## Tests of hypotheses on the $\beta$ relations

A graduate course in the Cointegrated VAR model: Special topics in Rome

Katarina Juselius<br>University of Copenhagen

November 2011

## Formulating hypotheses as restrictions on the beta vectors

Hypotheses on the cointegration vectors can be formulated in two alternative ways: either by specifying the $s_{i}$ free parameters, or alternatively the $m_{i}$ restrictions of each $\beta_{i}$ vector. Constraining $\beta_{i}$ by the design matrix $H_{i}$ defining the $s_{i}$ free parameters:

$$
\begin{equation*}
\beta=\left(\beta_{1}, \ldots, \beta_{r}\right)=\left(H_{1} \varphi_{1}, \ldots, H_{r} \varphi_{r}\right), \tag{1}
\end{equation*}
$$

where $\varphi_{i}$ is a $\left(s_{i} \times 1\right)$ coefficient matrix, $\mathrm{H}_{i}$ is a $\left(p 1 \times s_{i}\right)$ design matrix, $p 1$ is the dimension of $\tilde{x}_{t-1}$ in the VAR model, and $i=1, \ldots, r$. In this case, the design matrices define the $s_{i}$ free parameters in each cointegration vector.
Constraining $\beta_{i}$ by the restriction matrices $R_{i}\left(p 1 \times m_{i}\right)$ defining the $m_{i}=p-s_{i}$ restrictions on $\beta_{i}$ :

$$
R_{1}^{\prime} \beta_{1}=0
$$

## Same restrictions on all beta vectors

Typical examples are (1) tests of long-run exclusion of a variable, i.e. a zero row restriction on $\beta$, (2) tests of long-run price homogeneity These are testable hypothese but they are not identifying as they impose identical restrictions on all cointegration relations.
All $H_{i}\left(\right.$ or $\left.R_{i}\right), i=1, \ldots r$, are identical and we can formulate the hypothesis as:

$$
\begin{equation*}
H^{c}(r): \beta^{c}=\left(H \varphi_{1}, \ldots, H \varphi_{r}\right)=H \varphi \tag{2}
\end{equation*}
$$

where $\beta^{c}$ is $p 1 \times r, H$ is $p 1 \times s, \varphi$ is $s \times r$ and $s$ is the number of unrestricted coefficients in each vector, or alternatively as:

$$
H^{c}(r): R^{\prime} \beta=0
$$

where $R$ is $p 1 \times m$ and $m$ is the number of restrictions imposed on each vector.

The hypothesis $H^{c}(r)$ is tested against $H(r): \beta$ unrestricted, i.e. we test the following restricted model:

$$
\begin{equation*}
\Delta x_{t}=\alpha \varphi^{\prime} H^{\prime} \tilde{x}_{t-1}+\sum_{i=1}^{k-1} \Gamma_{i} \Delta x_{t-i}+\varepsilon_{t} \tag{3}
\end{equation*}
$$

Example: the test of long-run proportionality between $m^{r}$ and $y^{r}$ in all cointegration relations:

$$
H^{\prime}=\left[\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], \boldsymbol{\varphi}=\left[\begin{array}{lll}
\varphi_{11} & \varphi_{12} & \varphi_{13} \\
\varphi_{21} & \varphi_{22} & \varphi_{23} \\
\varphi_{31} & \varphi_{32} & \varphi_{33} \\
\varphi_{41} & \varphi_{42} & \varphi_{43} \\
\varphi_{51} & \varphi_{52} & \varphi_{53}
\end{array}\right]
$$

The transformed data vector becomes:

$$
H^{\prime} x_{t}=\left[\begin{array}{c}
\left(m^{r}-y^{r}\right)_{t} \\
\Delta p_{t} \\
R_{m, t} \\
R_{b, t} \\
D_{s} 831_{t}
\end{array}\right]
$$

## Illustrations

Example 1: A test of long-run exclusion of a linear trend in the cointegration relations for $\tilde{x}_{t}^{\prime}=\left[m_{t}^{r}, y_{t}^{r}, \Delta p_{t}, R_{m, t}, R_{b, t}, D_{s} 831_{t}, t\right]$.

$$
\mathcal{H}_{1}: \beta^{c}=H \varphi \text { or } R^{\prime} \beta=0
$$

where

$$
H=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right], \varphi=\left[\begin{array}{lll}
\varphi_{11} & \varphi_{12} & \varphi_{13} \\
\varphi_{21} & \varphi_{22} & \varphi_{23} \\
\varphi_{31} & \varphi_{32} & \varphi_{33} \\
\varphi_{41} & \varphi_{42} & \varphi_{43} \\
\varphi_{51} & \varphi_{52} & \varphi_{53} \\
\varphi_{61} & \varphi_{62} & \varphi_{63}
\end{array}\right]
$$

and

$$
R^{\prime}=[0,0,0,0,0,0,1] .
$$

Example 2. A test of long-run homogeneity between $m^{r}$ and $y^{r}$ in all cointegrating relations for $\tilde{x}_{t}^{\prime}=\left[m_{t}^{r}, y_{t}^{r}, \Delta p_{t}, R_{m, t}, R_{b, t}, D_{s} 831_{t}, t\right]$. The design matrices H and R have the following form:

$$
H=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right], R=\left[\begin{array}{lllllll}
1 & 1 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Table: Tests of same restriction on all cointegration relations

|  | $m^{r}$ | $y^{r}$ | $\Delta p$ | $R_{m}$ | $R_{b}$ | $D_{s} 831$ | trend |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Unrestricted estimates |  |  |  |  |  |  |  |
| $\beta_{1}^{\prime}$ | 0.06 | -0.03 | 1.00 | -0.29 | 0.57 | -0.002 | 0.000 |
| $\beta_{2}^{\prime}$ | 1.00 | -1.02 | -3.45 | -8.51 | 8.00 | -0.24 | -0.001 |
| $\beta_{3}^{\prime}$ | -0.00 | 0.02 | 0.02 | 1.00 | -0.62 | -0.01 | -0.000 |
| $\mathcal{H}_{1}: \beta_{7}=0, \chi^{2}(3)=0.92[0.82]$ |  |  |  |  |  |  |  |
| $\beta_{1}^{c \prime}$ | 0.07 | -0.03 | 1.00 | -0.29 | 0.59 | -0.002 | 0.0 |
| $\beta_{2}^{c \prime}$ | 1.00 | -1.22 | $-3.71$ | -10.39 | 8.82 | -0.25 | 0.0 |
| $\beta_{3}^{c \prime}$ | -0.00 | 0.02 | 0.01 | 1.00 | -0.64 | -0.00 | 0.0 |
| $\mathcal{H}_{2}: \beta_{6}=0, \chi^{2}(3)=19.08[0.00]$ |  |  |  |  |  |  |  |
| $\beta_{1}^{c \prime}$ | 0.06 | -0.03 | 1.00 | -0.32 | 0.56 | 0.0 | 0.00 |
| $\beta_{2}^{c \prime}$ | 1.00 | -1.72 | -3.41 | -42.2 | 28.6 | 0.0 | -0.00 |
| $\beta_{3}^{c \prime}$ | 0.08 | 0.14 | 0.09 | 1.00 | 2.11 | 0.0 | -0.00 |

Table: Tests of same restriction on all cointegration relations

|  | $m^{r}$ | $y^{r}$ | $\Delta p$ | $R_{m}$ | $R_{b}$ | $D_{s} 831$ | trend |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Unrestricted estimates |  |  |  |  |  |  |  |
| $\beta_{1}^{\prime}$ | 0.06 | -0.03 | 1.00 | -0.29 | 0.57 | -0.002 | 0.000 |
| $\beta_{2}^{\prime}$ | 1.00 | -1.02 | -3.45 | -8.51 | 8.00 | -0.24 | -0.001 |
| $\beta_{3}^{\prime}$ | -0.00 | 0.02 | 0.02 | 1.00 | -0.62 | -0.01 | -0.000 |
| $\mathcal{H}_{3}: \beta_{1 .}=-\beta_{2,}, \chi^{2}(3)=3.36[0.34]$ |  |  |  |  |  |  |  |
| $\beta_{1}$ | 0.06 | -0.06 | 1.00 | -0.57 | 0.59 | -0.00 | 0.000 |
| $\beta_{2}^{c}$ | 1.00 | -1.00 | $-3.46$ | -8.07 | 7.82 | -0.25 | -0.001 |
| $\beta_{3}^{c \prime}$ | -0.01 | 0.01 | 0.03 | 1.00 | -0.76 | -0.01 | 0.000 |
| $\mathcal{H}_{4}: \beta_{4 .}=-\beta_{5 .}, \chi^{2}(3)=4.90[0.18]$ |  |  |  |  |  |  |  |
| $\beta_{1}^{c \prime}$ | 0.06 | -0.05 | 1.00 | -0.64 | 0.64 | -0.00 | 0.000 |
| $\beta_{2}^{c \prime}$ | 1.00 | -1.00 | $-3.45$ | -7.61 | 7.61 | -0.25 | -0.001 |
| $\beta_{3}^{c \prime}$ | -0.02 | 0.02 | 0.03 | 1.00 | -1.00 | -0.01 | 0.000 |

Table: Tests of same restriction on all cointegration relations

|  | $m^{r}$ | $y^{r}$ | $\Delta p$ | $R_{m}$ | $R_{b}$ | $D_{s} 831$ | trend |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Unrestricted estimates |  |  |  |  |  |  |  |
| $\beta_{1}^{\prime}$ | 0.06 | -0.03 | 1.00 | -0.29 | 0.57 | -0.002 | 0.000 |
| $\beta_{2}^{\prime}$ | 1.00 | -1.02 | -3.45 | -8.51 | 8.00 | -0.24 | -0.001 |
| $\beta_{3}^{\prime}$ | -0.00 | 0.02 | 0.02 | 1.00 | -0.62 | -0.01 | -0.000 |
| $\mathcal{H}_{5}: \beta_{1} .=-\beta_{2}$. and $\beta_{7}=0, \chi^{2}(6)=9.36[0.15]$ |  |  |  |  |  |  |  |
| $\beta$ | 0.08 | -0.08 | 1.00 | $-1.30$ | 0.91 | 0.001 | 0.0 |
| $\beta^{\prime}$ | 1.00 | -1.00 | -4.56 | -1.81 | 5.21 | -0.315 | 0.0 |
| $\beta^{\text {a }}$ | -0.01 | 0.01 | 0.07 | 1.00 | -0.87 | -0.004 | 0.0 |
| $\mathcal{H}_{6}: \beta_{1 .}=-\beta_{2 .}, \beta_{4}=-\beta_{5}$ and $\beta_{7}=0, \chi^{2}(9)=16.52[0.05]$ |  |  |  |  |  |  |  |
| $\beta$ | 0.12 | -0.12 | 1.00 | -0.89 | 0.89 | -0.008 | 0.0 |
| $\beta_{2}^{c}$ | 1.00 | -1.00 | -7.27 | -11.36 | 11.36 | -0.323 | 0.0 |
| $\beta_{3}^{c \prime}$ | -0.02 | 0.02 | -0.03 | 1.00 | -1.00 | -0.009 | 0.0 |

## Some beta vectors are known

This test is useful when we want to test whether a hypothetical known vector is stationary. For example, we might be interested in whether the real interest rate defined as $R-\Delta p$ is stationary, whether $\Delta p$ is stationary by itself, and whether the income velocity of money, $m^{r}-y^{r}$ is stationary.
To formulate this hypothesis, it is convenient to decompose the $r$ cointegrating relations into $n_{k}$ known vectors $b$ (in most cases $n_{k}=1$ ) and $r-n_{k}$ unrestricted vectors $\varphi$ :

$$
\begin{equation*}
\mathcal{H}^{c}(r): \beta^{c}=(b, \varphi) \tag{4}
\end{equation*}
$$

where $b$ is a $p 1 \times n_{k}$, and $\varphi$ is a $p 1 \times\left(r-n_{k}\right)$ vector. We partition

$$
\begin{equation*}
\alpha=\left(\alpha_{1}, \alpha_{2}\right) \tag{5}
\end{equation*}
$$

where $\alpha_{1}$ are the adjustment coefficients to $b$, and $\alpha_{2}$ to $\varphi$. The cointegrated VAR model can now be written as:

$$
\begin{equation*}
\Delta x_{t}=\alpha_{1} b^{\prime} x_{t-1}+\alpha_{2} \varphi^{\prime} x_{t-1}+\Gamma_{1} \Delta x_{t-1}+\Phi D_{t}+\varepsilon_{t} \tag{6}
\end{equation*}
$$

## Illustrations

We would like to know whether the inflation rate, nominal and real interest rates, and the interest rate spread are stationary by themselves. Note that the null is stationarity in this case. For example, the test that $\Delta p_{t} \sim I(0)$ is formulated as:

$$
\mathcal{H}_{6}: \beta=(b, \varphi)
$$

where

$$
b^{\prime}=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

i.e., $b$ is a unit vector that picks up the inflation rate. The remaining $r-1$ $=2$ vectors are unrestricted and described by the matrix $\varphi$ of dimension $p 1 \times r-1=6 \times 2$. The coefficients $\varphi_{i j}$ are uniquely determined based on the ordering of eigenvalues and the normalization $\varphi^{\prime} S_{11 . \mathbf{b}} \varphi=I$.

Table: Testing the stationarity of single relations

|  | $m_{t}^{r}$ | $y_{t}^{r}$ | $\Delta p_{t}$ | $R_{m, t}$ | $R_{b, t}$ | $D_{s} 831_{t}$ | $\chi^{2}(v)$ | $p$-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 0 | 0 | 1 | 0 | 0 | 0 | $20.9(3)$ | 0.00 |
| $\mathcal{H}_{7}$ | 0 | 0 | 0 | cests of a known $\beta$ vector |  |  |  |  |
| $\mathcal{H}_{8}$ | 0 | 0 | 0 | 1 | 0 | 0 | $21.1(3)$ | 0.00 |
| $\mathcal{H}_{9}$ | 0 | 0 | 0 | 0 | 1 | 0 | $24.2(3)$ | 0.00 |
| $\mathcal{H}_{10}$ | 0 | 0 | 1 | -1 | 0 | 0 | $19.4(3)$ | 0.00 |
| $\mathcal{H}_{11}$ | 0 | 0 | 1 | 0 | -1 | 0 | $17.8(3)$ | 0.00 |
| $\mathcal{H}_{12}$ | 0 | 0 | 0 | 1 | -1 | 0 | $24.9(3)$ | 0.00 |

When testing the stationarity of a variable there are two important caveats:
(1) The test results are not invariant to the choice of rank $r^{*}$. If a conservative value of $r$ is chosen (a small $r^{*}$ ) then stationarity will be more difficult to accept than for a choice of $r$ larger than $r^{*}$.
Therefore, the test results are crucially dependent on the specific value of cointegration rank being chosen. For a given $r^{*}$, we can then ask whether any of the variables is a unit vector in the cointegration space. Thus if, instead, we had chosen $r=4$, the strong rejection of stationarity of all six hypotheses might have been reversed.
(2) If we have included deterministic variables, for example shift dummies, in the cointegration space then a more appropriate hypothesis might be stationarity when allowing for a shift in the mean. Thus, the strong rejection of stationarity might also be related to the shift dummy $D_{s} 831_{t}$. For example, if the interest rate spread is stationary around one level before 1983 and another level after that date, then $\mathcal{H}_{12}$ would probably be rejected as a consequence of imposing a zero restriction on $D_{s} 831_{t}$. In this case, it would be more relevant to ask whether $\left(R_{m}-R_{b}-b_{1} D_{s} 831\right)_{t} \sim I(0)$ rather than $\left(R_{m}-R_{b}\right)_{t} \sim I(0)$, where $b_{1} D_{s} 831_{t}$ is the estimated shift in the level

## Testing stationarity when some, but not all, coefficients are known

In the general case, we formulate the hypothesis as
$\beta=\left\{H_{1} \varphi_{1}, H_{2} \varphi_{2}, \ldots, H_{r} \varphi_{r}\right\}$, where $H_{i}$ is a $\left(p 1 \times s_{i}\right)$ matrix, $i=1, . ., r$. In this case the cointegration structure needs to be identified. If instead we would like to focus on just a few cointegration relation we divide the $r$ cointegration relations into two groups containing $r_{1}$ and $r_{2}$ vectors each. We will here focus on the special case $\beta=\left\{H_{1} \varphi_{1}, \psi\right\}$, where $H_{1}$ is $p 1 \times s_{1}, \varphi_{1}$ is $s_{1} \times 1$ and $\psi$ is $p 1 \times r-1$ and formulate the hypothesis: the null hypothesis:

$$
\begin{equation*}
\mathcal{H}_{0}: \beta=\left(\beta_{1}, \beta_{2}\right)=\left(H_{1} \varphi_{1}, \psi\right) \tag{7}
\end{equation*}
$$

As before, we partition $\alpha$ so that it corresponds to the partitioning of $\beta$ :

$$
\alpha=\left(\alpha_{1}, \alpha_{2}\right)
$$

The model can be written as:

Table: Testing the stationarity of single relations

|  | $m_{t}^{r}$ | $y_{t}^{r}$ | $\Delta p_{t}$ | $R_{m, t}$ | $R_{b, t}$ | $D_{s} 831_{t}$ | $\chi^{2}(v)$ | $p$-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tests of liquidity |  |  |  |  |  |  |  |  |
| ratio | relations |  |  |  |  |  |  |  |
| $\mathcal{H}_{13}$ | 1 | -1 | 0 | 0 | 0 | -0.34 | $1.5(2)$ | $\mathbf{0 . 4 7}$ |
| $\mathcal{H}_{14}$ | 1 | -1 | 1.66 | 0 | 0 | -0.30 | $1.3(1)$ | $\mathbf{0 . 2 5}$ |
| $\mathcal{H}_{15}$ | 1 | -1 | 0 | -9.02 | 9.02 | -0.21 | $0.2(1)$ | $\mathbf{0 . 6 4}$ |
| $\mathcal{H}_{16}$ | 1 | -1 | 1.39 | -8.92 | 8.92 | -0.19 | - | - |
| Test of real income relations |  |  |  |  |  |  |  |  |
| $\mathcal{H}_{17}$ | 0 | 1 | 34.1 | 0 | 0 | 0.43 | $0.8(1)$ | $\mathbf{0 . 3 6}$ |
| $\mathcal{H}_{18}$ | 0 | 1 | -54.1 | 54.1 | 0 | -0.82 | $8.5(1)$ | 0.00 |
| $\mathcal{H}_{19}$ | 0 | 1 | -44.7 | 0 | 44.7 | 0.10 | $12.7(1)$ | 0.00 |
| $\mathcal{H}_{20}$ | 0 | 1 | 0 | -161 | 161 | 2.0 | $3.5(1)$ | 0.06 |

Table: Testing the stationarity of single relations

|  | $m_{t}^{r}$ | $y_{t}^{r}$ | $\Delta p_{t}$ | $R_{m, t}$ | $R_{b, t}$ | $D_{s} 831_{t}$ | $\chi^{2}(v)$ | $p$-value |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Tests of inflation, real interest rates and the spread |  |  |  |  |  |  |  |  |
| $\mathcal{H}_{21}$ | 0 | 0 | 1 | 0 | 0 | 0.020 | 9.0 (2) | 0.01 |
| $\mathcal{H}_{22}$ | 0 | 0 | 1 | -1 | 0 | 0.011 | 10.7 (2) | 0.00 |
| $\mathcal{H}_{23}$ | 0 | 0 | 1 | 0 | -1 | -0.009 | 14.3 (2) | 0.00 |
| $\mathcal{H}_{24}$ | 0 | 0 | 0 | 1 | -1 | -0.014 | 4.2 (2) | 0.12 |
| Tests of combinations of interest rates and inflation rates |  |  |  |  |  |  |  |  |
| $\mathcal{H}_{25}$ | 0 | 0 | 1 | -0.44 | 0 | 0.015 | 4.9 (1) | 0.03 |
| $\mathcal{H}_{26}$ | 0 | 0 | 1 | 0 | -0.29 | 0.013 | 6.7 (1) | 0.01 |
| $\mathcal{H}_{27}$ | 0 | 0 | 0 | 1 | -0.81 | -0.009 | 1.7 (1) | 0.19 |
| Tests of homogeneity between inflation and the interest rates |  |  |  |  |  |  |  |  |
| $\mathcal{H}_{28}$ | 0 | 0 | -0.30 | 1 | -0.70 | -0.012 | 0.02 (1) | 0.90 |
| $\mathcal{H}_{29}$ | 0 | 0 | 0.12 | 1 | -1 | -0.012 | 4.1 (1) | 0.04 |

## Do the result support the theory consistent CVAR scenario?

$$
\begin{aligned}
& \left(m-p-y^{r}\right)_{t} \sim I(0) \\
& \left(R_{b}-R_{m}\right)_{t} \sim I(0), \\
& \left(R_{m}-\Delta p\right)_{t} \sim I(0), \\
& \left(R_{b}-\Delta p\right)_{t} \sim I(0) .
\end{aligned}
$$

How should we revise the theory in the light of the empirical results?

