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Abstract

How large are the aggregate productivity losses from the misallocation of resources across
firms? If firm exit is endogenous, micro-frictions can induce extensive-margin misallocation:
inefficient firms continue to survive (Zombies) and efficient firms are forced to exit (Shad-
ows). I develop and estimate a fully specified model with plant-level micro-data to quantify
extensive-margin misallocation. This method allows me to identify Zombie firms, estimate
the efficiency distribution of Shadow firms and calculate aggregate TFP gains when Zombies
are replaced by Shadows. Estimates for Indonesia show that extensive-margin misallocation
can increase aggregate TFP losses from micro-distortions by over 40%. Compared to existing
estimates aggregate TFP losses from micro-distortions are 50-100% higher.
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1 Introduction

The dominant factor behind cross-country income differences is variation in aggregate total
factor productivity (TFP) as documented by Hall and Jones (1999). According to a popular
recent view exemplified by Hsieh and Klenow (2009), micro-distortions that prevent the optimal
allocation of resources across firms within a country significantly contribute to cross-country
differences in TFP. Existing empirical studies of micro-level misallocation and TFP do not allow
for endogenous exit. As a consequence they can only capture intensive-margin misallocation:
some firms are too big and some too small relative to perfectly competitive markets. However,
the impact of micro-distortions on exit can have large effects, and potentially explains deep
macroeconomic productivity slumps. A case in point is the study by Caballero, Hoshi and
Kashyap (2008) on the Japanese Lost Decade. They focus on the retention of Zombie firms:
inefficient firms that would otherwise exit under competitive conditions, but are artificially kept
in business through implicit subsidies such as preferential access to credit. But, distortions of
the exit margin also lead to firms exiting that would have been productive enough to survive in
the absence of such distortions. I refer to these as Shadow firms. The key economic mechanism
through which Zombies and Shadows impact aggregate TFP is misallocation along the extensive-
margin: under ideal conditions Zombies should exit and be replaced by Shadows.

My paper contributes to the existing literature in three ways. First, I develop and estimate a
fully-specified model, with plant-level micro-data. This model features both - micro-distortions
as in Hsieh and Klenow (2009) and endogenous entry and exit of firms as in Melitz (2003).
Micro-distortions are modeled as firm-specific implicit taxes and subsidies, standing-in for other
widely-discussed frictions such as political connections, credit frictions, regulatory size restric-
tions, firm-specific bargaining power under incomplete contracts or insufficient enforcement of
property rights. Monopolistically competitive firms differ in these wedges and in the firm’s
level of technology. Production involves fixed costs of operations, and, firms exit if their profits
are less than these fixed costs. The estimation procedure used in this paper allows plant-level
efficiency and distortions to be arbitrarily correlated, and is performed using data by narrow
4-digit sectors. Second, I integrate all sectors into a multi-sector general equilibrium, and so
derive quantitative aggregate implications for TFP. My estimates have important consequences
for evaluating welfare. I illustrate this point with data from Indonesia in the 1990s, where it
has been argued that political connections and ethnic diversity strongly distorted business de-
cisions. (Fisman (2001)). My empirical results demonstrate that removing micro-distortions
would increase macroeconomic TFP in Indonesia by 67%. As such, by improving the allocation
of resources along the intensive margin, aggregate TFP can rise by a factor of 1.7. This is in line
with previous work by Hsieh and Klenow (2009) who show that the removal of intensive-margin
misallocation could increase aggregate TFP by 80-100% for China and India. Additionally re-
moving extensive-margin misallocation could increase aggregate TFP by another 44%. This
means that overall aggregate TFP gains from such adjustments are closer to a factor of 2.45, or
145%. The extensive-margin misallocation channel suggests that misallocation losses are over
50% larger than implied by considering only intensive-margin misallocation. Third, I document
that the feature of the data that drives these results is the extent of covariance of efficiency and
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wedges at the firm level. Seen through the lens of my model, a higher covariance means that
more high-efficiency firms face a high implicit tax, and therefore exit. At the same time, more
low efficiency firms benefit from a high implicit subsidy and are artificially kept alive. Hence,
the efficiency of Shadows will be particularly high and the efficiency of Zombies will particularly
low so that replacing Zombies with Shadows would boost aggregate productivity more.
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Figure 1: Parameters of Interest and Identification (Example simulation)

In evaluating aggregate TFP losses when micro-frictions and endogenous exit interact, I need
to address two issues. First, which parameters are needed according to the theory in order to
quantify the impact of micro-distortions on aggregate TFP when allowing for endogenous exit?
Second, how can these parameters be identified with plant-level micro-data?

To understand what information is needed for evaluating extensive-margin misallocation,
consider first Figure 1. The x-axis shows firm-level productivity, with higher values for more
efficient firms. The y-axis shows firm-level implicit micro-distortion, with higher values for more
heavily-distorted firms. The sloped line, which I call the survival line, captures exit in equilibrium
with micro-frictions - firms that are either very productive or are not very distorted survive.
All firms southeast of the survival line are therefore observed — in contrast, survival in the
frictionless equilibrium is summarized by the dashed vertical line. Selection in an equilibrium
without micro-distortions — referred to as “frictionless equilibrium” — is based only on firm
efficiency, and therefore only firms to the east of the efficient cut-off survive. The area below

the survival line and to the west of the frictionless cut-off contains firms whose productivity is
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too low to survive a frictionless equilibrium. However, they are nonetheless observed in the data
— these are Zombie firms. The area above the survival line and to the east of the frictionless
cut-off contains firms that would be productive enough to survive in a frictionless equilibrium,
yet are unobserved in the data — these are Shadow firms.

Alleviating extensive-margin misallocation would lead to the exit of Zombies and the entry
of Shadows. Therefore, quantifying losses from extensive-margin misallocation requires two
objects. The first is the full underlying distribution of frictions and productivity, including the
hypothetical firms northwest of the survival line. The second is the efficiency cut-off in the
frictionless equilibrium, as shown by the vertical dashed line in Figure 1.

Identifying these objects works in three steps. In the first step, I separately identify both
micro-frictions and firm productivity for the set of observed firms. Here I follow the insight
of Hsieh and Klenow (2009) that in a frictionless market marginal revenue products should be
equalized. Differences in marginal revenue products can therefore be used as a measure of firm-
level frictions. Given an explicit demand system, I measure firm level productivity as the part
of firm size that cannot be explained by differences in marginal revenue products.

In the second step, I recover the full underlying distribution of frictions and productivity from the
observed data, using a structural model that allows me to account for selection. I assume that
the joint distribution of frictions and productivity is log-normal; this assumption is supported
by the empirical evidence on firm size distributions, and enhances tractability. The economic
model of selection and the distributional assumption together imply that the observed data are
generated by a truncated log-normal, subject to equilibrium constraints. Estimating the full
underlying distribution therefore reduces to a constrained Maximum Likelihood problem. Since
selection cut-offs and size distributions differ by sector, I obtain estimates for narrow 4-digit
sectors .

In the third step, I apply the parameters that characterize the underlying distribution of plant-
level micro-distortions and productivity by sector and integrate them into a multi-sector general
equilibrium model, which is used to compute the counterfactual frictionless equilibrium. This
frictionless equilibrium provides the information on the unique frictionless plant productivity
cut-off — the vertical dashed line in Figure 1.

The paper proceeds as follows. Section 2 outlines a simplified model, defines the parameters
of interest and draws out implications for aggregate TFP. Section 3 describes the empirical
methodology including the full-blown model with multiple sectors, capital and endogenous entry
and describes how estimation works. Section 4 documents the empirical estimates by sector
emphasizing the key empirical patterns. Section 5 uses the estimates of section 4 to quantify
and decompose aggregate misallocation losses.

Related Literature

This study is part of a rapidly expanding recent literature on the importance of micro-
distortions for aggregate productivity and welfare. It is closest in spirit to previous empirical
studies that use micro-data to measure the extent of micro-level misallocation. Following the
methodology of Hsieh and Klenow (2009), this literature consistently finds large potential ag-
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gregate TFP gains from removing intensive-margin misallocation: Argentina could increase its
TFP by 50-80% (Neumeyer and Sandleris (2010)), Bolivia by 60-70% (Machicado and Birbuet
(2008)), Colombia by 50% (Camacho and Conover (2010)), Chile by 60-80% (Oberfield (2011))
and Uruguay by 50-60% (Casacuberta and Gandelman (2009)). My research contributes to this
literature by extending the estimation methodology to account for the endogenous entry and
exit of firms.

This leads to two distinct innovations in the measurement and estimation exercise. First, to

correct for sample selection effects I employ a constrained Maximum-Likelihood Estimator. This
is necessary since factors influencing the survival of firms such as overall market demand and
factor prices impact the observable degree of marginal revenue product dispersion.! Furthermore,
since firms that face high implicit taxes only survive if they are very efficient, selection may bias
the measured correlation of frictions and firm efficiency upwards. To my knowledge, this study
is the first to systematically address selection issues when measuring micro-frictions. A related
technical contribution is the estimation and solution of heterogeneous firm models using joint
log-normality with multiple sources of heterogeneity.?
Second, the basic Melitz-type endogenous selection model implies that part of the observed
factor demand is due to fixed costs of operation. As Bartelsman, Haltiwanger and Scarpetta
(2009) point out, the presence of these fixed costs may induce an artificial correlation between
measured distortions and plant productivity — suggesting that larger firms are more distorted
than they really are. I demonstrate that the model suggests a simple fixed-cost estimator that
can be used to correct factor demands and recover marginal revenue products from average
revenue products.

My research also builds on another, more theoretical strand of the literature on micro-
frictions and aggregate TFP that does allow endogenous entry and exit. Examples are Restuccia
and Rogerson (2008), Bartelsman et al. (2009) and Fattal Jaef (2011).> These papers typically
calibrate either a stylized two-point distribution for distortions, or compare model implications
only roughly with data. In contrast, I estimate the relevant parameters from micro-data. Fur-
thermore, none of these theoretical papers analyzes the impact of distortions on the efficiency
composition of firms, or decomposes the TFP effects of Zombies and Shadows. Instead, these
papers typically focus on the net welfare impact.

This paper is also close in spirit to the literature on the “Macroeconomics of Restructuring,”

IFor example, consider two industries with two firms each, assume firm productivity is equal across firms and
industries. Within each industry, one firm is taxed and the other is subsidized. Suppose the tax and subsidy
rates are the same for each industry, such that both allocations are distorted to the same degree. Within each
industry, the subsidized firm will typically be able to offer its products at lower prices, and will therefore have
higher revenues than the taxed firm. If firms have to pay a fixed cost of operation, they will decide to exit if their
revenues are too low to cover this fixed cost. Now, suppose that due to a difference in preferences, industry # 2
has such a low market demand that only the subsidized firm can survive, while in industry # 1 both firms survive.
An analyst ignoring market selection would observe a difference in marginal revenue products of firms only in
industry # 1 where two firms survive, but not in industry # 2. Due to selection forces, the simple dispersion of
marginal revenue products might be a misleading indicator about how distorted allocations are.

2In principle this innovation also allows me to incorporate differences in firm level dispersions into multi-country
trade models with asymmetric trade frictions. This is part of ongoing research. See also appendix E.

3See also recent papers analyzing financial frictions as a particular source for micro-frictions, such as Buera,
Kaboski and Shin (2011), Dong (2011), Greenwood, Sanchez and Wang (2010), Midrigan and Xu (2010), and
Moll (2010).
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and especially to Caballero et al. (2008).* They provide evidence for the hypothesis that the
presence of Zombie firms in Japan could explain the dismal productivity performance during
the Lost Decade. In contrast to Caballero et al. (2008), who used reduced-form sectoral TFP
regressions, my work imposes more theory-driven structure on the data. I allow for industry and
general equilibrium feedbacks of micro-frictions, utilize plant micro-data for the identification of
Zombies, and concentrate on steady-state effects of micro-distortions on the level of aggregate
TFP. °

2 Theory

This section develops the general equilibrium model in a simplified setup of a one-sector
closed economy with one factor and one wedge only. I derive implications for measurement, and
then discuss aggregate TFP effects in this model. In section 3 I derive the full model which is
taken to the data.

2.1 Model Setup

Consider the following one-sector closed economy. Following standard practice, I assume
that plants, indexed by w, produce differentiated goods and sell them to a competitive final
good sector. This final good sector can be characterized by the following aggregate production

function:

Y = (/ZJ(W)""l'dwy21

where 1 > 1 is the elasticity of substitution used to combine the differentiated goods in a CES
aggregator. There is a continuum of potential producers. For this section only, I assume that
the mass of producers indexed by w is exogenously given.

Plants choose labor optimally to maximize their profits. Production is given by a simple linear
technology:

e 11(6) = (1 = 7)) - P()y(w) ~ wl() N

subject to: y(w) = A(w) - L(w)

where L(w) is labor input used by firm w in production, p(w) is the price this firm charges, and
y(w) is the quantity it produces. Hence p(w)y(w) is the revenue of the firm. Every producer of
a particular variety w is defined by a realization of his technology parameter A(w). Following
Hsieh and Klenow (2009), 7(w) is an output distortion which is modeled as a revenue tax. The
simplest motivation for this revenue wedge is a model of expropriation or corruption. Suppose
some firm owners are politically connected and receive implicit subsidies from the state — the

* For a survey of this related strand of the literature, see Caballero (2006).
5The question of whether micro-level misallocation can quantitatively account for the deep Japanese slump,
compatible with the Hayashi-Prescott hypothesis, is the topic of ongoing research.
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output distortion of these firms will be negative 7(w) < 0 reflecting the implicit subsidy. On the
other hand, if other firms are regularly subject to expropriation due to insufficient protection
of property rights, their output friction will be positive 7(w) > 0 and act as implicit tax. Since
my focus is the cross-sectional heterogeneity between firms, I ignore time-variation in both firm

efficiency A(w) and the wedge 7(w).%

The distribution of firm types { A(w), 7(w)} can be characterized by a measure (A(w), T(w)> ,
which describes how many firms w have productivity levels A(w) and implicit taxes 7(w). With a
slight abuse of notation, I adopt the convention that p(w) = u (A(w), T(w) ], so that integration

over du(w) should be understood as integrating over { A(w),7(w)}. This eases the notational
burden, especially in the empirical sections where I integrate over three dimensions. Integration
over the whole support of du(w) then gives the number potential of firms.

The optimal price in this setup is given by

)= (=) (305) (2)
n

where m = <ﬁ) is the markup due to monopolistic competition, and (ﬁ) is the price

markup due to the output distortion. Implicitly-taxed firms with positive frictions 7(w) will

charge higher prices, and consequently produce sub-optimally low quantities. At identical prices,
implicitly taxed firms would have lower marginal revenues than implicitly-subsidized firms with
the same marginal cost. But since marginal costs are equal, profit maximization requires that
marginal revenues should be equal as well. The optimal response of the implicitly taxed firm
is therefore to cut back production to increase its marginal revenue and raise its price as is
reflected in the price markup (%) A similar argument holds in reverse for firms receiving

implicit subsidies. For future reference I define (%) as the measure of distortions, and will
refer to this markup when talking about distortions.

Once the optimal pricing and production strategy is determined, firms can calculate their
gross profits (1), and decide whether to continue operations or exit. If firms exit, they are
assumed to get an outside value, normalized to zero. If they stay in business, they must hire
an number of workers F' at wage rate w. This fixed cost of operation can be thought of as
administrative overhead cost. The firm exits if

Mw)—w-F <0 (3)

that is, if gross profits do not cover fixed cost wF.

To close the model, factor markets need to clear. One important assumption is that the

5The analysis of establishment dynamics since Baily, Hulten and Campbell (1992) suggests that a model with
permanent level differences and temporary shocks explains the data very well. See Bartelsman and Doms (2000).
Similarly Song and Wu (2011) and Midrigan and Xu (2009) find that adjustment frictions and measurement
error impact primarily the time variation of plants. Neither factor can typically account for the cross-sectional
heterogeneity of establishments. Following this line of research, I therefore concentrate on the cross-sectional
variation in the data. Appendix A provides additional empirical evidence on the viability of this approach.
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rents generated by expropriation will not be “lost to the economy”, but will be spent.” The
aggregate resource constraint is therefore given by

PY =w-Lp+1I+T

where PY is aggregate nominal expenditures, wL,, is labor income for production workers, II is
aggregate gross profits and 7' is net aggregate rents from micro-frictions. Profits and aggregate
net rents from micro-frictions are assumed to be rebated lump-sum to households.® The fraction
of overall spending due to these net rents can be summarized by

T p(w)y(w)
TPy H(w)ZfT(W). < PY > ) @

which is a market-share weighted average of the micro-frictions. Equation (4) implies that rent
income is higher the higher distortions are on firms with large sales. Note that 7 can become
negative if all firms are on net subsidized. In this case, the resources for these subsidies are
assumed to come from lump-sum taxes on consumers.
The labor market clears

L=Lp+ Lp

where L, is aggregate labor used in production, and Lr is aggregate labor used for fixed costs
of operation.

2.2 Equilibrium

An equilibrium is defined as combination of wages w, production labor allocation L, and
an average tax rate flf, such that (i) final goods firms and monopolistic competitors optimize,
(ii) labor and goods markets clear, and (iii) net rents from micro-frictions are redistributed

lump-sum to consumers.

Proposition 1: Given that the labor force is normalized to L = 1, and choosing

the ideal price level as numeraire P = 1, equilibrium output per worker is given by

1

/(A(ml_T(‘*’))n_l.du(w)rl _ A _rpp, (5)

1-7 1-7

Y:

where

e 7T is given by (4)
1

o« A=[[(A@L= @) dpu(w)]

"Note that other forms of distortions — which may induce resources to disappear, or in the case of an implicit
subsidy, to appear from nowhere — will typically be captured by the technology parameter A(w).

8 A number of plausible micro-frictions require this rebate of net rents, such as wedges related to information
asymmetries, expropriation risk, and incomplete contracting models. Distortions that are not rebated could easily
be accommodated.
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If exit is endogenous, the integrals above are conditioned on IT(w) > wF.

Proof: see Appendix B
The next two sections explain the mechanisms through which micro-distortions lower aggregate
productivity. In both, I start with the effect of frictions on the firm level and the associated
measurement implications. Then, I aggregate up and show the macro consequences of micro-level
misallocation.

2.3 Allocation and aggregate TFP along the Intensive Margin

Without endogenous exit, micro-distortions appear primarily in differences of marginal rev-
enue products across firms, as pointed out by Hsieh and Klenow (2009). To see this in the simple
model, it is helpful to think about the labor demand of firms. The benefit to firm w of hiring one
more worker is A(w) units of its goods. Selling these results in a revenue of 777];1 - p(w) per unit.
The marginal revenue product is therefore %p(w) - A(w). Equivalently, sales per worker adjusted
for the CES markup are %. In a frictionless equilibrium these marginal revenue products
should be equalized across firms; otherwise firms with higher marginal revenue products would
have an incentive to hire more workers while firms with lower marginal revenue products would

have an incentive to shed workers. It is straightforward to combine (2) with the production

W:m(l_lw>w (6)

function to show that

Equation (6) states that differences in sales per worker across firms reflect differences in dis-
tortions, and not in firm productivity.” To recover distortion parameters, note that (6) can be
solved for (ﬁ(w)

Once micro-level frictions are measured, I calculate the aggregate TFP implications. As

), and can be calculated from firm-level micro-data.

in the case with distortionary taxation, two forces are at work. First, there is a price effect:
higher distortions imply higher prices set by monopolistic competitors as in (2) so that buyers
substitute out of more expensive products. Second, there is a rent (or revenue) effect: since the
rents from higher taxes are not lost to the economy as a whole, consumers spend the higher tax
revenue on goods. The net effect is a deadweight loss. This loss can be seen in equation (5),
which shows how aggregate TFP is affected when individual distortions (ﬁ) deviate from

their mean (ﬁ) Note that if 7(w) = 7 micro-distortions drop out of equation (5).

Figure 2 displays the allocative consequences of removing micro-frictions for the sales of firms.
The graph shows a distribution plot with firm level efficiency on the x-axis and firm level
distortions on the y-axis. Firms with higher y-axis values face a higher implicit tax, while firms
with higher x-axis values are more efficient. In this situation, setting all distortions to zero will let
firms above the zero-distortion line win sales and firms below the line lose sales. This is the basic
logic of calculating misallocation losses along the intensive margin. The removal of distortions
will therefore lead all firms to line up along the zero distortion line, so that only efficiency is a

9This relies on CES demand and monopolistic competition, since otherwise size impacts markups and therefore
marginal revenue products. I consider the impact of this extension in appendix C. But, given that the demand
system is known it is straightforward to control for endogenous markups.
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source of heterogeneity across firms. The bottom panel of Figure 2 then sums up the number of
firms for each efficiency type A(w). Note that as the intensive-margin misallocation is removed,
the efficiency distribution of firms is held fixed. From this perspective, studies that consider
intensive-margin misallocation leave the efficiency distribution of firms unchanged. Introducing

extensive-margin misallocation effects partly endogenizes this efficiency distribution of firms.

2.4 Allocation and aggregate TFP with Extensive-Margin

This section lays out how the presence of endogenous exit qualifies measurement arguments
and aggregate TFP implications of the previous section. Again I start with measurement issues
at the micro-level and then show macro implications for TFP.

Firms will exit if they do not generate sufficient gross profits to cover their fixed cost.

Rewriting the zero cut-off profit condition (3), one obtains'’

log(A(w)) — log(A)—

mlog(l_lT(w)> - nillog<1i7_>] > nillog[(n—l)F] (7)

Equation (7) shows that the zero profit condition in this simple model can be understood in
terms of individual deviations from aggregate means. A firm will survive only if its efficiency is
sufficiently above the aggregate mean or its distortion is sufficiently below the mean distortion.
For future reference, I define components of the selection equation as follows:

2) =40 (1)
(5): <”}Uf) Z[(n—l).F]wﬁl.A(lif)"il

with z(w) = log(Z(w)). The Z(w) variable captures the importance of idiosyncratic efficiency

(8)
Z;

and firm distortions on net profits, while the Z; variable captures the impact of both aggregate
efficiency and fixed costs on survival.

To facilitate tractability in this section, I assume a specific functional form for joint distri-

bution of firm-level efficiency and micro-frictions. In particular, I assume that log(A(w)) and
log (%) are jointly normally distributed:!

10See Appendix B

HEor establishment-level micro-data such as the data used in this study, log-normality has been shown to
approximate size-distributions very well. The often-used Pareto distribution for firm sizes is especially useful for
the largest US firms, while even the US establishment-size distribution is better approximated by a log-normal
— see Sutton (1997), Rossi-Hansberg and Wright (2007) and Luttmer (2010). Furthermore, a growing literature
shows how power laws for the largest percentiles of firms could be generated by the fact that large firms are
multi-establishment entities. Power laws of firm sizes could therefore result even as plant-level heterogeneity is
characterized by log-normality. See Growiec, Pammolli, Riccaboni and Stanley (2008) and Bee, Riccaboni and
Schiavo (2011).



10 MU-JEUNG YANG

log A(w) pal| |o% o4,
~N AT (©)
log (ﬁ(w)) Hr OAr, 03
with the the correlation of efficiency and distortion given by pa, = ;:(’7:.

Note that given the distributional assumption in equation (9), z(w) = log(A(w))—m log (ﬁ)

is normally distributed with mean pa4—mu, and dispersion o, = \/ 0124 + m202 — 2mo4 ;. Figure

3 shows firm survival in this simple model.'? The straight line is equation (7) solved for ( ﬁ(w)) ,
and displays the exit cut-off. Only firms whose distortion is low enough or productivity high
enough to be below this survival line will actually be operating. Aggregate variables such as
the required fixed costs, aggregate efficiency A, and aggregate rents 7 enter the picture through
their impact on intercept of the survival line. For example, as aggregate efficiency A falls,
the survival line shifts to the left — allowing more firms to survive for lower realizations of

idiosyncratic efficiency or higher realizations of distortions.

The optimal exit decision induces sample selection. This is important for measurement,
since the observable measures of marginal revenue products will only reflect firms that are not
too heavily distorted to stay in business. To illustrate the sample selection issues, I exploit
log-normality from equation (9) to derive the observable mean and dispersions of the distortion

measures based marginal products. Since z(w) is normally distributed, I rewrite equation (8) as

117‘((,0)) = [pa —mps] + 05 2y (w)

z(w) = log(A(w)) — mlog <

where zy(w) is a standard normal random variable. Therefore, we can rewrite the selection

equation (7) in terms of a standard normal random variable as

log(A) — i log (25 ) + 727 log | (= D)F ) — (1a — myr)
zy(w) > : (1 > ! : < ) =z (10)

The analytical gain from this transformation is that truncated moments are especially tractable,
as is well known from the applied econometrics literature on sample selection. To see the gain in
tractability, let A\ (.) denote the Inverse Mill’s Ratio and Aa(.) the variance of a standard normal

conditional on (10).The observed mean and dispersion of the distortion are given by'?

e (=)
vorlos (1)

12The formal setup of self-selection is well known in the labor literature on Roy models, such as Heckman and
Honore (1990).
3The formulas for productivity mean and dispersion are analogous.

= 2
— UA,T - mO-T —
mew}wﬁ(az>MGﬂ

z

v (w) > gj] P [AQ(ZJ) - 1} . (C’AT_””“’Z>2

Oz

(11)
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One noteworthy result is that the degree of sample selection depends on the underlying covari-
ance of micro-distortions and firm productivity. When such productivity and distortions are
uncorrelated, the sample mean of distortions will always underestimate the underlying mean
distortion, while the sample mean of productivity will always overestimate the underlying mean
productivity. Intuitively, both the lowest-productivity firms as well as the most highly-distorted
firms tend to exit. This setup also allows us to perform simple direct comparative statics to
support our intuition. For instance, it is straightforward to show that %ﬁf") > ( so that sample
selection biases get stronger as selection forces become more important.

Selection effects also have implications for the measurement of observable dispersions of
micro-frictions. Consider the dispersion in equation (11): since Ao (2 J) < 1, in the case of
uncorrelated micro-distortions and productivity, observed dispersions will underestimate under-
lying dispersions.'* In general, it is misleading to generalize from the truncated observable
distribution to the underlying distribution without taking selection into account.

The impact of endogenous exit on aggregate TFP and welfare can be summarized as follows:
Y o JiT - TFP,4 (12)

where J is the number of firms operating, and TF P4 is as defined below in equation (13).

There are two main differences in a model with an extensive-margin when compared to a model
with only an intensive-margin. As can be seen in equation (12), the number of firms is now
endogenous and leads to variety effects. To illustrate these, I assume that the full population
of draws is exogenously given by J.'® In Figure 3, this would be the number of black and grey

points together. The number of actual surviving firms is therefore:
J:/ du(w):j'Pr<H(w)>wF>:j-[l—i’(éj)]
I(w)>wF

The number of operating firms is determined by the number of latent draws multiplied by the
probability of survival. Whether variety effects magnify or dampen aggregate TFP losses due to
distortions is not obvious a priori and will depend on the underlying distribution of efficiency and
distortions. For example, suppose that efficiency and distortions are highly positively correlated.
As the dispersion of frictions increases, mostly high-efficiency firms will be more heavily taxed.
However, such firms are more likely to survive despite the distortion, so fewer firms will exit and
the number of operating firms might actually increase as the dispersion of distortions increases.
In this case, the gain in variety will work to to offset other misallocation losses. Contrast this
with the case when the correlation of frictions and efficiency is negative — that is, primarily
low-efficiency firms are more heavily taxed. These low-efficiency firms will exit very easily when
the implicit tax on them is increased. Therefore, many firms will exit, leading to a large net loss
of variety, which in turn reinforces misallocation losses.

Additionally, aggregate TFP is now

MThese selection results continue to apply for as long as the density of the underlying type distribution exhibits
log-concavity. See Heckman and Honore (1990).
15 J is endogenized later by modeling endogenous entry.
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TFPy = E <A(w)1_7(“)>n_1

1-7

QS] "j (13)

As per equation (8), the set of currently active firms in the distorted equilibrium is given by

ooz (s22) )

The presence of micro-frictions reduces aggregate TFP due to two channels. This is illustrated
in Figure 6. The first channel is the intensive-margin misallocation mechanism of section 2.3. At
the same time, holding the set Qg constant leaves the efficiency distribution of firms unaffected,
as in Figure 8.

Removing extensive-margin misallocation changes the set 2g and reweights the efficiency
distribution of firms. Consider the example in Figure 1, which contrasts the exit decisions in a
distorted equilibrium with the exit decision in a frictionless equilibrium. The set g captures
the firms southeast of the survival line — these are the survivors in the distorted equilibrium.
In contrast, only firms to the right of the vertical dashed line would survive in a frictionless

equilibrium. The survivors in the frictionless equilibrium can be summarized by the set

0 = {w: AWw) > 73} (15)

For the set QF, firms are selected based on their efficiency only. The difference between
the two exit rules classifies firms into four categories. First, Always Survivors will be active in
both the distorted and in the frictionless equilibrium. Second, always exiters will decide to leave
both the distorted and the undistorted markets. Third, Shadows would be efficient enough to
survive in a frictionless equilibrium, but are pushed out by micro-frictions. Fourth, Zombies
would exit in a frictionless equilibrium, but are implicitly subsidized and can therefore survive
in a distorted equilibrium.

To obtain the productivity composition of the frictionless equilibrium, two things need to happen:
Zombie firms need to exit, and Shadow firms need to enter. Figure 7 illustrates how this
would change the efficiency distribution of firms endogenously. The efficiency distribution in the

frictionless equilibrium has more weight at higher values of firm productivity as in Figure 9.

How strongly micro-distortions affect the equilibrium efficiency composition depends on the
underlying joint distribution of firm distortions and efficiency. The example equilibrium in
Figure 4 exhibits a low covariance of distortions and efficienc,y and a low degree of dispersion
of frictions. The sets of both Zombies and Shadows are mostly drawn from the middle of the
efficiency distribution. Contrast this with Figure 5, in which the dispersion of efficiency is
the same but both the correlation of frictions and efficiency at the firm level as well as the
dispersion of distortions is high. The striking feature is that, in this situation, Shadow firms
are the highest-efficiency firms, while Zombie firms are mostly the lowest efficiency firms. The
extent of extensive-margin misallocation will therefore be much higher in the allocation shown



MISALLOCATION AND SELECTION 13

in Figure 5 than in Figure 4.

The composition effect of extensive-margin misallocation on efficiency has straightforward
implications for the measured distribution of firm-level efficiency. Specifically in countries in
which extensive-margin misallocation is less pronounced, the efficiency distribution of firms
should be more left skewed — that is, there should be more mass concentrated at the higher
values of efficiency. Figure 10, which is from Hsieh and Klenow (2009) is suggestive in this
respect; it displays estimates of the efficiency distribution of firms relative to the mean efficiency
in India, China, and the US. A major caveat when interpreting this graph is that the estimates
are across all 4-digit sectors. This can be important if survival cut-offs differ across these sectors.
Nevertheless the skewness of the US efficiency distribution compared to India and China is
compatible with the view that extensive-margin misallocation is less important in the US than
in India or China. This stylized fact has been emphasized repeatedly in the literature — for
instance in Banerjee and Duflo (2005), who refer to the “thick left tail” of Indian firms. Figure
11 shows that the qualitative features of this shift in the efficiency distribution can be replicated
by contrasting the allocation of Figure 4 with the heavily-distorted allocation of Figure 5.

2.5 Conceptual Decomposition of Extensive-Margin Misallocation Effects

In this section, I propose a decomposition that allows me to analyze how much of the
extensive-margin misallocation loss is due to the retention of Zombies versus the premature

exit of Shadows. The overall aggregate TFP loss from removing distortions can be decomposed

as follows:
_ n—1 n—1
ez o]
—1
E [A(w)” Q’g}
1
_ n—1
E[(A(w)lli(;))" ' Qs:|
Intensive-Margin Misallocation
E A(UJ)"?71 Qg
\
1
n—1
E [A(w)”—1 Qs UQE}
Zombie Effects ¢ x _
E|A(w)n—1 Qg}
Extensive-Margin Misallocation p 1
n—1
E [A(w)"_l QS:|
Residual EM-Reallocation ¢ %
E|A(w)n-1 QSUQ*S}
\

(16)
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The first term in (16) removes all wedges between the set of firms that is given in the dis-
torted allocation, formalizing the mechanism from section 2.2 that is displayed in Figure 2. The
extensive-margin misallocation effect is the combination of the second and third terms. The sec-
ond term compares TFP at the efficient composition of firms shown in Figure 9 to aggregate TFP
when firms of the frictionless equilibrium and Zombie firms are active as in Figure 7. This ratio
answers the question of how much aggregate TFP would fall if we would force the market to keep
Zombie firms active at the production levels implied by their low efficiency. This term therefore
summarizes how the reallocation of resources from firms active in the frictionless equilibrium
toward the Zombie firms reduces TFP. The third term captures a residual effect conditional on
the existence of Zombies — it compares aggregate TFP with the composition of currently active
firms as in Figure 8 to the composition of firms in Figure 7. The latter is comprised of all firms
in the frictionless equilibrium plus the Zombie firms. Then, given that Zombie firms with low
productivity cannot be forced to exit, how much aggregate productivity would be recovered by
letting Shadow firms exit and reallocate their resources to the Always Survivors and Zombies?
Note that the exit of Shadow firms does not necessarily increase aggregate productivity, as the
resources of Shadow firms are not only reallocated towards Always Survivors but also to Zombies
as well. Which effect dominates, and if this Residual EM-Reallocation effect is increasing or
reducing aggregate TFP, is ultimately an empirical question.

3 Empirical Methodology

This section gives an overview of the estimation strategy to correct for sample selection in
order to estimate the full underlying distribution of firm efficiency and distortions. Based on
these estimates, I calculate a counter-factual frictionless equilibrium to generate the efficiency
cutoff in this frictionless equilibrium.

3.1 Extended Model

I start by extending the model to more credibly capture the main features of the data when

quantifying the effects discussed in the theory section. The main extensions are the following.

Extension 1: Capital enters the production function on the firm level and there will be a net
wedge distorting the mix between capital and labor

Extension 2: The number of potential firms is endogenized with free entry.

Extension 3: There will be multiple sectors, with an elasticity of substitution of 1 across sectors

Fach of these extensions serves a particular function when confronting the model with the
data. Extension 1 introduces a capital wedge, since within 4-digit industries marginal revenue

products of capital are distributed differently from marginal revenue products of labor.'® Tt

16 Alternatively, this might suggest that technological factor shares are different across firms. While I cannot
control for this issue with my current data, in principle this could be resolved with corresponding establishment-
level data from a wealthy country like the US. It is with this caveat in mind that I also analyze in section 5 the TFP
effects of only partially removing micro-distortions, allowing for much of the cross-sectional firm heterogeneity to
reflect other factors than distortions.
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should be noted that the capital wedge stands in for a net wedge between capital and labor — a
separate labor wedge could be introduced, but its effects would map into the current size and net
capital wedges. Extension 2 allows me to quantify the number of overall latent productivity and
distortion draws, and relates them to resources allocated to each sector.!” This enables me to
estimate overall sectoral resources because it uncovers resources spent by entrants. Furthermore,
this extension allows me to take into account welfare effects from expansion of variety due to
changes in entry. Extension 3 is important for two reasons. First, exit cut-offs are likely to
be differ across sectors as for example different distributions of efficiency and distortions will
imply different ideal price levels. Second, when calculating counterfactuals, changes in factor
prices could potentially affect entry and exit due to changes in the prices of fixed costs incurred
by entrants and operating firms. Modeling a full multi-sector general equilibrium allows me to

endogenize factor prices in counterfactual experiments.

The extended model is as follows. Total output is given by:

S
Y ST YE with &), Y& -1 (17)
s=1

where &5 are assumed to be given by the sectoral shares in value added. Monopolistic competitors
w in sector s solve the static profit maximization problem:

e (53X (@) = L= v (@)] - po(@lys(w) = whs(w) = (1475 (W) - B - Ks(w) (18)
subject to: ys(w) = Ag(w) - Ky(w)® Ly(w)t ™o

where R is the economy-wide rental rate of capital and the endogenous exit decision given by
My(w) = By [(1+ 75 () R 0!~ F, (19)

Note that fixed costs here are firm-specific, since they are subject to the same factor frictions
as variable costs. To facilitate exposition, define: fs(w) = Bs - [(1 + 7k s(w)) R w! =% Fy with
By = a; % (1 — a,)~(mos)

Finally the endogenous entry decision in steady state is given by:

Ve =30 Pr (@) > £u(@)) - B [IL(w) = fo(@)[ ML) > £,w) o0

> By R*w' ™" F,
where 05 is an exogenous death shock for the firm, mostly capturing the age effects of firm exit

behavior. The specification of the fixed cost of entry follows the way these are specified in earlier
studies, such as Fattal Jaef (2011) or Hsieh and Klenow (2011).

"In other words this is endogenizing the number J from section 2.5.
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Parameter Value Explanation

n 3 Elasticity of Substitution between varieties
Hsieh and Klenow (2009)

R 1.1 Aggregate rental rate
Hsieh and Klenow (2009)

w Country data Aggregate wage rate
World Bank Labormarket database

g US data Sectoral capital share
Bartelsman et al. 2000

s from Turnover equation Probability of death shock
(see section 3.4)

Table 1: Calibrated Values

3.2 Calibrated and Observed Data

This section describes additional assumptions that facilitate the empirical analysis. First,
I calibrate a number of parameters of the model in accordance with evidence from other stud-
ies. Second, I describe the data requirements and measurement assumptions underlying the
estimation.

The primary calibrated variables are the elasticity of substitution 7 and factor prices. 1
follow Hsieh and Klenow (2009) ans set n = 3 — in the middle range of existing estimates
from trade data (Broda and Weinstein (2006)). Again, following Hsieh and Klenow (2009) I
set the rental rate to 10%. The economy- wide wage is directly picked from evidence from
the World Bank labor-market database, which is based on national establishment level surveys
that are adjusted to enhance cross-country comparability.'® Factor shares in the Cobb-Douglas
production function of monopolistic competitors are set to the corresponding factor shares of
US 4-digit sectors from Bartelsman, Becker and Gray (2000).'Y For sectors that do not have
any correspondence with a 4-digit sector in the US, I assume that the capital share is oy = 1/3.
Results seem to be unaffected by either calibrating this capital share or omitting these sectors
altogether.

Mapping the available establishment-level micro-data to the quantities in the model is done
according to the following principles. First, since my theory concentrates on output and capital
wedges, I map the revenue measure ps(w)ys(w) to value added.?’ As Jones (2011b) points out,

8The mismeasurement of these aggregate prices will influence only the estimated means, and therefore plays
virtually no role in the counterfactual exercises later, in which only the dispersions or correlations of distortions
are changed.

19Tt is well-known that labor shares from these data underestimate actual compensations by excluding fringe
benefits such as social security contributions. I therefore impute these following Hsieh and Klenow (2009) by
inflating the reported wage-bill by a constant factor. This ensures that the aggregate capital share implied by the
sectoral data for the US is consistent with the estimates from NIPA data.

20Note that this assumes the existence of a value-added aggregator that is Cobb-Douglas. See Basu and Fernald
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Model Quantity Corresponding Data
ps(w)ys(w) Establishment value added
K s(w) Book value of capital
Ly s(w) Establishment wage bill deflated by wage
Pr(Is(w) > fs(w)) Probability of survival of entrants

Table 2: Model variables and corresponding data

this basically ignores the effects of possible distortions across firms to the use of intermediate
goods. I do this mostly for reasons of comparability with Hsieh and Klenow (2009) and related
studies that focus on intensive-margin misallocation. The method of this paper could easily be
extended to accommodate more sources of heterogeneity. Second, the observed data on factor
demand are typically annual values that do not differentiate between fixed and variable cost
factors. I therefore be maintain the assumption that measured labor is the sum of fixed-cost

and variable-cost workers. More formally,

LM,S(LU) = LRS(LL)) + Lp7s(w)
Ky s(w) = Kps(w) + Krs(w)

i.e. measured labor for plant w in sector s denoted by Ljpss(w) is the sum of labor for pro-
duction purposes Lps(w) plus labor demand to cover fixed overhead costs Lps(w). The same
measurement assumption is applied to capital, which is measured as the reported book value of
the establishment capital stock.

All variables calculated on the establishment-level are time averages for my seven year panel.
This reflects the low persistence of temporary shocks I document in Appendix A and will there-
fore capture the permanent plant level distortions and efficiency differences my theory focuses
on. Song and Wu (2011) advocate this “Generalized Marginal Revenue Product”-Approach to
focus on the cross-sectional dimension of establishment level frictions.

The last measurement assumption concerns the probability of survival of entrants. This
probability is observed directly in the data, as I can measure how man establishments with a
specific birth year in the survey are remain later.

3.3 Fixed-Cost Estimator

In this section, I derive from the model an estimator for fixed costs. To show why this might

be necessary, I concentrate on the scale wedge . The Melitz-type extensive-margin model

1
1-7y (w)
with fixed costs of operation would imply that as long as a firm produces, it must hire Lp(w)

workers for production and F’ workers for the overhead fixed costs. It follows that the measured

(2000) and Diewert (1978).
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amount of labor for a firm would be Ljs(w). It is straightforward to show how measurement of
labor impacts distortion measurement. Measured distortions are given, similar to (6), by

PW)y(w) w < Lpw) )

Ior@) 1= 7(w) \Tpw) + F

If F is the same across firms, then this changes the correlation structure of micro-frictions and
Lp(w)

Lp((d)-i—F)

will be close to 1. However, for very small firms this term will be less than 1, as Lp(w) is

productivity. Note that as firms become larger, Lp(w) is larger and hence the term (

small. As a consequence, larger firms will look more distorted than small firms, even if no such
correlation is present. A simple approach for dealing with this issue in the current context is to
utilize the optimal exit decision of firms to estimate the fixed cost of operation.

Proposition 2: Fixed-Cost Estimate

1—as

Let Fs be the number of units of the Cobb-Douglas composite good Ky (w)®s Ly (w)
needed to pay for overhead costs of production. Fixed costs of operation in the mo-
nopolistic competition model, with productivity heterogeneity and micro-distortions

under endogenous entry and exit, are given by

L. @ —a
Fy = Cmin {Kaga()" - Luga) =) (21)

Proof: Appendix B

The intuition behind this estimation approach is that the econometrician is focusing on the
smallest firms in an industry. For these firms, production is only a very small fraction of factor
demand, while fixed costs of operation are the bulk of factor demand. Hence, the factor demand
of the smallest firms within the same narrow industry should be a viable proxy for the typical
fixed cost for firms in the industry.?!

In contrast to other attempts to deal with this issue in the literature, I do not need to
assume a particular functional form for the productivity distribution or about the distribution
of distortions to estimate fixed costs. These distributional assumptions are necessary only for
dealing with selection effects. The cost of this is that the only heterogeneity in fixed costs
of operation for which I allow, are the same wedges that distort production. However, under
endogenous exit, even random variation in fixed costs across firms has a very limited impact on
distortion measurement, as I show in Appendix D.??

3.4 Maximum-Likelihood Estimation with Equilibrium Constraints

I now turn to the issue of sample selection. In this section, I derive a likelihood function

based on the assumption of multivariate log-normality for efficiency and distortions. A novel

21T also experimented with using the first and the second percentile of factor demands, instead of the minimum.
The estimation for distortions and efficiency seem not significantly affected by this variation, because I follow
Hsieh and Klenow (2009) and drop the 1% outliers of the data.

22 Note also that the bias in TFPR from overhead costs will be less important if fixed costs of production
systematically increase with firm size.
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feature compared to well-known selection estimators from the labor literature — such as Heck-
man and Honore (1990) — is the use of equilibrium constraints. The primary issue is that I do
not directly observe the welfare-based CES price level. But, note that, as in (7) and (8), this
ideal price level also influences the exit decision of firms. This can be an issue when estimating
the underlying distributions of distortions and efficiency from sample-selected observed distribu-
tions. For example, as the underlying dispersion of distortions increases, there are more heavily
distorted plants and more firms might exit. As a result, the ideal price index could rise as fewer
varieties are offered, but with a higher price level more firms now might be able to survive.
This connection between the underlying distributions and equilibrium sample selection needs to
be taken into account. Moreover, under the current distributional assumptions, this price level
is a non-linear fixed point that cannot be explicitly solved for the underlying parameter vec-
tor. Formally, the problem I face is similar to constrained MLE estimation of dynamic discrete
choice problems, such as Rust (1987). Instead of using popular Nested Fixed Point algorithms
to address this issue, I follow Su and Judd (2010) in formulating the estimation problem as a
“Mathematical Program with Equilibrium Constraints” (MPEC).??

As discussed in section 3.2, the main required data for this estimator are value added, factor
inputs, and the conditional probability of exit for entrants. To get an intuition for identification,
remember that firm-heterogeneity in my model is driven by three sources: net output-wedges
m, net capital wedges (1 + TK s (w)) and efficiency As(w). In measuring these sources of
heterogeneity I basically follow Hsieh and Klenow (2009). To identify the output wedge, recall
that Lps(w) is the labor input after the measured labor input Ljss(w) is corrected for fixed
costs, as in the last section. Then, heterogeneity in output per worker on the firm level should
reflect primarily the output wedge:

1 —asps(w)ys(w) 1

dl,S(W) m 'LULP,S(W) 1 TY,S(('U)

The identification of the net capital wedge relies on information on establishment-level labor
intensity. After the calibration of sectoral capital shares o from US data and factor prices w
and R, labor intensity should reflect net capital wedges:

Qg LM75(CU)

w
do s(w) = —
2:6(w) 1—as Kys(w) R

= (14 71r(w))

In the discussions of estimates, I will sometimes follow Hsieh and Klenow (2009) and summarize

both frictions into one joint distortion:**

log TFPR,(w) = u ;F_T’T{ ;Eg;a (22)

#1ike Su and Judd (2010), and Dube, Fox and Su (2009) I find in Monte Carlo test-runs that the use of MPEC
methods facilitates numerical stability and reliability of estimates.

24Note that equation (22) applies in a strict sense only if factor shares are the same across firms within the same
industry and Cobb-Douglas is a reasonable approximation to plant-level production functions. However, as Dong
(2011) shows, generalizing the production function to CES and allowing for measurement error has quantitatively
small implications for the measures of establishment-level frictions.
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Note that the estimation procedure identifies both distortions separately. Later, the counter-
factual experiments will analyze aggregate TFP changes as one friction is removed without
changing the other.

Efficiency differences A,(w) are identified by using the CES demand system,

d3 s(w) = log TFPQy(w) = As(w) = Kps(w)isl(/o;)s(w)l—“s

R

so that efficiency can be recovered from inverting the size of the firm in terms of value added.
The crucial point here is that the main data necessary are nominal value added ps(w)ys(w),
and factor inputs K, pr(w) and Lg ps(w). The one parameter that cannot be readily identified
is the value of the ideal price index P;. Studies focusing on only intensive-margin misallocation
typically normalize this value to one. Since the underlying distortions impact the sectoral ideal
price level, which in turn affects selection, I do not follow this strategy here. Instead, I include
the ideal price level as an additional estimation parameter but require that the price level satisfies

a fixed point that describes industry equilibrium.?’

This model also offers a natural method to utilize plant exit and survival data to get infor-
mation about truncation. The probability of firms that survive given by

Pr (zN(W) > 5J,s> =1- (I)(ZLS)

To get the necessary information, I note that, as in Melitz (2003), steady state turnover is given
by
Jes - Pr(an(w) = 25) = 8- J, (23)

where J. s is the number of entering firms in industry s, J, is an exogenously-given exit prob-
ability, and Js is the number of firms surviving in the industry. This steady-state turnover
condition helps to calibrate two moments. First, Pr (ZN(w) >z, s) is given by the mass of firms
surviving, conditional on entry. Second, given that we can observe the number of entering firms
Je s as well as the number of operating firms J,, and have an estimate of Pr (zN(w) > 2{]75),
(23) indicates the value of d5 that is compatible with steady-state turnover.

Finally, I have to take account of the possibility that measurement error might lead to the
observation that some plants are above the survival line. According to the steady-state model
here, this would actually be impossible to observe. The simplest approach to deal with this issue
is the addition of a zero-mean measurement error into the selection equation. The estimation

section discusses how important this measurement error is in describing the observed data.

Z5This strategy basically follows Klette and Grilliches (1996) and Hsieh and Klenow (2009) to infer efficiency
from the contrast between firm size and factor demand.

26Note that estimating sequentially by sector does not mean that the estimation is “Partial Equilibrium only.”
I do not need to require anything about multi-sector GE in the estimation setup, as I can observe or calibrate
aggregate factor prices w and R. I make sure later that these factor prices describe a general equilibrium in my
model, when the factor demands in entry cost inputs are recovered from GE conditions.
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Proposition 3: MLE Estimation with Equilibrium Constraint

Let the parameter vector for each sector s be given by

0, = [MA,S;Nry,s§MTK,s;UA§UTy,s§UTK,S;PAW,S;PATK,S;PTYK,s§Ue

The Maximum-Likelihood Estimator for the monopolistic competition model with
productivity heterogeneity and micro-distortions under endogenous entry and exit,
can be written as

& (d1,5(@), da,o(w), ds ()| 0, (P )
0., In(P;) < 1— (I)(ZJ(QS’ m(ps)))

subject to:

1 Je,s
In(Py) = p (e
n(Ps) PIM(95)+77_1 H<58)

_ O'xz(es) - (77 - 1)Uz(98)2
1-— q><zJ(98,1n(Ps)) + o-(07) )]

where ¢(.|0s,In(Ps)) is a normal density with parameter vector {fs,In(Ps)}, and ®(.) is the cdf
of a Standard-Normal. Other implicitly-defined variables in this estimation exercise include the

following;:
R Qs 1—as
() (5
g 1— o
() ()
m N e —
Ps n-Us - Fs

_ = 2 — 2
022(0s) = mo‘S(O‘sUTK,s + Pryc,507i,507y,s) T MU Qs Pry i 507y 50y 5 + Ury,s)

ZJZIH

- (aspATK,sUTK,SUA,s + pATy,sUA,saTy,s)
_ 2 _ 2
03(‘95) = (maSUTK,S> + (maTy,S) + 0'124,3

- 2
+2m (pTYK,SO'TK,SGTy,S) - O-A,S(pAT%SO'TY,S - pATKaSUTK’S)) + o

) = Lot Qb+ tiny) = bt
Oz

Zy (05, In(Py

_ 1
Prv(0s) = piry s + Qspiry,s — HAs — 5(77 —1) (‘7,24,5 + Uzy,s + ‘772-K,s + 2p7’YK750-TK750.TY75>

+ (77 - 1)UA,S (pATy,sUTy,s - pATK,sUTK,s>

Proof: see Appendix B

Note that the constraint in Proposition 3 is a nonlinear fixed point in the ideal price level Pk,
which cannot be explicitly solved for the entering parameter vector .2 Statistical inference is

2TDespite being highly non-linear, this MLE estimator is continuously differentiable in its ten parameters. I
therefore proceed to use derivative-based quasi-Newton solvers linked to KNITRO to solve the corresponding
constrained non-linear optimization problem. These solvers are especially well-equipped to deal with medium-
scale non-linear optimization subject to non-linear constraints, as I encounter in this problem.
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discussed in the next section.

To gain additional intuition behind the estimation procedure, consider Figure 12. The dark
stars will typically be data for firms that stay in business. The ellipses constitute contour plots
of the joint density of firm efficiency and distortions. Changes in the parameter vector 65 adjust
the shape of the underlying distribution. These changes in the underlying distribution also lead
to equilibrium responses of the ideal price level Ps(0;) as shown in equation (8) and therefore
shift the survival line. Hence, the MLE estimator will jointly adjust the shape of the distribution
and the position of the survival line to optimally fit the data points of firms in operation.

3.5 Statistical Inference of MLE with Equilibrium Constraints

As discussed in Su and Judd (2010) the use of equilibrium constraints in estimation introduces
additional considerations when computing standard errors. The equilibrium constraint is a
restriction on the parameter space and therefore typically can increase the efficiency of estimates.

Proposition 4 (Su and Judd (2010)): MLE Inference with Constraints

Let ¢» = [#,1log(P)]. Suppose 6y € O is the vector of true parameter values and denote
the likelihood at the true values by L(v) and the constraint set by h(p) = 0. Given

matrices Hy = %:fo) and B = F %&MM] Assume the following conditions

o’
hold:
i) © is compact
ii) 6y is in the interior of ©.

(
(
(iii) Observations are iid draws from the assumed distribution
(iv) The likelihood function is C3 and the constraint is C?

(

v) The matrix By is positive definite

VI — 1) % N(0, So)
with Sy = By [l — Ho(HyBy 'Ho) ' HyBy ']

Proof: see Su and Judd (2010) and Silvey (1975)

3.6 Identification of Zombies and Shadows

To identify Zombies and Shadow firms exit rules, for the counter-factual frictionless equilib-
rium are required. After obtaining the estimation vector 65 for each sector, I use these results
to calculate aggregate sectoral factor demand Lg and K. Remember that the data report the
annual factor demands of operating firms, but not the resources for the entry fixed costs prior
to opening the business. To obtain aggregate factor demand, I need to infer resources spent by
new entrants on fixed costs of entry. Combining the information on the latent mass of firms with
the distribution of heterogeneity allows me to recover these parameters from aggregate resource
constraints. Appendix B shows how this is done.
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After inferring the values of Ly and K, from the data, I define the relevant economy-wide
factor endowments as L = Zle L; and K = Zle K. The counterfactual frictionless equilib-
rium is computed by taking the aggregate factor endowments for the whole economy as given.
This is standard practice in studies that analyze intensive-margin misallocation only. Note that
the welfare effects will be larger if capital is allowed to accumulate in response to removing

frictions.

4 Data and Empirical Results

4.1 Overview of Data

For Indonesia, I use the Statistik Industri, an annual panel data set of medium and large
plants.?® The data set collects information for all Indonesian establishments with more than 20
employees. Among the surveyed variables are the wage-bill and number of employees, capital
stocks at book values, birth year of the plant and value added. The sample contains approx-
imately 20,000 plants each year. I use sample years 1990-1996, as these years have consistent
industry classifications before the Asian Crisis. Estimation is done at the 4-digit industry level,
which, after some data cleaning, leaves me with 40 sectors capturing approximately 80% of
manufacturing activity.

4.2 Reduced Form Evidence on External Validity

Before turning to the actual estimation, I verify the external validity of the constructed
measures of distortions and efficiency. The key mechanism of this paper implies that distortions
and efficiency should have predictive power for exit decisions of plants. Plants with higher values
of TFPR should be more likely to exit, while establishments with higher TFPQ should be less
likely to exit. Table 3 documents this pattern in simple discrete choice regressions. A similar
argument would suggest that participation in exporting is driven by firm-level distortions and
efficiency. However, in contrast to the exit regressions, the signs on both efficiency and distortions
should flip. As only the most efficient and the least distorted firms should decide to export, the
prediction is that high-TFPR (low-TFPQ) plants should be less (more) likely to export. The
final columns of Table 3 show how these patterns are observable in the data.

In the remainder of this paper, I ignore international trade. Appendix E documents simula-

tion evidence from a multi-country trade model regarding why this is a reasonable approach in

the context of measuring micro-level misallocation.?"

28 As the data set has been intensively analyzed before by Amiti and Konings (2007) and Peters (2011), T refer
the interested reader to the data discussions in these papers.

29T restrict estimation to sectors that have more than 100 establishments and include other sectors with more
than 70 plants only if their share in aggregate value added is at least 1%. Furthermore, I follow Hsieh and Klenow
(2009) and remove the 1% tails of the data to minimize the impact of outliers.

30The topic of complementarities between domestic micro-distortions and frictions in international trade is
research in progress.
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Table 3: Exit and Trade Selection

Depedent Variable

Exityy(w) Exityy(w) Export, (w) Export, ;(w)

Independent Variable Probit Logit Probit Logit
log TFPR,(w) 0.223 0.401 -0.992 -1.794
[0.0146] [0.0258] [0.0134] [0.0245]
log TFPQ,(w) -0.175 -0.314 0.766 1.382
[0.00826] [0.0147] [0.00697] [0.0130]
Industry FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes

Notes: Pooled regressions of next period exit or export on current efficiency and
micro-distortion.

4.3 Evaluation of Model Fit

Before turning to a discussion of estimation results, I review a number of ways to check
whether my estimates are reasonable, concentrating on three key aspects of my model. First,
I evaluate how well the estimated model captures patterns of distortions, plant efficiency, and
survival. Second, I test the functional form assumption on the distribution of establishment-level
frictions and efficiency. Third, I offer some checks on the estimates of fixed costs across sectors.

The core of the model relates distortions and efficiency to survival. The econometric specifi-
cation allows a mean-zero error term to explain deviations from the selection mechanism of the
model. If the variance of these estimated errors in the selection equation is large, then measured
distortions and efficiency would be a poor explanation of observed survival. But, as can be seen
from Table 4, the estimated error variance is usually negligible. An alternative way to analyze
the role of firm distortions and efficiency is to graphically compare estimated survival lines with
the data. Figure 13 illustrates the survival pattern of plants for the six largest sectors by value
added. It shows plots of the bivariate data distribution of firm efficiency and micro-distortions
in blue stars against predictions from estimates in red circles.?’ Both of these overlap fairly
closely for most of the body of the distribution. Note especially the estimated black sloped
survival line from the model. An important concern about the estimation procedure used here
is that it assumes the measured wedges are work like taxes to firms, instead of markups. The

latter would in fact predict that higher-distortion firms are more profitable, and hence more

31The predictions are generated based on MLE estimates and using QMC draws from Niederreiter sequences.
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likely to survive.?? In this case one would expect high-TFPR firms to be more likely to survive
despite low TFPQ. The estimated survival line is reassuring in this respect — the basic modeling
of frictions as taxes seems to be compatible with the data.

The next key ingredient under scrutiny is the assumed log-normality of the joint distribution
of distortions and efficiency. To evaluate the viability of this approach, I use a two-sample
Kolmogorov-Smirnov test on firm-size distributions in the data versus firm sizes generated by my
estimates. The null hypothesis is that both samples are from the same continuous distribution.
The second column Table 4 lists the asymptotic p-values from this test. The null hypothesis
can be rejected for 10 out of 40 sectors. This implies that for 3/4 of sectors I cannot reject
the hypothesis that the firm-size distributions are drawn from a truncated log-normal as given
by my model. Figure 14 illustrates this result graphically by comparing kernel density plots of
firm-size distributions from the data to the estimated firm-size distributions.

Finally, the estimates of common fixed costs can be cross-checked with other sectoral infor-
mation. One would expect capital-intensive industries to have on average higher fixed cost of
operation. Similarly, sectors that report a higher fraction of labor compensation towards “non
production workers” might be expected to have higher fixed costs.?® Both of these predictions
hold in the data, as displayed in Figures 15 and 16. In general the estimated fixed costs are
not large. The final column of Table 4 shows the value of fixed costs evaluated at unit costs

s 1—as
Ucy = (a— —a ) relative to the median value added of establishments in this industry.

Fixed costs are typically is between 2% and 3 % of the median annual value added.

4.4 Estimation Results from the Full Model

The baseline estimation results on the importance of selection are illustrated in Figures 17
to 19. These figures display estimated distributional parameters on the x-axis, while displaying
on the y-axis the same parameter measures as in the data. Each dot is a parameter value
for a particular sector. For example, in Figure 17 each dot gives a value of the dispersion of
TFPR o for each sector. If a parameter is unaffected by selection, the data dots should line up
along the 45-degree line. In Figures 17 and 18, most dots are significantly below the 45-degree
line, implying that selection reduces the observable dispersions of both frictions and efficiency.
Furthermore, the selection gets more severe as the underlying dispersions of frictions or efficiency
increase. These estimation results foreshadow that extensive-margin misallocation is important
in determining aggregate TFP losses.

The correlation between firm productivity and distortions is another important dimension af-
fected by selection. The parameter of interest is again the underlying correlation of firm efficiency
and frictions, since this correlation determines whether high-efficiency firms are systematically

32 Another concern is the omission of continuation values that capture dynamic considerations in response to
temporary shocks or option-value considerations when risk is time-varying. A fully-dynamic version of the current
model specification the corresponding dynamic estimation method is work in progress.

33The data on “non production workers” are not directly used in my estimation, since such data are often
considered to capture skilled workers. However, the skilled work force might expand with the scale of operation
similar to production workers, so it is questionable whether this variable captures only fixed-cost workers.
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Table 4: Validity checks and Fixed Costs by 4 digit sector, Indonesia

Estimates
ISIC Code, Name Oe PKS F, Qg Vs [p“;]f:d
3114, Canning, preserving of fish 0.06-10~4 0.09 4.61 0.36 0.23 0.21%
3115, Vegetable and animal oils 0.06-10"%  0.08 165.05 0.63 0.36 1.43%
3116, Grain mill products 0.10-10%*  0.04 268.50 0.71 0.30 4.07%
3117, Bakery products 0.12-1074 0.00 17.66 0.43 0.17 3.54%
3118, Sugar factories and refineries 0.08-10=%  0.00 38.17 0.46 034 0.21%
3119, Cocoa, chocolate, sugar conf. 0.06-10~4 0.46 91.26 0.61 0.34 3.61%
3121, Food products n.e.c. 0.24-10"%  0.19 23237 0.69 0.27 10.67%
3122, Processed tea and coffee 0.06-10~4 0.36 328.28 0.64 0.38 3.76%
3123, Ice manufacturing 0.83-107¢ 0.04 41.81 0.33 0.38 8.03%
3124, Soy products 321.08-107% 0.07 25.02 0.33 0.22 6.30%
3125, Food chips from animals 0.12-107¢ 0.01 1255 033 0.17 5.5™%
3127, Pastry, cake and food n.e.c 0.25-1074 031 2366 033 027 7.713%
3134, Soft drinks and carbonated 0.11-1074 0.32 116.51 0.53 041 6.94%
3141, Dried and processed tobacco 0.08-10~4 0.00 2.07 033 0.18 2.83%
3142, Clove cigarettes 0.22-107% 0.74 5.73 033 0.30 0.13%
3211, Spinning, weaving, finishing Textiles  0.07 - 10~* 0.46 3.64 019 0.22 0.64%
3212, Made-up textile goods 0.06 - 10~4 0.91 7.63 020 0.21 2.24%
3213, Knitting mills 0.08-10~* 1.00 815 0.16 0.17 1.68%
3221, Wearing textile garments 0.06 - 10~4 0.00 7.14 033 0.16 1.02%
3241, Footwear and shoes 0.68-10~4 096 29.88 0.33 0.13 1.77%
3311, Sawmills, planing, oth. Wood 0.76 - 10~4 0.93 2.58 0.16 0.20 0.39%
3319, Wood and cork products n.e.c. 0.06 - 10~4 077 888 0.19 0.23 2.40%
3321, Wood furniture and fixture 0.07-1074 0.86 19.01 0.33 0.17 1.96%
3411, Pulp, paper and paperboard 0.43-10~4 0.14 1943 0.41 0.27 0.59%
3420, Printing, publishing, allied industry 0.13-1074 0.16 29.65 0.32 0.25 3.86%
3511, Basic industrial chemicals 0.08-1074 0.59 50.10 0.59 0.46 0.43%
3521, Paints, varnishes and lacquers 0.11-1074 1.00 324.81 0.56 0.40 5.26%
3522, Drugs and medicines 0.06 - 10~4 0.26 23277 0.66 0.54 0.59%
3523, Soap and cleaning preparation 0.10-1074 0.64 314.15 0.73 0.37  2.29%
3529, Chemical products n.e.c. 0.06 - 10~4 0.10 7427 052 044 0.38%
3552, Smoked, remilled, crumb rubber 0.06 - 10~4 0.01 4453 0.33 0.32 0.78%
3559, Rubber products n.e.c. 0.07-1074 046 1573 0.18 0.27 2.81%
3560, Plastic products n.e.c. 0.09-1074 0.40 1234 0.28 0.22 1.88%
3632, Cement products 0.09-1074 0.01 11.37 0.33 0.22 4.38%
3642, Structural clay products 0.13-1074 0.00 7.95 0.33 0.12 4.48%
3691, Stone products 0.07-10~4 0.59 778 024 027  2.23%
3811, Cutlery, hand tools, hardware 0.88-1074 0.79 11.35 0.24 0.21 2.75%
3813, Structural metal products 0.51-1074 0.25 15.10 0.12 0.26 1.64%
3819, Fabricated metal products 0.07-1074 0.31 1748 0.20 0.29 3.11%
3839, Electrical apparatus, supplies 0.07-107% 042 65.70 0.32 0.34 1.40%
3841, Ship building and repairing 0.08-107* 0.06 18.41 040 0.33 0.42%
3844, Motorcycles and bicycles 0.10-10%* 0.84 31.00 0.26 025 3.28%

Notes: Columns display: (1) standard deviation of error term in selection equation, (2) asymptotic p-value of
two sample Kolmogorov-Test of data vs. simulated data from the model, (3) estimated fixed cost of operation, (4)
capital share, (5) non-production worker share, (6) fixed costs relative to median value added.
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selected out. As shown by Fattal Jaef (2011) and Hsieh and Klenow (2011), a strongly positive
correlation all other things equal, might lead variety effects to offset misallocation effects from
micro-distortions. In this case the aggregate welfare effects from micro-frictions might be sur-
prisingly low. On the other hand, the measured correlation of firm productivity and frictions
could reflect only the fact that highly-distorted and low-productivity firms exit. In other words,
firms with high implicit taxes might survive only if they are also highly efficient. Figure 19 pro-
vides evidence that this selection bias is quantitatively important for the observed correlation of
productivity and distortions. The sectoral dots line up mostly above the 45-degree line, implying
that the observed correlation is higher than the underlying correlation. On average, 33% of the
observed correlation between frictions and productivity can be explained by this selection bias.

To better understand what drives these selection effects, it is instructive to differentiate
between output and capital wedges. Contrast Figure 21, which displays the estimated versus
observed dispersions of output wedges, with Figure 22 for capital wedges. The output-wedge
dispersion measures display significant sample selection, but selection is substantially more im-
portant for the capital-wedge. The difference in observed versus estimated standard deviations
of the log output-wedges are typically not larger than 0.2, while these differences can easily be
0.5 for capital-wedge dispersions. A natural question is, which feature of the data is respon-
sible for this contrast? The first crucial difference is that observed output-wedge dispersions
are typically lower than dispersions of capital-wedges. Since selection effects tend to be more
severe the larger the dispersion of the already-selected sample, this might explain part of the
contrast between capital and output-wedge dispersions. A second answer can be found in Table
5: the correlation estimates of TFP(Q and the output wedge are typically positive, while the
correlations between TFP(Q and the capital wedge are negative. The data show that low TFPQ
plants are typically more labor intensive within the same narrow 4 digit industry. Seen though
the lens of the model, less-efficient plants face higher net capital wedges. This correlation in
turn is interpreted by the model as indicating that many small firms are highly distorted in their
factor-mix choice, and so are forced to exit. This is also reflected in the comparison of observed
and estimated correlations of firm efficiency and capital wedges, as in Figure 24. Again, the
correlations of observable TFP(Q) and capital wedges are mostly positive, while estimates of the

underlying correlations are mostly negative.

Finally, Figure 20 shows that capital and output wedges are mostly negatively correlated
with each other, and not significantly affected by selection. Such a negative correlation means
that within a sector firms with high output wedges tend to have low capital wedges and vice
versa. This suggests that, for many sectors, the two wedges tend to offset one another. This
observation plays a role when considering jointly removing wedges vis-a-vis focusing on removing

either the output- or the capital-wedge margin only.
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Table 5: Estimates by 4 digit sector, Indonesia

Estimates

ISIC Code, Name OAs Ory.s Orgs  PAry,s  PArk,s  Pryx,s
3114, Canning, preserving of fish 1.56 0.65 1.36 0.45 -0.47 -0.28
3115, Vegetable and animal oils 1.60 0.82 1.57 0.69 -0.44 -0.46
3116, Grain mill products 1.34  0.71 1.21 0.40 0.05 0.01

3117, Bakery products 1.24  0.49 1.51 0.63 -0.36 -0.37
3118, Sugar factories and refineries 2.43 0.61 0.84 0.77 0.19 -0.11
3119, Cocoa, chocolate, sugar conf. 1.77  0.57 1.44 0.62 -0.32 -0.53
3121, Food products n.e.c. 1.28  0.72 1.32 0.80 -0.42 -0.73
3122, Processed tea and coffee 1.40 0.64 1.08 0.35 -0.00 -0.30
3123, Ice manufacturing 0.94 0.51 0.92 0.30 -0.15 -0.06
3124, Soy products 1.24 054 091 0.58 -0.12 -0.36
3125, Food chips from animals 0.82 0.72 1.25 0.17 -0.33 0.42

3127, Pastry, cake and food n.e.c 0.80 0.45 1.04 0.47 -0.15 -0.17
3134, Soft drinks and carbonated 1.79 0.63 1.03 0.80 -0.45 -0.64
3141, Dried and processed tobacco 1.57 0.66 1.05 -0.21 0.63 -0.56
3142, Clove cigarettes 2.76 091 1.63 0.95 -0.37 -0.42
3211, Spinning, weaving, finishing Textiles 2.02 0.57 1.31 0.64 -0.55 -0.51
3212, Made-up textile goods 1.40 0.56  1.08 0.33 -0.32 -0.28
3213, Knitting mills 149 057 1.21 0.39 -0.19 -0.42
3221, Wearing textile garments 1.62 0.51 1.07 0.17 0.03 -0.24
3241, Footwear and shoes 146 064 1.15 0.19 0.08 -0.06
3311, Sawmills, planing, oth. Wood 191 0.60 0.96 0.40 -0.12 -0.33
3319, Wood and cork products n.e.c. 1.25 084 1.02 0.00 0.11 -0.37
3321, Wood furniture and fixture 1.39 048 1.15 0.34 -0.18 -0.15
3411, Pulp, paper and paperboard 1.93 0.68 2.08 0.77 -0.60 -0.45
3420, Printing, publishing, allied industry 1.54 0.55 0.93 0.55 -0.08 -0.34
3511, Basic industrial chemicals 145 082 211 0.73 -0.32 -0.43
3521, Paints, varnishes and lacquers 1.70 076  1.22 0.67 0.05 -0.18
3522, Drugs and medicines 1.34  0.81 1.95 0.32 0.13 0.44

3523, Soap and cleaning preparation 1.86 0.69 1.20 0.70 -0.17 -0.50
3529, Chemical products n.e.c. 146 1.10 1.71 0.50 0.00 0.11

3552, Smoked, remilled, crumb rubber 1.38 0.84 0.98 0.27 0.14 -0.26
3559, Rubber products n.e.c. 1.68 047 0.97 0.32 0.09 -0.23
3560, Plastic products n.e.c. 1.77  0.53 1.07 0.61 -0.18 -0.29
3632, Cement products 1.61 0.54 0.96 0.59 -0.47 -0.43
3642, Structural clay products 1.16 048 1.21 0.69 -0.71 -0.65
3691, Stone products 1.13  0.83 0.99 0.34 -0.03 -0.25
3811, Cutlery, hand tools, hardware 1.68 0.66 1.01 0.06 0.11 -0.40
3813, Structural metal products 1.76  0.73  0.99 0.67 -0.10 -0.15
3819, Fabricated metal products 1.93 0.57 1.00 0.52 0.11 -0.33
3839, Electrical apparatus, supplies 1.82 0.65 0.96 0.57 -0.10 -0.31
3841, Ship building and repairing 1.58 0.88  2.36 0.67 -0.13 0.25

3844, Motorcycles and bicycles 225 0.77  0.96 0.83 -0.41 -0.43

Notes: Columns display: (1) standard deviation of plant efficiency, (2) standard deviation of output
distortions, (3) standard deviation of capital wedges, (4) correlation of plant efficiency and output wedges,
(5) correlation of plant efficiency and capital friction, (6) correlation of output and capital distortions
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5 Estimates of Aggregate TFP and Welfare Effects

The empirical estimates in section 4 suggest that extensive-margin misallocation effects do
matter. This section now quantifies the aggregate TFP and welfare effects, and puts them into
the perspective of previous estimates and the data.

For the evaluation of aggregate TEFP effects I proceed as follows. I remove the micro-
distortions and calculate aggregate real TFP in the frictionless equilibrium for each sector in-
dividually. To be as close as possible to the exercises in the previous literature, I make two
choices. First, a removal of distortions is defined as setting the dispersions of micro-frictions to
zero but leaving the mean parameters i at their current levels. I do this to prevent confounding
welfare improvements through better cross-sectoral allocation as mean distortions are equalized
with gains from within-sectors reallocation. Because of this choice my estimates of the welfare
effects will be on the conservative side. Second, I consider the welfare gains from equalizing
marginal products in one sector at a time while leaving distortions in all other sectors in place. I
calculate the welfare gains from removing distortions by sector, and then sum up these weighted
by the sectoral value-added shares, to arrive at the manufacturing-wide welfare gains. I will then
contrast the results of this benchmark with the full removal of all distortions across all sectors.

The benchmark results presented below also feature two specific choices that increase the
robustness of results. First, I concentrate on sectors for which I cannot reject the hypothesis
that firm size distributions are generated by a truncated log-normal. However, TFP and welfare
results are very similar whether the other sectors are included or not. Second, I exclude sectors
for which TFP gains exceed two log points. This will significantly reduce the estimates of
extensive-margin aggregate TFP effects for the economy as a whole. On the other hand, this

also makes extensive-margin TFP effects more representative of typical sectoral effects.?*

5.1 Aggregate Productivity Effects of Removing Distortions

For the purpose of evaluating the welfare gains of removing distortions, I summarize a key result
in proposition 5 below.

Proposition 5 summarizes the aggregate sector-level TFP consequences of the extended setup
and makes comparison with the simplified model in Section 2 possible. The proposition displays
TFP in real consumption units: sectoral TFP deflated by the ideal CES price index. As in section
2, the first term summarizes net variety effects, while the second term captures aggregate TFP.
There are two main differences to the simple model in Section 2. First, the overall firm level
distortion is a geometric composite of output and capital wedge. This is summarized in (i)
of Proposition 5. Second, since the capital wedge distorts the overhead fixed costs the same
way it distorts production costs, the capital wedge induces a reallocation of fixed cost resources
across firms. I subsume this allocational effect under the aggregate TFP effects, as it is usually
quantitatively small.

Note that varieties are normally not measured in industry-level price deflators, so that I will

34There are three sectors that have TFP losses exceeding two log points. The largest is Clove Cigarettes which
makes up 15% of Indonesian manufacturing value added. Including this sector alone with two log points would
boost extensive-margin TFP losses by 50%.
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refer to sectoral TFP without any variety effects as TFP and to the TFP measure including
these variety effects as “Overall Real TFP”.

Proposition 5: Sectoral TFP

In equilibrium, sectoral aggregate real output per inputs is given by
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(iii) l¢,s denoting the fraction of the sectoral labor force that are entry-cost workers

Proof: see Appendix B

Table 6 summarizes the key welfare results. The first column displays welfare gains from
equalizing marginal revenue products across the currently-existing set of firms, as done also by
Hsieh and Klenow (2009). The gains from reallocating sales across existing firms can raise aggre-
gate TFP by close to 70%. This is in line with quantitative findings by Hsieh and Klenow (2009)
for China and India, where such gains are around 80-100%.%> Columns 2 and 3 display the new
extensive-margin misallocation estimates. Focusing first on the variety effects in column 2, my
estimates suggest that micro-frictions lead to a net destruction of varieties that increases welfare
losses. Removing these micro-frictions increases variety and implies a welfare gain of 6% relative
to the current base. This estimate stands in contrast to previous calculations by Fattal Jaef
(2011) that are primarily based on the correlation between firm efficiency and frictions in the
data. As mentioned in Section 4.3, the selection correction implies that underlying correlations
between micro-frictions and firm efficiency are much lower than in the data. This estimation
result drives the difference between my results here and previous studies. The third column dis-
plays the welfare gains from removing extensive-margin misallocation: eliminate Zombies and
replace them with Shadows. The aggregate impact is sizable — reallocation along the extensive-
margin can raise aggregate TFP by 44%. These estimates suggest that the overall real TFP
gains are huge, as documented by the last column.

35Note that Hsieh and Klenow also analyze the gains from moving to the TFPR distribution of the US, where
they find gains of around 50%.
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Table 6: Aggregate Gains from Removing Distortions

Aggregate Effects

Reform Experiment Intensive-Margin ~ Variety =~ EM/Selection Overall Real TFP

(1) Benchmark Reform 67.6% 6.08% 44.34% 156.64%
(Remove 1y, Txdispersion :

Ory = 07 = 0)

(2) Neutralize output wedges 20.90% —10.06% 27.53% 38.66%

(Remove 1y, keep 7k : 07, = 0)

(3) Neutralize capital wedges 3.72% 23.09% 0.01% 27.69%

(Keep 7y, remove 7x : 0, = 0)

(4) Remove 1y — A correlation 1.33% 20.06% 13.74% 38.41%
(par =0)

(5) Remove 7 — A correlation —2.72% 12.24% —6.21% 2.39%
(par =0)

(6) Remove 1y — 7 correlation —16.83% 3.98% —14.11% —25.73%
(pry 7 = 0)

(7) Partial Reform I 25.05% 6.64% 28.89% 71.89%

(Reduce o7y, 0, PA Ty

PArics Pry e DY 33%)

(8) Partial Reform II 31.24% —0.19% 21.47% 59.10%
(Reduce o, , 0., by 33%)

(9) Complete Simultaneous Reform 67.6% 116% 48% 433%
(Set 7v = 7 = 0 in all sectors)

Notes: Percentage changes are expressed with current real TFP as base. Let TFPy be TFP before removal of distortions
and TFP; TFP after the removal of distortions. The colums display then 100 - (TF b q

TFP
welfare effect is not the sum of the individual welfare gains but the product. For instance in row #1, the last column
should be understood as being the result of: 1.67-1.06 - 1.44 = 2.56

). As a consequence, the overall
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The sectoral distribution of TFP losses in the benchmark case is shown in Figure 25. The
y-axis displays the log TFP gains from removing micro-distortions for the set of industries
employed in the aggregate calculations. There is a fair amount of heterogeneity of sectoral TFP
gains, reflecting different distributions of TFPR and TFPQ across sectors.

Results from simultaneous and complete removal of all distortions in all sectors are displayed
in the last row of Table 6. They suggest that due to the unit elasticity of substitution across
sectors, the effect of joint reform mostly shows up in larger variety effects. Note however,
that this joint reform does not significantly impact the size of intensive and extensive margin

misallocation losses.?%

5.2 Features of the Data that Drive Extensive-Margin Misallocation Effects

An important question is, what feature of the data drives these large extensive-margin mis-
allocation effects? As discussed in section 2.4, one key determinant could be the covariance of
micro-distortions and efficiency. Since the dispersion of micro-frictions itself has an impact on
misallocation losses, even if frictions and efficiency are uncorrelated I proceed as follows. I regress
the model-implied extensive-margin misallocation losses by sector on the observed within-sector
dispersions of micro-frictions and efficiency calculated from the data. Figure 26 then plots the
residual of this regression against the covariance between micro-distortions and firm efficiency
from the data. There is a strong positive relationship, documenting that extensive-margin mis-
allocation losses are higher for sectors with a higher observed covariance of TFPR and TFPQ in
the data. This relation should be contrasted with Figure 27, which shows that the same relation
does not hold for model-implied intensive-margin misallocation losses.

5.3 Reform Complementarities

Here I compare the welfare effects that result from completely removing all frictions versus
the effects from completely neutralizing one friction at a time. This analysis is in the spirit of
identifying the “most important bottlenecks”, as in Hausman, Rodrik and Velasco (2005). Ad-
ditionally, my analysis identifies important complementarities between different types of reform.

Rows 2 and 3 of Table 6 illustrate the removal of frictions in isolation. First, note that variety
and selection effects are different when removing output frictions as opposed to capital frictions.
Removing only output frictions leads to a net loss of varieties because output distortions are
typically positively correlated with efficiency while capital frictions are negatively correlated.
This means that implicit net capital taxes are stronger for low-efficiency firms, and as such
result in more firms exiting. The reverse is true when only capital frictions are shut down:
as output frictions are typically positively correlated with efficiency, more firms will survive.
As a result the second column Table 6 shows that net variety gains are large if only capital
frictions are removed. The differences in correlation patterns of capital and output frictions

36The reason variety effects are so large in the case of joint reform is due to the fact that removing especially
the mean distortions affects factor prices significantly. Hence, sunk entry costs and fixed costs of operations fall,
letting more firms enter and making survival easier. Without the Cobb-Douglas assumption across sectors, one
would expect that results from simultaneous reform across sectors are different from reforming one sector at a
time, depending on the elasticity of substitution. See Jones (2011a)
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with efficiency also explain the different responses of the extensive-margin misallocation effect
in the third column. Output frictions are positively correlated with efficiency — so the Zombie
firms that stay alive are of particularily low-efficiency while the Shadow firms that exit are of
particularily high-efficiency. Replacing Zombies with Shadows therefore increases allocational
TFP gains substantially. For capital frictions, the picture is the reverse — as these frictions are
negatively correlated with efficiency, the firms that are forced out by these frictions are not that
efficient and the extensive-margin gains from removing capital wedges are small.?”

Second, there are important complementarities between the two types of reform. The sum
of percentage welfare gains from removing only output frictions and from removing only capital
frictions is significantly lower then the gains from removing both frictions together. This is true
even for intensive-margin misallocation gains. This should be seen in the context of the aggregate
TFP formula given in Proposition 5. If output wedges, capital wedges, and firm efficiency are
mutually independent, then it follows that

as(n—1) -1 n—1
P (HTK(w)> ! (Hﬂw))" Ay (@)™ Yy (w) > fs(w)]
1+ TK,s 1-— Ty,s
B 14+ 7K ,s(w) as(n-1) = 1 —7ys(w) ! =
X B | Ag(w)" M s(w) > fao(w) "

If the set of firms is fixed, then under independence intensive-margin misallocation gains from
complete removal of both wedges together are the same as the sum of removing one friction at a
time. This is not the case here, as can be seen in row 1 of Table 6. The reason is that frictions
are mutually correlated and also pairwise correlated with efficiency.

To analyze the nature of this complementarily, the following three rows of Table 6 show ag-
gregate responses as different correlations are removed. Looking first at removing the correlation
between wedges and plant efficiency, in both cases the intensive-margin effects are negligible,
in contrast to sizable effects along the extensive-margin. Both variety and extensive-margin
reallocation effects are typically an order of magnitude larger then intensive-margin effects.
Still, in both cases removing the correlation between wedges and plant efficiency is typically
welfare-enhancing.

However, this is not true of removing the correlation between wedges, displayed in row 6 of Table
6. Welfare falls as the correlation of capital and output wedges is removed. To understand this,
remember that this correlation is negative both in the data as well as in the selection-corrected
estimates. This means that firms with higher net capital frictions typically have lower output
frictions. If this correlation is removed, firms with a high output friction will on net be more

37 A possible explanation for the different correlations of output and capital wedges with efficiency might be that
they these wedges reflect distortions from different markets. For instance, capital wedges might reflect financial
frictions that primarily distort small firms. In contrast, output wedges might result from large and efficient firms
facing extortionary demands by local public officials.
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distorted. The table shows that this worsening misallocation shows up along both intensive-
and extensive-margins. Therefore, row 6 underlines the importance of taking into account
the correlation among wedges as frictions are removed. This also explains why removing only
output or capital frictions yields considerably smaller gains than reducing both frictions together.
Removing, for instance, the output distortion but leaving the capital wedge in place not only
gets rid of this output friction, but also removes the offsetting effect og the output friction on the
capital wedge. Without this offset, misallocation will be made worse. These types of surprising
effects are well known in the theoretical literature on Second Best paths of reform, since Lipsey
and Lancaster (1957).

5.4 Welfare Effects from Partial Reform

The last two columns of Table 6 address the issue of partial reform more directly. In these
cases I reduce the dispersion of both wedges by one-third instead of fully removing all frictions.
The reduction in the dispersion of micro-frictions is chosen conservatively, in order to leave a
lot of room for the possibility that much of the cross sectional dispersion of marginal revenue
products reflects unknown heterogeneity unrelated to policy distortions. Despite this, the welfare
effects of partial reform are still sizable, and driven mostly by improved allocational efficiency
along both the intensive and the extensive-margin. Note that compared to TFP gains from
the intensive-margin alone, extensive-margin gains add another 60% to 100%. Returning to the
topic of complementarity of reform, it is instructive to compare TFP gains from the partial
reform experiments to reform cases in row 2 and 3. Partial reform that addresses both frictions
at the same time still dominates fully removing only one friction at a time.

5.5 Decomposing Selection-Effects: Zombies and Residual
Extensive-Margin Reallocation

As outlined in section 2.5, it is instructive to further decompose the selection effect estimated
in the previous section into effects of the retention of Zombies versus the premature exit of
Shadows. Table 7 shows that the TFP loss due to Zombie retention is many times larger
than the extensive-margin misallocation effect. The latter effect is smaller due to the residual
extensive-margin reallocation effect: as Shadows exit their resources are reallocated to Zombies
but also to Always Survivors. In the estimated model, gains from reallocating production to
these Always Survivors outweights the loss from more production at Zombie firms. Therefore
the residual extensive-margin reallocation effect actually increases aggregate TFP, although by
less than the Zombie effect.

Figures 29 to 32 provide some insight into the relation between identified Zombies in the
data and estimates of the sectoral TFP effects. The first three graphs show the firm share of
Zombies on the x-axis. This is defined as the log of the fraction of all establishments in the
sector, identified as Zombie plants. As Figure 29 shows, this measure is strongly positively
correlated with the log market share of all Zombie firms in the sector. Figures 30 and 31 display
the relation of estimated TFP losses along specific margins versus the firm share of Zombies.



MISALLOCATION AND SELECTION 35

Table 7: Decomposition of Extensive-Margin TFP Effects

Aggregate Effects

Reform Experiment EM/Selection Zombie Effects Residual EM-Reallocation

Complete Reform 44.34% 134.34% —38.40%

Notes: Percentage changes are expressed with current real TFP as base. Let TFPy be TFP before
removal of distortions and TFP; TFP after the removal of distortions. The colums display then

100 - (TFpl - 1).

TFP,

Not surprisingly, the Zombie effect increases in the firm share of Zombies. As Zombie firms
steal more business from non-Zombies, their drag on sectoral productivity becomes stronger.
However, in contrast to this straightforward implication of the model, figure 31 shows that
intensive-margin misallocation losses are typically lower for sectors with many Zombie firms.
The reason for this seems to be related to Figure 32. This graph plots the firm share of Zombies
against the dispersion of micro-frictions within a sector, and demonstrates that these typically
are negatively related. In short, the dispersion of micro-frictions as a measure of misallocation

is more useful for capturing intensive-margin than extensive-margin misallocation.

6 Conclusion

This paper argues that there is more to micro-distortions than meets the eye of existing
empirical studies on intra-industry misallocation. My results are important for both — the
diagnosis of the extent of misallocation, as well as the treatment of productivity slumps induced
by micro-distortions.

Two issues seem to be of first-order importance in future research. First, in the presence
of large temporary shocks there are likely to be dynamic costs of micro-distortions as small
firms with high growth potential possibly exit. Note that this mechanism requires frictions in
addition to the ones analyzed in this paper. The reason for the need of additional frictions is
that these high potential firms could smooth adverse temporary shocks with credit. If this would
be the case, temporary shocks could be ignored, as done in this study. Otherwise, there might
be large additional welfare losses through the premature exit of currently small firms with high
productivity growth potential. Second, more information on the particular sources of micro-
distortions is important in order to evaluate additional implementation costs of reform. This
will likely require more theoretical work on the types of frictions that map into the firm-level
wedges calculated in this paper, as well as better data on quantifiable costs of constraints that

firms face.
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Appendix A: Dynamics

The estimation strategy in the main text follows the assumption that establishment level
heterogeneity is well characterized by a model of permanent level differences. I am motivated
to pursue this approach by the literature on establishment size dynamics such as Baily et al.
(1992) and more recently Klette and Raknerud (2005), who find that permanent level differences
are crucial to understand the cross sectional heterogeneity of firm level TFP measures. In
the literature on measurement of micro-distortions, studies such as Song and Wu (2011) and
Midrigan and Xu (2009) suggest that the cross sectional dispersion of TFPR is not well captured
by adjustment frictions, temporary shocks or measurement error.

To evaluate whether their findings hold up in my data as well, I estimate a Panel VAR of
TFPR and TFPQ. The crucial feature of this approach is that I can remove time invariant
plant fixed effects and estimate the degree of persistence once these fixed effects are taken out.
As is well known simple time-differencing leads to inconsistent estimates due to the mixture of
AR and fixed effects components. I therefore follow Holtz-Eakin, Newey and Rosen (1988) and
exploit the fact that lagged values of the dependent variables qualify as instruments. Table 8
reports the results from pooled regressions concentrating on firms that do not decide to exit.
Controlling for fixed effects, TFPR and TFPQ are not very persistent. The half lives of TFPR
and TFPQ shocks are below one year. This is illustrated in figures 33 to 36, which show impulse
responses to a one-standard deviation shock. The Cholesky decomposition of the shocks assumes
that TFPQ is ordered first so that TFPR does not have any contemporaneous impact on TFPQ.
As one can see temporary shocks usually have zero impact after 3 years. Note however that the
size of temporary TFPQ shocks is large. The size of a one standard deviation shock is 80% to
the level of TFPQ. TFPR shocks are significantly smaller, barely larger than 12%.

Table 8: Panel VAR

Contemporaneous Variable

Lagged Variable 1log TFPR,(w) log TFPQ,(w)

log TFPR, ;(w) 16842341 —.39260905
[.02711359] [.03944105]
log TFPQ, ;(w) .03228435 52007713
[.01645172] [.02496301]
Number of Obs. 28,087

Notes: Observations pooled by all 4 digit sectors
and conditioned on non-exiters.

I conclude from this evidence that permanent level differences will most likely dominate time-
averages of TFPR and TFPQ over the 6 year horizon of my data, due to the low persistence
of TFPR and TFPQ once fixed effects are controlled for. Large temporary shocks might be an
important additional margin of dynamic effects and is left for analysis in related research.
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Appendix B: Proofs

B.1: Proof of Proposition 1

Under free entry, the resource constraint implies

1
PY = —
1—7

wl (24)

with L = 1, one only needs to calculate the CES ideal price index

w
P=m—= 25
n (25)

1

where A = [f (AW)1 = 7(w))" ! - du(w)| """ Substituting the CES ideal price index in
equation (24) and setting P = 1 gives the result.

B.2: Derivation of (7)
Substituting for p(w)y(w) in (w) gives

M(w) = 717 (p(;))yn PY (26)

This is the profit used in (3). Further substitution of (2) lets me solve for A(w) and ﬁ(w)

wo-(=5) 2 (B ()" e

Substitute from equation (25) for P and from equation (24) for PY to arrive at (7)

B.3: Proof of Proposition 2

To derive the fix cost estimate I need to analyze factor demands of the monopolistic com-
petitors. Production-related factor demands are

R Kpa(w) = au 1 (w)p()

W Lpg(e) = (1= )= (1 = 1y (@)po(w)ys(@)

Fixed cost of operations require factor demand of

1 w 17 [+ mrs(w)R]
R-Kps(w) = as —— -k
Fs(w) =a 1+ 7k ,s(w) [1—(15} [ Qg

w 17 A4 s @)R]™
1—ag Qg y

w L) = (1= a) |

Measured factor demand is
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KM,S(W) = KP,S(W) + KF,S(W)

(28)
LM75(W) = ijs(w) + LF7S(OJ)
which implies for measured factor intensities
Qs wlyss(w)
d = R 29
o (et = 4 o) (29)

Survival condition IIs(w) > fs(w) combined with wLyss(w) implies

whara(w) > (1 - ay) (n[ v ] {“*K(“”R]F) (30)

1— oy Qg

Combining (29) and (30) gives the bounds

B.4: Proof of Proposition 3

The estimation problem consists of two parts. First, a maximum likelihood problem of
fitting a truncated multivariate distribution to the data from surviving firms. Second, this MLE
problem is subject to an equilibrium constraint. In this derivation I proceed in three steps.
The first two steps will derive the likelihood function. The third will derive the equilibrium
constraint.

Step 1: Derivation of the log-likelthood

I slightly deviate from the exposition in the text and show the likelihood function in terms
of observables, rather then the calculated wedges. The first observable are sales or value added:

Dl(w) = ps(w)ys(w) (31)

In terms of underlying heterogeneity in the model, nominal output is determined by

log D1 () o (1= 1) s o 1+ 7)) + o (1) |+ 0= o)) @2)

The next observable is the composite input used by every firm. This is constructed from the
underlying factor demand for capital and labor.

Ds(w) = <RKS(”)>QS <wLS(”)>1_as (33)

s 1— o

In terms of underlying heterogeneity from the model, this is

g Dafe) o< (1~ D)log A.() — s log(1 + 7o)~ o (=) (60

The third data source are factor intensities across firms within an industry
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oo ;2 skt

this factor intensity should directly map into the net capital wedge

log Ds(w) = log(1 + 7ics()) (36)

These three data sources map into the three sources of heterogeneity through the mapping

log D1 (w) m=-1) -(n-1) —(n—1as log Ag(w)
log Da(w) | o |(n—1)  — —nay tog (=7 ) (37)
log D3(w) 0 0 1 log(1 + 7k s(w))

Therefore, it is straightforward to generate the distribution of these three data series as a
function of the two wedges and firm efficiency. Under trivariate log-normality, one gets

z(e

log D1 (). Jog Da(e).log Da(es)

log D1 (w) — 11 log Dy (w) — p1 (38)
1 1 _
=Y log (2m) + 5 1og(IZ]) = 5 | log Da(w) — iz | =7 | log Da(w) — prz
log D3(w) — i3 log D3(w) — 3

where p1, pa, us are the means of log D1 (w), log Da(w), log D3(w) as a function of the param-
eter vector 0, while X is the variance covariance matrix of these three data series in terms of the
theoretical parameters.

Step 2: Adjustment for noisy truncation

The key selection variable is defined in the trivariate case, similar to the bivariate case from
section 2:

log Z(w) = A(w) — m - |aslog(1 + 7k s(w)) + log (17_1}/8(00))] (39)

Now account for truncation noise, I add a zero mean iid error term that is also assumed to
be log-normal

log Z(w) = log Z(w) + e(w)

with e(w) ~ N(0,0.). The selection equation with this truncation noise can therefore be
written as

log Z(w) > log Z;
with the selection cutoff defined by

_ 1 PyY,
logZleogm—logPs—i-m[aslog (R)+(1—as)log< v )] —() log< )
Qg 1— oy n—1 nFs
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The probability of survival then can consequently be written as

Pr(Ils(w) = fs(w))
= Pr <log Z(w) > log ZJ)
=1—®(z;(0,1og Py))

Hence, the log likelihood should be adjusted by adding the factor log[1 — ® (z;(0,log Ps))]
to adjust for truncation. Furthermore the estimation problem will also maximize over the
parameter o, to account for noise in the truncation threshold.

Step 3: Derivation of the Equilibrium Constraint
The equilibrium constraint is basically the equilibrium CES price index, which in the full

model can be written as
R Qg 1—ag 3 1
(2] ()
S S

where

1

. Qtmea@)® ', o dml) )T
AS_</HS(W)Zfs(w)|: L—7v,s(w) ] A) us(Hs(W)>fs(w))>

The key integral to evaluate this expression is

/Hs(w)Zfs(w) [(1 . TKS(W))%] - Ag(w)" dprs (w) (41)

1-— TY s (w)

In order to avoid MC-integration and be able to use derivative based optimization methods,

I exploit the following result that will generate a smooth and differentiable form for integral
(41).

Lemma 1 (Lien and Balakrishnan (2006))

Let X and Z be two jointly log-normally distributed random variables. Define the
multiplicative constraint by the set

. Jrif xe 2 <K (42)
{abK} = 0 if else

Then it follows that

1
E [XmZ” . 1{a7b7K}] = exp {mux +nuz + 3 (m2072n + n2ag + anax,z)}

4
log K — (apx +buz) — [amo% + (bm + an)ox z + bno?] (43)

\/a20§( + b%20% + 2abox z

x P

where ®(.) is the cdf of a standard normal.
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Lemma 2

Let X1, X5, X3 be three jointly log-normally distributed random variables. Define
the multiplicative constraint by the set

1if XD x2xP <k
Loy = 0 if else (44)

Then it follows that

E [XTXSX:Q ' 1{61,62,637K}} =E[X 2% 110011

1 log K — pz — [ox,z + co’
:exp{MX+C“Z+2(Ug(—i-CQJ%—i—CUX’Z)}-<I>< g nz [X,Z Z]>

oz
(45)
where ®(.) is the cdf of a standard normal and X and Z are defined by
log X = alog X1 + blog X, (46)
log Z = p1log X1 + P2 log Xo + B3 log X3
and the coefficients a, b, ¢ are given by
[ [ l
a:m_ﬂlivb:n_ﬂ27vc (47)

B3 B’ Bs

Proof: apply mapping (46) and (47) to reduce the trivariate problem to the bivariate problem
of Lemma 1.

Lemma 2 can now directly be used to evaluate integral (41). For this note that we can map
this into the form required by the Lemma, by noting that

1
].OgX = alog(l + TK,S((A})) + blog <1—7')/78(u))>
- 1
log Z = —log Z = aymlog(l + 7k s(w)) + mlog <
with

a=as5b=1,c=—(n—-1) (48)

Evaluating the integral (41) and substituting into the price level equation (40) implies the
constraint displayed in the main text.

B.5: Recovering aggregate factor endowments

This section shows how endogenous entry and equilibrium conditions are used together to
recover sectoral factor endowments. I derive aggregate sectoral factor demands and show how
these are related to estimated parameters.

Production-related aggregate factor demands are given by

as (1 —Tys
R Kps(w)d == (—25 ) py.
/Hs(w)>fs(w) Pos(w)djis () m <1+TK75> 8o

1—as _
o Lpdae) = 00— ) R,
I, (@) > £ (@) m
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where the aggregate wedges are given by

(1—7v.,) st(w)Zfs(w) As(w)ﬁ—l [1- TY,s (@) 1+ TK,S(W)}_DLS(H_I)dNS(w) (50)
—Ty,s) =
’ 1-7y,s(w) n-1
f s [As@) it | dis(w)
(1 + 7.5 fHS(w)Zfs(w) Ag(w)r -1 - Ty,s(w)]"7 - [1 + TK,S(W)]_QS(W_I)CZMS(W) (51)
TKs) =
a st(w)Zfs(w) As(w)r=1- 1 - TY,S(“))]?7 [+ TK,s (W)]_(1+a5(n_1))dﬂs (w)
Plant-level factor demand for fixed costs of operations is given by
11—« «
s 1 s R s
was(w):@_%)( w ) <[+TK(“)]> F,
’ 1— a4 g
1 w 17£¥5 [1 + T ((,U)]R Qg (52)
K s = Qg LRREE Fs
REfs(w) = o 1+ 7k ,s(w) (1—as> ( Qg )
Aggregation of these factor demands across establishments implies
R\ w 1mas TH]. s
Lrps=(1—-as)Js | — . F
wirn=-en (2)(25)  mwme s @
R\ w o\ T, (53)
K2,s
Kps = asJs | — ’ Fy
rir=e () (225) e re
where aggregate wedges related to fixed costs of operation are given by
THLS - / [1+ 7r s (w)]** dps (w)
Hs(w)zfs(w) (54)

nh—/ 1+ (@) ()
IIs (w) > fs(w)

Note that there is a simple relationship between aggregate capital and labor used for fixed
costs of operation.

Tna,swLF,s (55)

RKpy = 7

S

where the aggregate distortions between capital and labor for fixed costs of operation can

be written as
- TnQ s
T, = == 56
s (Tnl,s> ( )

This term summarizes the direct effect of capital wedge distortions of the exit margin on aggre-
gate relative factor demand.

Finally I need to recover the resources spent on entry. The net present value of a firm in
Steady State is given by
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um:imﬁum>ﬁwﬁE@mwammhmw>mm} (57)

Aggregate valuations of entrants are

1— Ty,
Je,s‘/e,s = :

an—kmhwﬁumZﬁwﬂ

1— Ty, <R>QS < w )1_&5 Tf@ls
= : Pszs*Js - :
n O 1—as MS(HS(W)) > fs(w)

The free entry condition then implies:

Qs 1—as
‘/e s = <R> ( d ) Fe s (59)
’ Qg 1— oy '

which is used to calculate the factor demand by entrants. Therefore aggregate labor demand
for the purpose of sunk costs of entry is:

R Qs w 1—as
wLeSZ(l—Oés) — Fesdes
’ P 1— RS (60)
= (1 - O[s)Je,s‘/e,s

which recovers resources spent on entry cost labor. Similarily, capital demand to cover sunk
costs of entry is given by:

Qs

RK.s =

1—a, U)Le,s (61)

The aggregate factor demands for each sector are therefore given by

wls =wLps+ wLps+ whe g

(62)
RKS = RKP,S + RKF,S + RK@,S

Aggregate factor endowments are then calculated as L = Zle Ls;and K = Zle K.

B.6: Multi-Sector General Equilibrium

This section defines the multi-sector general equilibrium used to generate counterfactual exit
thresholds. In the counterfactual exercises I assume that aggregate factor endowments L, K are
fixed to separate misallocation effects from any multiplier effects due to capital accumulation.
Note that actual welfare improvements can therefore be expected larger than the pure TFP
effects I calculate.

A multi-sector equilibrium in the economy with micro-distortions consists of a set of variables
S

for each sector {PS, les, (1 —7vs), (1 + Tr.s), Tras, PsYs, ls} and the economy wide relative
s=1
factor price g and the numeraire w = 1 such that

1. The sectoral ideal CES price index is given by (40) for each sector s =1, ..., S.

2. Steady state turnover of firms is given by (23) for each sector s =1, ..., S.
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3. The sectoral aggregate output wedge is given by (50) for each sector s =1, ..., S.
4. The sectoral aggregate capital wedge is given by (51) for each sector s =1, ..., S.
5. The sectoral exit capital wedge is given by (56) for each sector s =1, ..., S.

6. Sectoral share of labor in total employment is given by

(1 = as)(1 = Tv,s)&s

ls = (63)
T ) - s
for each sector s =1, ..., S.
7. Sectoral spending is given by
L
JER— (64)
Dot (L= as)(1 = Tys)&s
for each sector s =1, ..., S.
8. Economy-wide factor markets clear
R Zle(l - 7_—Y,s)gsO‘s {% <1+7}'K s) + T/{a,s(l - le,s) + le,s} ( )
g i 65

w 255:1(1 —a) (1 — 7__Y,S)Es

where aggregate endowments L, K are given. That is, it is a system of S x 7 + 1 variables in as
many equations. In the empirical application in Indonesia with S = 40 these are 281 variables
in 281 nonlinear equations.

B.6: Proof of Proposition 5

Here I derive the aggregate TFP formula. Combine both aggregate factor demand for pro-
duction in equation (49) to get

R\ 1-as 147 Qs
PsYs:'r‘n< > ( 2 ) [( + 7o) }K;;;L};gs (66)

Qg 1— oy 1—"Tys

Now divide both sides by PsK® L1~ and substitute for Ps with equation (40). What is

left is to substitute KIQS as well as 222 For this, combine (49) and (62).

Ls




62 MU-JEUNG YANG

Appendix C: Endogenous Markups

The main part of the paper follows Hsieh and Klenow (2009) in modeling plant-level distor-
tions as taxes as opposed to markups. But as pointed out by Peters (2011) markup differences
potentially show up in TFPR dispersion. To quantify the degree in which endogenous markups
could drive results I follow Atkenson and Burstein (2008). They point out that if one drops the
assumption that monopolistic competitors within sectors take the CES price index as given, it is
possible to generate endogenous markups with CES preferences. Atkenson and Burstein (2008)
show that the pricing decision of firms can be written as

ps(w) _ Es (w)

T w1 e

where mcs(w) = ﬁ -BsR®w!'~% is the marginal cost of a firm and the elasticity of substitution
is given by
1 -1
es(w) = 5(1 — s55(w)) + 55(w)

where ss(w) is the market share of firm w in its 4-digit sector s. I keep the assumptions that
the elasticity of substitution across sectors is one and the within-sector elasticity of substitution
is 3. Note that these choices can generate large markup differences. At one extreme, as a firm
dominates its industry and ss(w) — 1 the markup will diverge toward infinity. Intuitively as
one firm dominates an industry, the relevant elasticity of substitution will be the cross-sectoral
elasticity of substitution of one. The monopolist realizes that his product is essential and charges
an infinite markup. On the other extreme, if the market share in sector s ss(w) — 0 the within
sectoral elasticity of substitution 7 is relevant. So the lower bound for the markup is 1.5.

With these assumptions in place it is possible to quantitatively evaluate to which degree
endogenous markup differences can drive TFPR dispersion in the data. Suppose endogenous
markups would be the only source of micro-distortions. Then measured TFPR in a model
without fixed costs is

Ps(w)ys(w) _ es(w)
K(w)®s Lg(w)l=as  g4(w) — 1

For each 4 digit sector I calculate the market shares ss(w) and generate markups according
to the Atkenson-Burstein formula. Additionally I calculate Herfindahl-Hirshman concentration
indices to contrast markup dispersion with industry concentration. Figure 37 shows the results
of this exercise. As one would expect endogenous markups would lead markup dispersions to
increase the more concentrated the industry is. However, endogenous markup dispersion is
not able to generate any quantitatively significant amount of TFPR dispersion. The maximum
dispersion of TFPR generated by endogenous markups is below 0.1 and most sectors are well
below 0.05. This point reinforced by figure 38, which plots the observed TFPR dispersion against
the log Herfindahl index, by 4 digit sector. Note that the actual TFPR dispersion is typically
an order of magnitude larger than suggested by the Aktenson-Burstein calculations. There is
indeed a positive relation between industry concentration and TFPR dispersion in the data, but
it seems very weak at best.

TFPRs(w) = - ByR% '™
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Figure 37: Standard deviation of log-markups predicted by Atkenson-Burstein framework versus
log Herfindahl indices. Each data point is one ISIC Rev.2, 4 digit sector.
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Figure 38: Standard deviation of log TFPR vs log Herfindahl indices. Each data point is one
ISIC Rev.2, 4 digit sector.
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Appendix D: Heterogeneity in Fixed Costs

In this appendix I analyze how the presence of heterogeneity in fixed costs across firms could
impact the measurement of TFPR and TFPQ. I will proceed in three steps. First, I derive
bounds on the maximum possible differences in measured TFPR with heterogeneity in fixed
costs. Second I quantitatively illustrate how much TFPR dispersion can be generated in a model
that only has firm heterogeneity in efficiency and fixed costs. Third, I re-introduce heterogeneity
in micro-distortions and analyze the quantitative impact of fixed cost heterogeneity on TFPR
measurement.

The model of firm level heterogeneity in productivity is as follows. As in the main text,
monopolistic competitors solve

max [I(w) = p(w)y(w) — wL(w)
L(w)
s.th. y(w) = A(w)L(w)

o) - [ 4] 7 p

Optimal exit decisions are given by

I(w) > w- F(w)
F(w) = F - exp {or - e(w)}
with e(w) Standard-Normal

Then rewriting this optimal survival condition implies that

1

513(“))9(“) > wk(w)
This imposes a bound on maximum fixed costs: wFyqy = %p(w)y(w). The intuition for this
result is straightforward. If fixed costs are too large relative to profits, firms optimally decide
to exit. Firms with very large fixed costs will therefore not be observed in the data. Measured
TFPR with this maximum possible fixed cost is:

L e pwy)
TEPIAD) = T ) + Fr) 2] ol ~ |
m n

On the other hand TFPR with minimum possible fixed costs is:

pyw)  pwylw)
TFPRo(w) = wly(w)+0 ey

Hence the maximum possible variation in measured TFPR from fixed costs is between 1 and
% or 1.5 with n = 3. Now to quantify how strong these bounds are, take op = 4. This
implies that the 95-5 percentile ratio is 8.8861 - 10°! Furthermore let me assume that o4 = 1.4
which is comparable with the mean TFPQ dispersion I estimate from the data. The observable
standard deviation of log TFPR is 0.12, while the covariance of TFPR and TFPQ is 0.04. A
model with only fixed cost heterogeneity does not seem to be able to generate TFPR dispersion
quantitatively comparable to the data. What is more, Figure 39 shows that the correlation
patterns of TFPR and TFPQ implied by this type of model are very different from the ones in

the data.
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How strongly does heterogeneity in fixed cost affect the measurement of TFPR and TFPQ?
To investigate this question I set o = 1, 04 = 1.4 and o, = 0.9. Figure 40 shows that this
introduces a lot of noise around the survival line. However, the impact on measured TFPR and
TFPQ is limited. The standard deviation of log TFPR ideally measured is 0.71, the covariance of
TFPR and TFPQ is 0.59 and the standard deviation of log TFPQ is 1.08. In contrast measures
of TFPR and TFPQ ignoring fixed cost heterogeneity are: 0.69 for the standard deviation of
log TFPR, 0.62 for the covariance of TFPR and TFPQ and 1.14 for the standard deviation of

log TFPQ. 0.45.
- \ * Hetergeneity in Fixed Costs\

0.05r
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Figure 39: Measured TFPR and TFPQ with 04 = 1.4 and op =4
1r *

o Common Fixed Costs
0.571 * Heterogeneity in Fixed Costs
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Figure 40: Measured TFPR and TFPQ with 04 = 1.4, 0 = 0.9 and o = 1.
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Appendix E: Impact of International Trade on Distortion and
Efficiency Measures

This appendix quantitatively illustrates the impact of international trade on the measure-
ment of micro level frictions and efficiency in a multi-country general equilibrium model. There
are two reasons why one might be interested in the impact of international trade on measure-
ment of frictions. First, as pointed out by Melitz (2003), changes in international trade induce
re-allocation effects across firms. As trade frictions fall, the most productive firms should be
expected to expand, while the least productive firms should contract. This impacts measured
dispersions of firm sizes. Second, if the export decision involves a fixed cost of operation then
very productive firms will have higher fixed cost of operations. These will show up in measured
factor demands. Since the measurement of firm level distortions and efficiency rely on sales and
factor demand, variations in aggregate trade frictions can impact the distortions measurement
conducted in this paper.

Let there be N countries with ¢ = 1,...N indexing the source country and j = 1,.., N the
destination country. Each country’s aggregate production is given by

N
min BY; — Z /pij(w)yij(w) 'dﬂj(w)
j=1

Yij (W)

n

n—1

N
subject to: Y; = Z/yzg(w)n”l ~dpj(w)
j=1

Within each country, there exists a continuum of monopolistically competitive firms. These
firms differ by their level of technology and micro-distortions as in the main part of the paper.

N N

{Lm,-j%f)} - I (w) = ;[(1 — 7(w))pij(W)yij(w) — wjLij(w)]

1
subject to: y;;j(w) = d—A(w) - Ljj(w)
j
The joint distribution of firm level distortions and efficiency are allowed to differ by country and
assumed to be log-normal. Producers shipping goods from country j to country i are assumed

to face an iceberg trade frictions d;; > 1. A firm from country j decides to operate in market i
if gross profits are sufficient to cover fixed costs of operating in this market:

I (w) = fi
where f;; = w; - Fj; is the fixed cost of operation for firms from country j operating in country i.

In typical establishment level micro-data, value added and factor demand are not differentiated
by destination. Therefore measured value added and labor demand are

N
X (W) = pij @)y (@) - L, @)= 1)
=1
‘ N
D(w) =Y [Lijw) + Fyl - L, w)zr,)
=1

Exporters will directly have higher sales as they enter more markets, but will also have higher
fixed costs of operation as they enter these foreign markets.
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Parameter  Value Explanation
n 3 Elasticity of Substitution
Hsieh and Klenow (2009)
Fj; 1 Domestic Fixed Cost Workers
F;; 18 Export Fixed Cost Workers
Match 10% of firms export
F, 0 Entry Cost Workers
HMR (2008), Melitz-Ghironi (2008)
J 20000 Number of Latent Plants
d;j 3 Iceberg trade friction
Anderson and van Wincoop(2004)
LA [0.01, 1] mean country-level efficiency
A 1.2 dispersion of firm efficiencies
Orj 1 dispersion of micro-distortions

I calibrate this model with ten countries, which I assume differ by their level of efficiency.
Aggregate efficiency differences are assumed to be a factor of 2.5. Other parameters are explained
in the table. Iceberg trading frictions are assumed to add a factor of three to prices, which is
consistent with evidence from Anderson and Van Wincoop (2004). To quantify the impact of
trade on distortion measurement I proceed as follows. For a specific country with an average
technology level across countries I vary the trade friction. Specifically I start at 60% below the
average trade friction and increase iceberg costs to 160% of the average trade friction. This
has a dramatic impact on trade. I follow the trade literature and characterize the degree of
openness to trade using the internal trade share. It is defined as the value of domestic nominal
sales to all international sales to the country. Recently Arkolakis, Costinot and Rodriguez-Clare
(Forthcoming) have argued that this statistic is key in a class of constant-elasticity trade models
to evaluate the welfare gains from trade. The internal trade share in this exercise starts at 25%
and increases to a value of 80%. Thus, the country starts as a relatively open economy and
converges to a relatively closed one as I increase iceberg trading frictions.

As figures 41 and 42 document, the impact on measures of TFPR and TFPQ dispersion
is modest. As one would expect, lower trade frictions increase the dispersion of TFPQ due to
Melitz-type reallocation effects. This is compatible with the conjecture of Hsieh and Klenow
(2009) that international trade would primarily show up in TFPQ. One notable feature is that
measured TFPR dispersions fall as there is more trade.

The results of this exercise are not much changed if instead of a middle income country I
choose the same calibration with a low income or a high income country. In each case measured
TFPR and TFPQ dispersions are affected by international trade. But the quantitative impact
is never more than 0.1 log points in the standard deviation of either log TFPR or log TFPQ.
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Figure 41: Impact of changes in trade friction on measured TFPR dispersion. Measured TFPR
dispersion is defined as standard deviation of log TFPR. Plot is based on a ten country trade
model with trade frictions and differences in mean productivity across countries.
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Figure 42: Impact of changes in trade friction on measured TFPQ dispersion. Measured TFPQ
dispersion is defined as standard deviation of log TFPQ. Plot is based on a ten country trade
model with trade frictions and differences in mean productivity across countries.
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