Deterministic components in the CVAR

A graduate course in the Cointegrated VAR model: Special topics in Rome

Katarina Juselius
University of Copenhagen

November 2011

Dummy variables in the CVAR

Table: Various dummy variables in Δx_{t} and x_{t}

Δx_{t}	x_{t}	Δx_{t}	x_{t}	Δx_{t}	x_{t}	Δx_{t}	
$D_{s, t}$	$\sum D_{s, t}=$	$D_{p, t}$	$\sum D_{p, t}=$	$D_{t r, t}$	$\sum D_{t r, t}=$	$D_{d t r, t}$	$\sum D$
	trend		$D_{s, t}$		$D_{p, t}$		
\vdots							
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
1	1	1	1	1	1	1	
1	2	0	1	-1	0	-2	
1	3	0	1	0	0	1	
1	4	0	1	0	0	0	
\vdots							

Figure: Illustrating a mean shift in $\Delta x_{1, t}$ and its effect on $x_{1, t}$ (left hand side

Distinguishing between different shocks

- ordinary (normally distributed) random shocks,
- (extra) ordinary large shocks due to permanent interventions (| $\hat{\varepsilon}_{i, t} \mid>$ $3.3 \hat{\sigma}_{\varepsilon}$) with a delayed dynamic effect in the data, to be described by a blip dummy in the model,
- transitory large innovational outliers with a delayed dynamic effect in the data, to be described by a $+/$ - blip dummy in the model,
- additive transitory outliers (typing mistakes, etc.) with no delayed dynamic effect in the data, to be removed prior to modelling.

Dummy variables in the CVAR

Using dummies to account for extraordinary mean-shifts, permanent blips, and transitory shocks, the cointegrated VAR model is reformulated as:

$$
\begin{gather*}
\Delta x_{t}=\Gamma_{1} \Delta x_{t-1}+\alpha \beta^{\prime} x_{t-1}+\Phi_{s} D_{s, t}+\Phi_{p} D_{p, t}+\Phi_{t r} D_{t r, t}+\mu_{0}+\varepsilon_{t} \\
\varepsilon_{t} \sim \operatorname{NI}(0, \Omega), t=1, \ldots, T \tag{1}
\end{gather*}
$$

where $D_{s, t}$ is $d_{1} \times 1$ vector of mean-shift dummy variables $(\ldots 0,0,0,1,1,1, \ldots), D_{p, t}$ is a $d_{2} \times 1$ vector of permanent blip dummy variables ($\ldots, 0,1,0,0, \ldots)$ and $\mathbf{D}_{t r, t}$ is a $d_{3} \times 1$ vector of transitory shock dummy variables ($\ldots 0,0,1,-1,0,0, \ldots$).

Decomposing the dummy effects

It is useful to partition the dummy effects into an α and a β_{\perp} component:

$$
\begin{align*}
& \Phi_{s}=\alpha \delta_{0}+\delta_{1} \tag{2}\\
& \Phi_{p}=\alpha \varphi_{0}+\varphi_{1} \tag{3}\\
& \Phi_{t r}=\alpha \psi_{0}+\psi_{1} \tag{4}
\end{align*}
$$

Rewritng the CVAR (without Γ_{i}):

$$
\Delta x_{t}=\alpha \tilde{\beta}^{\prime} \tilde{x}_{t-1}+\delta_{1} D_{s, t}+\varphi_{1} D_{p, t}+\psi_{1} D_{t r, t}+\gamma_{0}+\varepsilon_{t}
$$

where $\tilde{\beta}^{\prime}=\left[\beta^{\prime}, \beta_{0}^{\prime}, \delta_{0}^{\prime}, \varphi_{0}^{\prime}, \psi_{0}^{\prime}\right]$ and $\tilde{x}_{t-1}^{\prime}=\left[x_{t}^{\prime}, 1, D_{s, t}^{\prime}, D_{p, t}^{\prime}, D_{t r, t}^{\prime}\right]$. The expected value of Δx_{t} and $\beta^{\prime} x_{t}$ are:

$$
\begin{align*}
& E \Delta x_{t}=\gamma_{0}+\delta_{1} D_{s, t}+\varphi_{1} D_{p, t}+\psi_{1} D_{t r, t} \\
& E \beta^{\prime} x_{t}=\beta_{0}+\delta_{0} D_{s, t}+\varphi_{0} D_{p, t}+\psi_{0} D_{t r, t} \tag{5}
\end{align*}
$$

The moving average form with dummy effects

$$
\begin{align*}
x_{t}= & C \sum_{i=1}^{t-1} \varepsilon_{i}+C \mu_{0} \sum_{i=1}^{t-1} 1+ \\
& C \Phi_{s} \sum_{i=1}^{t-1} D_{s, i}+C \Phi_{\rho} \sum_{i=1}^{t-1} D_{p, i}+C \Phi_{t r} \sum_{i=1}^{t-1} D_{t r, i}+ \tag{6}\\
& C^{*}(L)\left(\varepsilon_{t}+\mu_{0}+\Phi_{s} D_{s, t}+\Phi_{\rho} D_{p, t}+\Phi_{t r} D_{t r, t}\right)+\tilde{X}_{0}
\end{align*}
$$

where

$$
\begin{equation*}
C=\beta_{\perp}\left(\alpha_{\perp}^{\prime} \Gamma \beta_{\perp}\right)^{-1} \alpha_{\perp}^{\prime} \tag{7}
\end{equation*}
$$

and $\mathbf{C}^{*}(L)$ is an infinite polynomial in the lag operator L.

Using

$$
\begin{aligned}
& \mu_{0}=\alpha \beta_{0}+\gamma_{0} \\
& \Phi_{s}=\alpha \delta_{0}+\delta_{1} \\
& \Phi_{p}=\alpha \varphi_{0}+\varphi_{1} \\
& \Phi_{t r}=\alpha \psi_{0}+\psi_{1}
\end{aligned} \text { and } C=\beta_{\perp}\left(\alpha_{\perp}^{\prime} \Gamma \beta_{\perp}\right)^{-1} \alpha_{\perp}^{\prime}
$$

it is easily shown that the $\boldsymbol{\alpha}$ components will disappear in the summations in (6), so that

$$
\begin{align*}
& C \Phi_{s}=C \delta_{1} \\
& C \Phi_{p}=C \varphi_{1} \tag{8}\\
& C \Phi_{t r}=C \psi_{1}
\end{align*}
$$

and:

$$
\begin{align*}
x_{t}= & C \sum_{i=1}^{t-1} \varepsilon_{i}+C \gamma_{0} \sum_{i=1}^{t-1} 1+C \delta_{1} \sum_{i=1}^{t-1} D_{s, i}+C \varphi_{1} \sum_{i=1}^{t-1} D_{p, i} \\
& +C \psi_{1} \sum_{i=1}^{t-1} D_{t r, i}+C^{*}(L)\left(\varepsilon_{t}+\mu_{0}+\Phi_{s} D_{s, t}+\Phi_{p} D_{p, t}+\Phi_{t r} D_{t r, t}\right) \tag{9}
\end{align*}
$$

Are the observed outliers additive or innovational?

Figure: The original and corrected M3 in logs.

Illustration: the Danish money demand data in levels

The Danish data in differences

The definition of the intervention dummies

- $D_{s} 831_{t}=1$ for $t=1983: 1, \ldots . ., 2003: 4,0$ otherwise,
- $D_{t r} 754_{t}=1$ for $t=1975: 4,-0.5$ for 1976:1 and 1976:2, 0 otherwise,
- $D_{p} 764_{t}=1$ for $t=1976: 4,0$ otherwise,

The shift dummy, $D_{s} 831_{t}$ is restricted to lie in the cointegration space and its difference $\Delta D_{s} 831_{t}$ (i.e. $D_{p} 831_{t}$) should be included as an unrestricted permanent blip dummy in the VAR equations. In some cases it is not enough to include just the first difference but also the lagged dummy $\Delta D_{s} 831_{t-1}$. The latter turn out to be significant in the short-term interest rate equation, probably picking up a lagged policy reaction to the large drop in the long-term bond rate.

The VAR model to be estimated

$$
\begin{aligned}
\Delta x_{t}= & \Gamma_{1} \Delta x_{t-1}+\alpha \beta^{\prime} x_{t-1}+\alpha \beta_{0}+\alpha \beta_{1} t+\alpha \delta_{0} D_{s} 831_{t} \\
& +\Phi_{p .1} D_{p} 831_{t}+\Phi_{p .2} D_{p} 831_{t-1} \\
& +\Phi_{t r} D_{t r} 754_{t}+\Phi_{p .3} D_{p} 764_{t}+\gamma_{0}+\varepsilon_{t} \\
= & \Gamma_{1} \Delta x_{t-1}+\alpha \tilde{\beta}^{\prime} \tilde{x}_{t-1}+\Phi_{p .1} D_{p} 831_{t}+\Phi_{p .2} D_{p} 831_{t-1} \\
& +\Phi_{t r} D_{t r} 754 t r_{t}++\Phi_{p .3} D_{p} 764_{t}+\gamma_{0}+\varepsilon_{t},
\end{aligned}
$$

where

$$
\tilde{\beta}=\left[\begin{array}{c}
\beta \\
\beta_{0} \\
\beta_{1} \\
\delta_{0}
\end{array}\right] \text { and } \tilde{x}_{t-1}=\left[\begin{array}{c}
x_{t-1} \\
1 \\
t \\
D_{s} 831_{t-1}
\end{array}\right]
$$

The estimated results with dummies

$$
\Delta x_{t}=\Gamma_{1} \Delta x_{t-1}+\alpha^{\prime} \beta \tilde{x}_{t-1}+\Phi D_{t}+\varepsilon_{t}
$$

$$
\begin{aligned}
& \alpha^{\prime} \beta= \\
& {\left[\begin{array}{rccccrr}
m_{t-1}^{r} & y_{t-1}^{r} & \Delta p_{t-1} & R_{m_{t-1}} & R_{b, t-1} & D_{s} 831_{t-1} & t-1 \\
-\mathbf{0 . 2 6} & \mathbf{0 . 1 4} & -0.52 & \mathbf{2 . 7 4} & -\mathbf{3 . 2 9} & \mathbf{0 . 0 3 2} & \mathbf{0 . 0 0 0 4} \\
0.03 & -\mathbf{0 . 1 5} & -0.28 & -\mathbf{2 . 0 7} & 0.54 & -0.005 & 0.0002 \\
-0.00 & 0.01 & -\mathbf{0 . 8 4} & -0.48 & 0.24 & -0.006 & -\mathbf{0 . 0 0 0 2} \\
-0.00 & 0.00 & 0.03 & -\mathbf{0 . 1 3} & 0.06 & \mathbf{0 . 0 0 2} & -0.0000 \\
0.00 & 0.00 & 0.01 & 0.07 & -\mathbf{0 . 1 0} & -0.001 & -0.0000
\end{array}\right]} \\
& \Phi D_{t}=\left[\begin{array}{ccccc}
D_{t r} 754_{t} & D_{p} 764_{t} & D_{p} 831_{t} & D_{p} 831_{t-1} & \text { const } \\
0.01 & -0.02 & 0.03 & -0.02 & 0.64 \\
\mathbf{0 . 0 3} & 0.01 & -0.01 & 0.01 & \mathbf{0 . 8 8} \\
-\mathbf{0 . 0 1} & 0.00 & -0.01 & 0.01 & -0.01 \\
0.00 & \mathbf{0 . 0 1} & 0.00 & -\mathbf{0 . 0 0} & -0.01 \\
-0.00 & 0.00 & -\mathbf{0 . 0 1} & -0.00 & -0.02
\end{array}\right]
\end{aligned}
$$

The robustness of the result to the assumption of normal errors

Without controlling for reforms and interventions that have produced extraordinary large residuals the normality assumption is often violated. There are cases when:
(1) The linear relationship of the VAR model does not hold for large shocks: market reacts differently to ordinary and extraordinary shocks.
(2) The linear relationship of the VAR model holds approximately, but the properties of the VAR estimates are sensitive to the presence of extraordinary large shocks. Ordinary and extraordinary shocks are drawn from different distributions.
(3) The estimates of the VAR model are robust to deviations from normality.

