [pj(1− pj)]

−a−1(1 +O(1))

≤ c|x|γ α
2(1− α)a+1

u21(αu1)−a−1 +

J∑
j=2

u2j

(
u1 +

j − 1

J − 1
(1− u1)

)−a−1
 (1 +O(1))

≤ c1|x|γ
u1−a

1 +

(
1− u1
J − 1

)2 J∑
j=2

(
u1 +

j − 1

J − 1
(1− u1)

)−a−1
 .

From convexity of the function (x)−a−1 on (0,∞),

|τ0J − τ0| ≤ c1|x|γ
u1−a

1 +

(
1− u1
J − 1

)2 J∑
j=2

(
u1 + (1− u1)

(
j − 1

J − 1

)−a−1
)

≤ O(|x|γ u1−a
1 ) +O(|x|γ u1J−1) +O

|x|γ Ja−1
J−1∑
j=1

j−a−1

 ,

where the second term on the right-hand side is dominated by the others. The result then follows

from the fact that
∑∞

j=1 j
−a−1 is a convergent series for all a > 1.
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Proof of Theorem 3

Write
√
T [τ̂J(x)− τ0(x)] =

∫ α

p1

√
T [Q̂(p |x)−Q(p |x)]w(p |x)dp+A1 +A2 +A3, (A.1)

where

A1 =
√
T

 J∑
j=1

Q̂j(x)wj(x)−
∫ α

p1

Q̂(p |x)w(p |x)dp−
J∑

j=1

Qj(x)wj(x) +

∫ α

p1

Q(p |x)w(p |x)dp

 ,

A2 =
√
T

J∑
j=1

Qj(x)[wj(x)− uj ],

A3 =
√
T

 J∑
j=1

Qj(x)uj −
∫ α

0
Q(p |x)dp

 .

Because of Condition (iv), the first term of (A.1), namely

√
T

∫ α

p1

[Q̂(p |x)−Q(p |x)]w(p |x)dp = T−1/2
T∑
t=1

∫ α

p1

Gt(p |x)w(p |x)dp+OP (δT ),

is asymptotically normal with mean zero and variance σ2. Thus, it is then enough to prove that

Ai = oP (1) for i = 1, 2, 3. Conditions (i)–(ii) and Theorem 2 imply that

A3 = O(|x|γ T 1/2p1−a
1 ) = O((log(T ))γ T (a+2b−1/2)/(1+4b)) = o(1).

Because of Condition (ii), we also have

|A2| ≤
√
T

J∑
j=1

(log(T ))γ [pj(1− pj)]
−a

∣∣∣∣wj(x)

uj
− 1

∣∣∣∣uj
≤

√
T (log(T ))γ

 J∑
j=1

(
wj(x)

uj
− 1

)2

uj

1/2  J∑
j=1

(pj(1− pj))
−2auj

1/2

≤
√
T (log(T ))γ+1 hT (1− α)−2

 J∑
j=1

ujp
−2
j

a/2

,

where we applied Hölder inequality and the trivial bound (1 − pj) ≥ (1 − α) in the last line.

Recalling that p1 = αu1 and pj = α[u1 + (j − 1)(1− u1)/(J − 1)] for j ≥ 2, we have

|A2| ≤ c1
√
T (log(T ))γ+1 hT

 J∑
j=1

uj

(
u1 +

j − 1

J − 1
(1− u1)

)−2
a/2

≤ c1
√
T (log(T ))γ+1 hT

u−1
1 +

1− u1
J − 1

J∑
j=2

[
u1 + (1− u1)

(
J − 1

j − 1

)2
]

a/2

,
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where we exploited the fact that the function f(x) = x−2 is convex and where c1 is a constant

independent on T . Further,

J∑
j=2

[
u1 + (1− u1)

(
J − 1

j − 1

)2
]
= (J − 1)u1 + (1− u1)(J − 1)2

J−1∑
j=1

j−2 = O(J2),

because
∑∞

j=1 j
−2 is a convergent series. Therefore, by Condition (i) and (iii),

|A2| ≤ O((log(T ))γ+1 T 1/2hTJ
a/2) = o(1).

The term A1 can be divided into two parts

A1 =

J∑
j=2

∫ pj

pj−1

√
T
[(

Q̂j(x)−Qj(x)
)
−
(
Q̂(p |x)−Q(p |x)

)]
w(p |x)dp+

+
√
T (Q̂1(x)−Q1(x))w1(x),

which we denote by A11 and A12 respectively. Clearly A11 = o(A3) = o(1). Using Condition (iv),

|A12| =
√
T (Q̂1(x)−Q1(x))w1(x)

= T−1/2
∑
t

Gt(p1 |x)w1(x)(1 + oP (1)).

By Chebyshev’s inequality, we have that for sufficiently large T and all δ > 0

Pr {|A12| > δ} ≤
var
(
T−1/2

∑
tGt(p1 |x)w1(x)

)
δ2

≈ V (p1, p1 |x)w2
1(x)

δ2

≤ (δ)−2|x|2γ(1− p1)
−1−2ap−1−2a

1 (u1 + w1(x)− u1)
2

≤ (1− α)−1−2a

δ2
|x|2γp−1−2a

1 p21
2

α
(1 + h2T |x|2)

≤ 2α−1(1− α)−1−2aδ−2(log T )2(γ+1)(p1−2a
1 + h2T ).

Then, for δ2 = p1−a
1 T 1/2 = o(1),

Pr {|A12| > δ} ≤ O
(
(log T )2(γ+1)(T−1/2p−a

1 + T−1/2pa−1
1 h2T )

)
= o(1)

because of Conditions (i)–(iii) on the rates of p1 and hT .

Proof of Theorem 4

From the first-order conditions we get(
V + cA −ı

−ı 0

)(
w
λ

)
=

(
cAu
1

)
,

where λ is the Lagrange multiplier associate with the constraint w⊤ı = 1. The result then follows

form the inversion formulae for block matrices.
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Proof of Theorem 5

First notice that (w∗
c − u)⊤Q ≤ ∥w∗

c − u∥∥Q∥. Because ∥Q∥ is bounded under Condition (ii) of

Theorem 3, to study the order of magnitude of the above term it is enough to focus on the distance

∥w∗
c − u∥. We have

∥w∗
c − u∥ =

∥∥∥∥ (V + cI)−1ı

ı⊤(V + cI)−1ı
− ı

J

∥∥∥∥
=

∥∥∥∥(V + cI)−1ı− ıı⊤(V + cI)−1ı/J

ı⊤(V + cI)−1ı

∥∥∥∥
= ∥(I − J−1ıı⊤)w∗

c∥

= ∥LJ w
∗
c∥

≤ ∥LJ∥∥w∗
c∥

= ∥w∗
c∥,

where LJ = I − J−1ıı⊤ is a symmetric idempotent matrix. Recall that the induced norm of a

symmetric matrix M is ∥M∥ = supz |Mz|/||z||, which coincides with the largest eigenvalue λ(M)

of M . Thus,

∥w∗
c∥ =

∣∣∣∣ (V + cI)−1ı

ı⊤(V + cI)−1ı

∣∣∣∣
=

ı⊤(V + cI)−1/2(V + cI)−1(V + cI)−1/2ı

ı⊤(V + cI)−1ı

≤ sup
z

z⊤(V + cI)−1z

z⊤z

= λ
(
(V + cI)−1

)
=

1

λ(V + cI)

=
1

λ(V ) + c

where λ(V ) is the smallest eigenvalue of V . Condition (ii) of Theorem 3 then completes the proof.
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