Identification of the long-run β structure

A graduate course in the Cointegrated VAR model: Special topics in Rome

Katarina Juselius
University of Copenhagen

November 2011

Identification when data are nonstationary

Two different identification problems: identification of the long-run structure (i.e., of the cointegration relations) and identification of the short-run structure (i.e., of the equations of the system). The former is about imposing long-run economic structure on the unrestricted cointegration relations, the latter is about imposing short-run dynamic adjustment structure on the equations for the differenced process.

The (short-run) reduced-form representation:

$$
\begin{equation*}
\Delta x_{t}=\Gamma_{1} \Delta x_{t-1}+\alpha \beta^{\prime} x_{t-1}+\Phi D_{t}+\varepsilon_{t}, \quad \varepsilon_{t} \sim \operatorname{IN}(0, \Omega) \tag{1}
\end{equation*}
$$

and then pre-multiply (1) with a nonsingular $p \times p$ matrix A_{0} to obtain the so called (short-run) structural-form representation (2):

$$
\begin{equation*}
A_{0} \Delta x_{t}=A_{1} \Delta x_{t-1}+a \beta^{\prime} x_{t-1}+\tilde{\Phi} D_{t}+v_{t}, \quad v_{t} \sim \operatorname{IN}(0, \Sigma) \tag{2}
\end{equation*}
$$

where $\lambda_{R F}=\left\{\Gamma_{1}, \alpha, \beta, \Phi, \Omega\right\}$ and $\lambda_{S F}=\left\{A_{0}, A_{1}, a, \beta, \tilde{\Phi}, \Sigma\right\}$ are unrestricted.

To distinguish between parameters of the long-run and the short-run structure, we partition $\lambda_{R F}=\left\{\lambda_{R F}^{S}, \lambda_{R F}^{L}\right\}$, where $\lambda_{R F}^{S}=\left\{\Gamma_{1}, \alpha, \Phi, \Omega\right\}$ and $\lambda_{R F}^{L}=\{\beta\}$ and $\lambda_{S F}=\left\{\lambda_{S F}^{S}, \lambda_{S F}^{L}\right\}$, where $\lambda_{S F}^{S}=\left\{A_{0}, A_{1}, a, \tilde{\Phi}, \Sigma\right\}$ and $\lambda_{S F}^{L}=\{\beta\}$. The relation between $\lambda_{R F}^{S}$ and $\lambda_{S F}^{S}$ is given by:

$$
\Gamma_{1}=A_{0}^{-1} A_{1}, \alpha=A_{0}^{-1} a, \varepsilon_{t}=A_{0}^{-1} v_{t}, \quad \Phi=A_{0}^{-1} \tilde{\Phi}, \Omega=A_{0}^{-1} \Sigma A_{0}^{\prime-1}
$$

The short-run parameters of the reduced form, $\lambda_{R F}^{S}$, are uniquely defined, whereas those of the structural form, $\lambda_{S F}^{S}$, are not, without imposing $p(p-1)$ just-identifying restrictions. The long-run parameters β are uniquely defined based on the normalization of the eigenvalue problem. This need not coincide with an economic identification, and in general we need to impose $r(r-1)$ just-identifying restrictions on β. Because the long-run parameters remain unaltered under linear transformations of the VAR model, β is the same both in both forms and identification of the long-run structure can be done based on either the reduced form or the structural form.

Three aspects of identification

- generic (formal) identification, which is related to a statistical model
- empirical (statistical) identification, which is related to the actual estimated parameter values, and
- economic identification, which is related to the economic interpretability of the estimated coefficients of a formally and empirically identified model.

Identifying restrictions on all cointegration relations

As before, R_{i} denotes a $p 1 \times m_{i}$ restriction matrix and $H_{i}=R_{i \perp}$ a $p 1 \times s_{i}$ design matrix $\left(m_{i}+s_{i}=p 1\right)$ so that H_{i} is defined by $R_{i}^{\prime} H_{i}=0$. Thus, there are m_{i} restrictions and consequently s_{i} parameters to be estimated in the i th relation. The cointegrating relations are assumed to satisfy the restrictions $R_{i}^{\prime} \beta_{i}=0$, or equivalently $\beta_{i}=H_{i} \varphi_{i}$ for some s_{i}-vector φ_{i}, that is

$$
\begin{equation*}
\beta=\left(H_{1} \varphi_{1}, \ldots, H_{r} \varphi_{r}\right) \tag{3}
\end{equation*}
$$

The linear restrictions do not specify a normalization of the vectors β_{i}. The rank condition requires that the first cointegration relation, for example, is identified if

$$
\begin{equation*}
\operatorname{rank}\left(R_{1}^{\prime} \beta_{1}, \ldots, R_{1}^{\prime} \beta_{r}\right)=\operatorname{rank}\left(R_{1}^{\prime} H_{1} \varphi_{1}, \ldots, R_{1}^{\prime} H_{r} \varphi_{r}\right)=r-1 \tag{4}
\end{equation*}
$$

This implies that no linear combination of $\beta_{2}, \ldots, \beta_{r}$ can produce a vector that "looks like" the coefficients of the first relation

Formulation of identifying hypotheses and identification rank conditions

$$
\left[\begin{array}{ccccc}
\beta_{11}^{c} & -\beta_{11}^{c} & 0 & \beta_{12}^{c} & -\beta_{12}^{c} \tag{5}\\
0 & \beta_{21}^{c} & \beta_{22}^{c} & 0 & \beta_{23}^{c} \\
0 & 0 & 0 & \beta_{31}^{c} & \beta_{32}^{c}
\end{array}\right]\left[\begin{array}{c}
m_{t}^{r} \\
y_{t}^{r} \\
\Delta p_{t} \\
R_{m, t} \\
R_{b, t}
\end{array}\right]
$$

The number of restrictions m_{i} and the number of free parameters s_{i} in each beta! The rank conditions are given by:

Relation	$R_{i . j}$	Relation	$R_{i . j k}$
1.2	3	1.23	3
1.3	1		
2.1	2	2.13	2
2.2	1		
3.1	1	3.12	3
3.2	2		

Normalization

The parameters $\left(\beta_{11}^{c}, \beta_{12}^{c}\right),\left(\beta_{21}^{c}, \beta_{22}^{c}, \beta_{23}^{c}\right)$ and $\left(\beta_{31}^{c}, \beta_{32}^{c}\right)$ are defined up to a factor of proportionality, and one can always normalize on one element in each vector without changing the likelihood:

$$
\left[\begin{array}{ccccc}
1 & -1 & 0 & \beta_{12}^{c} / \beta_{11}^{c} & -\beta_{12}^{c} / \beta_{11}^{c} \tag{6}\\
0 & 1 & \beta_{22}^{c} / \beta_{21}^{c} & 0 & \beta_{23}^{c} / \beta_{21}^{c} \\
0 & 0 & 0 & 1 & \beta_{32}^{c} / \beta_{31}^{c}
\end{array}\right]\left[\begin{array}{c}
m_{t}^{r} \\
y_{t}^{r} \\
\Delta p_{t} \\
R_{m, t} \\
R_{b, t}
\end{array}\right]
$$

When normalizing β_{i}^{c} by diving through with a non-zero element $\beta_{i j}^{c}$, the corresponding α_{i}^{c} vector is multiplied by the same element. Thus, normalization does not change $\Pi=\alpha_{i}^{c} \beta_{i}^{c \prime}=\alpha \beta^{\prime}$ and we can choose whether to normalize or not. However, when identifying restrictions have been imposed on the long-run structure, it is only possible to get standard errors of $\hat{\beta}_{i j}$ when each cointegration vector has been properly normalized.

Calculation of degrees of freedom

Given that the restrictions are identifying the degrees of freedom can be calculated from the following formula:

$$
v=\sum\left(m_{i}-(r-1)\right) .
$$

Consider the above example where s_{i} is the number of free coefficients in β_{i}^{c}, and $m_{i}=p-s_{i}$ the total number of restrictions on vector β_{i}^{c}. The degrees of freedom are calculated as:

s_{i}	$s_{1}=2$	$s_{2}=3$	$s_{3}=2$
m_{i}	$m_{1}=3$	$m_{2}=2$	$m_{3}=3$
$r-1$	2	2	2
$m_{i}-(r-1)$	1	0	1

so the degrees of freedom are $v=2$. Some restrictions may not be identifying (for example the same restriction on all cointegration relations), but are nevertheless testable restrictions.

Just-identifying restrictions

One can always transform the long-run matrix $\Pi=\alpha \beta^{\prime}$ by a nonsingular $r \times r$ matrix Q in the following way: $\Pi=\alpha Q Q^{-1} \beta^{\prime}=\tilde{\alpha} \tilde{\beta}^{\prime}$, where $\tilde{\alpha}=\alpha Q$ and $\tilde{\beta}=\beta Q^{\prime-1}$. We will now demonstrate how to choose the matrix Q so that it imposes $r-1$ just-identifying restrictions on each β_{i}. An example of a just identified long-run reduced form structure can be found as follows:

$$
\beta=\left[\begin{array}{ccc}
\beta_{11} & \beta_{12} & \beta_{13} \\
\beta_{21} & \beta_{22} & \beta_{23} \\
\beta_{31} & \beta_{32} & \beta_{33} \\
\cdots & \cdots & \cdots \\
\beta_{41} & \beta_{42} & \beta_{43} \\
\beta_{51} & \beta_{52} & \beta_{53}
\end{array}\right]=\left[\begin{array}{c}
\\
\beta_{1} \\
\ldots \\
\beta_{2}
\end{array}\right] ; \quad \beta_{1}^{-1}\left[\begin{array}{c}
\\
\beta_{1} \\
\ldots \\
\beta_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\cdots & \cdots & \cdots \\
\widetilde{\beta}_{41} & \widetilde{\beta}_{42} & \widetilde{\beta}_{43} \\
\widetilde{\beta}_{51} & \widetilde{\beta}_{52} & \widetilde{\beta}_{53}
\end{array}\right]
$$

We choose the design matrix $Q=\left[\beta_{1}\right]$ where β_{1} is a $(r \times r)$ nonsingular matrix defined by $\beta^{\prime}=\left[\beta_{1}, \beta_{2}\right]$. In this case $\alpha \beta^{\prime}=\alpha\left(\beta_{1} \beta_{1}^{-1 \prime} \beta^{\prime}\right)=\alpha[I, \tilde{\beta}]$ where I is the $(r \times r)$ unit matrix and $\tilde{\beta}=\beta_{1}^{-1 \prime} \beta_{2}$ is a $r \times(p-r)$ matrix of full rank.

The above example for $x_{t}=\left[x_{1 t}^{\prime}, x_{2 t}^{\prime}\right]^{\prime}$, where $x_{1 t}^{\prime}=\left[x_{1 t}, x_{2 t}, x_{3 t}\right]$ and $x_{2 t}^{\prime}=\left[x_{4 t}, x_{5 t}\right]$, would describe an economic application where the three variables in $x_{1 t}$ are 'endogenous' and the two in $x_{2 t}$ are 'exogenous'.
Furthermore, if we decompose $\alpha=\left[\begin{array}{l}\alpha_{1} \\ \alpha_{2}\end{array}\right]$ and $\alpha_{2}=0$, then $\beta^{\prime} x_{t}$ does not appear in the equation for $\Delta x_{1, t}$ and $x_{2, t}$ is weakly exogenous for β. In this case, efficient inference on the long-run relations can be conducted in the conditional model of $\Delta x_{1, t}$, given $\Delta x_{2, t}$. When 'endogenous' and 'exogenous' are given an economic interpretation this corresponds to the triangular representation suggested by Phillips (1990). Note that the latter requires that $\alpha_{2}=0$, which is a testable hypothesis.

		$\mathcal{H}_{S .1}$				$\mathcal{H}_{S .2}$		
	$\hat{\beta}_{1}$	$\hat{\beta}_{1}$	$\hat{\beta}_{3}$	$\hat{\beta}_{1}$	$\hat{\beta}_{2}$	$\hat{\beta}_{3}$		
m^{r}	$\mathbf{1 . 0}$	0.0	0.0	$\mathbf{1 . 0}$	0.0	0.0		
y^{r}	$-\mathbf{0 . 9 4}$	$\mathbf{0 . 0 4}$	$\mathbf{0 . 0 1}$	$-\mathbf{1 . 0}$	$\mathbf{0 . 0 3}$	$\mathbf{0 . 0 4}$		
	$[-6.55]$	$[3.24]$	$[2.06]$		$[3.81]$	$[4.80]$		
Δp	0.0	$\mathbf{1 . 0}$	0.0	0.0	$\mathbf{1 . 0}$	$\mathbf{1 . 0}$		
R_{m}	0.0	0.0	$\mathbf{1 . 0}$	-4.70	$-\mathbf{0 . 5 4}$	$\mathbf{0 . 3 2}$		
R_{b}	3.04	0.20	$-\mathbf{0 . 6 3}$	$[-1.44]$	$[-4.53]$	$[2.99]$		
	$[1.51]$	$[1.16]$	$[-7.03]$	$[2.40$	$\mathbf{0 . 5 4}$	0.0		
$D_{s} 831$	$-\mathbf{0 . 2 7}$	$\mathbf{0 . 0 1}$	$-\mathbf{0 . 0 1}$	$-\mathbf{0 . 2 4}$	$\mathbf{0 . 0 2}$	$\mathbf{0 . 0 1}$		
	$[-8.08]$	$[5.11]$	$[-5.12]$	$[-7.46]$	$[6.58]$	$[5.14]$		
	α_{1}	α_{2}	α_{3}	α_{1}	α_{2}	α_{3}		
Δm_{t}^{r}	$-\mathbf{0 . 2 2}$	$*$	$\mathbf{2 . 9 8}$	$-\mathbf{0 . 2 2}$	$-\mathbf{2 . 4 7}$	$*$		
Δy_{t}^{r}	0.05	$*$	$-\mathbf{1 . 8 4}$	0.05	$\mathbf{1 . 7 5}$	$-\mathbf{2 . 0 4}$		
$\Delta^{2} p_{t}$	$*$	$-\mathbf{0 . 8 2}$	$*$	$*$	$*$	$\mathbf{- 1 . 1 2}$		
$\Delta R_{m, t}$	$*$	$*$	-0.09	$*$	$\mathbf{0 . 1 2}$	-0.09		
$\Delta R_{b, t}$	$*$	$*$	0.13	$*$	$-\mathbf{0 . 1 5}$	$\mathbf{0 . 1 7}$		

Over-identifying restrictions

Consider the structure:

$$
\mathcal{H}_{S .3}: \beta=\left(H_{1} \varphi_{1}, H_{2} \varphi_{2}, H_{3} \varphi_{3}\right),
$$

where

$$
H_{1}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right], H_{2}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], H_{3}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0 \\
-1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Which are the β-relations?

	$\mathcal{H}_{S .3}$			$\mathcal{H}_{S .4}$		
	$\hat{\beta}_{1}$	$\hat{\beta}_{2}$	$\hat{\beta}_{3}$	$\hat{\beta}_{1}$	$\hat{\beta}_{2}$	$\hat{\beta}_{3}$
m^{r}	1.0	0.0	0.0	1.0	0.0	0.0
y^{r}	-1.0	$\begin{aligned} & 0.03 \\ & {[3.67]} \end{aligned}$	0.0	-1.0	$\begin{aligned} & \mathbf{0 . 0 3} \\ & {[4.07]} \end{aligned}$	0.0
Δp	0.0	1.0	$\underset{[-3.95]}{-\mathbf{0 . 2 0}}$	0	1.0	0.0
R_{m}	0.0	0.0	1.0	$\underset{[-5.70]}{\mathbf{1 3 . 2 7}}$	0.0	1.0
R_{b}	0.0	0.0	$\begin{array}{r} -\mathbf{0 . 8 0} \\ {[-15.65]} \end{array}$	$\begin{gathered} 13.27 \\ {[5.70]} \end{gathered}$	0.0	$\begin{aligned} & -\mathbf{0 . 8 1} \\ & {[-10.58]} \end{aligned}$
$D_{s} 831$	$\begin{array}{r} -0.34 \\ {[-13.60]} \end{array}$	$\begin{aligned} & 0.01 \\ & {[5.46]} \end{aligned}$	$\begin{array}{r} -\mathbf{0 . 0 1} \\ {[-10.67]} \end{array}$	$\begin{aligned} & -\mathbf{0 . 1 5} \\ & {[-5.19]} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{0 . 0 1} \\ & {[5.30]} \end{aligned}$	$\begin{aligned} & -\mathbf{0 . 0 1} \\ & {[-4.77]} \\ & \hline \end{aligned}$
	$\hat{\alpha}_{1}$	$\hat{\alpha}_{2}$	$\hat{\alpha}_{3}$	$\hat{\alpha}_{1}$	$\hat{\alpha}_{2}$	$\hat{\alpha}_{3}$
Δm_{t}^{r}	$\begin{aligned} & -\mathbf{0 . 2 1} \\ & {[-4.74]} \end{aligned}$	*	$\begin{aligned} & 3.38 \\ & {[3.21]} \end{aligned}$	$\frac{0.23}{[-4.89]}$	*	*
Δy_{t}^{r}	$\begin{aligned} & 0.06 \\ & {[2.27]} \end{aligned}$	$\begin{aligned} & -0.44 \\ & {[-1.59]} \end{aligned}$	$\underset{[-2.21]}{-1.40}$	$\begin{aligned} & 0.05 \\ & {[1.84]} \end{aligned}$	*	*
$\Delta^{2} p_{t}$	*	$\begin{aligned} & -\mathbf{0 . 8 4} \\ & {[-5.33]} \end{aligned}$	*	*	$\begin{aligned} & -\mathbf{0 . 7 9} \\ & {[-5.39]} \end{aligned}$	*
$\Delta R_{m, t}$	*		$\begin{aligned} & -0.07 \\ & {[-1.54]} \end{aligned}$	*	$\begin{aligned} & 0.03 \\ & {[1.77]} \end{aligned}$	$\begin{gathered} -\mathbf{0 . 0 8} \\ {[-2.29]} \end{gathered}$

Table: The rank conditions for identifiction

$r_{i . j}$	$\mathcal{H}_{S .3}$	$\mathcal{H}_{S .4}$	$r_{i . j g}$	$\mathcal{H}_{S .3}$	$\mathcal{H}_{S .4}$
1.2	2	2	1.23	4	3
1.3	2	1			
2.1	1	2	2.13	3	3
2.3	2	2			
3.1	1	1	3.12	3	3
3.2	2	2			

The degrees of freedom in the test of overidentifying restrictions are given by $v=\Sigma_{i}\left(m_{i}-r+1\right)$, where m_{i} is the number of restrictions on β_{i}. The degrees of freedom for $\mathcal{H}_{s .3}$ are calculated as:

$$
v=\sum_{i=1}^{r} m_{i}-(r-1)=(4-2)+(3-2)+(3-2)=2+1+1=4
$$

The corresponding LR test statistic became $\chi^{2}(4)=4.05$ with a p-value of 0.40 , so the structure can be accepted.
The degrees of freedom of the hypothesis $\mathcal{H}_{S .4}$ are calculated as:

$$
v=\sum_{i=1}^{r} m_{i}-(r-1)=(3-2)+(3-2)+(3-2)=3 .
$$

The test statistic became $\chi^{2}(3)=2.84$ with a p-value of 0.42 . Thus, both $\mathcal{H}_{S .3}$ and $\mathcal{H}_{S .4}$ are acceptable long-run structures with almost the same p-value. Which one should be chosen?

Lack of identification

	$\mathcal{H}_{S .5}$			$\mathcal{H}_{s .6}$		
	$\hat{\beta}_{1}$	$\hat{\beta}_{2}$	$\hat{\beta}_{3}$	$\hat{\beta}_{1}$	$\hat{\beta}_{2}$	$\hat{\beta}_{3}$
m^{r}	1.0	0.0	0.0	1.0	0.0	0.0
y^{r}	$\underset{[-8.56]}{-\mathbf{0 . 8 2}}$	0.0	0.0	-1.0	0.0	$\begin{aligned} & 0.04 \\ & {[N A]} \end{aligned}$
Δp	0.0	1.0	0.0	0.0	0.0	1.0
R_{m}	$\underset{[-7.74]}{\mathbf{2 4 . 4 0}}$	$\begin{aligned} & 1.26 \\ & {[N A]} \end{aligned}$	1.0	0.0	1.0	$\begin{aligned} & 1.59 \\ & {[N A]} \end{aligned}$
R_{b}	$\begin{gathered} 24.40 \\ {[7.74]} \end{gathered}$	$\underset{[N A]}{-1.35}$	$\begin{gathered} -\mathbf{0 . 8 1} \\ {[-11.83]} \end{gathered}$	0.0	$\begin{array}{r} -\mathbf{0 . 8 9} \\ {[-13.65]} \end{array}$	$\begin{gathered} -1.09 \\ {[N A]} \end{gathered}$
$D_{s} 831$	$\begin{gathered} -0.04 \\ {[-0.93]} \end{gathered}$	$\begin{aligned} & 0.00 \\ & {[\text { NA }]} \end{aligned}$	$\begin{array}{r} -\mathbf{0 . 0 1} \\ {[-5.11]} \end{array}$	$\begin{array}{r} -0.34 \\ {[-13.54]} \end{array}$	$\underset{[-6.09]}{-\mathbf{0 . 0 1}}$	$\begin{aligned} & 0.00 \\ & {[N A]} \end{aligned}$
	$\hat{\alpha}_{1}$	$\hat{\alpha}_{2}$	$\hat{\alpha}_{3}$	$\hat{\alpha}_{1}$	$\hat{\alpha}_{2}$	$\hat{\alpha}_{3}$
Δm_{t}^{r}	$\begin{aligned} & -0.24 \\ & {[-4.95]} \end{aligned}$	*	$\frac{-2.47}{[-2.11]}$	$\frac{\mathbf{0 . 2 2}}{[-4.91]}$	$\begin{aligned} & 4.02 \\ & {[3.47]} \end{aligned}$	*
Δy_{t}^{r}	*	*	*	$\begin{aligned} & 0.05 \\ & {[1.78]} \end{aligned}$	*	*
$\Delta^{2} p_{t}$	*	$\underset{[-5.02]}{-\mathbf{0 . 7 0}}$	$\begin{gathered} 0.77 \\ {[1.86]} \end{gathered}$	*	$\begin{aligned} & 0.84 \\ & {[2.09]} \end{aligned}$	$\underset{[-5.50]}{-\mathbf{0 . 8 1}}$
$\Delta R_{m, t}$	*	$\begin{aligned} & 0.03 \\ & {[1.83]} \end{aligned}$	$\underset{[-3.17]}{-\mathbf{0 . 1 6}}$	*	*	*
$\Delta R_{b, t}$	*	*	0.12	*	*	㫧

Table: The rank conditions for identifiction

$r_{i . j}$	$\mathcal{H}_{S .5}$	$\mathcal{H}_{S .6}$	$r_{i . j g}$	$\mathcal{H}_{S .5}$	$\mathcal{H}_{S .6}$
1.2	2	2	1.23	2	4
1.3	1	4			
2.1	2	1	2.13	2	3
2.3	0	2			
3.1	2	1	3.12	3	1
3.2	1	0			

