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Abstract

We model an economy where the cost of the oil input, industrial production, and
other macroeconomic variables fluctuate in response to fundamental oil supply shocks,
as well as aggregate demand and supply shocks generated domestically and in the world
economy. We estimate the effects of these structural shocks on US monthly data over
1973.1-2007.12, using robust sign restrictions suggested by the model. It is shown that
the interplay between the oil market and the US economy goes in both ways. First,
US output falls below the baseline for a prolonged period of time after a negative oil
supply shock. However, oil-supply shocks explain a relatively modest part of overall
output fluctuations (about 10%). Second, most variations of (real) oil prices occur
in response to shocks originated in the global economy and in the US. In particular,
supply shocks in the rest of the world and in the US explain more than half of the
variance of oil price fluctuations. Finally, the correlation between oil prices and the US
business cycle depends on the nature of the fundamental shock: a negative correlation
emerges in periods when oil-supply shocks or global demand shocks occur, while a
positive correlation emerges in periods of supply shocks in the global economy or the
US. The unconditional correlation between oil prices and US production over a long
sample period is tenuous because it blends conditional correlations with different signs.
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1 Introduction

Large fluctuations in oil prices are a recurrent feature of the macroeconomic environment.

Despite of oil’s relatively small share as a proportion of total production costs, such dynamics

raise the specter of the seventies, worrying consumers, producers and policy makers. This

view is supported by some empirical evidence that large and persistent oil price upswings

lead to economic recessions and higher inflation rates. Hamilton (1983) pointed out that nine

out of ten of the U.S. recessions since World War II were preceded by a spike in oil prices.

The reduced-form relation between oil prices and US macroeconomic variables, however, has

not been stable over time. The evidence available since the mid eighties detects smaller real

effects of oil prices on the US economy.1

Barsky and Kilian (2002) and Barsky and Kilian (2004) call for a structural interpretation

of the reduced form correlations mentioned above. These authors challenge the view that oil

price shocks tend to be driven mainly by exogenous factors in the Middle East and claim

that the OPEC decisions usually respond to global macroeconomic conditions affecting the

demand for oil.2 Following this view Kilian (2009) uses a VAR model to identify 3 structural

shocks in the oil market by means of “impact restrictions”. Assuming a specific economically

motivated recursive structure, he identifies oil supply shocks, world aggregate demand shocks

and specific oil demand innovations, interpreted as reflecting fluctuations in precautionary

demand for oil driven by fears about the availability of future oil supplies. One important

message is that oil price changes have different effects on the US economy depending on the

underlying shock that caused them.3

Disentangling the source of oil price fluctuations is also the question studied by this paper.

We model the dynamics of the oil market and the US economy by a slight modification of

the three-country model of Backus and Crucini (2000). The model assumes two industrial

economy, the US and the global economy (the “rest of the world”), who produce differentiated

good using capital and the oil input. Aggregate demand and supply in both industrial

countries are subject to stochastic shocks, and so is the oil-supply. The model provides a

mapping between these 5 fundamental shocks and the observed responses of production and

relative prices. We estimate a 5 variable VAR that includes quantities and (real) prices in

the oil market, quantities and (real) prices in the US economy and a measure of the global

1See Hooker (1996), Hamilton (2008) and Edelstein and Kilian (2009). Similar conclusions are reached
for European countries by Mork et al. (1994) and Cunado and Perez de Gracia (2003).

2Blanchard and Gali (2007) also conjecture the possibility that the time varying effect of “oil shocks” on
US production may reflect shocks of different nature. Given their partial identification strategy, however,
they do not explore this hypothesis quantitatively.

3In a number of related papers, this scheme was used by the author to address the effects of oil price
shocks on several US macroeconomic variables, see e.g. Kilian (2008a) for a survey.
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business cycle. The estimated VAR is used to identify 5 fundamental shocks using robust

predictions on the sign of the impulse responses.

A novelty of this approach is that the interplay between the oil market, the global economy

and the US economy is managed within a unified framework. This differs from the analysis

in Kilian (2009), which assumes that shocks originated in the US affect the oil market only

with delays. By allowing for the simultaneous interaction between the oil market and the

US economy our analysis casts light on the assumption, often used in the empirical analysis,

that oil-price shocks are predetermined to the US business cycle.4 The empirical estimates

of the theoretical model are informative about what fundamental shocks underlie observed

fluctuations in the (real) price of oil. Moreover, the framework allows us to quantify the role

of oil-supply shocks, and of the other fundamental shocks, with respect to the US business

cycle.

The paper has 6 sections. The next one presents the theoretical framework. Section 3

describes the estimation approach, whose results are given in Section 4. Section 5 discusses

the robustness of the empirical findings. Section 6 gives a summary of results.

2 Theoretical frame

We present a three-country model that is useful to organize ideas about the US macroeconomy

and its interaction with the oil market. The model is taken from Backus and Crucini (2000)

who extend the two-good two-country economy of Backus et al. (1994) and incorporate a

country that produces oil. The model features supply shocks zj in each country j. We

provide a small addition to this model by introducing stochastic preference shocks. Below

we present the essential ingredients of the theoretical economy and discuss the implications

that will be used in the empirical analysis.

Two industrialized and symmetric countries, the US and RoW (rest of the industrial

world), produce imperfectly substitutable consumption goods, a and b, using capital (k),

labor (n) and oil (o). The US produce good a using the technology

yt = ztn
α
t [ηk1−ν

t + (1 − η)o1−ν
t ](1−α)/(1−ν) (1)

where z is an AR(1) stochastic productivity shock zt = ρzzt−1 + z̃t with iid innovation z̃t. An

analogous technology is used for the production of b by RoW. The oil supply, yo, is determined

according to yo
t = zo

t +(no
t )

α where zo
t is an AR(1) exogenous stochastic oil supply component

4The recent papers by Anzuini et al. (2007) and Baumeister and Peersman (2008) study the effect of
oil-supply shocks on the US output abandoning the recursiveness assumption. Compared to these papers our
study also considers oil-demand shocks and shocks to the US business cycle.
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and (no
t )

α the endogenous supply by the third country, which one can think of as the union

of OPEC and other (non US) oil producing countries.

Goods a and b are aggregated into final consumption (c) using the CES aggregator

c(a, b, ψt) = [ψta
1−µ + (1 − ψt)b

1−µ]1/(1−µ) (2)

The consumption bundle is subject to stochastic AR(1) preference shocks, such that ψt ≡ st·ψ

with st = (1 − ρs) + ρsst−1 + s̃t and s̃t is i.i.d.5 An identical aggregator, with deterministic

weight ψ, is used to produce the investment good, i.

Capital follows the accumulation equation kt+1 = (1 − δ)kt + kt φ(it/kt), where φ(·) is

a concave function positing adjustment costs in capital formation as in Baxter and Crucini

(1993). Consumers in the US and the RoW maximize the expected value of lifetime utility

max E0

∞
∑

t=0

βt U (ct, 1 − nt) , U (c, 1 − n) =

[

cθ(1 − n)1−θ
]

1 − γ

1−γ

0 < γ , 0 < θ < 1 (3)

where β < 1 is the intertemporal discount, and the intertemporal and intra-temporal (con-

sumption - leisure) substitution elasticities are constant, equal to 1/γ and 1, respectively.

As in Backus and Crucini (2000) a different utility function is assumed for oil producers,

consistent with an inelastic labor supply.6 Prices and allocations are solved for a competitive

equilibrium. As usual, we appeal to the first welfare theorem and compute allocations by

solving a standard planning problem.

The model is used to examine the effects of supply side (productivity) and demand (pref-

erence) shocks in each economy. Since we are interested in economic implications that are

robust we follow Canova and Paustian (2007) and Dedola and Neri (2007), and assess the

response of endogenous variable to the different structural shocks under a range of parame-

terizations centered around the values used in Backus and Crucini (2000). We then develop

Monte Carlo simulations assuming that the relevant structural parameters are uniformly and

independently distributed over the range described in Table 1. For each simulation the pa-

rameters are drawn from the uniform densities, and the impact and dynamic responses of all

variables to fundamental shocks are recorded. Then we compute the median, the 5th and

95th percentiles of the resulting distribution of responses, point by point. This ensures that

parameters’ combinations that bring about extreme responses in the tails are ruled out.

5Similar effects are obtained by considering shocks to the intertemporal discount factor.
6Specifically the model assumes U(c, (1− n)) = c1−γ/(1− γ) + θL(1− n)1−ξL/(1− ξL) . The separability

simplifies the solution of the model; coupled with a low labor supply elasticity (ξL ≈ 5) this reproduces the
observed low responsivess of oil production to the relative price of oil, or production in OPEC countries (see
the discussion on page 197 - 198 in Backus and Crucini (2000) ).
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The median and the percentiles of distribution of the theoretical impulse responses to

each shock are shown in Figure 1. Each column of the figure reports (from top to bottom)

the impulse response functions of oil production, oil price, the US output level, the price of

US output and the RoW output level to the structural shock indicated below the column.

All prices are expressed relative to the US consumption deflator that is chosen as the nu-

meraire, as done later in the empirical analysis. Notice that one consequence of choosing

the US consumption price index as the unit of account is that the impulse responses of the

(relative) price variables will appear asymmetric even though the model and the benchmark

parametrization chosen are completely symmetric.7

Table 1: Parameter ranges in the model economy

simulated parameters Range of values
1/γ Intertemporal elasticity of substitution [1.0,2.5]
1/µ Elasticity of substitution between home and foreign good [0.5,2.0]
1/ν Elasticity of substitution between oil and capital [4.0,12.0]
ψ Preference for home good [0.7,0.9]
ρz Persistence of US supply shock [0.5,0.99]
ρz∗ Persistence of RoW supply shock [0.5,0.99]
ρzo Persistence of oil supply shock [0.5,0.99]
ρs Persistence of US demand shock [0.5,0.99]
ρs∗ Persistence of RoW demand shock [0.5,0.99]

calibrated parameters (quarterly model)
α Labor’s share in the industrial country 0.64
β Intertemporal discount factor 0.99
δ Depreciation rate of capital 0.025
η Oil weight in technology 0.9
φ Investment adjustment costs 0.99
θ Labour share in the industrial country 0.4
ψo Oil share in the oil producing country 0.5
θL Labor share in the oil producing country 0.6
ξL Inverse labor elasticity in the oil producing country 5.0

The first column describes the effect of a positive oil supply shock (zo > 0). The shock

7 As an example compare the response of the oil price to a RoW demand shock with the one to a US
demand shock, respectively in the third and fifth columns of Figure 1. Since the model is symmetric one
expects the effect of each of these shocks to be identical. Indeed the effects are identical if one looks at the
real variables (e.g. the response of the oil production). But the response of the real oil-price is different
across the two columns: the reason is that in both experiments the oil price (po) is deflated by the US CPI
(pc). And the dynamics of the US CPI depend on whether the shock is a US demand (in which case the US
CPI increases more, hence the negative response of the real oil price) or whether it is a RoW demand (in
which case the US CPI does not increase much and hence the positive response of the real oil price).
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moves the real oil price and the oil quantity in opposite directions. This represents the

prototype textbook case of an exogenous oil supply shock. As the relative price of the energy

input falls, production in both the RoW and the US increases. The price of US output

(deflated by the US CPI) is basically constant in response to the oil supply shock. The

reason is that the model is symmetric so that the higher cost of oil impacts in exactly the

same proportion into both foreign and home prices, leaving relative prices constant.

Supply (z∗ > 0) and demand (s∗ > 0) shocks in the RoW impact on the oil market and

on the US economy. The price and quantity of oil display a positive covariance in response to

both shocks, as shown by the starred lines in the second and third columns of Figure 1, i.e.

these shocks appear to an observer of the oil market as “oil demand shocks”. But the figure

also shows that US production reacts with an opposite sign following these shocks over the

first year after the shock. The different response of the US output is due to the response of

the US terms of trade (see Figure 2). A positive RoW supply shock depreciates the terms of

trade (less unit of the domestic good are required to buy the foreign good). At the same time,

the higher demand for oil caused by the output boom in RoW raises oil prices. The net effect

on the US output depends on the balancing of these two effects. If the trade links between

the RoW and the US are strong, the impact of the RoW boom on oil prices is outweighed by

the increased demand of US exports to the RoW, and US output increases following a supply

shock in RoW. The response of US output to the demand shock in RoW is unambiguous. In

this case the cost of oil goes up, and the terms of trade appreciates: both effects contribute

to reducing the US output.

The fourth and fifth columns describe the effects of US shocks. A positive productivity

shock (z > 0) raises US production and reduces its price (relative to the CPI). The ensuing

increase in oil demand ultimately leads to higher real oil prices and output, though the latter

is not robust across the different parameterizations. Finally, a US demand shock (s > 0)

increases US production and its price (relative to the CPI). The increased demand spills over

to the oil market, where production increases (see footnote 7 for a discussion of the response

of the real oil price).

We conclude by noting that the model economy shows that the expected change of US

production conditional on an oil price increase depends on the underlying fundamental shock.

For instance, while the oil price hike caused by an oil supply shock is followed by a decrease

of US production, the oil price hike caused by a US supply shock is followed by an increase of

US output. Therefore, it should not be surprising that over a long sample period the uncon-

ditional correlation between oil prices and US GDP appears tenuous, as it blurs conditional

correlations with different signs. The empirical analysis will allow us to cast light on the

empirical validity of this conjecture.
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3 The design of the empirical analysis

The empirical analysis identifies a set of structural shocks, consistent with the theory above,

and studies their effects on the real oil price and US output. The identification method is

based on sign restrictions, following the approach pioneered by Davis and Haltiwanger (1999),

Canova and Nicolo (2002) and Uhlig (2005). The idea is to use some robust properties of

the model, namely the sign of impulse responses discussed in the previous section, without

imposing on the data the whole structure of the theoretical model, i.e. allowing for some

degree of “model uncertainty”. This is convenient when, as in our case, the model economy

is stylized and one is reluctant to assume that a specific parameterization of the model is

the true data generating process. Next we describe the VAR specification, the data, and the

identification assumptions.

The analysis is based on the vector autoregression (VAR)

yt = B(L) yt−1 + ǫt ǫt ∼ N(0,Σ), (4)

where B(L) is a lag polynomial of order p and yt contains five variables (all in logs) describing

the US, the RoW and the oil market. The first two are the US industrial production and the

producer price index. Two additional variables describe the oil market: the (real) spot oil

price and the global oil production.8 The fifth variable is total imports to the RoW, aiming

at capturing economic activity in the RoW.9 Estimation of the VAR is based on monthly

data spanning the period January 1973 - February 2009 (this uses the longest available

production time series provided by the International Energy Agency). The period covers all

the relevant episodes characterized by major oil price increases, including the most recent

one. We complete the specification by using a lag order of 2 months, as suggested by the

Bayesian Information Criteria (BIC).10

8Production is in barrels per day and provided by the International Energy Agency (IEA); the spot oil
price is from the International Monetary Fund, computed as the simple arithmetic average of the U.K. Brent,
Dubai Fateh and West Texas Intermediate spot prices. It is expressed in real terms (e.g. deflated by the US
consumer price index). In this paper we refer to this variable as our measure of real oil price. Our results
are unchanged if we use a single oil price measure instead of the simple average.

9We cannot use a RoW industrial production index due to the lack of a sufficiently long time series for
output in a country group for RoW that includes China and India. In Kilian (2009) the measure of global real
economic activity is based on a global index of dry cargo single voyage freight rates (deflated by the US CPI).
Increase in freight rates may be used as indicators of cumulative global demand pressures. This measure,
however, does not distinguish between increase in demand stemming from the US to those originated in the
RoW. Our results are robust to the use of Kilian’s measure of world output instead of the RoW imports.

10This lag order provides estimated residuals for the reduced-form VAR characterized by good white-noise
properties. The appropriate lag length was debated in previous literature, see Hamilton and Herrera (2004)
and Kilian (2009). Our results remain virtually unchanged if 7 lags (as suggested by the Akaike Information
Criteria) or 12 lags (as in Kilian (2009)) are used.
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The structural VAR approach sees equation (4) as a reduced form representation of the

structural form

A−1
0 yt = A(L) yt−1 + et et ∼ N(0, I) (5)

where A(L) is a lag polynomial of order p and the vector e includes the five structural in-

novations discussed above, assumed to be orthogonal. Identification of the structural shocks

thus amounts to select a matrix A0 (i.e. a set of restrictions) that uniquely solves −up to

an orthogonal transformation− for the following decomposition of the estimated covariance

matrix A0A
′
0 = Σ. The j-th column of the identification matrix A0, aj , maps the struc-

tural innovations of the j-th structural component of e into the contemporaneous vector

of responses of the endogenous variables y, Ψ0 = aj . The structural impulse responses of

the endogenous variables up to the horizon k, Ψk, can then be computed using the B(L)

estimates from the reduced form VAR, B1, B2, ..., Bp, and the impulse vector aj .
11

The sign restriction approach identifies a set of structural models, the Ã0 ∈ Ã0, such

that the (vectors of) impulse responses Ψs implied by each Ã0 over the first k horizons are

consistent with the sign restrictions derived from the theory. The approach exploits the fact

that given an arbitrary identification matrix A0 satisfying A0A
′
0 = Σ, any other identification

matrix Â0 can be expressed as the product of A0 and an orthogonal matrix Q. The set of

the theory-consistent models, Ã0, can be characterized as follows. For a given estimate of

the reduced form VAR, B(L) and Σ, take an arbitrary identification matrix A0 and compute

the set of candidate structural models Â0 = {A0 Q | QQ′ = I} by spanning the space of

the orthogonal matrices Q. The set Ã0 is then obtained by removing from the set Â0 the

models that violate the desired sign restrictions. The findings can then be summarized by

the properties of the resulting distribution of Ã0 models.

In practice we also have to decide on for how long the sign restrictions used for identifi-

cation should hold. In this regard, Canova and Paustian (2007) show that sign restrictions

imposed on the contemporaneous relationships among variables are robust to several types

of model misspecification. Following this approach, we impose the sign restrictions only on

impact. As several signs of the impulse responses depend on the model parametrization, the

identification restricts attention to robust features of the contemporaneous impact responses

obtained by Montecarlo simulations. The ranges for the parameters used in the simulations

are given in Table 1. The results of these simulations are reported in Figure 3.

In the empirical analysis we restrict attention to 5 mutually orthogonal shocks: an oil

supply shocks, supply and demand shocks in the RoW, and supply and demand shocks in the

11The vectors of responses for all horizons s, Ψs, are computed recursively using the vector of contempo-
raneous responses, Ψ0 = aj , and the reduced form B matrices: Ψs =

∑s

i=0
Bs−iΨi for s ≥ 1 and Bs−i = 0 if

s− i > p.
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US. Next we describe the identifying assumption for each shock, consistent with the model

robust properties, which are summarized in Table 2. We define as an oil-supply shock one

that causes the oil production and its real price (CPI deflated) to move in opposite directions,

and both the RoW and the US output to decrease, as shown in the first column of the figure.

We define a RoW supply shock as one that moves in the same direction the RoW output, the

real oil price and the US relative price (the response of the oil quantity and US output are

left unconstrained). A positive RoW demand shock raises the price and the quantity of oil,

the RoW output and decreases the US industrial production. US shocks are described in the

fourth and fifth columns of Figure 1. A positive shock to the US supply is one that induces

a negative correlation between the US industrial production and its deflator and increases

the real oil price. A positive US demand shock is one that generates a positive response of

the oil production, the US industrial production and its deflator (relative to the CPI), and

reduces the real oil price and RoW output. The last restriction on the RoW output is useful

because it allows us to distinguish a (negative) oil supply shock from a (positive) US demand

shock. It is important to remark that our identification scheme defines mutually exclusive

structural shocks, thus avoiding the possibility that we are confusing shocks originated in

the rest of the world with US specific shocks. In this regard, Table 2 shows that a RoW

supply shock cannot be mixed up with a US supply shock as the US relative price variable

(US CPI/PPI) responds with an opposite sign to these shocks. At the same time, a RoW

demand shock cannot be confused with a US supply shock as the US output responds with

opposite sign to these two shocks. Similarly, we are also able to disentangle RoW shocks

from a US demand shock. Indeed, a RoW supply shock is distinguished from a US demand

shock as the response of the RoW output is opposite in sign to the these two shocks; finally,

a RoW demand shock is different from a US demand shock because oil production and the

real price of oil comove in response to the former, while they exhibit opposite responses in

sign to the latter.

4 The estimated effects of structural shocks

This section presents our estimates on the effect of the various structural shocks. The em-

pirical distribution for the impulse responses are derived in a Bayesian framework. As shown

by Uhlig (2005) under a standard diffuse prior for (B(L),Σ) and a Gaussian likelihood for

the data sample, the posterior density for the reduced-form VAR parameters with sign re-

strictions is proportional to a standard Normal-Wishart. Thus one can simply draw from the

Normal-Wishart posterior for (B(L),Σ).

The set of theory-consistent matrices Ã0 is computed using the efficient algorithm pro-

8



Table 2: Sign restrictions used for identification

Structural shocks
VAR Variables oil-supply RoW - supply RoW - demand US supply US demand
oil production − + +
oil pricea + + + + −
US output − − + +
RoW output − + + −
US output pricea + − − +

Note: A “+” (or “−”) sign indicates that the impulse response of the variable in question is
restricted to be positive (negative) on impact. A blank entry indicates that no restrictions is
imposed on the response. −aPrice is deflated by the US CPI.

posed by Rubio-Ramirez et al. (2005). Given an estimate for (B(L),Σ) and one candidate

identification matrix A0 (i.e. a Choleski decomposition), the algorithm draws an arbitrary

independent standard normal (n × n) matrix X and, using the QR decomposition of X

generates one orthogonal matrix Q. Impulse responses are then computed using A0Q, the

rotation of the initial identification matrix, and B(L). If these impulse responses do not

satisfy the sign restrictions the algorithm generates a different draw for X. Compared with

Uhlig’s procedure, this algorithm directly draws from a uniform distribution instead of in-

volving a recursive column-by-column search procedure. Thus, the informativeness of the

sign restriction method is affected by the sampling uncertainty around the estimates regard-

ing reduced form VAR coefficients and the covariance matrix of reduced form innovations, as

well as by the model uncertainty inherent to the possible outcomes (e.g. matrices Ã0) that

are consistent with the set of theoretical restrictions.

Operationally we use a two-step procedure. In the first step we generate 2,000 random

draws from the posterior distribution of the reduced form VAR coefficients, B(L) and the

covariance matrix of disturbances, Σ. In the second step, the procedure runs a loop. It starts

by randomly selecting one draw from the posterior distribution of the reduced form VAR

and, conditionally on it, uses the QR decomposition by Rubio-Ramirez et al. (2005) to find

an impulse matrix satisfying the sign restrictions. Then, it selects an alternative draw. The

loop ends when 5,000 identification matrices are found. By construction, each of the models

in Ã0 generates orthogonal structural shocks.12

We notice that the number of theory-consistent models we choose to compute is large, so

that for each draw of the reduced form VAR the simulation the algorithm finds at least one

12This algorithm differs from Dedola and Neri (2007), and Uhlig (2005), who select a priori the number of
draws for the reduced form parameters and, for each of them, draw a fixed number of impulse matrices. In
their approach, the number of accepted theory-consistent models is not constant.
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identification matrix satisfying the sign restrictions. This helps us ensure that the posterior

distribution for impulse responses that we obtain does not depend on a few selected candidate

draws from the reduced form.13

4.1 Impulse responses

Following Dedola and Neri (2007) and Uhlig (2005), we report in Figure 4 the median (solid

line), the 16th and the 84th percentiles (the dashed lines) of the distribution of impulse

responses produced by the algorithm discussed above for each variable over 24 months.

The effects of an oil supply shock, normalized to yield a 1 per cent reduction in oil pro-

duction, are displayed in the first column of Figure 4. The shock lowers the US industrial

production, that reaches a through after about 12 months. In Table 3 we follow the ter-

minology of Dedola and Neri (2007) and interpret this fraction as a probability. The figure

shows that after one year the response is negative for 100% of the models. Notice that our

identification scheme imposes a negative response of the US output only on impact, so that

the persistence of the response is really a finding that is coming from the data, it is not a

necessary implication of the identification assumption.

Table 3: US output response to different structural shocks

“Probability” (% of estimated models) of a negative response of US outputa

At Horizon: 1 6 12 18 24
Oil-supply shock 1.00 1.00 1.00 1.00 1.00
RoW supply shock 0.11 0.09 0.42 0.76 0.94
RoW demand shock 1.00 1.00 1.00 1.00 1.00

Note: −aFraction of models Ã0 ∈ Ã0 that yield a negative response at the given horizon.

The effects of a RoW supply shock, normalized to yield a 1 per cent increase in the RoW

output, are displayed in the second column of Figure 4. The response of the US industrial

production differs markedly from the case of the oil-supply shock: production 12 months

after the shock is above the baseline. Table 3 shows that the fraction of models in which

the US industrial production increases conditional on a positive RoW supply shock is about

90% after 6 months, and 60% after 1 year. The effect of a RoW demand shock on the US

industrial production (normalized to produce a 1 per cent increase in the RoW output) is

13 In order to disentangle the different structural shocks, we must use several robust sign-restrictions.
This makes the analysis particularly severe from a computational viewpoint. Canova and Paustian (2007)
have shown that what matters for identification is the combination of the number of restrictions and the
magnitude of the variance of the shocks in the sample period considered. In particular, when a small number
of identification restrictions is used the identification becomes weak and, unless, the variance of the shock
very is large, results are rarely sharp.
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instead negative and persistent at all horizons. The different effects of RoW demand and

supply shocks for US output, that were discussed in Section 3, appear important empirically.

These findings suggest that the different response of the terms of trade to foreign domestic

and supply shocks determines the sign of the response of US output to innovation in global

business cycle, to horizons up to 12 months.

The fourth and fifth columns of Figure 4 illustrate the extent to which the oil market is

affected by US shocks. A positive US aggregate supply shock raises both oil quantity and

prices. A positive US aggregate demand shock raises the US production and causes a small

decrease in real oil prices (as the direct effect is to raise the price of domestic output more

than the price of the oil input) and a significant increase in the oil production.

Our findings concerning the effect of an oil supply shock are qualitatively comparable to

those in Kilian (2009), even though the negative response of the US output is larger and

more persistent in our estimates. The main difference concerns the effect of the shocks in

the RoW. In his analysis an expansion of the global business cycle (what Kilian labels an

“aggregate demand shock”) causes a statistically not-significant increase in real GDP in the

first year, followed by a gradual decline which becomes significant in the third year. Our

predictions for the long run are similar, but they differ over the first year, where we find

that the US output response may be either positive or negative depending on whether the

fundamental innovation underlying the expansion of the global business cycle is a supply or

a demand shock. Our model provides a simple explanation for the different findings: RoW

demand and supply have similar dynamic effects on the oil market (e.g. move price and

quantity in the same direction) but they cause effects opposite in sign on the US output al

least at horizons up to one year (see Figure 1 and Figure 4). This suggests that by mixing

together RoW supply with RoW demand shocks, one may bias the response of US output

towards zero at horizons up to one year. The variance decomposition analysis presented in

the following section corroborates this hypothesis since at frequencies up to one year the

contribution of these two shocks to the variation of US production is about equal.

Altogether the estimates show that identifying the fundamental shock underlying the

oil-price hike is key to predict the dynamics of US output conditional on observing an oil-

price increase. A higher oil price is associated to an expected reduction of US production

conditional on an adverse oil-supply shock, a negative US demand shock or a positive RoW

demand shock. Instead, a higher oil price is associated with an expected rise of US production

conditional on a positive RoW supply shock or a US supply shock.
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4.2 Variance decomposition

We analyze the contribution of the different structural shocks to fluctuations in the real cost

of the oil input and the US output by performing a variance decomposition analysis. Figure 5

reports the median (solid line), the 16th and the 84th percentiles (the dashed lines) of the

distribution of the variance decomposition at horizons up to 24 months for these variables.

The first row of the figure shows that supply shocks generated in the RoW explain the largest

fraction of the oil price variance, between 40 to 60 per cent, over the horizons considered.

This shock represents, by far, the largest source of fluctuations in oil prices. Oil-supply shocks

explain a large portion of the variance within the one year horizon. The US aggregate supply

shocks account for about 10 percent of the oil-price variance, with a larger share at short

term horizons. The second row of Figure 5 presents the variance decomposition of the US

industrial production at horizons of up to two years. The US aggregate supply shock explains

the largest share, in line with the recent contributions of Dedola and Neri (2007), and Francis

and Ramey (2005). The role of US aggregate demand shocks is also large, though it is smaller

than the role of US supply shocks at short term horizons. The other shocks affecting US

production, the oil-supply and the RoW shocks, are less important than domestic shocks.

The estimated median effect (marked by the continuous line) suggests that each of these

shocks explains about 10 percent of total variance.

We also explored whether, as argued by Fry and Pagan (2007), the sign restriction ap-

proach is flawed because the impulse response functions that are generated likely violate the

assumption that structural innovations are orthogonal. As suggested by Dedola and Neri

(2007) to ensure orthogonality of the structural shocks the variance decomposition analysis

could be assessed from a unique Ã0, chosen so as to minimize a minimum distance criterion

from the median responses. Details on this analysis are given in the Online Appendix A.

To this end, we also report the percentage of the variance of the k-step ahead forecast er-

ror computed by choosing the Ã0 whose impulse responses are “closest” to the median at

all horizons. It corresponds to the red starred line reported in each panel of Figure 5). It

provides results that are similar to those produced by the median of the forecast variance

posterior distribution implied by the set of Ã0 models.

4.3 Historical decomposition

In this Section we provide a structural interpretation for those historical episodes charac-

terized by major oil price increases, and compare our findings with previous studies. The

historical decomposition of the real oil price time series and that of the US industrial pro-

duction are displayed in Figure 6. This figure highlights the contribution of each structural
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shock to deviations of the variables from the baseline at each point in time.

The question of whether the oil price hike recorded in the late 1973 is an oil supply shock

or an oil demand shock has been widely discussed. Barsky and Kilian (2002) and Kilian

(2008b) showed that it could have been a delayed consequence to a demand shock in the

presence of price regulation. Figure 6 shows that this episode could have been largely driven

by a positive RoW supply shock and, only to a smaller extent, by a conventional oil supply

shock. Therefore, our results also seem to downplay the role of oil supply shocks.14

Oil supply shocks are important in explaining the sharp fall in the real price of oil following

the collapse of the OPEC cartel in late 1985 (probably as the direct consequence of the

increase in Saudi oil production) and the sharp spike in the real price of oil in 1990-1991

after the invasion of Kuwait. One robust pattern is that both RoW and US supply shocks

appear to have been a key factor in many episodes characterized by oil price hikes. For

example, RoW supply shocks seem to explain the rapid oil price hikes that started in 2003

and the subsequent sharp and strong reduction of oil price recorded in the second half of

2008, as well as the drop that occurred after the Asian crisis of 1997-1998. The US supply

shocks are likely to have been relevant in sustaining the high level of the real price of oil

during the eighties.

Regarding the fluctuations of US output the historical decomposition shows that US

shocks dominate the shocks originated in the RoW. However, the distinction between RoW

supply and RoW demand shocks remains relevant for the interpretation of the effects on US

output. Regarding the 1990/91 episode, the real oil price increase was mainly driven by a

RoW supply shock and partially by an oil supply shock; not surprisingly, this oil price shock

only partially contributed to the following US recession, which was instead mainly the result

of a negative US demand shock.

5 Robustness

The robustness of the findings was tested along several dimensions. First, we check whether

our results are robust to the use of alternative identification schemes. In Figure A.2 we

compare impulse responses of our benchmark model with those stemming from the same

14Price regulation could make the WTI price of oil as unrepresentative of the oil market during part of the
sample period. We notice that the WTI price index is part of our oil price measure but not the primary oil
price measure used in this study. Therefore, this issue seems to be less relevant in our analysis. However,
an alternative way to completely rule out the WTI price regulation issue is to focus on the US refiners’
acquisition cost, which is available since 1974. A visual inspection, suggests that this oil price measure differs
from that used in this study only during the years 1979-80. However, the historical decomposition obtained
with an alternative VAR including this oil price measure provides results virtually identical to those obtained
with our benchmark model (see Figure A.1).
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VAR but using a scheme that identifies only 3, as opposed to 5, structural shocks. This

corresponds to identifying Ã0 matrices using the restrictions of the first three columns only

of Table 2. The response of the US output to the different oil-shocks is qualitatively the

same. However, the effect of an oil-supply shock is roughly one half in magnitude, while that

of a RoW demand shock is smaller by one-third on impact. These results corroborates the

importance of identifying both US and non-US shocks in order to avoid biased estimated

response of the US industrial production to structural shocks moving the real price of oil.

In Figure A.2, we explore the consequence of assuming a positive response of oil quantity

when identifying a RoW or a US demand shock. While these assumptions are consistent

with our theoretical frame, the assumption is controversial as other, e.g. Kilian (2009) and

Hamilton (2009), estimate a small short-run elasticity of oil supply to oil demand changes. In

order to assess how the estimated effects on US output change by relaxing this assumption,

we estimate the same VAR model without a constraint on the impact response of the oil

quantity following both a RoW and a US demand shock. We notice that relaxing these

restrictions does not arise any issue regarding the identification of the shocks, which still

remain mutually exclusive. The response of oil quantity following a RoW demand appears

difficult to detect on impact, probably suggesting that the variance of the shocks is rather

small in our sample, but becomes positive and significant with a delay of few months. In any

event, the response of US output to each oil-shock is remarkably similar to those obtained

with our benchmark identification scheme.

Second, we assess the robustness of our results by estimating a VAR model in which we

treat differently the non-stationary of the variables as opposed to the inclusion of the linear

trend. Global crude oil production is expressed in log first-differences while the US industrial

production, the RoW output and the US relative price measure are expressed in growth

rates.15 The estimated impulse responses are reported in Figure A.3. They suggest that our

results are qualitatively robust to the way we handle the non-stationarity of the variables.

Interestingly, the variance decomposition also provides considerations very similar to those

obtained with the benchmark model.

Third, we assess whether our main results obtained for the US industrial production can

be generalized to a broader measure of the US economic activity. The use of industrial

production might have the downside that it is not necessarily the variable policymakers

are most interested in and it is a measure of gross output rather than value added. This

could matter for the comparison with Kilian (2009) to the extent that gross output responds

differently to oil price shocks than value added. To this end, we repeat our analysis by

15In Kilian (2009) oil quantity is also included in log first- differences and the US real GDP and CPI inflation
are also included in growth rates. Kilian’s real measure of world economic activity is instead expressed in
deviation from a long-run linear trend.
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replacing the US industrial production with the monthly Chicago Fed National Activity

Index (CFNAI), which is commonly recognized to be a coincident indicator of the US national

economic activity.16 Impulse responses are reported in Figure A.4 and suggest results very

similar to those obtained with the US industrial production index.

Finally, our analysis might share with any empirical study the limit that it cannot consider

all the relevat shocks affecting the oil market. The most natural candidates are the already

mentioned “oil-specific demand shocks”, namely oil price hikes that are due to fears about

future oil supply availability. Kilian (2009) showed that precautionary oil-demand shocks

have a negative effect on the US economic activity that is more persistent than the one

implied by oil-supply shocks and “aggregate demand shocks” and that they explain many

historical episodes characterized by major oil price increases. To explore the hypothesis that

our RoW shocks described in Figure 4 may also reflect shocks to the precautionary demand

for oil discussed by Kilian (2009), we set up a 6-variable VAR that includes a non-energy

commodity price index in real terms (e.g. US-CPI deflated). Imposing sign restrictions on

this variable is not obvious since our theoretical frame does not explicitely model the market

for non-energy commodities. One possibility is to leave the response of the non-energy

commodity price index unconstrained to all structural shocks; the other plausible option is

to assume that both a RoW supply and a RoW demand shock, as capturing global business

cycle fluctuations, simultaneously increase both the oil price and the commodity price index

(both in real terms). In any event, the estimated impulse responses for the US output are in

both cases extremely similar to those produced by our benchmark identification scheme (see

for example Figure A.5 which refers to the latter case).

6 Concluding remarks

We presented a model, adapted from Backus and Crucini (2000), where the cost of the oil

input and US production respond to demand and supply shocks generated domestically and

in the world economy. We use several robust predictions of the theoretical model to identify

the nature of the shock underlying observed time series from the oil market, the US economy

and the global business cycle. In the model the reduced form correlation between (real) oil

prices and the US business cycle depends on the nature of the shocks. We show that this

basic observation is quantitatively important to interpret the US data of the past 40 years.

The main findings are as follows.

16The CFNAI index is a stationary principal components index constructed to summarize variation in 85
business cycle indicators including production and income, employment, unemployment and hours; personal
consumption and housing; and sales, orders, and inventories.
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First, the traditional view on the effects of oil-supply shocks is solid: the estimates suggest

that the impact of a negative oil-supply shock on US production is negative, large and highly

persistent. However, the variance decomposition analysis shows that these shocks explain

only a small fraction of the US output variation (about 10%).

Second, the estimates show that oil prices respond significantly to shocks affecting the

global economy and the US. In particular, supply shocks in the rest of the world and in

the US explain more than half of the variance of the (real) oil price fluctuations. We view

this finding as an important warning for the analyses that treat oil prices as predetermined.

Reverse causality from the global economy to the cost of the oil input is evident in the data.17

Third, the estimates suggest that to assess the effect of the world business cycle on the

US economy it is important to distinguish between (global) supply vs. demand shocks: both

shocks increase global output and the real price of oil, but they have opposite implications

concerning the US output at horizons up to one year. This finding delivers a simple in-

terpretation of the small and unstable correlation between oil prices and the US economic

activity documented in e.g. Hamilton (2008). Depending on the nature of the fundamental

shock, a negative correlation emerges in periods when oil-supply shocks or global demand

shocks occur, while a positive correlation emerges in periods of supply shocks in the rest of

the industrial world or in the US. The unconditional correlation between oil prices and US

production over a long sample period is tenuous because it blends conditional correlations

with different signs.

17See the recent papers by Bodenstein et al. (2007) and Nakov and Pescatori (2010) for more models where,
like in ours, the price of oil is endogenous.
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Figure 1: Dynamic effect of each structural shock in the model economy
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Note: The figure plots the 5th (dashed), 50th (thick) and 95th (dashed) percentiles
of the distribution of the responses of each variable to the indicated structural shock
at different horizons. The responses are computed by carrying out a Monte Carlo
simulation on the parameters of the theoretical model. The simulation is based on
1,000 draws. The model parameters are allowed to vary over the ranges reported in
Table 1. The “Real oil price” is the ratio between the oil price and the US CPI.
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Figure 2: Dynamic effect on the US terms of trade in the model economy
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Note: The figure plots the 5th (dashed), 50th (thick) and 95th (dashed) percentiles of
the distribution of the responses of the US terms of trade to the indicated structural
shock at different horizons. The US terms of trade is defined as the import price
index divided by the export price index. The import price index is computed as
the weighted average of the response of the oil price and the RoW output price
index. The responses are computed by carrying out a Monte Carlo simulation on the
parameters of the theoretical model. The simulation is based on 1,000 draws. The
model parameters are allowed to vary over the ranges reported in Table 1.
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Figure 3: Impact effect of each structural shock in the model economy
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Note: The figure plots the distribution of the responses of each variable to the indi-
cated structural shock at the impact horizon. The responses are computed by means
of a Monte Carlo simulation on the parameters of the model. The simulation is based
on 1,000 draws. The model parameters are allowed to vary over the ranges reported
in Table 1. The “Real oil price” is the ratio between the oil price and the US CPI.

21



Figure 4: Estimated Effects of Fundamental Shocks
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Note: The figure plots the 16th (dashed), 50th (thick) and 84th (dashed) percentiles of
the distribution of responses at each horizon. The “Real oil price” is the ratio between
the oil price and the US CPI.
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Figure 5: Variance decomposition
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Note: The figure plots the 16th (blue dashed), 50th (blue thick) and 84th (blue
dashed) percentiles of the distribution of the variance explained by each structural
shock at each horizon. The red line in each panel denotes the corresponding explained
variance computed by the Ã0 model that minimizes the distance from the median
impulse response as in Fry and Pagan (2007). See Online Appendix A. The “Real oil
price” is the ratio between the oil price and the US CPI.
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Figure 6: Historical decomposition

Oil Price (CPI deflated)

Oil supply shock

1975 1980 1985 1990 1995 2000 2005
-100

-50

0

50

100

150

ROW supply shock

1975 1980 1985 1990 1995 2000 2005
-100

-50

0

50

100

150

200

ROW demand shock

1975 1980 1985 1990 1995 2000 2005
-100

-50

0

50

100

150

US supply shock

1975 1980 1985 1990 1995 2000 2005
-100

-50

0

50

100

150

US demand shock

1975 1980 1985 1990 1995 2000 2005
-100

-50

0

50

100

150

US industrial production

Oil supply shock

1975 1980 1985 1990 1995 2000 2005
-20

-10

0

10

ROW supply shock

1975 1980 1985 1990 1995 2000 2005
-20

-10

0

10

ROW demand shock

1975 1980 1985 1990 1995 2000 2005
-20

-10

0

10

US supply shock

1975 1980 1985 1990 1995 2000 2005
-20

-10

0

10

US demand shock

1975 1980 1985 1990 1995 2000 2005
-20

-10

0

10

Note: The thin line denotes the real oil price (or the US industrial production), in
deviation from the baseline. The red bars in each panel denote the component of the
series accounted for by each structural shock. The “Real oil price” is the ratio between
the oil price and the US CPI.
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A Fry and Pagan’s critique

Fry and Pagan (2007) argue that the sign restriction approach is in principle flawed because it
ends up reporting impulse responses drawn from different Ã0 models, thus possibly violating
the assumption that the structural innovations are orthogonal. These authors recommend
to check the robustness of the results by comparing them with the impulse responses drawn
from a single Ã0, chosen to e.g. minimize some distance criterion from the median response.

This appendix explores the sensitivity of the impulse responses reported in Section 4 to
the critique raised by Fry and Pagan (2007) to the sign restriction approach. These authors
note that the practice of reporting selected statistics from the posterior distribution of, say,
the magnitude of impulse responses is subject to a potential methodological flaw. While the
model uncertainty captured by this distribution squares nicely with a Bayesian view of model
uncertainty, it is important to realize that under this approach different models are used in
representation of the e.g. median impulse response to a given shock. To see this consider the
moving average representation for the VAR reduced form

yt = C(L)et (A.1)

where
C(L) = [I − B(L)L]−1Ã0 (A.2)

where C(L) contains the matrices of the estimated impulse responses to structural shocks.

Let C
(k)
i,j,h denote the response of variable i to shock j at horizon h, where k indexes the value

of the estimated response in the set of the theory-consistent models. It is straightforward
to notice that there is no guarantee that the median response of variable i with respect to
shock j at two different horizons, h and h′, (med(C

(k)
i,j,h), med(C

(k)
i,j,h′)) is generated by the same

model k̂. This issue also arises in comparison across all variables, shocks and for any quantile
of the impulse response distribution. The ensuing violation of the shocks orthogonality may
cast doubt on the results of the effects of structural shocks.

One way to tackle this problem, suggested by Fry and Pagan (2007), is to perform the
structural analysis using a single structural model Ã0 ∈ Ã0, choosing the one whose impulse
responses are “closest” to the median at all horizons. This strategy preserves the view that
the median is an appealing way of summarizing the estimated effects of structural shocks
at all horizons while ensuring the orthogonality of the shocks. Implementing this strategy
requires us to define what we mean by “close”. As impulse responses are not unit free, we
first standardize them as

Z
(k)
ij,h = [C

(k)
ij,h −med(C

(k)
ij,h)]/[stdev(C

(k)
ij,h)] (A.3)

The Z
(k)
ij,h are then collected into a vector φk of dimension (n ·h ·s×1), where n is the number

of variables in the VAR, h the horizons over which the impulse responses is computed, and
s <= n the number of identified structural shocks. In our case we have n = 5 h = 36 and
s = 5, therefore, φk is a vector (900 × 1). Finally, we choose the value of k that minimizes
φkφk ′

, and use it to derive the estimated impulse responses.
Figure A.6 compares the median impulse responses of Figure 4 (dashed lines) with

the one produced by the model satisfying the criterion describe above (solid lines). The
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dynamic effects of structural shocks are very similar, even if there are some differences in the
magnitude of the responses. In particular, after a supply oil shock the negative response of
the US industrial production appears to be more pronounced. After a RoW supply shock
the hike in the oil price is even larger, leading to a magnified increase in the US industrial
production.
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Figure A.1: Robustness: Historical decomposition using refiners’ acquisition cost
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Note: The thin line denotes the real oil price (or the US industrial produc-
tion), in deviation from the baseline. The red bars in each panel denote the
component of the series accounted for by each structural shock.
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Figure A.2: Robustness: alternative identification scheme
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Note: The figure reports the 16th (blue dashed), 50th (blue tick) and 84th (blue
dashed) percentiles of the IRFs distribution produced by the benchmark model. The
black dashdot lines are produced by a VAR model with only 3 identified shocks (oil-
supply shocks, RoW supply and RoW demand shocks); the red lines with stars are
those of a model in which no sign restrictions are imposed on the response of oil
quantity when the RoW and US demand shocks are identified.
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Figure A.3: Robustness: using stationary variables in the VAR
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Note: The figure plots the 16th (dashed), 50th (solid) and 84th (dashed) per-
centiles of the distribution of responses at each horizon.
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Figure A.4: Robustness: using the CFNAI index for US output
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Note: The figure reports the 16th (dashed), 50th (solid) and 84th (dashed) percentiles
of the IRFs distribution. In the VAR model the US output is measured by the CFNAI
index of economic activity.
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Figure A.5: Robustness: avoiding precautionary demand shocks
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Note: The figure reports the 16th (dashed), 50th (solid) and 84th (dashed) percentiles
of the IRFs distribution. The blue line are produced by the benchmark VAR model; the
red lines are produced by a VAR model also including the non-energy price index (US-
CPI deflated) in order to avoid shocks in the real price of oil due to unexpected shifts in
the precautionary demand for oil discussed in Kilian (2009).
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Figure A.6: Robustness: Results based on Fry and Pagan method
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median response response using the approach in Fry and Pagan (2007)

Note: The solid line is the response obtained applying the algorithm proposed
by Fry and Pagan (see Appendix A); the dashed line gives the median response
of our benchmark VAR.
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Figure A.7: Robustness: Historical decomposition based on Fry and Pagan method

Oil Price (CPI deflated)

Oil supply shock

1975 1980 1985 1990 1995 2000 2005
-100

-50

0

50

100

150

ROW supply shock

1975 1980 1985 1990 1995 2000 2005
-100

-50

0

50

100

150

200

ROW demand shock

1975 1980 1985 1990 1995 2000 2005
-100

-50

0

50

100

150

US supply shock

1975 1980 1985 1990 1995 2000 2005
-100

-50

0

50

100

150

US demand shock

1975 1980 1985 1990 1995 2000 2005
-100

-50

0

50

100

150

US industrial production

Oil supply shock

1975 1980 1985 1990 1995 2000 2005
-20

-10

0

10

ROW supply shock

1975 1980 1985 1990 1995 2000 2005
-20

-10

0

10

ROW demand shock

1975 1980 1985 1990 1995 2000 2005
-20

-10

0

10

US supply shock

1975 1980 1985 1990 1995 2000 2005
-20

-10

0

10

US demand shock

1975 1980 1985 1990 1995 2000 2005
-20

-10

0

10

Note: The thin line denotes the real oil price (or the US industrial production), in
deviation from the baseline. The red bars in each panel denote the component of the series
accounted for by each structural shock. All lines are obtained applying the algorithm
proposed by Fry and Pagan (see Appendix A).
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Figure A.8: Robustness: using 12 lags in the VAR model
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Note: The figure reports the 16th, 50th and 84th percentiles of the IRFs dis-
tribution.
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B The model economy

By the first welfare theorem the competitive equilibrium solves the planning problem:

max E0

∞
∑

t=0

βt











[

cθt (1 − nt)
1−θ
]

1 − γ

1−γ

+

[

(c∗t )
θ (1 − n∗t )

1−θ
]

1 − γ

1−γ

+

(

(cot )
1−γ

1 − γ
+ θL

(1 − no
t )

1−ξL

1 − ξL

)

+ pc,t

[

(

stψ (ac,t)
1−µ + (1 − stψ) (bc,t)

1−µ
) 1

1−µ
− ct

]

+ pc∗,t

[

(

s∗tψ
(

b∗c,t
)1−µ

+ (1 − s∗tψ)
(

a∗c,t
)1−µ

) 1

1−µ
− c∗t

]

+ pco,t

[

(

ψo

(

ao
c,t

)1−µ
+ (1 − ψo)

(

boc,t
)1−µ

)
1

1−µ
− cot

]

+ py,t

[

zt n
α
t

(

η k 1−ν
t + (1 − η) o 1−ν

t

)
1−α
1−ν − ac,t − ai,t − a∗c,t − a∗i,t − ao

c,t

]

+ py∗,t

[

z∗t n
∗α
t

(

ηk∗1−ν
t + (1 − η) o∗ 1−ν

t

)
1−α
1−ν − bc,t − bi,t − b∗c,t − b∗i,t − boc,t

]

+ po,t [zo + (no)α − ot − o∗t ]

+ qt









(1 − δ) kt +







(

ψ (ai,t)
1−µ + (1 − ψ) (bi,t)

1−µ
) 1

1−µ

kt







φ

kt − kt+1









+ q∗t













(1 − δ) k∗t +











(

ψ
(

b∗i,t

)1−µ
+ (1 − ψ)

(

a∗i,t

)1−µ
) 1

1−µ

k∗t











φ

k∗t − k∗t+1



































The AR(1) laws of motion (identical across countries) for the oil and preference shocks complete
the model: zt = ρzzt−1 + z̃t and st = ρsst−1 + s̃t. There are 20 choice variables (chosen at time t ):

c , c∗, co, n , n∗, no, ac , ai , a∗c , a∗i ,ao
c , bc , bi , b∗c , b∗i , boc, o , o∗, kt+1 , k

∗
t+1

and 16 endogenous variables:

y , y∗, yo, i , i∗ , z, z∗, zo, pc , pc∗ , pco, py , py∗ , po, q
∗ , q
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