
DIFFERENCE-IN-DIFFERENCES ESTIMATION

Jeff Wooldridge
Michigan State University
LABOUR Lectures, EIEF

October 18-19, 2011

1. The Basic Methodology
2. How Should We View Uncertainty in DD Settings?
3. Estimation with a Small Number of Groups
4. Multiple Groups and Time Periods
5. Individual-Level Panel Data
6. Semiparametric and Nonparametric Approaches

1



1. The Basic Methodology

∙ In the basic setting, outcomes are observed for two groups for two

time periods. One of the groups is exposed to a treatment in the second

period but not in the first period. The second group is not exposed to

the treatment during either period. Structure can apply to repeated cross

sections or panel data.

∙With repeated cross sections, let A be the control group and B the

treatment group. Write

y  0  1dB  0d2  1d2  dB  u,     (1)

where y is the outcome of interest.
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∙ dB captures possible differences between the treatment and control

groups prior to the policy change. d2 captures aggregate factors that

would cause changes in y over time even in the absense of a policy

change. The coefficient of interest is 1.

∙ The difference-in-differences (DD) estimate is

̂1  ȳB,2 − ȳB,1 − ȳA,2 − ȳA,1.     (2)

Inference based on moderate sample sizes in each of the four groups is

straightforward, and is easily made robust to different group/time

period variances in regression framework.
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∙ Can refine the definition of treatment and control groups.

Example: Change in state health care policy aimed at elderly. Could

use data only on people in the state with the policy change, both before

and after the change, with the control group being people 55 to 65 (say)

and and the treatment group being people over 65. This DD analysis

assumes that the paths of health outcomes for the younger and older

groups would not be systematically different in the absense of

intervention.
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∙ Instead, use the same two groups from another (“untreated”) state as

an additional control. Let dE be a dummy equal to one for someone

over 65 and dB be the dummy for living in the “treatment” state:

y  0  1dB  2dE  3dB  dE  0d2
 1d2  dB  2d2  dE  3d2  dB  dE  u

    (3)

where 3 is the average treatment effect.
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∙ The OLS estimate ̂3 is

̂3  ȳB,E,2 − ȳB,E,1 − ȳB,N,2 − ȳB,N,1

− ȳA,E,2 − ȳA,E,1 − ȳA,N,2 − ȳA,N,1

    (4)

where the A subscript means the state not implementing the policy and

the N subscript represents the non-elderly. This is the

difference-in-difference-in-differences (DDD) estimate.

∙ Can add covariates to either the DD or DDD analysis to (hopefully)

control for compositional changes. Even if the intervention is

independent of observed covariates, adding those covariates may

improve precision of the DD or DDD estimate.
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2. How Should We View Uncertainty in DD Settings?

∙ Standard approach: all uncertainty in inference enters through

sampling error in estimating the means of each group/time period

combination. Long history in analysis of variance.

∙ Recently, different approaches have been suggested that focus on

different kinds of uncertainty – perhaps in addition to sampling error in

estimating means. Bertrand, Duflo, and Mullainathan (2004, QJE),

Donald and Lang (2007, REStat), Hansen (2007a,b, JE), and Abadie,

Diamond, and Hainmueller (2010, JASA) argue for additional sources

of uncertainty.
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∙ In fact, in the “new” view, the additional uncertainty is often assumed

to swamp the sampling error in estimating group/time period means.

∙ One way to view the uncertainty introduced in the DL framework –

and a perspective explicitly taken by ADH – is that our analysis should

better reflect the uncertainty in the quality of the control groups.

∙ ADH show how to construct a synthetic control group (for California)

using pre-treatment characteristics of other states (that were not subject

to cigarette smoking restrictions) to choose the “best” weighted average

of states in constructing the control.
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∙ Issue: In the standard DD and DDD cases, the policy effect is just

identified in the sense that we do not have multiple treatment or control

groups assumed to have the same mean responses. So, for example, the

Donald and Lang approach does not allow inference in such cases.

∙ Example from Meyer, Viscusi, and Durbin (1995) on estimating the

effects of benefit generosity on length of time a worker spends on

workers’ compensation. MVD have the standard DD before-after

setting.
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. use injury

. reg ldurat afchnge highearn afhigh if ky, robust

Linear regression Number of obs  5626
F( 3, 5622)  38.97
Prob  F  0.0000
R-squared  0.0207
Root MSE  1.2692

------------------------------------------------------------------------------
| Robust

ldurat | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

afchnge | .0076573 .0440344 0.17 0.862 -.078667 .0939817
highearn | .2564785 .0473887 5.41 0.000 .1635785 .3493786

afhigh | .1906012 .068982 2.76 0.006 .0553699 .3258325
_cons | 1.125615 .0296226 38.00 0.000 1.067544 1.183687

------------------------------------------------------------------------------
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. reg ldurat afchnge highearn afhigh if mi, robust

Linear regression Number of obs  1524
F( 3, 1520)  5.65
Prob  F  0.0008
R-squared  0.0118
Root MSE  1.3765

------------------------------------------------------------------------------
| Robust

ldurat | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

afchnge | .0973808 .0832583 1.17 0.242 -.0659325 .2606941
highearn | .1691388 .1070975 1.58 0.114 -.0409358 .3792133

afhigh | .1919906 .1579768 1.22 0.224 -.117885 .5018662
_cons | 1.412737 .0556012 25.41 0.000 1.303674 1.5218

------------------------------------------------------------------------------
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3. Multiple Groups and Time Periods

∙With many time periods and groups, setup in Bertrand, Duflo, and

Mullainathan (2004) (BDM) and Hansen (2007a) is useful. At the

individual level,

yigt  t  g  xgt  zigtgt  vgt  uigt,

i  1, . . . ,Mgt,

    (5)

where i indexes individual, g indexes group, and t indexes time. Full set

of time effects, t, full set of group effects, g, group/time period

covariates (policy variabels), xgt, individual-specific covariates, zigt,

unobserved group/time effects, vgt, and individual-specific errors, uigt.

Interested in .
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∙We can write a model at the individual level as

yigt  gt  zigtgt  uigt, i  1, . . . ,Mgt,     (6 )

where intercepts and slopes are allowed to differ across all g, t pairs.

Then, think of gt as

gt  t  g  xgt  vgt.     (7)

Think of (7) as a model at the group/time period level.
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∙ As discussed by BDM, a common way to estimate and perform

inference in the individual-level equation

yigt  t  g  xgt  zigt  vgt  uigt

is to ignore vgt, so the individual-level observations are treated as

independent. When vgt is present, the resulting inference can be very

misleading.

∙ BDM and Hansen (2007b) allow serial correlation in

vgt : t  1, 2, . . . ,T but assume independence across g.

∙We cannot replace t  g a full set of group/time interactions

because that would eliminate xgt.
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∙ If we view  in gt  t  g  xgt  vgt as ultimately of interest –

which is usually the case because xgt contains the aggregate policy

variables – there are simple ways to proceed. We observe xgt, t is

handled with year dummies,and g just represents group dummies. The

problem, then, is that we do not observe gt.

∙ But we can use OLS on the individual-level data to estimate the gt in

yigt  gt  zigtgt  uigt, i  1, . . . ,Mgt

assuming Ezigt′ uigt  0 and the group/time period sample sizes, Mgt,

are reasonably large.
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∙ Sometimes one wishes to impose some homogeneity in the slopes –

say, gt  g or even gt   – in which case pooling across groups

and/or time can be used to impose the restrictions.

∙ However we obtain the ̂gt , proceed as if Mgt are large enough to

ignore the estimation error in the ̂gt; instead, the uncertainty comes

through vgt in gt  t  g  xgt  vgt.

∙ A minimum distance (MD) approach (later) effectively drops vgt and

views gt  t  g  xgt as a set of deterministic restrictions to be

imposed on gt. Inference using the efficient MD estimator uses only

sampling variation in the ̂gt.
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∙ Here, proceed ignoring estimation error, and act as if

̂gt  t  g  xgt  vgt.     (8)

∙We can apply the BDM findings and Hansen (2007a) results directly

to this equation. Namely, if we estimate (8) by OLS – which means full

year and group effects, along with xgt – then the OLS estimator has

satisfying large-sample properties as G and T both increase, provided

vgt : t  1, 2, . . . ,T is a weakly dependent time series for all g.

∙ Simulations in BDM and Hansen (2007a) indicate cluster-robust

inference works reasonably well when vgt follows a stable AR(1)

model and G is moderately large.
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∙ Hansen (2007b), noting that the OLS estimator (the fixed effects

estimator) applied to (8) is inefficient when vgt is serially uncorrelated,

proposes feasible GLS. When T is small, estimating the parameters in

  Varvg, where vg is the T  1 error vector for each g, is difficult

when group effects have been removed. Bias in estimates based on the

FE residuals, v̂gt, disappears as T → , but can be substantial even for

moderate T. In AR(1) case, ̂ comes from

v̂gt on v̂g,t−1, t  2, . . . ,T,g  1, . . . ,G.     (9)
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∙ One way to account for bias in ̂: use fully robust inference. But, as

Hansen (2007b) shows, this can be very inefficient relative to his

suggestion to bias-adjust the estimator ̂ and then use the bias-adjusted

estimator in feasible GLS. (Hansen covers the general ARp model.)

∙ Hansen shows that an iterative bias-adjusted procedure has the same

asymptotic distribution as ̂ in the case ̂ should work well: G and T

both tending to infinity. Most importantly for the application to DD

problems, the feasible GLS estimator based on the iterative procedure

has the same asymptotic distribution as the infeasible GLS etsimator

when G →  and T is fixed.
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∙ Even when G and T are both large, so that the unadjusted AR

coefficients also deliver asymptotic efficiency, the bias-adusted

estimates deliver higher-order improvements in the asymptotic

distribution.

∙ One limitation of Hansen’s results: they assume xgt : t  1, . . . ,T

are strictly exogenous. If we just use OLS, that is, the usual fixed

effects estimate – strict exogeneity is not required for consistency as

T → .

∙ Of course, GLS approaches to serial correlation generally rely on

strict exogeneity. In intervention analyis, might be concerned if the

policies can switch on and off over time.
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∙With large G and small T, can estimate an unstricted variance matrix

 (T  T) and proceed with GLS, as studied recently by Hausman and

Kuersteiner (2003). Works pretty well with G  50 and T  10, but get

substantial size distortions for G  50 and T  20.

∙ If the Mgt are not large, might worry about ignoring the estimation

error in the ̂gt. Instead, aggregate over individuals:

ȳgt  t  g  xgt  z̄gt  vgt  ūgt,
t  1, . . ,T,g  1, . . . ,G.

    (10)

Can estimate this by FE and use fully robust inference (to account for

time series dependence) because the composite error, rgt ≡ vgt  ūgt,

is weakly dependent.
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4. Estimation with a Small Number of Groups

∙ Suppose we have only a small number of groups, G, but where the

number of units per group is fairly large. This setup – first made

popular by Moulton (1990) in economics – has been recently studied by

Donald and Lang (2007) (DL).
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∙ DL treat the problem as a small number of random draws from a large

number of groups (because they assume independence). This may not

be the most realistic way to view the data.

∙ Simplest case: A single regressor that varies only by group:

ygm    xg  cg  ugm
 g  xg  ugm.

In second equation, common slope, , but intercept, g, that varies

across g.

∙ DL focus on first equation, where cg is assumed to be independent of

xg with zero mean.
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∙ Note: Because cg is assumed independent of xg, the DL criticism of

standard methods for standard DD analysis is not one of endogeneity. It

is one of inference.

∙ DL highlight the problems of applying standard inference leaving cg

as part of the error term, vgm  cg  ugm.
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∙ Pooled OLS inference applied to

ygm    xg  cg  ugm

can be badly biased because it ignores the cluster correlation. Hansen’s

results do not apply. (And we cannot use fixed effects estimation here.)
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∙ DL propose studying the regression in averages:

ȳg    xg  v̄g,g  1, . . . ,G.

∙ Add some strong assumptions: Mg  M for all g,

cg|xg  Normal0,c2 and ugm|xg,cg  Normal0,u2. Then v̄g is

independent of xg and v̄g  Normal0,c2  u2/M. Then the model in

averages satisfies the classical linear model assumptions (we assume

independent sampling across g).

∙ So, we can just use the “between” regression

ȳg on 1,xg,g  1, . . . ,G.

∙ The estimates of  and  are identical to pooled OLS across g and m
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when Mg  M for all g.

∙ Conditional on the xg, ̂ inherits its distribution from

v̄g : g  1, . . . ,G, the within-group averages of the composite errors.

∙We can use inference based on the tG−2 distribution to test hypotheses

about , provided G  2.

∙ If G is small, the requirements for a significant t statistic using the

tG−2 distribution are much more stringent then if we use the

tM1M2...MG−2 distribution – which is what we would be doing if we use

the usual pooled OLS statistics.
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∙ Using the averages in an OLS regression is not the same as using

cluster-robust standard errors for pooled OLS. Those are not justified

and, anyway, we would use the wrong df in the t distribution.

∙We can apply the DL method without normality of the ugm if the

group sizes are large because Varv̄g  c2  u2/Mg so that ūg is a

negligible part of v̄g. But we still need to assume cg is normally

distributed.

∙ If zgm appears in the model, then we can use the averaged equation

ȳg    xg  z̄g  v̄g,g  1, . . . ,G,

provided G  K  L  1.
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∙ Inference can be carried out using the tG−K−L−1 distribution.

∙ Regressions on averages are reasonably common, at least as a check

on results using disaggregated data, but usually with larger G then just

a handful.

∙ If G  2 in the DL setting, we cannot do inference (there are zero

degrees of freedom).

∙ Suppose xg is binary, indicating treatment and control (g  2 is the

treatment, g  1 is the control). The DL estimate of  is the usual one:

̂  ȳ2 − ȳ1. But we cannot compute a standard error for ̂.
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∙ So according the the DL framework the traditional

comparison-of-means approach to policy analysis cannot be used.

Should we just give up when G  2?

∙ In a sense the problem is an artifact of saying there are three

group-level parameters. If we write

ygm  g  xg  ugm

where x1  0 and x2  1, then Ey1m  1 and Ey2m  2  .

There are only two means but three parameters.

30



∙ The usual approach simply defines 1  Ey1m, 2  Ey2m, and

then uses random samples from each group to estimate the means. Any

“cluster effect” is contained in the means.

∙ Same is true for the DD framework with G  4 (control and

treatment, before and after).

∙ Remember, in the DL framework, the cluster effect is independent of

xg, so the DL criticism is not about systematic bias.
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∙ Applies to simple difference-in-differences settings. Let

ygm  wgm2 − wgm1 be the change in a variable w from period one to

two for . So, we have a before period and an after period, and suppose a

treated group (x2  1) and a control group x1  0. So G  2.

∙ The estimator of  is the DD estimator:

̂  Δw2 − Δw1

where Δw2 is the average of changes for the treament group and Δw1 is

the average change for the control.
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∙ Card and Krueger (1994) minimum wage example: G  2 so,

according to DL, cannot put a confidence interval around the estimated

change in employment.

∙ If we go back to

ygm    xg  cg  ugm

when x1  0, x2  1, one can argue that cg should just be part of the

estimated mean for group g. It is assumed assignment is exogenous.

∙ In the traditional view, we are estimating 1    c1 and

2      c2 and so the estimated policy effect is   c2 − c1.
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∙ The same DL criticism arises in the standard difference-in-differences

setting with two groups and two time periods. From the traditional

perspective, we have four means to estimate: A1, A2, B1, B2. From

the DL perspective, we instead have

ygtm  gt  cgt  ugtm, m  1, . . . ,Mgt; t  1, 2;g  A,B;

the presence of cgt makes it impossible to do inference.

34



∙ Even when DL approach applies, should we use it? Suppose G  4

with two control groups (x1  x2  0) and two treatment groups

(x3  x4  1), and we impose the same means within control and

treatment. DL involves the OLS regression ȳg on 1,xg, g  1, . . . , 4;

inference is based on the t2 distribution. Can show

̂  ȳ3  ȳ4/2 − ȳ1  ȳ2/2,

which shows ̂ is approximately normal (for most underlying

population distributions) even with moderate group sizes Mg.
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∙ In effect, the DL approach rejects usual inference based on means

from large samples because it may not be the case that 1  2 and

3  4. Why not allow heterogeneous means?

∙ Could just define the treatment effect as, say,

  3  4/2 − 1  2/2,

and then plug in the unbiased, consistent, asymptotically normal

estimators of the g under random sampling within each g.
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∙ The expression ̂  ȳ3  ȳ4/2 − ȳ1  ȳ2/2 hints at a different way

to view the small G, large Mg setup. We estimated two parameters, 

and , given four moments that we can estimate with the data.

∙ The OLS estimates of  and  can be interpreted as minimum

distance estimates that impose the restrictions 1  2   and

3  4    . In the general MD notation,   1,2,3,4′ and

h 





  

  

.
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∙ Can show that if we use the 4  4 identity matrix as the weight

matrix, we get the DL estimates, ̂  ȳ3  ȳ4/2 − ȳ1  ȳ2/2 and

̂  ȳ1  ȳ2/2.
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∙ In the general setting, with large group sizes Mg, and whether or not

G is especially large, we can put the problem into an MD framework,

as done by Loeb and Bound (1996), who had G  36 cohort-division

groups and many observations per group.

∙ Idea is to think of a set of G linear models at the invididual (m) level

with group-specific intercepts (and possibly slopes).

39



∙ For each group g, write

ygm  g  zgmg  ugm

Eugm  0, Ezgm′ ugm  0.

Within-group OLS estimators of g and g are Mg -asymptotically

normal under random sampling within group.
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∙ The presence of aggregate features xg can be viewed as putting

restrictions on the intercepts:

g    xg,g  1, . . . ,G.

∙With K attributes (xg is 1  K) we must have G ≥ K  1 to determine

 and .

∙ In the first stage, obtain ̂g, either by group-specific regressions or

pooling to impose some common slope elements in g.

∙ If we impose some restrictions on the g, such as g   for all g, the

̂g are (asymptotically) correlated.
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∙ Let V̂ be the G  G estimated (asymptotic) variance of the G  1

vector ̂. Let X be the G  K  1 matrix with rows 1,xg. The MD

estimator is

̂  X′V̂−1X−1X′V̂−1
̂

The asymptotics are as each group size gets large, and ̂ has an

asymptotic normal distribution; its estimated asymptotic variance is

X′V̂−1X−1.

∙ Estimator looks like “GLS,” but inference is with G (number of rows

in ̂ and X) fixed and Mg growing.
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∙When separate group regressions are used for each g, the ̂g are

independent and V̂ is diagonal, and ̂ looks like a weighted least

squares estimator. That is, treat the ̂g,xg : g  1, . . . ,G as the data

and use WLS of ̂g on 1,xg using weights 1/se̂g2.

∙ Can test the G − K  1 overidentification restrictions using the SSR

from the “weighted least squares” as approximately G−K−1
2 .
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∙What happens if the overidentifying restrictions reject?

(1) Can search for more features to include in xg. If G  K  1, no

restrictions to test.

(2) Think about whether a rejection is important. In the program

evaluation applications, rejection generally occurs if group means

within the control groups or within the treatment groups differ. For

example, in the G  4 case with x1  x2  0 and x3  x4  1, the test

will reject if 1 ≠ 2 or 3 ≠ 4. But why should we care? We might

want to allow heterogeneous policy effects and define the parameter of

interest as

  3  4/2 − 1  2/2.
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(3) Apply the DL approach on the group-specific intercepts. That is,

write

g    xg  cg,g  1, . . . ,G

and assume that this equation satisfies the classical linear model

assumptions.

∙With large group sizes, we can act as if

̂g    xg  cg,g  1, . . . ,G

because ̂g  g  OpMg
−1/2 and we can ignore the OpMg

−1/2 part.

But we must assume cg is homoskedastic, normally distributed, and

independent of xg.
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∙ Note how we only need G  K  1 because the zgm have been

accounted for in the first stage in obtaining the ̂g. But we are ignoring

the estimation error in the ̂g.
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5. Individual-Level Panel Data

∙ Let wit be a binary indicator, which is unity if unit i participates in the

program at time t. Consider

yit    d2t  wit  ci  uit, t  1, 2,     (11)

where d2t  1 if t  2 and zero otherwise, ci is an observed effect  is

the treatment effect. Remove ci by first differencing:

yi2 − yi1    wi2 − wi1  ui2 − ui1     (12)

Δyi    Δwi  Δui.     (13)

If EΔwiΔui  0, OLS applied to (13) is consistent.
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∙ If wi1  0 for all i, the OLS estimate is

̂FD  Δytreat − Δycontrol,     (14)

which is a DD estimate except that we different the means of the same

units over time.

∙ It is not more general to regress yi2 on 1,wi2,yi1, i  1, . . . ,N, even

though this appears to free up the coefficient on yi1. Why? Under (11)

with wi1  0 we can write

yi2    wi2  yi1  ui2 − ui1.     (15)

Now, if Eui2|wi2,ci,ui1  0 then ui2 is uncorrelated with yi1, and yi1
and ui1 are correlated. So yi1 is correlated with ui2 − ui1  Δui.
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∙ In fact, if we add the standard no serial correlation assumption,

Eui1ui2|wi2,ci  0, and write the linear projection

wi2  0  1yi1  ri2, then can show that

plim̂LDV    1u1
2 /r2

2 

where

1  Covci,wi2/c2  u1
2 .

∙ For example, if wi2 indicates a job training program and less

productive workers are more likely to participate (1  0), then the

regression yi2 (or Δyi2) on 1, wi2, yi1 underestimates the effect.
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∙ If more productive workers participate, regressing yi2 (or Δyi2) on 1,

wi2, yi1 overestimates the effect of job training.

∙ Following Angrist and Pischke (2009, MHE), suppose we use the FD

estimator when, in fact, unconfoundedness of treatment holds

conditional on yi1 (and the treatment effect is constant). Then we can

write

yi2    wi2  yi1  ei2
Eei2  0, Covwi2,ei2  Covyi1,ei2  0.
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∙Write the equation as

Δyi2    wi2   − 1yi1  ei2
≡   wi2  yi1  ei2

Then, of course, the FD estimator generally suffers from omitted

variable bias if  ≠ 1. We have

plim̂FD     Covwi2,yi1
Varwi2

∙ If   0 (  1) and Covwi2,yi1  0 – workers observed with low

first-period earnings are more likely to participate – the plim̂FD  ,

and so FD overestimates the effect.
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∙We might expect  to be close to unity for processes such as

earnings, which tend to be persistent. ( measures persistence without

conditioning on unobserved heterogeneity.)

∙ As an algebraic fact, if ̂  0 (as it usually will be even if   1) and

wi2 and yi1 are negatively correlated in the sample, ̂FD  ̂LDV. But this

does not tell us which estimator is consistent.

∙ If either ̂ is close to zero or wi2 and yi1 are weakly correlated, adding

yi1 can have a small effect on the estimate of .
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∙With many time periods and arbitrary treatment patterns, we can use

yit  t  wit  xit  ci  uit, t  1, . . . ,T,     (16)

which accounts for aggregate time effects and allows for controls, xit.

∙ Estimation by fixed effects or first differencing to remove ci is

standard, provided the policy indicator, wit, is strictly exogenous:

correlation beween wit and uir for any t and r causes inconsistency in

both estimators (with FE having advantages for larger T if uit is weakly

dependent).
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∙What if designation is correlated with unit-specific trends?

“Correlated Random Trend” model:

yit  ci  git  t  wit  xit  uit     (17)

where gi is the trend for unit i. A general analysis allows arbitrary

corrrelation between ci,gi and wit, which requires at least T ≥ 3. If

we first difference, we get, for t  2, . . . ,T,

Δyit  gi   t  Δwit  Δxit  Δuit.     (18)

Can difference again or estimate (18) by FE.
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∙ Can derive panel data approaches using the counterfactural

framework from the treatment effects literature.

For each i, t, let yit1 and yit0 denote the counterfactual outcomes,

and assume there are no covariates. Unconfoundedness, conditional on

unobserved heterogeneity, can be stated as

Eyit0|wi,ci  Eyit0|ci
Eyit1|wi,ci  Eyit1|ci,

    (19)
    (20)

where wi  wi1, . . . ,wiT is the time sequence of all treatments.

Suppose the gain from treatment only depends on t,

Eyit1|ci  Eyit0|ci  t.     (21)
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Then

Eyit|wi,ci  Eyit0|ci  twit     (22)

where yi1  1 − wityit0  wityit1. If we assume

Eyit0|ci  t0  ci0,     (23)

then

Eyit|wi,ci  t0  ci0  twit,     (24)

an estimating equation that leads to FE or FD (often with t  .

56



∙ If add strictly exogenous covariates and allow the gain from treatment

to depend on xit and an additive unobserved effect ai, get

Eyit|wi,xi,ci  t0  twit  xit0

 wit  xit − t  ci0  ai  wit,

    (25)

a correlated random coefficient model because the coefficient on wit is

t  ai. Can eliminate ai (and ci0. Or, with t  , can “estimate” the

i    ai and then use

̂  N−1∑
i1

N

̂i.     (26)
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∙With T ≥ 3, can also get to a random trend model, where git is added

to (25). Then, can difference followed by a second difference or fixed

effects estimation on the first differences. With t  ,

Δyit  t  Δwit  Δxit0  Δwit  xit − t  ai  Δwit  gi  Δuit.     (27)

∙Might ignore aiΔwit, using the results on the robustness of the FE

estimator in the presence of certain kinds of random coefficients, or,

again, estimate i    ai for each i and form (26).
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∙ As in the simple T  2 case, using unconfoundedness conditional on

unobserved heterogeneity and strictly exogenous covariates leads to

different strategies than assuming unconfoundedness conditional on

past responses and outcomes of other covariates.

∙ In the latter case, we might estimate propensity scores, for each t, as

Pwit  1|yi,t−1, . . . ,yi1,wi,t−1, . . . ,wi1,xit.
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6. Semiparametric and Nonparametric Approaches

∙ Consider the setup of Heckman, Ichimura, Smith, and Todd (1997)

and Abadie (2005), with two time periods. No units treated in first time

period. Ytw is the counterfactual outcome for treatment level w,

w  0, 1, at time t. Main parameter: the average treatment effect on the

treated,

att  EY11 − Y10|W  1.     (28)

W  1 means treatment in the second time period.
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∙ Along with Y01  Y00 (no counterfactual in time period zero),

key unconfoundedness assumption:

EY10 − Y00|X,W  EY10 − Y00|X     (29)

Also the (partial) overlap assumption is critical for att

PW  1|X  1     (30)

or the full overlap assumption for ate  EY11 − Y10,

0  PW  1|X  1.
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Panel Data

Let Y0 and Y1 be the observed outcomes in the two periods for a unit

from the population. Then, under (29) and (30),

att  E
W − pXY1 − Y0

1 − pX     (31)

where Yt, t  0, 1 are the observed outcomes (for the same unit),

  PW  1 is the unconditional probability of treatment, and

pX  PW  1|X is the propensity score.

62



∙ All quantities are observed or, in the case of pX and , can be

estimated. As in Hirano, Imbens, and Ridder (2003), a flexible logit

model can be used for pX; the fraction of units treated would be used

for ̂. Then

̂att  N−1∑
i1

N
Wi − p̂XiΔYi
̂1 − p̂Xi

.     (32)

is consistent and N -asymptotically normal. In other words, just apply

propensity score weighting to ΔYi,Wi,Xi.
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∙ If we add

EY11 − Y01|X,W  EY11 − Y01|X,     (33)

a similar approach works for ate.

̂ate  N−1∑
i1

N
Wi − p̂XiΔYi
p̂Xi1 − p̂Xi

    (34)

∙ Regression on the propensity score:

ΔYi on 1,Wi, p̂Xi,Wi  p̂Xi − ̂, i  1, . . . ,N.     (35)

The coefficient on Wi is the estimated ate. Not ideal, but preferred to a

pooled OLS method using levels Yit.
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∙Matching can be used, too, but now we compute averages based on

ΔYi.

∙ In fact, any ATE or ATE estimator can be applied to ΔYi,Wi,Xi.
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Pooled Cross Sections

∙ Heckman, Ichimura, and Todd (1997) show that, under the previous

unconfoundedness assumption (29),

EY1|X,W  1 − EY1|X,W  0 − EY0|X,W  1 − EY0|X,W  0
 EY11 − Y10|X,W  1.     (3

Each of the four expected values on the left hand side of (36) is

estimable given random samples from the two time periods. For

example, we can use flexible parametric models, or even nonparametric

estimation, to estimate EY1|X,W  1 using the data on those

receiving treatment at t  1.
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∙ Under the stronger form of unconfoundedness, (29) plus (33), it can

be shown that

EY1|X,W  1 − EY1|X,W  0 − EY0|X,W  1 − EY0|X,W  0
 EY11 − Y10|X.     (3

∙ Now use iterated expectations to obtain ate.
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∙ A regression adjustment estimator would look like

̂ate,reg  N1
−1∑

i1

N1

̂11Xi − ̂10Xi − N0
−1∑

i1

N0

̂01Xi − ̂00Xi,     (38)

where ̂twx is the estimated regression function for time period t and

treatment status w, N1 is the total number of observations for t  1, and

N0 is the total number of observations for time period zero.
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∙ Strictly speaking, (38) consistently estimates ate only when the

distribution of the covariates does not change over time. The usual DD

approach avoids the issue by assuming the treatment effect does not

depend on the covariates.

∙ Equation (38) reduces to the standard DD estimator with controls

when the mean functions are linear in Xi with constant coeffcients.
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∙ Abadie (2005) obtained the propensity score weighting versions, also

under a stationarity requirement:

̂att,ps  N1
−1∑

i1

N1
Wi − p̂XiYi1
̂1 − p̂Xi

− N0
−1∑

i1

N0
Wi − p̂XiYi0
̂1 − p̂Xi

,     (39)

where Yi1 : i  1, . . . . ,N1 are the data for t  1 and

Yi0 : i  1, . . . . ,N0 are the data for t  0.

∙ Equation (39) has a straightforward interpretation. The first average

would be the standard propensity score weighted estimator if we used

only t  1 and assumed unconfoundedness in levels. The second

average is the same estimate but using the t  0 data. Equation (39)

differences across the two time periods – hence the DD interpretation.
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