Econometric Methodology and Macroeconomics Applications the Cointegrated VAR Model

Søren Johansen
Department of Economics University of Copenhagen and CREATES, Aarhus University

EIEF: 8-14 November 2011

Lecture 1

The cointegrated VAR Chapter 5.3 and 5.4 pp.48-58

- Integration and Cointegration
- The error correction model
- Granger Representation Theorem

Integration

Assume in the following ε_{t} i.i.d. $(0, \Omega)$, and C_{i} decreasing exponentially Definition 1. x_{t} integrated of order $0, I(0)$, if $x_{t}=C(L) \varepsilon_{t}$, with $C(1) \neq 0$
x_{t} integrated of order $1, I(1)$, if $\Delta x_{t}=C(L) \varepsilon_{t}$, with
$C(1) \neq 0, \Delta x_{t}$ is $I(0)$

$$
\begin{aligned}
1 & : \\
2: & x_{0 t}=\varepsilon_{0 t} \sim I(0), C(z)=1 \neq 0,\left(x_{0 t}=\varepsilon_{0 t}-\varepsilon_{0 t-1} \text { not } I(0)\right) \\
3: & x_{1 t}=\sum_{i=0}^{\infty} \rho^{i} \varepsilon_{1 t-i}=\sum_{i=1}^{t} \varepsilon_{2 i} \sim I(0),|\rho|<1, C(z)=\sum_{i=0}^{\infty} \rho^{i} z^{i}=\frac{1}{1-\rho z} \\
4: & \binom{x_{1 t}}{x_{2 t}}=\binom{\sum_{i=1}^{t} \varepsilon_{1 i}}{\sum_{i=0}^{\infty} \rho^{i} \varepsilon_{2 t-i}} \sim I(1) \\
& \Delta\binom{x_{1 t}}{x_{2 t}}=C(L) \varepsilon_{t} ; \quad C(z)=\left(\begin{array}{ll}
1 & 0 \\
0 & \sum_{i=0}^{\infty} \rho^{i}(1-z) \varepsilon_{t} ; C(z)=1 \\
\text { ElEF: 8-14 November 2011 }
\end{array}\right)
\end{aligned}
$$

Cointegration

Definition 2. If x_{t} is $I(1)$, and $\beta^{\prime} x_{t}$ is stationary, then x_{t} is cointegrated with cointegration vector β.

Examples

$$
\begin{aligned}
x_{1 t} & =a \sum_{i=1}^{t} \varepsilon_{1 i}+\varepsilon_{2 t} \sim I(1), \quad \Delta x_{1 t}=a \varepsilon_{1 t}+\varepsilon_{2 t}-\varepsilon_{2, t-1} \\
x_{2 t} & =b \sum_{i=1}^{t} \varepsilon_{1 i}+\varepsilon_{2, t-1} \sim I(1), \quad \Delta x_{2 t}=b \varepsilon_{1 t}+\varepsilon_{2, t-1}-\varepsilon_{2, t-2} \\
x_{t} & \sim I(1) \text { because } \Delta x_{t}=C(L) \varepsilon_{t} ; C(z)=\left(\begin{array}{cc}
a & 1-z \\
b & (1-z) z
\end{array}\right)
\end{aligned}
$$

and $C(1) \neq 0$ but singular. Now consider $b x_{1 t}-a x_{2 t}=b \varepsilon_{2 t}-a \varepsilon_{2 t-1}$ is stationary and therefore x_{t} is cointegrated with $\beta=(b,-a)^{\prime}$. Note that $a=0$ means that $x_{1 t}$ is stationary.

The Error Correction Model

$$
\begin{aligned}
x_{t} & =\Pi_{1} x_{t-1}+\Pi_{2} x_{t-2}+\Phi D_{t}+\varepsilon_{t} \\
x_{t}-x_{t-1} & =\left(\Pi_{1}+\Pi_{2}-I_{p}\right) x_{t-1}+\Pi_{2}\left(x_{t-2}-x_{t-1}\right)+\Phi D_{t}+\varepsilon_{t} \\
\Delta x_{t} & =\Pi x_{t-1}+\Gamma_{1} \Delta x_{t-1}+\Phi D_{t}+\varepsilon_{t}
\end{aligned}
$$

Note that

$$
\Pi(z)=I_{p}-z \Pi_{1}-z^{2} \Pi_{2}=(1-z) I_{p}-\Pi z-\Gamma_{1} z(1-z)
$$

If $\Pi(z)$ has unit root, then

$$
\Pi(1)=-\Pi=-\alpha \beta^{\prime}
$$

for some α and β of dimension $p \times r$ and rank $r<p$ Error Correction Model:

$$
E C M: \Delta x_{t}=\alpha \beta^{\prime} x_{t-1}+\Gamma_{1} \Delta x_{t-1}+\Phi D_{t}+\varepsilon_{t}
$$

Granger Representation Theorem

(From AR to MA Chapter 5.3 and 5.4 , pp 84-88))
Question: If the VAR has unit roots and the other roots are larger than one, what is the moving average representation?
Error correction formulation :

$$
\begin{aligned}
\Delta x_{t} & =\alpha \beta^{\prime} x_{t-1}+\sum_{i=1}^{k-1} \Gamma_{i} \Delta x_{t-i}+\varepsilon_{t} \\
\Pi(z) & =(1-z) I_{p}-\alpha \beta^{\prime} z-\sum_{i=1}^{k-1}(1-z) z^{i} \Gamma_{i}
\end{aligned}
$$

I(1) condition:

$$
\begin{aligned}
\operatorname{det}(\Pi(z)) & =0 \Longrightarrow z=1 \text { or }|z|>1 \\
\Gamma & =I_{p}-\sum_{i=1}^{k-1} \Gamma_{i}, \quad \operatorname{det}\left(\alpha_{\perp}^{\prime} \Gamma \beta_{\perp}\right) \neq 0
\end{aligned}
$$

The Granger Representation Theorem

$$
\begin{aligned}
\operatorname{det}(\Pi(z)) & =0 \Longrightarrow z=1 \text { or }|z|>1 \\
\Gamma & =I_{p}-\sum_{i=1}^{k-1} \Gamma_{i}, \quad \operatorname{det}\left(\alpha_{\perp}^{\prime} \Gamma \beta_{\perp}\right) \neq 0
\end{aligned}
$$

Theorem: If I(1) condition is satisfied then

$$
(1-z) \Pi^{-1}(z)=C+\sum_{i=0}^{\infty} C_{i}^{*}(1-z) z^{i} \text { or } \Pi^{-1}(z)=\frac{1}{1-z} C+\sum_{i=0}^{\infty} C_{i}^{*} z^{i}
$$

and the solution of the ECM is

$$
x_{t}=C \sum_{i=1}^{t} \varepsilon_{i}+\sum_{i=0}^{\infty} C_{i}^{*} \varepsilon_{t-i}+A, \quad \beta^{\prime} A=0, \text { where } C=\beta_{\perp}\left(\alpha_{\perp}^{\prime} \Gamma \beta_{\perp}\right)^{-1} \alpha_{\perp}^{\prime}
$$

1. Δx_{t} is $I(0): x_{t}$ is $I(1)$
2. $\beta^{\prime} x_{t}$ is stationary: x_{t} has $r=\operatorname{rank}(\beta)$ cointegrating or long-run relations
3. There are $p-r=\operatorname{rank}\left(\alpha_{\perp}\right)$ common trends $\alpha_{\perp}^{\prime} \sum_{i \neq 1}^{t} \varepsilon_{i}$

An example of the solution

$$
\begin{aligned}
& \Delta x_{1 t}=\alpha_{1}\left(x_{1 t-1}-x_{2 t-1}\right)+\varepsilon_{1 t} \\
& \Delta x_{2 t}=\alpha_{2}\left(x_{1 t-1}-x_{2 t-1}\right)+\varepsilon_{2 t}
\end{aligned}
$$

Subtracting we find an $\operatorname{AR}(1)$ process

$$
\begin{aligned}
\Delta\left(x_{1 t}-x_{2 t}\right) & =\left(\alpha_{1}-\alpha_{2}\right)\left(x_{1 t-1}-x_{2 t-1}\right)+\varepsilon_{1 t}-\varepsilon_{2 t} \\
x_{1 t}-x_{2 t} & =\sum_{i=0}^{\infty}\left(1+\alpha_{1}-\alpha_{2}\right)^{i}\left(\varepsilon_{1 t-i}-\varepsilon_{2 t-i}\right)\left(=y_{t}\right)
\end{aligned}
$$

which is stationary if $\left|1+\alpha_{1}-\alpha_{2}\right|<1$.
Note that the $I(1)$ condition involves

$$
\begin{aligned}
\Pi & =\left(\begin{array}{ll}
\alpha_{1} & -\alpha_{1} \\
\alpha_{2} & -\alpha_{2}
\end{array}\right), \alpha=\binom{\alpha_{1}}{\alpha_{2}}, \beta=\binom{1}{-1} \\
\alpha_{\perp} & =\binom{\alpha_{1}}{-\alpha_{2}}, \beta_{\perp}=\binom{1}{1}, \Gamma=I_{2}, \alpha_{\perp}^{\prime} \Gamma \beta_{\perp}=\alpha_{1}-\alpha_{2} \neq 0
\end{aligned}
$$

(Note: For $\alpha_{1}=\alpha_{2}$ we get $I(2)$)

An example of the solution cont'

Similarly we find a random walk (common trend)

$$
\begin{aligned}
\alpha_{2} \Delta x_{1 t}-\alpha_{1} \Delta x_{2 t} & =\alpha_{2} \varepsilon_{1 t}-\alpha_{1} \varepsilon_{2 t} \\
\alpha_{2} x_{1 t}-\alpha_{1} x_{2 t} & =\alpha_{2} x_{10}-\alpha_{1} x_{20}+\sum_{i=1}^{t}\left(\alpha_{2} \varepsilon_{1 i}-\alpha_{1} \varepsilon_{2 i}\right)\left(=S_{t}\right) \\
x_{1 t}-x_{2 t} & =y_{t} \text { (stationary cointegrating relation) }
\end{aligned}
$$

$$
\begin{aligned}
& x_{1 t}=\frac{1}{\alpha_{2}-\alpha_{1}}\left(S_{t}-\alpha_{1} y_{t}\right) \\
& x_{2 t}=\frac{1}{\alpha_{2}-\alpha_{1}}\left(S_{t}-\alpha_{2} y_{t}\right)
\end{aligned}
$$

Thus if $\left|1+\alpha_{1}-\alpha_{2}\right|<1$ then

1. $x_{1 t}-x_{2 t}$ is stationary
2. $\alpha_{2} x_{1 t}-\alpha_{1} x_{2 t}$ is random walk
3. x_{t} is $I(1)$
4. x_{t} cointegrated with cointegration vector $(1,-1)$.

The movement of two cointegrated processes

Figure: The process $x_{t}^{\prime}=\left[m_{t}^{r}, y_{t}^{r}\right]$ is pushed along the attractor set by the common trends and pulled towards the attractor set, $\operatorname{sp}\left(\beta_{\perp}\right)$, by the adjustment coefficients

An example of a simple model

$$
\begin{aligned}
\Delta x_{1 t} & =-\frac{1}{4}\left(x_{1 t-1}-x_{2 t-1}\right)+\varepsilon_{1 t} \\
\Delta x_{2 t} & =\frac{1}{4}\left(x_{1 t-1}-x_{2 t-1}\right)+\varepsilon_{2 t}
\end{aligned}
$$

gives $I(1)$ integration and cointegration

$$
\left(1+\alpha_{1}-\alpha_{2}=1-\frac{1}{4}-\frac{1}{4}=\frac{1}{2}<1\right)
$$

Another example

$$
\begin{aligned}
\Delta x_{1 t} & =\frac{1}{4}\left(x_{1 t-1}-x_{2 t-1}\right)+\varepsilon_{1 t} \\
\Delta x_{2 t} & =-\frac{1}{4}\left(x_{1 t-1}-x_{2 t-1}\right)+\varepsilon_{2 t}
\end{aligned}
$$

is explosive and not cointegrated $\left(1+\alpha_{1}-\alpha_{2}=1+\frac{1}{4}+\frac{1}{4}=\frac{3}{2}>1\right)$
$\Delta\left(x_{1 t}-x_{2 t}\right)=\frac{1}{2}\left(x_{1 t-1}-x_{2 t-1}\right)+\varepsilon_{1 t}-\varepsilon_{2 t}$, implies that $x_{1 t}-x_{2 t}$ explosive

A strange example

$$
\begin{aligned}
\Delta x_{1 t} & =\frac{1}{4}\left(x_{1 t-1}-x_{2 t-1}\right)+\frac{9}{4} \Delta x_{2 t-1}+\varepsilon_{1 t} \\
\Delta x_{2 t} & =-\frac{1}{4}\left(x_{1 t-1}-x_{2 t-1}\right)+\varepsilon_{2 t}
\end{aligned}
$$

is $I(1)$ and cointegrated.
The sign of the adjustment is not intuitive
The processes do not adjust properly, yet are $I(1)$.

$$
\operatorname{det}(\Pi(z))=\operatorname{det}\left(\begin{array}{cc}
1-z-\frac{1}{4} z & \frac{1}{4} z-\frac{9}{4} z(1-z) \\
\frac{1}{4} z & -\frac{1}{4} z
\end{array}\right)=0
$$

implies $|z|>1$ or $z=1$ and $\alpha_{\perp}^{\prime} \Gamma \beta_{\perp} \neq 0$.
Cointegration is a system property and requires a careful analysis of the characteristic polynomial.

Conclusion:

The cointegrated vector autoregressive model

$$
\Delta x_{t}=\alpha\left(\beta^{\prime} x_{t-1}-\beta_{0}\right)+\sum_{i=1}^{k-1} \Gamma_{i} \Delta x_{t-i}+\varepsilon_{t}
$$

is a dynamic stochastic model for all the variables, that allows the simultaneous modelling of the long-run relations $\beta^{\prime} x=\beta_{0}$, and the adjustment towards the disequilibrium errors.

1. The long-run relations $\beta^{\prime} x=\beta_{0}$ define the attractor set

$$
\left\{x \in R^{p} \mid C x=\alpha\left(\beta^{\prime} \alpha\right)^{-1} \beta_{0}\right\}=\left\{x \mid \beta^{\prime} x=\beta_{0}\right\}
$$

the set of equilibria or steady states. The coefficients are long-run elasticities.
2. The adjustment coefficients α define the direction of adjustment, the 'pulling forces'
3. The common trends are given by $\alpha_{\perp}^{\prime} \sum_{i=1}^{t} \varepsilon_{i}$ define the 'pushing forces' The Granger Representation Theorem gives the solution of the autoregressive equations and is useful for deterministics and asymptotics

LECTURE 2

The Cointegrated VAR. Chapter 6.1 and 6.2 pp. 93-99

- A Constant and Linear Term in the AR(1) model and in the VAR

A Constant and Linear Term in the AR(1) model and in

 the VARA simple example

$$
y_{t}=\gamma t+\mu+u_{t}, \quad u_{t}=\rho u_{t-1}+\varepsilon_{t}, \quad \varepsilon_{t} \text { i.i.d. } N\left(0, \sigma^{2}\right)
$$

lag equation one period, multiply by ρ and subtract

$$
\begin{aligned}
& y_{t}=\gamma t+\mu+u_{t}, \text { and } y_{t-1}=\gamma(t-1)+\mu+u_{t-1}, \\
& y_{t}-\rho y_{t-1}=\gamma t+\mu-\rho \gamma(t-1)-\rho \mu+\left(u_{t}-\rho u_{t-1}\right) \\
& y_{t}=\rho y_{t-1}+\gamma(1-\rho) t+\rho \gamma+(1-\rho) \mu+\varepsilon_{t} \\
& y_{t}=b_{1} y_{t-1}+b_{2} t+b_{0}+\varepsilon_{t}\left(\text { if } \rho=1, \text { we have } \Delta y_{t}=\gamma+\varepsilon_{t}\right) \\
& \begin{array}{ll}
b_{1} & =\rho \\
b_{2} & =\gamma(1-\rho) \\
b_{0}=\rho \gamma+(1-\rho) \mu & \rho=b_{1} \\
\gamma=\frac{b_{2}}{1-b_{1}}(\rho \neq 1) \\
& \mu=\frac{\left(1-b_{1}\right) b_{0}-b_{2} b_{1}}{\left(1-b_{1}\right)^{2}}(\rho \neq 1) \\
\hline
\end{array}
\end{aligned}
$$

Thus a "regression with autocorrelated errors" is the same as a "regression on lagged dependent variable"

The linear 'innovation term'

Model

$$
\Delta x_{t}=\alpha \beta^{\prime} x_{t-1}+\sum_{i=1}^{k-1} \Gamma_{i} \Delta x_{t-i}+\left(\mu_{0}+\mu_{1} t+\varepsilon_{t}\right)
$$

Granger Representation Theorem
$x_{t}=C \sum_{i=1}^{t}\left(\varepsilon_{i}+\mu_{0}+\mu_{1} i\right)+\sum_{i=0}^{\infty} C_{i}^{*}\left(\varepsilon_{t-i}+\mu_{0}+\mu_{1}(t-i)\right)+A, \quad C=\beta_{\perp}\left(\alpha_{\perp}^{\prime}\right]$
Thus in the process we have

1. Quadratic trend, $\frac{1}{2} C \mu_{1} t^{2}$ in general
2. If $\alpha_{\perp}^{\prime} \mu_{1}=0$, only linear trend, $\left(C \mu_{0}+\sum_{i=0}^{\infty} C_{i}^{*} \mu_{1}\right) t$
3. If $\mu_{1}=0$, still linear trend, $C \mu_{0} t$, but $\beta^{\prime} x_{t}$ no trend because $\beta^{\prime} C=0$
4. If $\mu_{1}=0, \alpha_{\perp}^{\prime} \mu_{0}=0$ no linear trend but constant term $\sum_{i=0}^{\infty} C_{i}^{*} \mu_{0}$
5. If $\mu_{1}=\mu_{0}=0$ (no deterministics).

Expectations of stationary processes Δx_{t} and $\beta^{\prime} x_{t}$

$$
\begin{aligned}
x_{t} & =C \sum_{i=1}^{t} \varepsilon_{i}+C \mu_{0} t+\sum_{i=0}^{\infty} C_{i}^{*} \varepsilon_{t-i}+\sum_{i=0}^{\infty} C_{i}^{*} \mu_{0}+A \\
\Delta x_{t} & =C \varepsilon_{t}+C \mu_{0}+\Delta \sum_{i=0}^{\infty} C_{i}^{*} \varepsilon_{t-i} \text { implies } E\left(\Delta x_{t}\right)=C \mu_{0} \\
\Delta x_{t} & =\alpha \beta^{\prime} x_{t-1}+\mu_{0}+\varepsilon_{t} \\
E\left(\Delta x_{t}\right) & =\alpha E\left(\beta^{\prime} x_{t-1}\right)+\mu_{0} \\
C \mu_{0} & =\alpha E\left(\beta^{\prime} x_{t-1}\right)+\beta_{0} \text { implies } E\left(\beta^{\prime} x_{t-1}\right)=-\left(\beta^{\prime} \alpha\right)^{-1} \beta^{\prime} \mu_{0} \\
\Delta x_{t} & -\underbrace{C \mu_{0}}_{\text {growth rate }}=\alpha(\beta^{\prime} x_{t-1}-\underbrace{-\left(\beta^{\prime} \alpha\right)^{-1} \beta^{\prime} \mu_{0}}_{\text {disequilibrium mean }})+\varepsilon_{t}
\end{aligned}
$$

The 'linear additive term'

$$
\begin{aligned}
x_{t} & =\tau_{0}+\tau_{1} t+y_{t} \\
\Delta y_{t} & =\alpha \beta^{\prime} y_{t-1}+\sum_{i=1}^{k-1} \Gamma_{i} \Delta y_{t-i}+\varepsilon_{t} \\
\Delta x_{t}-\tau_{1} & =\alpha \beta^{\prime}\left(x_{t-1}-\tau_{0}-\tau_{1}(t-1)\right)+\sum_{i=1}^{k-1} \Gamma_{i} \Delta x_{t-i}-\Gamma_{i} \tau_{1}+\varepsilon_{t}
\end{aligned}
$$

In 'innovation' form with $\alpha_{\perp}^{\prime} \mu_{1}=0$

$$
\begin{aligned}
\Delta x_{t} & =\alpha \beta^{\prime} x_{t-1}+\sum_{i=1}^{k-1} \Gamma_{i} \Delta x_{t-i}+\mu_{0}+\mu_{1} t+\varepsilon_{t} \\
\mu_{0} & =\alpha \beta^{\prime}\left(\tau_{1}-\tau_{0}\right)+\left(I_{p}-\sum_{i=1}^{k-1} \Gamma_{i}\right) \tau_{1} \\
\mu_{1} & =-\alpha \beta^{\prime} \tau_{1}
\end{aligned}
$$

Other deterministics

The 'innovation' dummy

$$
d_{t}=1_{\left\{t=t_{0}\right\}}=\left\{\begin{array}{l}
1, t=t_{0} \\
0, t \neq t_{0}
\end{array}\right.
$$

Model

$$
\Delta x_{t}=\alpha \beta^{\prime} x_{t^{\prime}-1}+\sum_{i=1}^{k-1} \Gamma_{i} \Delta x_{-i}+\Phi d_{t}+\varepsilon_{t}
$$

GRT

$$
x_{t}=C \sum_{i=1}^{t}\left(\varepsilon_{i}+\Phi d_{i}\right)+\sum_{i=0}^{\infty} C_{i}^{*}\left(\varepsilon_{t-i}+\Phi d_{t-i}\right)+A
$$

The deterministic part of x_{t} is

$$
C \Phi \sum_{i=1}^{t} d_{i}+\sum_{i=0}^{\infty} C_{i}^{*} \Phi d_{t-i}=C \Phi 1_{\left\{t \geq t_{0}\right\}}+C_{t-t_{0}}^{*} \Phi 1_{\left\{t \geq t_{0}\right\}}
$$

The 'additive' dummy

$$
\begin{aligned}
x_{t}= & \phi d_{\left\{t \geq t_{0}\right\}}+y_{t} \\
\Delta y_{t}= & \alpha \beta^{\prime} y_{t-1}+\sum_{i=1}^{k-1} \Gamma_{i} \Delta y_{t-i}+\varepsilon_{t} \\
\Delta x_{t}-\phi d_{\left\{t=t_{0}\right\}}= & \alpha \beta^{\prime}\left(x_{t-1}-\phi d_{\left\{t-1 \geq t_{0}\right\}}\right) \\
& +\sum_{i=1}^{k-1}\left(\Gamma_{i} \Delta x_{t-i}-\Gamma_{i} \phi d_{\left\{t-i=t_{0}\right\}}\right)+\varepsilon_{t} \\
\Delta x_{t}= & \alpha \beta^{\prime} x_{t-1}+\sum_{i=1}^{k-1} \Gamma_{i} \Delta x_{t-i}-\alpha \beta^{\prime} \phi d_{\left\{t-1 \geq t_{0}\right\}} \\
& +\phi d_{\left\{t=t_{0}\right\}}-\sum_{i=1}^{k-1} \Gamma_{i} \phi d_{\left\{t-i=t_{0}\right\}}+\varepsilon_{t}
\end{aligned}
$$

Note the many lagged dummies.

Conclusion:

The Granger Representation Theorem

$$
\begin{aligned}
x_{t} & =C \sum_{i=1}^{t}\left(\varepsilon_{i}+\mu_{0}+\mu_{1} i\right)+\sum_{i=0}^{\infty} C_{i}^{*}\left(\varepsilon_{t-i}+\mu_{0}+\mu_{1}(t-i)\right)+A \\
C & =\beta_{\perp}\left(\alpha_{\perp}^{\prime} \Gamma \beta_{\perp}\right)^{-1} \alpha_{\perp}^{\prime}, \beta^{\prime} A=0
\end{aligned}
$$

gives the solution of the autoregressive equations and is useful for understanding the role of deterministic terms.

Lecture 3

Identification problems Chapter 12:1,2,3

$$
\Delta x_{t}=\alpha \beta^{\prime} x_{t-1}+\Gamma_{1} \Delta x_{t-1}+\Phi D_{t}+\varepsilon_{t}, \quad \varepsilon_{t} \quad \text { i.i.d. }(0, \Omega)
$$

Structural form:

$$
\begin{aligned}
A_{0} \Delta x_{t} & =a \beta^{\prime} x_{t-1}+A_{1} \Delta x_{t-1}+\tilde{\Phi} D_{t}+\varepsilon_{t}^{*}, \quad \varepsilon_{t} \quad \text { i.i.d. }(0, \Sigma) \\
a & =A_{0} \alpha, A_{1}=a_{0} \Gamma_{1}, \tilde{\Phi}=A_{0} \Phi, \quad \varepsilon_{t}^{*}=A_{0} \varepsilon_{t}, \quad \Sigma=A_{0} \Omega A_{0}^{\prime}
\end{aligned}
$$

Note that β is the same but coefficient to $\beta_{t-1}^{\prime} x, \Delta x_{t-1}, D_{t}$ have changed Therefore

1. First identify the long-run parameter β by suitable restrictions (can be done in reduced form). Then $\alpha, \Gamma_{1}, \Phi, \Omega$ are identified 2. Next identify the short-run parameters $\left(A_{0}, a, A_{1}, \tilde{\Phi}, \Sigma\right)$
2. If need be identify the shocks

Definition of identification

DefinitionThe vector β_{1} is identified by restrictions $R_{1}^{\prime} \beta_{1}=0$ if there is no linear combination $\sum_{i=1}^{r} a_{i} \beta_{i}$ satisfying the restrictions
$R_{1}^{\prime} \sum_{i=1}^{r} a_{i} \beta_{i}=0$, other then if $a_{i}=0, i=2, \ldots, r$

Three concepts

1. generic identification (mathematical)
2. empirical identification (statistics)
3. economic identification (economics)

The rank condition

Identifying restrictions on β

$$
\beta=\left(H_{1} \phi_{1}, \ldots, H_{r} \phi_{2}\right) \text { or } R_{i}^{\prime} \beta_{i}=0, i=1, \ldots, r
$$

The rank condition (Abraham Wald) for identification of β_{1} by R_{1} in the system is that the matrix

$$
R_{1}^{\prime} \beta=\left(R_{1}^{\prime} \beta_{1}, R_{1}^{\prime} \beta_{2}, \ldots, R_{1}^{\prime} \beta_{r}\right)
$$

has rank $r-1$, or if the $r \times r$ matrix $\beta^{\prime} R_{1} R_{1}^{\prime} \beta$ has rank $r-1$

$$
\operatorname{rank}\left(\beta^{\prime} R_{1} R_{1}^{\prime} \beta\right)=r-1
$$

If there is an $\left(a_{1}, \ldots, a_{r}\right)$ for which $R_{1}^{\prime} \beta a=0$, we consider the vector $\beta_{1}^{*}=\beta_{1}+\sum_{i=1}^{r} a_{i} \beta_{i}=\beta_{1}+\beta$ a. If β_{1} is identified, then $a_{i}=0, i=2, \ldots, r$, which shows that a is unique and that $\operatorname{rank}\left(R_{1}^{\prime} \beta\right)=r-1$.

An example 1

$$
x_{t}=\left(m_{t}^{r}, y_{t}^{r}, \Delta p_{t}, i_{t}^{\text {deposit }}, i_{t}^{\text {bond }}\right)^{\prime}, \quad r=2
$$

We want to identify the two relations as

1. One relation has homogeneity between money and income
2. Another has coefficient to inflation rate zero

$$
\begin{gathered}
(1,1,0,0,0)^{\prime} \beta_{1}=0 \\
(0,0,1,0,0)^{\prime} \beta_{2}=0 \\
\beta^{\prime} x_{t}=\binom{\phi_{11} m_{t}^{r}-\phi_{11} y_{t}^{r}+\phi_{13} \Delta p_{t}+\phi_{11} i_{t}^{d e p}+\phi_{11} i_{t}^{b o n d}}{\phi_{21} m_{t}^{r}+\phi_{22} y_{t}^{r}+0 \Delta p_{t}+\phi_{24} i_{t}^{d e p}+\phi_{25} i_{t}^{i o n d}}
\end{gathered}
$$

or

$$
\beta_{1}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \phi_{1}=\left(\begin{array}{r}
\phi_{11} \\
-\phi_{11} \\
\phi_{13} \\
\phi_{14} \\
\phi_{15}
\end{array}\right)
$$

An example 2

Check identification: apply $R_{1}^{\prime}=(1,1,0,0,0)$ and $R_{2}^{\prime}=(0,0,1,0,0)$ to β

$$
\beta^{\prime}=\binom{\phi_{11},-\phi_{11}, \phi_{13}, \phi_{14}, \phi_{15}}{\phi_{21}, \phi_{22}, 0, \phi_{24}, \phi_{25}}
$$

$$
\begin{aligned}
& R_{1}^{\prime} \beta=\left(0, \phi_{21}+\phi_{22}\right) \text { rank } 1 \text { (in general) } \\
& R_{2}^{\prime} \beta=\left(\phi_{13}, 0\right) \text { rank } 1 \text { (in general) }
\end{aligned}
$$

Both are identified generically. (Only if $\phi_{13}=0$, the second is unidentified and only if $\phi_{22}+\phi_{23}=0$ the first is unidentified)
Empirical identification involves showing that, for a given data set, that in fact $\phi_{13} \neq 0$ and $\phi_{22}+\phi_{23} \neq 0$
Economic identification involves "making sense" of these relations The first has interpretation that velocity is a function of $\Delta p_{t}, i_{t}^{\text {dep }}, i_{t}^{\text {bond }}$ The second is just a relation between the variables $\left(m_{t}^{r}, y_{t}^{r}, i_{t}^{\text {deposit }}, i_{t}^{\text {bond }}\right)$

Another criterion

Another condition for generic identification (independent of the parameter) is that β_{1} is generically identified in the system of $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ if

$$
\begin{aligned}
\operatorname{rank}\left(R_{1}^{\prime} H_{2}\right) & \geq 1, \operatorname{rank}\left(R_{1}^{\prime} H_{3}\right) \geq 1 \\
\operatorname{rank}\left(R_{1}^{\prime}\left(H_{2}, H_{3}\right)\right) & \geq 2
\end{aligned}
$$

Theorem If $\beta_{1}, \ldots, \beta_{r}$ are identified by m_{i} restrictions on β_{i}, then $-2 \log Q\left(\beta=\left(H_{1} \phi_{1}, \ldots, H_{r} \phi_{r}\right)\right)$ converges in distribution to a χ^{2} distribution with $f=\sum_{i=1}^{r}\left(m_{i}-r+1\right)$ degrees of freedom.

An example (page 213)

$$
\beta^{\prime} x_{t}=\left(\begin{array}{ccccc}
\beta_{11} & -\beta_{11} & 0 & \beta_{12} & -\beta_{12} \\
0 & \beta_{21} & \beta_{22} & 0 & \beta_{23} \\
0 & 0 & 0 & \beta_{31} & \beta_{32}
\end{array}\right) x_{t}=\left(\begin{array}{c}
\beta_{11}\left(m_{t}^{r}-y_{t}^{r}\right)+\beta_{12}\left(i_{t}^{d e p}\right. \\
\beta_{21} y_{t}^{r}+\beta_{22} \Delta p_{t}+\beta_{2} \\
\beta_{31} i_{t}^{d e p t}+\beta_{32} i_{t}^{i d}
\end{array}\right.
$$

$R_{i}^{\prime} H_{j}$	$r_{i . j}$	$R_{i}^{\prime}\left(H_{j}, H_{m}\right)$	$r_{i . j, m}$
1.2	3	1.23	3
1.2	1		
2.1	2	2.13	2
2.1	1		
3.1	1	3.12	3
3.2	2		

$$
\begin{aligned}
\beta^{\prime} x_{t} & =\left(\begin{array}{ccccc}
\beta_{11} & -\beta_{11} & 0 & \beta_{12} & -\beta_{12} \\
0 & \beta_{21} & \beta_{22} & 0 & \beta_{23} \\
0 & 0 & 0 & \beta_{31} & \beta_{32}
\end{array}\right) x_{t} \\
R_{1}^{\prime} & =\left(\begin{array}{cccc}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
R_{1}^{\prime} H_{2} \phi & =R_{1}^{\prime}\left(0, \beta_{21}, \beta_{22}, 0, \beta_{23}\right)=\left(\begin{array}{c}
\beta_{21} \\
\beta_{22} \\
\beta_{23}
\end{array}\right): \operatorname{rank}\left(R_{1}^{\prime} H_{2}\right)=3 \\
R_{1}^{\prime}\left(H_{2}, H_{3}\right) \phi & =\left(\begin{array}{c}
\beta_{21} \\
\beta_{22} \\
\beta_{31}+\beta_{23}+\beta_{32}
\end{array}\right): \operatorname{rank}\left(R_{1}^{\prime}\left(H_{2}, H_{3}\right)\right)=3
\end{aligned}
$$

Asymptotic distribution of the identified $\widehat{\beta}$

Let $r=2$ and assume β is identified by normalization and linear restrictions $\beta=\left(h_{1}+H_{1} \phi_{1}, h_{2}+H_{2} \phi_{2}\right)$.
THEOREM In the model without deterministic terms where ε_{t} are i.i.d. $(0, \Omega)$, the asymptotic distribution of

$$
\operatorname{Tvec}(\hat{\beta}-\beta)=\left(\begin{array}{cc}
H_{1} & 0 \\
0 & H_{2}
\end{array}\right)\binom{T \hat{\phi}_{1}}{T \hat{\phi}_{2}}=T\binom{H_{1} \hat{\phi}_{1}}{H_{2} \hat{\phi}_{2}}
$$

is given by

$$
\left(\begin{array}{cc}
H_{1} & 0 \\
0 & H_{2}
\end{array}\right)\left(\begin{array}{cc}
\rho_{11} H_{1}^{\prime} \mathcal{G} H_{1} & \rho_{12} H_{1}^{\prime} \mathcal{G} H_{2} \\
\rho_{21} H_{2}^{\prime} \mathcal{G} H_{1} & \rho_{22} H_{2}^{\prime} \mathcal{G} H_{2}
\end{array}\right)^{-1}\binom{H_{1}^{\prime} \int_{0}^{1} G\left(d V_{1}\right)}{H_{2}^{\prime} \int_{0}^{1} G\left(d V_{2}\right)}
$$

where

$$
\begin{array}{ll}
T^{-1 / 2} x_{[T u]} \xrightarrow{w} G=C W, & T^{-1} S_{11} \xrightarrow{w} \mathcal{G}=C \int_{0}^{1} W W^{\prime} d u C^{\prime}, \\
V=\alpha^{\prime} \Omega^{-1} W=\left(V_{1}, V_{2}\right)^{\prime}, & \rho_{i j}=\alpha_{i}^{\prime} \Omega^{-1} \alpha_{j} .
\end{array}
$$

The estimators of the remaining parameters are asymptotically Gaussian and asymptotically independent of $\hat{\beta}$.

An illustration of mixed Gaussian inference 1

An illustration of the mixed Gaussian distribution in cointegration.

$$
\begin{aligned}
x_{1 t} & =\theta x_{2 t-1}+\varepsilon_{1 t}, \\
\Delta x_{2 t} & =\varepsilon_{2 t} .
\end{aligned}
$$

where ε_{t} not only i.i.d. but also $\varepsilon_{1 t}$ and $\varepsilon_{2 t}$ independent then the maximum likelihood estimator satisfies

$$
\hat{\theta}=\frac{\sum_{t=1}^{T} x_{1 t} x_{2 t-1}}{\sum_{t=1}^{T} x_{2 t-1}^{2}}=\theta+\frac{\sum_{t=1}^{T} \varepsilon_{1 t} x_{2 t-1}}{\sum_{t=1}^{T} x_{2 t-1}^{2}} .
$$

The distribution of $\hat{\theta}$ conditional on the regressor $\left\{x_{2 t}\right\}$ is $N\left(\theta, \sigma_{1}^{2} / \sum_{t=1}^{T} x_{2 t-1}^{2}\right)$. Hence $\hat{\theta}$ is mixed Gaussian with mixing parameter $1 / \sum_{t=1}^{T} x_{2 t-1}^{2}$, and hence has mean θ and variance $\sigma_{1}^{2} E\left(1 / \sum_{t=1}^{T} x_{2 t-1}^{2}\right)$. Inference is χ^{2}.

An illustration of mixed Gaussian inference 2

When constructing a test for $\theta=\theta_{0}$ we do not base our inference on the Wald test

$$
\frac{\hat{\theta}-\theta}{\sqrt{\widehat{\operatorname{Var}}(\hat{\theta})}}=\frac{\hat{\theta}-\theta}{\sqrt{E\left(\hat{\sigma}_{1}^{2} / \sum_{t=1}^{T} x_{2 t-1}^{2}\right)}}
$$

but rather on the Wald test which comes from an expansion of the likelihood function and is based on the observed information:

$$
\begin{equation*}
t=\frac{\hat{\theta}-\theta}{\sqrt{\hat{\sigma}_{1}^{2} / \sum_{t=1}^{T} x_{2 t-1}^{2}}} \tag{1}
\end{equation*}
$$

which is distributed as $N(0,1)$. Thus we normalize by the observed information not the expected information often used when analyzing stationary processes.

Plot of joint distribution of estimator and information

Figure: The joint distribution of $\hat{\theta}$ and the observed information $\left(\sum_{i=1}^{T} x_{2 t-1}^{2} / \hat{\sigma}^{2}\right)$ in the model $x_{1 t}=\theta x_{2 t-1}+\varepsilon_{t}$, and $\Delta x_{2 t}=\varepsilon_{2 t}$

Conclusion

The identification problem for β is solved as the classical identification problem by the rank criterion. Various forms of identification were discussed and another criterion for identification, which does not depend on parameters, was given. A few comments on the application of the mixed Gaussian distribution for inference were given.

