Identification of the long-run β structure A graduate course in the Cointegrated VAR model: Special topics in Rome

Katarina Juselius

University of Copenhagen

November 2011

Two different identification problems: identification of the long-run structure (i.e., of the cointegration relations) and identification of the short-run structure (i.e., of the equations of the system). The former is about imposing long-run economic structure on the unrestricted cointegration relations, the latter is about imposing short-run dynamic adjustment structure on the equations for the differenced process.

The (short-run) reduced-form representation:

$$\Delta x_t = \Gamma_1 \Delta x_{t-1} + \alpha \beta' x_{t-1} + \Phi D_t + \varepsilon_t, \quad \varepsilon_t \sim IN(0, \Omega)$$
(1)

and then pre-multiply (1) with a nonsingular $p \times p$ matrix A_0 to obtain the so called (short-run) structural-form representation (2):

$$A_0\Delta x_t = A_1\Delta x_{t-1} + a\beta' x_{t-1} + \tilde{\Phi}D_t + v_t, \quad v_t \sim IN(0, \Sigma).$$
(2)

where $\lambda_{RF} = \{\Gamma_1, \alpha, \beta, \Phi, \Omega\}$ and $\lambda_{SF} = \{A_0, A_1, a, \beta, \tilde{\Phi}, \Sigma\}$ are unrestricted.

To distinguish between parameters of the long-run and the short-run structure, we partition $\lambda_{RF} = \{\lambda_{RF}^S, \lambda_{RF}^L\}$, where $\lambda_{RF}^S = \{\Gamma_1, \alpha, \Phi, \Omega\}$ and $\lambda_{RF}^L = \{\beta\}$ and $\lambda_{SF} = \{\lambda_{SF}^S, \lambda_{SF}^L\}$, where $\lambda_{SF}^S = \{A_0, A_1, a, \tilde{\Phi}, \Sigma\}$ and $\lambda_{SF}^L = \{\beta\}$. The relation between λ_{RF}^S and λ_{SF}^S is given by:

$$\Gamma_1 = A_0^{-1} A_1$$
, $\alpha = A_0^{-1} a$, $\varepsilon_t = A_0^{-1} v_t$, $\Phi = A_0^{-1} \tilde{\Phi}$, $\Omega = A_0^{-1} \Sigma A_0'^{-1}$

The short-run parameters of the reduced form, λ_{RF}^{S} , are uniquely defined, whereas those of the structural form, λ_{SF}^{S} , are not, without imposing p(p-1) just-identifying restrictions. The long-run parameters β are uniquely defined based on the normalization of the eigenvalue problem. This need not coincide with an economic identification, and in general we need to impose r(r-1) just-identifying restrictions on β . Because the long-run parameters remain unaltered under linear transformations of the VAR model, β is the same both in both forms and identification of the long-run structure can be done based on either the reduced form or the structural form.

- generic (formal) identification, which is related to a statistical model
- empirical (statistical) identification, which is related to the actual estimated parameter values, and
- economic identification, which is related to the economic interpretability of the estimated coefficients of a formally and empirically identified model.

Identifying restrictions on all cointegration relations

As before, R_i denotes a $p1 \times m_i$ restriction matrix and $H_i = R_{i\perp}$ a $p1 \times s_i$ design matrix $(m_i + s_i = p1)$ so that H_i is defined by $R'_i H_i = 0$. Thus, there are m_i restrictions and consequently s_i parameters to be estimated in the *i* th relation. The cointegrating relations are assumed to satisfy the restrictions $R'_i\beta_i = 0$, or equivalently $\beta_i = H_i\varphi_i$ for some s_i -vector φ_i , that is

$$\beta = (H_1 \varphi_1, ..., H_r \varphi_r), \tag{3}$$

The linear restrictions do not specify a normalization of the vectors β_i . The rank condition requires that the first cointegration relation, for example, is identified if

$${\rm rank}(R_1'\beta_1,...,R_1'\beta_r)={\rm rank}(R_1'H_1\varphi_1,...,R_1'H_r\varphi_r)=r-1. \tag{4}$$

This implies that no linear combination of $\beta_2, ..., \beta_r$ can produce a vector that "looks like" the coefficients of the first relation

Formulation of identifying hypotheses and identification rank conditions

$$\begin{bmatrix} \beta_{11}^{c} & -\beta_{11}^{c} & 0 & \beta_{12}^{c} & -\beta_{12}^{c} \\ 0 & \beta_{21}^{c} & \beta_{22}^{c} & 0 & \beta_{23}^{c} \\ 0 & 0 & 0 & \beta_{31}^{c} & \beta_{32}^{c} \end{bmatrix} \begin{bmatrix} m_{t}^{r} \\ y_{t}^{r} \\ \Delta p_{t} \\ R_{m,t} \\ R_{b,t} \end{bmatrix}$$
(5)

The number of restrictions m_i and the number of free parameters s_i in each beta! The rank conditions are given by:

F

Relation	$R_{i.j}$	Relation	R _{i.jk}
1.2	3	1.23	3
1.3	1		
2.1	2	2.13	2
2.2	1		
3.1	1	3.12	3
3.2	2		

Normalization

The parameters $(\beta_{11}^c, \beta_{12}^c)$, $(\beta_{21}^c, \beta_{22}^c, \beta_{23}^c)$ and $(\beta_{31}^c, \beta_{32}^c)$ are defined up to a factor of proportionality, and one can always normalize on one element in each vector without changing the likelihood:

$$\begin{bmatrix} 1 & -1 & 0 & \beta_{12}^c / \beta_{11}^c & -\beta_{12}^c / \beta_{11}^c \\ 0 & 1 & \beta_{22}^c / \beta_{21}^c & 0 & \beta_{23}^c / \beta_{21}^c \\ 0 & 0 & 0 & 1 & \beta_{32}^c / \beta_{31}^c \end{bmatrix} \begin{bmatrix} m_t^r \\ y_t^r \\ \Delta \rho_t \\ R_{m,t} \\ R_{b,t} \end{bmatrix}$$
(6)

When normalizing β_i^c by diving through with a non-zero element β_{ij}^c , the corresponding α_i^c vector is multiplied by the same element. Thus, normalization does not change $\Pi = \alpha_i^c \beta_i^{c\prime} = \alpha \beta'$ and we can choose whether to normalize or not. However, when identifying restrictions have been imposed on the long-run structure, it is only possible to get standard errors of $\hat{\beta}_{ij}$ when each cointegration vector has been properly normalized.

E 990

Calculation of degrees of freedom

Given that the restrictions are identifying the degrees of freedom can be calculated from the following formula:

$$\nu=\sum(m_i-(r-1)).$$

Consider the above example where s_i is the number of free coefficients in β_i^c , and $m_i = p - s_i$ the total number of restrictions on vector β_i^c . The degrees of freedom are calculated as:

Si	<i>s</i> ₁ = 2	<i>s</i> ₂ = 3	<i>s</i> ₃ = 2
mi	$m_1 = 3$	$m_2 = 2$	<i>m</i> ₃ = 3
r - 1	2	2	2
$m_i - (r-1)$	1	0	1

so the degrees of freedom are $\nu = 2$. Some restrictions may not be identifying (for example the same restriction on all cointegration relations), but are nevertheless testable restrictions.

Just-identifying restrictions

One can always transform the long-run matrix $\Pi = \alpha \beta'$ by a nonsingular $r \times r$ matrix Q in the following way: $\Pi = \alpha Q Q^{-1} \beta' = \tilde{\alpha} \tilde{\beta}'$, where $\tilde{\alpha} = \alpha Q$ and $\tilde{\beta} = \beta Q'^{-1}$. We will now demonstrate how to choose the matrix Q so that it imposes r - 1 just-identifying restrictions on each β_i . An example of a just identified long-run reduced form structure can be found as follows:

We choose the design matrix $Q = [\beta_1]$ where β_1 is a $(r \times r)$ nonsingular matrix defined by $\beta' = [\beta_1, \beta_2]$. In this case $\alpha \beta' = \alpha(\beta_1 \beta_1^{-1'} \beta') = \alpha[I, \tilde{\beta}]$ where I is the $(r \times r)$ unit matrix and $\tilde{\beta} = \beta_1^{-1'} \beta_2$ is a $r \times (p - r)$ matrix of full rank.

(Department of Economics)

The above example for $x_t = [x'_{1t}, x'_{2t}]'$, where $x'_{1t} = [x_{1t}, x_{2t}, x_{3t}]$ and $x'_{2t} = [x_{4t}, x_{5t}]$, would describe an economic application where the three variables in x_{1t} are 'endogenous' and the two in x_{2t} are 'exogenous'. Furthermore, if we decompose $\alpha = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$ and $\alpha_2 = 0$, then $\beta' x_t$ does not appear in the equation for $\Delta x_{1,t}$ and $x_{2,t}$ is weakly exogenous for β . In this case, efficient inference on the long-run relations can be conducted in the conditional model of $\Delta x_{1,t}$, given $\Delta x_{2,t}$. When 'endogenous' and 'exogenous' are given an economic interpretation this corresponds to the triangular representation suggested by Phillips (1990). Note that the latter requires that $\alpha_2 = 0$, which is a testable hypothesis.

		$\mathcal{H}_{S,1}$			$\mathcal{H}_{S.2}$	
	$\hat{\beta}_1$	$\hat{\beta}_1$	$\hat{\beta}_3$	$\hat{\beta}_1$	$\hat{\beta}_2$	$\hat{\beta}_3$
m ^r	1.0	0.0	0.0	1.0	0.0	0.0
У ^r	- 0.94 [-6.55]	0.04 [3.24]	0.01 [2.06]	-1 .0	0.03 [3.81]	0.04 [4.80]
Δp	0.0	1.0	0.0	0.0	1.0	1.0
R_m	0.0	0.0	1.0	-4.70 $[-1.44]$	— 0.54 [-4.53]	0.32 [2.99]
R_b	3.04 [1.51]	0.20 [1.16]	- 0.63 [-7.03]	5.99 [2.40]	0.54 [4.53]	0.0
<i>D</i> _s 831	- 0.27 [-8.08]	0.01 [5.11]	- 0.01 [-5.12]	- 0.24 [-7.46]	0.02 [6.58]	0.01 [5.14]
	α_1	α2	α3	α_1	α2	α3
Δm_t^r	-0.22	*	2.98	-0.22	-2.47	*
Δy_t^r	0.05	*	-1.84	0.05	1.75	-2.04
$\Delta^2 p_t$	*	-0.82	*	*	*	-1.12
$\Delta R_{m,t}$	*	*	-0.09	*	0.12	-0.09
$\Delta R_{b,t}$	*	*	0.13	*	-0.15	0.17

Consider the structure:

$$\mathcal{H}_{\mathcal{S}.3}:eta=(\mathit{H}_{1}arphi_{1},\mathit{H}_{2}arphi_{2},\mathit{H}_{3}arphi_{3}),$$

where

$$H_{1} = \begin{bmatrix} 1 & 0 \\ -1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix}, H_{2} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, H_{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \\ -1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Which are the β -relations?

.

		บ			2	
	ô	$\mathcal{H}_{S.3}$	ô	$\hat{\beta}_1$	$\mathcal{H}_{S.4}$	ô
	\hat{eta}_1	\hat{eta}_2	$\hat{\beta}_3$	11	$\hat{\beta}_2$	$\hat{\beta}_3$
m^r	1.0	0.0	0.0	1.0	0.0	0.0
У ^r	-1.0	0.03 [3.67]	0.0	-1 .0	0.03 [4.07]	0.0
Δp	0.0	1.0	- 0.20 [-3.95]	0	1.0	0.0
R_m	0.0	0.0	1.0	- 13 .2 [-5.70]	7 0.0	1.0
R_b	0.0	0.0	- 0.80 [-15.65]	13.27 [5.70]	0.0	- 0.81 [-10.58]
<i>D</i> _s 831	- 0.34 [-13.60]	0.01 [5.46]	- 0.01 [-10.67]	- 0.15 [-5.19]	0.01 [5.30]	- 0.01 [-4.77]
	$\hat{\alpha}_1$	$\hat{\alpha}_2$	â3	$\hat{\alpha}_1$	$\hat{\alpha}_2$	â3
Δm_t^r	- 0.21 [-4.74]	*	3.38 [3.21]	- 0.23 [-4.89]	*	*
Δy_t^r	0.06 [2.27]	-0.44 [-1.59]	- 1.40 [-2.21]	0.05 [1.84]	*	*
$\Delta^2 p_t$	*	— 0.84 [-5.33]	*	*	— 0.79 [-5.39]	*
$\Delta R_{m,t}$	*	*	-0.07 [-1.54]	*	0.03 [1.77]	-0.08 [-2.29]
ΛP.	*	0.05	012	< □)		<u> ግ እ በ 🛓 ግ ላ ሮ</u>
(Department	of Economics)				Noven	nber 2011 14 / 22

r _{i.j}	$\mathcal{H}_{S.3}$	$\mathcal{H}_{S.4}$	r _{i.jg}	$\mathcal{H}_{S.3}$	$\mathcal{H}_{S.4}$
1.2 1.3	2 2	2 1	1.23	4	3
2.1 2.3	1 2	2 2	2.13	3	3
3.1 3.2	1 2	1 2	3.12	3	3

Table: The rank conditions for identifiction

* ロ > * 個 > * 注 > * 注 >

æ

The degrees of freedom in the test of overidentifying restrictions are given by $\nu = \Sigma_i (m_i - r + 1)$, where m_i is the number of restrictions on β_i . The degrees of freedom for $\mathcal{H}_{5.3}$ are calculated as:

$$\nu = \sum_{i=1}^{r} m_i - (r-1) = (4-2) + (3-2) + (3-2) = 2 + 1 + 1 = 4.$$

The corresponding LR test statistic became $\chi^2(4) = 4.05$ with a p-value of 0.40, so the structure can be accepted.

The degrees of freedom of the hypothesis $\mathcal{H}_{S,4}$ are calculated as:

$$\nu = \sum_{i=1}^{r} m_i - (r-1) = (3-2) + (3-2) + (3-2) = 3.$$

The test statistic became $\chi^2(3) = 2.84$ with a p-value of 0.42. Thus, both $\mathcal{H}_{5.3}$ and $\mathcal{H}_{5.4}$ are acceptable long-run structures with almost the same p-value. Which one should be chosen?

Lack of identification

(Department of Economics)

æ

		$\mathcal{H}_{S,5}$			$\mathcal{H}_{S.6}$	
	$\hat{\beta}_1$	$\hat{\beta}_2$	$\hat{\beta}_3$	$\hat{\beta}_1$	$\hat{\beta}_2$	\hat{eta}_3
m ^r	1.0	0.0	0.0	1.0	0.0	0.0
У ^r	- 0.82 [-8.56]	0.0	0.0	-1 .0	0.0	0.04 [<i>NA</i>]
Δp	0.0	1.0	0.0	0.0	0.0	1.0
R_m	- 24 . 40 [-7.74]	1.26 [<i>NA</i>]	1.0	0.0	1.0	1.59 [<i>NA</i>]
R_b	24.40 [7.74]	-1.35 [NA]	- 0.8 1 [-11.83]	0.0	- 0.89 [-13.65]	-1.09 [NA]
<i>D</i> _s 831	-0.04 [-0.93]	0.00 [<i>NA</i>]	- 0 . 01 [-5.11]	- 0.34 [-13.54]	- 0.01 [-6.09]	0.00 [NA]
	$\hat{\alpha}_1$	$\hat{\alpha}_2$	â3	$\hat{\alpha}_1$	$\hat{\alpha}_2$	â3
Δm_t^r	- 0.24 [-4.95]	*	- 2.47 [-2.11]	- 0.22 [-4.91]	4 . 02 [3.47]	*
Δy_t^r	*	*	*	0.05 [1.78]	*	*
$\Delta^2 p_t$	*	- 0.70 [-5.02]	0.77 [1.86]	*	0.84 [2.09]	- 0.81 [-5.50]
$\Delta R_{m,t}$	*	0.03 [1.83]	- 0 . 16 [-3.17]	*	*	*
$\Delta R_{b,t}$	*	*	0.12	 	· → ★ ★ → =	 ・ ・ ・
(Department	of Economics)		11 76		November	2011 18 / 22

r _{i.j}	$\mathcal{H}_{S.5}$	$\mathcal{H}_{S.6}$	r _{i.jg}	$\mathcal{H}_{S.5}$	$\mathcal{H}_{S.6}$
1.2 1.3	2 1	2 4	1.23	2	4
2.1 2.3	2 0	1 2	2.13	2	3
3.1 3.2	2 1	1 0	3.12	3	1

Table: The rank conditions for identifiction

-

(日) (日) (日) (日)

æ

(Department of Economics)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

(Department of Economics)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

(Department of Economics)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - 釣ぬ(で)