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1. Linear-in-Parameters Models: IV versus Control
Functions

e Most models that are linear are estimated using standard IV methods:
two stage least squares (2SLS) or generalized method of moments
(GMM).

e An alternative, the control function (CF) approach, relies on the same
Kinds of identification conditions. But even in models linear in

parameters it can lead to different estimators.



e | et y; be the response variable, y, the endogenous explanatory
variable (EEV), and z the 1 x L vector of exogenous variables (with
Z1 = 1):
y1 = 2101 + a1y2 + u1, (1)

where z1 IS a 1 x L1 strict subvector of z.



e First consider the exogeneity assumption
E(@Z'u1) = 0. (2)
Reduced form for y:
y2 = Im2 + v2, E(Z'v2) =0 (3)
where w2 IS L x 1. Write the linear projection of #; on vy, in error form,
as
ui = p1va +ei, (4)

where p1 = E(vou1)/E(v3) is the population regression coefficient. By

construction, E(vze1) = 0and E(z'e;) = 0.



Plug (4) into (1):
Y1 = 2101 + a1y2 + p1v2 + e, (5)

where v, IS an explanatory variable in the equation. The new error, e1,

IS uncorrelated with y, as well as with v, and z.



e Suggests a two-step estimation procedure:
(i) Regress y2 on z and obtain the reduced form residuals, v,.

(i1) Regress
y10N21,y2, and \’}2. (6)

The implicit error in (6) is ei1 + p12:(®, — ®2), Which depends on the
sampling error in t2 unless p; = 0. OLS estimators from (6) will be

consistent for 61, a1, and p.



e The OLS estimates from (6) are control function estimates.
e The OLS estimates of 81 and a1 from (6) are identical to the 2SLS
estimates starting from (1).

e Atest of Hy : p1 = 0in the equation
Y1 = 2101 + Q1yi2 + p1Vi2 + error;

IS the regression-based Hausman test for Hy : Cov(y2,u1) = 0. Is

easily made robust to heteroskedasticity of unknown form.



¢ The equivalence of IV and CF methods does not always. Add a

quadratic in y;:

Y1 = 2101 +a1y2 + ylyg + U1 (7)
E(ui|z) = 0. (8)
e Cannot get very far now without the stronger assumption (8).
e | et z, be a (nonbinary) scalar not also in z;. Under assumption (8),
We can use, say, z5 as an instrument for y5. So the 1\Vs would be

(21,22,23) for (z1,y2,v5). We could also use interactions z,z;.



¢ \What does the CF approach entail? Because of the nonlinearity in y»,
the CF approach is based on the conditional mean, E(y1|z,v2), rather
than a linear projection.

e Therefore, we now assume
E(ui|z,y2) = E(ui|v2) = p1v2 (9)
where
Y2 = IT2 + V).

¢ Independence of (u1,v2) and z is sufficient for the first equality. Even
under the independence assumption, linearity of E(u1|v2) Is a

substantive restriction.



e Under E(u1|z,y2) = p1vz, we have

E(vilz,y2) = 2181 + a1y2 + y1y5 + p1ve. (10)

A CF approach is immediate: replace v, with v, and use OLS on (10).
Not equivalent to a 2SLS estimate.

e |f the assumptions hold, CF likely more efficient; it is less robust than
an 1V approach, which requires only E(u1|z) = 0.

e At a minimum the CF approach requires E(v2|z) = 0 or

E(y2|2) = zm2, which puts serious restrictions on y».
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e Even In linear models with constant coefficients, CF approaches can
Impose extra assumptions when we base it on E(y1|z,y2), particularly

when y2 is (partially) discrete. Generally, the estimating equation is

E(1|z,y2) = 2161 + a1y2 + E(u1|z,y2). (11)

e Suppose y2 Is binary. Generally, E(u1|z,y2) depends on the joint
distribution of (u1,y2) given z. If yo, = 1[202 + e2 > 0], (u1,e2) IS

Independent of z, E(u1le2) = piez, and ex ~ Normal(0, 1), then

E(uilz,y2) = p1[y24(262) — (1 — y2)A(=262)], (12)

where A(-) is the inverse Mills ratio (IMR).
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e The CF approach is based on

E(vi|z,y2) = 2181 + a1y2 + p1[y2A(282) — (1 — y2)A(-202)]
and the Heckman two-step approach (for endogeneity, not sample
selection):

(i) Probit to get &, and compute g7, = yi24(2:62) — (1 — yi2) A(~2:52)
(generalized residual).
(i1) Regress y;1 on z;1, yiz, §>l.2, i =1,...,N (and adjust the standard

errors).

12



e Consistency of the CF estimators hinges on the model for D(y2(z)
being correctly specified, along with linearity in E(u1]e2). If we just
apply 2SLS directly to y1 = 21081 + a1y2 + u1, it makes no distinction
among discrete, continuous, or some mixture for y».

e How might we robustly use the binary nature of y, in IV estimation?
Obtain the fitted probabilities, ®(2,8), from the first stage probit, and
then use these as IVs (not regressors!) for y;». Fully robust to
misspecification of the probit model, usual standard errors from IV
asymptotically valid. Efficient 1V estimator if P(y, = 1|z) = ®(z6>)
and Var(uilz) = o4.

e Similar suggestions work for y, a count variable or a corner solution.
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2. Correlated Random Coefficient Models

e Modify the original equation as

Y1 =1m1+2101 +aiy2 +u1
where a1, the “random coefficient” on y,. Heckman and Vytlacil
(1998) call (13) a correlated random coefficient (CRC) model. For a
random draw i, ya1 = n1 + 2101 + ainy2 + ui1.
e Write a1 = a1 +v1 where a1 = E(a1) IS the parameter of interest.
We can rewrite the equation as

Y1 =1N1+2101 +a1y2 +Vviy2 + u1

=11+ Z101 + a1y2 +ex.
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¢ The potential problem with applying instrumental variables is that the
error term v1y2 + u1 1S not necessarily uncorrelated with the

Instruments z, even under
E(u1|Z) = E(V1|Z) = 0. (16)

We want to allow y, and v1 to be correlated, Cov(vi,y2) = 71 = 0. A

suffcient condition that allows for any unconditional correlation is
Cov(vy,y2|z) = Cov(vi,y2), (17)

and this is sufficient for IV to consistently estimate (a1,061).
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e The usual 1V estimator that ignores the randomness in a1 IS more
robust than Garen’s (1984) CF estimator, which adds v, and v,y» to the
original model, or the Heckman-Vytlacil (1998) “plug-in” estimator,
which replaces y, with y, = zn».

e The condition Cov(v1,y2|z) = Cov(v1,y2) cannot really hold for
discrete y,. Further, Card (2001) shows how it can be violated even if
y2 Is continuous. Wooldridge (2005) shows how to allow parametric

heteroskedasticity.
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e |n the case of binary y,, we have what is often called the “switching
regression” model. If yo = 1[262 + v2 > 0] and v2|z ~ Normal(0,1),

then

E(1|z,y2) = 11+ 2181 + a1y?
+ p1h2(y2,202) + E1h2(y2,202)y2,

where
hz()/z, 282) = yzl(ZSz) — (1 —yz)/l(—ZSQ)

IS the generalized residual function.
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e Reminder: The expression for £(y1|z,y2) IS an estimating equation for
a1. We do not use E(y1|z,y2), evaluated at y, = 1and y2 = 0, to
obtain the treatment effect at different values of z. The ATE in the

model is constant and equal to a1.
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e Common to add the interactions y2(z;1 — Z1) (same as estimating
y2 = 0, y2 = 1 separately) and then o1 remains the average treatment
effect (with the sample average Z; replacing £(z1).

e |f 81 Is replaced with random coefficients correlated with y,, can
interact z; with A2 (yi2, 2;:82) under joint normality of the random

coefficients and v»,.
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e Can allow E(v1|v2) to be more flexible [Heckman and MaCurdy
(1986), Powell, Newey, and Walker (1990)].

e Also easy to allow for y, to follow a “heteroskedastic probit” model.
replace v with ez = va/exp(z2y,) where exp(z2y,) = sd(ez|z).

Estimate 62, v, by heteroskedastic probit.
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3. Nonlinear Models

e Typically three approaches to nonlinear models with EEVs.

(1) Plug in fitted values from a first step regression (in an attempt to
mimic 2SLS in linear model). More generally, try to find E(y1|z) or
D(y1|z) and then impose identifying restrictions.

(2) CF approach: plug in residuals in an attempt to obtain E(y1|y2,2) or
D(y1ily2,2).

(3) Maximum Likelihood (often limited information): Use models for
D(v1|y2,2) and D(y2|z) jointly.

e All strategies are more difficult with nonlinear models when y; is

discrete. Some poor practices have lingered.
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Binary and Fractional Responses

Probit model:
V1 = 1[2151 +ai1y2 +ug 2 O], (18)

where u1|z ~Normal(0, 1). Analysis goes through if we replace (z1,y2)
with any known function X1 = g,(z1,y2).

e The Rivers-Vuong (1988) approach [Smith and Blundell (1986) for
Tobit] Is to make a homoskedastic-normal assumption on the reduced

form for y»,

y2 = Zmy + V2, v2|Z ~ Normal(0,1%). (19)
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e RV approach comes close to requiring
(u1,v2) Independent of z.
If we also assume
(u1,v2) ~ Bivariate Normal

with p1 = Corr(u1,v2), then we can proceed with MLE based on

f(y1,y2|2). A CF approach is available, too, based on
P()/l = 1|Z,y2) = (D(lepl T 0p1)2 + (9,)1\/2)

where each coefficient is multiplied by (1 — p$)~12.
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The RV two-step approach is

(i) OLS of y» on z, to obtain the residuals, va.

(i1) Probit of y1 on z1,y>, V> to estimate the scaled coefficients. A
simple ¢ test on v, Is valid to test Hp . p1 = 0.
e Can recover the original coefficients, which appear in the partial
effects. Or,

N
ASF(Zl,yZ) = N_l Z (D(Xlﬁpl + épl‘;iZ)’ (23)
i=1

that Is, we average out the reduced form residuals, v;>. This formulation

IS useful for more complicated models.
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e The two-step CF approach easily extends to fractional responses:

E(il|z,y2,q91) = O(X1p; +q1), (24)

where X1 Is a function of (z1,y2) and g1 contains unobservables. Can
use the the same two-step because the Bernoulli log likelihood is in the
linear exponential family. Still estimate scaled coefficients. APES must
be obtained from (23). To account for first-stage estimation, the
bootstrap Is convenient.

¢ \Wooldridge (2005, Rothenberg Festschrift) describes some simple
ways to make the analysis starting from (24) more flexible, including

allowing Var(q1|v2) to be heteroskedastic.
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Example: Effects of school spending on student performance.

. sum math4 lunch rexpp found i1f y97

Variable

.6058803
.3614616
4261.201
5895.984

.1966755
.2535764

789.124
1016.795

MiIn Max
029 1
.0019 -9939
1895 11779
4816 10762

. glm math4 lrexpp lunch lenrol lrexpp94 it y97, fam(bin) link(probit) robust
note: math4 has noninteger values

Generalized linear models

Optimization

- ML

Log pseudolikelihood = -543.4128012

No. of obs

Residual

df

Scale parameter

AlIC
BIC

1208
1203
1

-9079682
-8378.243

Irexpp94
_cons

.2726134
-1.120498
-0108851
-1854712
-3.118799

Robust

Std. Err.

-113923
.0582561
.0390534
.0829582
-9207049

.0493285
-1.234678
-.0656581

.0228761
-4.923347

-4958983
-1.006318
.0874283
.3480664
-1.31425



. margeff

Average partial effects after glm
y = Pr(math4)

variable | Coef. Std. Err.

[95% ConfT.

Interval]

_____________ +________________________________________________________________

Irexpp | -0998487 -.0416701
lunch | -.4103988 -020199
lenrol | .0039868 -0143069
Irexpp94 | .0679316 -0303795

.0181768
-.4499882
-.0240542

.0083889

.1815205
-.3708094
.0320278
.1274742

. * Compare with OLS:

. reg math4 lIrexpp lunch lenrol lrexpp94 i1t y97, robust

Linear regression

Number of obs
FC 4, 1203)
Prob > F
R-squared
Root MSE

1208
06.45
.0000
.3114

.168

[ T | A [ |
oOO0OpR

-0590509 .0302958
-.4838692 .3261972

Irexpp94
_cons

| Robust
math4 | Coef. Std. Err.
_____________ +
Irexpp | -0934219 .0415276
lunch | -.4205896 -0215956
lenrol | -.0002997 .0146181
I
I

[95% Conft.

.0119474
-.4629588
-.0289795
-.0003877
-1.123848

Interval]

.1748964
-.3782204
.0283802
.1184894
.1561094



. * Estimate the reduced form treating lrexpp as endogenous and
. * Ifound as its 1V:

. reg lrexpp Ifound lunch lenrol lrexpp94 if y97 & e(sample)

Source | SS df MS Number of obs = 1208
------------- S F( 4, 1203) = 244.58
Model | 14.1288484 4  3.5322121 Prob > F = 0.0000
Residual | 17.3739986 1203 .014442227 R-squared = 0.4485
————————————— i i e T AdjJ R-squared = 0.4467
Total | 31.502847 1207 .026100122 Root MSE = .12018

Irexpp | Coef. Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
Ifound | .5443139 .0302413 18.00 0.000 .4849824 .6036454

lunch | -1419003 .0135798 10.45 0.000 -1152575 -1685431

lenrol | -.0961736 .0083231 -11.55 0.000 -.112503 -.0798442
Irexpp94 | .1358278 -0235749 5.76 0.000 -0895753 -1820803
_cons | 3.036333 .2151718 14.11 0.000 2.614179 3.458486

. predict v2h, resid
(7694 missing values generated)
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. glm math4 lrexpp lunch lenrol lrexpp94 v2h if y97, fam(bin) link(probit) robust
note: math4 has noninteger values

Generalized linear models No. of obs = 1208

Optimization - ML Residual df = 1202

Scale parameter = 1

Deviance = 157.5338068 (1/df) Deviance = .1310597

Pearson = 146.5468582 (1/df) Pearson = .1219192
Variance function: V(u) = u*(1-u/1) [Binomial]

Link function : g(u) = invnorm(u) [Probit]
AlIC = .9083169
Log pseudolikelihood = -542.6234317 BIC = -8372.725
| Robust

math4 | Coef. Std. Err. z P>]z] [95% Conf. Interval]

_____________ +________________________________________________________________

Irexpp | -9567996 -2012636 4.75 0.000 -5623302 1.351269

lunch | -1.18315 .0585657 -20.20 0.000 -1.297937 -1.068363

lenrol | .0616713 -0399644 1.54 0.123 -.0166574 .14

Irexpp94 | -.0784249 .1063432 -0.74 0.461 -.2868536 -1300039

v2h | -.8593559 .2374808 -3.62 0.000 -1.32481  -.3939021

_cons | -6.966712  1.259552 -5.53 0.000 -9.435388 -4.498036

. * Easily reject null that spending IS exogenous.

29



. margeff

Average partial effects after glm
y = Pr(math4)

variable | Coef Std. Err z P>|z] [95% Conf. Interval]
_____________ +________________________________________________________________
Irexpp | .3501127 .0734569 4.77 0.000 .2061399 -4940855

lunch | -.432939 .0202452 -21.38 0.000 -.4726189 -.393259

lenrol | .0225668 .014639 1.54 0.123 -.0061252 .0512588
Irexpp94 | -.0286973 -0389071 -0.74 0.461 -.1049537 -0475592

v2h | -.314455 .086817 -3.62 0.000 -.4846132  -.1442968

. * Standard errors need to be fixed up for two-step estimation.
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ivreg math4 lunch lenrol lIrexpp94 (Irexpp = Ifound) if y97, robust

Instrumental variables (2SLS) regression

Number of obs = 1208
F( 4, 1203) = 114.28
Prob > F = 0.0000
R-squared = 0.2908
Root MSE = .1705

-.026911 .0393419
-1.66758 .4360251

Irexpp94
_cons

| Robust
math4 | Coef. Std. Err.
_____________ +
Irexpp | .3082997 .0710983
lunch | -.4389034 -0219076
lenrol | .0155435 .0154313
I
I

[95% Conf. Interval]

.1688093 .4477901
-.4818848 -.3959221
-.0147317 .0458187
-.1040974 .0502754
-2.523035 -.8121261

Instrumented: [lrexpp

Instruments: lunch lenrol lIrexpp94 Ifound
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e The control function approach has some decided advantages over
another two-step approach — one that appears to mimic the 2SLS
estimation of the linear model.

e Consider the binary response case. Rather than conditioning on v
along with z (and therefore y;) to obtain

P(y1 = 1lz,v2) = P(y1 = 1|z,y2,v2), we can obtain P(y1 = 1|2).
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e To find P(y1 = 1|z), we plug in the reduced form for y, to get

y1 = 1[2181 + a1(202) + a1v2 + u1 > 0]. Because a1v2 + u1 IS
Independent of z and normally distributed,

P(y1 = 1|z) = ®<{[z101 + a1(262)]/w1}. So first do OLS on the reduced
form, and get fitted values, y» = 2:8,. Then, probit of yaonz,yp to
estimate scaled coefficients. Harder to estimate APEs and test for
endogeneity.
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e Danger with plugging in fitted values for y» is that one might be
tempted to plug 7 into nonlinear functions, say y3 or y»z1. This does
not result in consistent estimation of the scaled parameters or the
partial effects. If we believe y, has a linear RF with additive normal
error independent of z, the addition of v, solves the endogeneity
problem regardless of how y, appears. Plugging in fitted values for y»
only works in the case where the model is linear in y2. Plus, the CF
approach makes it much easier to test the null that for endogeneity of y»

as well as compute APEs.

34



e Can understand the limits of CF approach by returning to
E1)z,v2,q1) = ©(2101 + a1y2 + g1), wWhere y2 is discrete.
Rivers-Vuong approach does not generally work.

e Suppose y1 and y» are both binary and
V2 = 1[z262 + v2 > 0] (25)

and we maintain joint normality of (u1,v2). We should not try to mimic
2SLS as follows: (i) Do probit of y, on z and get the fitted probabilities,
d, = ®(z8,). (ii) Do probit of y1 on z1, -, that is, just replace y, with
D,.
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e In general, the only strategy we have is maximum likelihood
estimation based on f(y1|v2,2)f(y2|z). [Perhaps this is why some, such
as Angrist (2001), Angrist and Pischke (2009), promote the notion of
just using linear probability models estimated by 2SLS.]

e “Bivariate probit” software can be used to estimate the probit model
with a binary endogenous variable.

e Parallel discussions hold for ordered probit, Tobit.
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Multinomial Responses

e Recent push by Petrin and Train (2006), among others, to use control
function methods where the second step estimation is something simple
— such as multinomial logit, or nested logit — rather than being derived

from a structural model. So, If we have reduced forms
y, = zll> + Vo, (26)

then we jump directly to convenient models for P(y1 = j|z1,Y,,V2).
The average structural functions are obtained by averaging the response

probabilities across V2. No convincing way to handle discrete y,,

though.
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Exponential Models

e |V and CF approaches available for exponential models. Write
E(1)|z,v2,r1) = exp(z101 + a1y2 + r1), (27)
where r1 iIs the omitted variable. As usual, CF methods based on
E(yi|z,y2) = exp(z1d1 + a1y2)E[exp(r1)(z,y2].

For continuous y2, can find E(y1|z,y2) when D(y2|z) is homoskedastic
normal (Wooldridge, 1997) and when D(y2|z) follows a probit (Terza,
1998). In the probit case,

E(y1|z,y2) = exp(z161 + a1y2)h(y2,2m2,01)
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h(y2,2m2,01) = exp(03/2){y,®(01 + zr2)/D(zm>)
+ (l —yz)[l — (D(Ql + an)]/[l — CD(an)]}.

e |\VV methods that work for any y, are available [Mullahy (1997)]. If

E(yilz,y,,71) = exp(X1f, +71) (28)
and 1 is independent of z then
Elexp(—x1B;)y1lz] = Elexp(ri)lz] = 1, (29)
where E[exp(r1)] = 1isa normalization. The moment conditions are

E[exp(—x1B,)y1 —1|z] = 0. (30)
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4. Semiparametric and Nonparametric Approaches

e Blundell and Powell (2004) show how to relax distributional
assumptions on (u1,v2) in the model y1 = 1[X1B, +u1 > O], where X
can be any function of (z1,y2). Their key assumption is that y, can be
written as y2 = g2(z) + vz, where (u1,v2) IS independent of z, which

rules out discreteness in y». Then
P(y1 = 1|Z,VZ) = E()/1|Z,V2) = H(Xlﬁl,vZ) (31)

for some (generally unknown) function H(-, -). The average structural
function is just ASF(z1,y2) = Ev,[H(X1B,vi2)].
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e Two-step estimation: Estimate the function g,(-) and then obtain
residuals vz = yi2 — g2(z:). BP (2004) show how to estimate /7 and B,
(up to scaled) and G(-), the distribution of u1. The ASF is obtained

from G(x1B,) or

N
ASF(z1,y2) = N1 Y A(xaf,, ¥2); (32)
i=1

e Blundell and Powell (2003) allow P(y1 = 1|z,y2) to have general
form H(z1,y2,v2), and the second-step estimation is entirely
nonparametric. Further, g>(+) can be fully nonparametric. Parametric

approximations might produce good estimates of the APEs.
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e BP (2003) consider a very general setup: y1 = g1(z1,Y,,u1), with
ASF1(21,Y,) = [ £1(21,Y, u1)dF: (u), (33)

where F1 Is the distribution of u1. Key restrictions are that y, can be
written as
Yo = 92(2) + Vs, (34)

where (u1,V2) Is iIndependent of z.
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e Key: ASF can be obtained from E(y1|z1,y,,V2) = h1(Z1,Y,,V2) by
averaging out vz, and fully nonparametric two-step estimates are
available.

e The focus on the ASF is liberating. It justifies flexible parametric
approaches that need not be tied to “structural” equations. In particular,
we can just skip modeling g1(+) and start with E(y1|z1,Y,,V2).

e For example, if y1 is binary or a fraction and y» is a scalar,

E(y1|z1,v2,v2) = ®(2181 + a1y2 + p1va + n1vs

+ 21V2§1 + W1Y2V2 +.. )
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5. Methods for Panel Data

e Combine methods for correlated random effects models with CF
methods for nonlinear panel data models with unobserved
heterogeneity and EEVs.

e |llustrate a parametric approach used by Papke and Wooldridge
(2008), which applies to binary and fractional responses.

e Nothing appears to be known about applying “fixed effects” probit to
estimate the fixed effects while also dealing with endogeneity. Likely

to be poor for small 7.
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e Model with time-constant unobserved heterogeneity, c;1, and
time-varying unobservables, vi1, as

E@inlyie,Ziscin,vin) = Olaryie + Zind1

+ci1 + Virl). (35)

Allow the heterogeneity, c;1, to be correlated with y;» and z;, where
z; = (2a,...,2;7) 1S the vector of strictly exogenous variables
(conditional on c¢;1). The time-varying omitted variable, v;a, IS
uncorrelated with z; — strict exogeneity — but may be correlated with
viz. AS an example, y;a 1S a female labor force participation indicator

and y;» IS other sources of income.
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e Write z;; = (zin, Zir2), SO that the time-varying Vs z;,, are excluded
from the “structural.”

e Chamberlain approach:
cit = w1 +2:& +ai,anlzi ~ Normal(0,03)). (36)
Next step:
Eyinlyie,2i,vin) = O(a1yie + Zind1 + w1 + 2§, +rin)
where i1 = a1 + vin. Next, assume a linear reduced form for y;:

Yie = W2+ 202 + zigz +vin,t =1,...,T. (37)
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e Rules out discrete y;» because
ril = N1Vi2 + €irl, (38)
ein|(Zi,vin) ~ Narmal(O,Ggl),t =1,...,T. (39)
Then

E()/it1|zi,yit2,vit2) = (D(Olelyitz + Zi110e1
+Wer + 2§, + Netvir) (40)

where the “e” subscript denotes division by (1 + ¢2,)2. This equation

IS the basis for CF estimation.
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e Simple two-step procedure: (i) Estimate the reduced form for y
(pooled across ¢, or maybe for each ¢ separately; at a minimum,
different time period intercepts should be allowed). Obtain the
residuals, v, for all (i, ) pairs. The estimate of &2 Is the fixed effects
estimate. (i1) Use the pooled probit (quasi)-MLE of y;1 on

Viiz,Zil, 2;, Virz 10 €stimate oe1, 01, We1,&,; and nez.

e Delta method or bootstrapping (resampling cross section units) for
standard errors. Can ignore first-stage estimation to test n.1 = 0 (but
test should be fully robust to variance misspecification and serial

Independence).
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e Estimates of average partial effects are based on the average

structural function,
E(Cil,vlﬂ) [(D(alytz +Zn01 +ci1 + Vitl):l, (41)
which is consistently estimated as
N
N O@aye + 2ade + Yoo + Zi€y + Aeai). (42)
i=1
These APEs, typically with further averaging out across ¢ and perhaps

over y» and z,1, can be compared directly with fixed effects 1V

estimates.
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EXAMPLE: Effects of Spending on Test Pass Rates

e Reform occurs between 1993/94 and 1994/95 school year; its passage
was a surprise to almost everyone.

e Since 1994/95, each district receives a foundation allowance, based
on revenues in 1993/94.

e [ntially, all districts were brought up to a minimum allowance —
$4,200 in the first year. The goal was to eventually give each district a
basic allowance ($5,000 in the first year).

e Districts divided into three groups in 1994/95 for purposes of initial
foundation allowance. Subsequent grants determined by statewide
School Aid Fund.
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e Catch-up formula for districts receiving below the basic. Initially,
more than half of the districts received less than the basic allowance.
By 1998/99, it was down to about 36%. In 1999/00, all districts began
receiving the basic allowance, which was then $5,700. Two-thirds of all
districts now receive the basic allowance.

e From 1991/92 to 2003/04, in the 10th percentile, expenditures rose
from $4,616 (2004 dollars) to $7,125, a 54 percent increase. In the 50th
percentile, it was a 48 percent increase. In the 90th percentile, per pupil
expenditures rose from $7,132 in 1992/93 to $9,529, a 34 percent

Increase.
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e Response variable: math4, the fraction of fourth graders passing the
MEAP math test at a school.

e Spending variable is log(avgrexppp), where the average is over the
current and previous three years.

e The linear model is
math4;, = 0, + B1log(avgrexp,.) + B2lunchi; + Bslog(enrolli;) + ci1 + uin

Estimating this model by fixed effects is identical to adding the time
averages of the three explanatory variables and using pooled OLS.

¢ The “fractional probit” model:

E(math4itlxi1; Xi21 v 1XiT) — (D(Qat + XiZBa + )_(l'ga)-
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e Allowing spending to be endogenous. Controlling for 1993/94
spending, foundation grant should be exogenous. Exploit

nonsmoothness in the grant as a function of initial spending.

math4; = 0, + B1log(avgrexp,,) + B2lunch;; + Bz log(enroll;)

+ Balog(rexppp; 1994) + E1lunch; + &210g(enroll;) + vin

¢ And, fractional probit version of this.
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. use meap92_ 01

. Xtset distid year
panel variable: distid (strongly balanced)
time variable: year, 1992 to 2001
delta: 1 unit

. des math4 avgrexp lunch enroll found

storage display value
variable name type  format label variable label
math4 double %9.0g fraction satisfactory, 4th
grade math
avgrexp float %9.0g (rexppp + rexppp_1 + rexppp_2 +
rexppp_3)74
lunch float %9.0g fraction eligible for free lunch
enroll float %9.0g district enrollment
found int %9 .0g foundation grant, $: 1995-2001
. sum math4 rexppp lunch
Variable | Obs Mean Std. Dev. MiIn Max
_____________ +________________________________________________________
math4 | 5010 .6149834 .1912023 -059 1
rexppp | 5010 6331.99 1168.198 3553.361 15191.49
lunch | 5010 .2802852 .1571325 .0087 -9126999
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. Xtreg math4 lavgrexp lunch lenroll y96-y0l1, fe cluster(distid)

Fixed-effects (within) regression
Group variable: distid

Number of obs
Number of groups

Obs per group: min

F(9,500)
Prob > F

avg
max

3507
501

~
7.0
>

171.93
0.0000

adjusted for 501 clusters in distid)

R-sq: within = 0.4713
between = 0.0219
overall = 0.2049
corr(u_i, Xb) = -0.1787
(Std. Err.
| Robust
math4 | Coef Std. Err.
_____________ +
lavgrexp | -3770929 -0705668
lunch | -0419467 .0731611
lenroll | -0020568 .0488107
yo6 | -0155968 .0063937
yo7 | -0589732 -0095232
yo8 | .0781686 .0112949
y99 | -0642748 .0123103
y00 | -0895688 .0133223
yo1l | -0630091 .014717
_cons | -2.640402 .8161357
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.2384489
.1856877
.0938426
.0281587
.0776837
.0559772
.0400884
.0633942
.0340943
-4.24388

.5157369
.1017944
.0979561
-.003035
.0402628
-1003599
.0884612
.1157434
.0919239
1.036924



+
sigma_u | -1130256
sigma_e | .08314135
rho | .64888558 (fraction of variance due to u_i)

. des alavgrexp alunch alenroll

storage display value
variable name type  format label variable label
alavgrexp float %9.0g time average lavgrexp, 1995-2001
alunch float %9.0g time average lunch, 1995-2001
alenroll float %9.0g time average lenroll, 1995-2001
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. reg math4 lavgrexp alavgrexp lunch alunch lenroll alenroll y96-y01,

cluster(distid)

Linear regression

lavgrexp
alavgrexp
lunch
alunch
lenroll
alenroll
y96

y97

y98

y99

y00

.377092
-.286541
-.0419466
-.3770088
-0020566
-.0031646
-.0155968
-.0589731
.0781687
.064275
-089569
-0630093
-.0006233

Number of obs
F(C 12, 500)
Prob > F
R-squared
Root MSE

3507
161.09
0.0000
0.4218
.11542

(Std. Err. adjusted for 501 clusters in distid)

Robust

Std. Err.
.0705971
.0731797
.0731925
.0766141
.0488317
.0491534
.0063965
.0095273
.0112998
.0123156

.013328

.0147233
.2450239

-0.06
-2.44
-6.19

[95% Conf.

.2383884
-.4303185
.1857494
.5275341
-.093884
.0997373
.0281641
.0776916
.0559678
.0400782
.0633831
.0340821
-.4820268

Interval]

.5157956
-.1427635
.1018562
-.2264835
.0979972
.0934082
-.0030295
-.0402546
-1003696
.0884717
.1157548
.0919365
-4807801
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. * Now use fractional probit.

. glm math4 lavgrexp alavgrexp lunch alunch lenroll alenroll y96-y01,
fa(bin) link(probit) cluster(distid)
note: math4 has non-integer values

Generalized linear models No. of obs = 3507
Optimization I ML Residual df = 3494

Scale parameter = 1
Deviance =  237.643665 (1/df) Deviance = .0680148
Pearson = 225.1094075 (1/df) Pearson = .0644274

(Std. Err. adjusted for 501 clusters in distid)

| Robust
math4 | Coef Std. Err. z P>]z] [95% Conf. Interval]
_____________ +________________________________________________________________
lavgrexp | -8810302 .2068026 4.26 0.000 .4757045 1.286356
alavgrexp | .5814474 .2229411 -2.61 0.009 -1.018404 -1444909
lunch | .2189714 .2071544 -1.06 0.290 -.6249865 .1870437
alunch | -9966635 .2155739 -4.62 0.000 -1.419181 -5741465
lenroll | -0887804 -1382077 0.64 0.521 -.1821017 -3596626
alenroll | .0893612 .1387674 -0.64 0.520 -.3613404 -1826181
yo6 | -0362309 .0178481 -2.03 0.042 -.0712125 -0012493
yo7 | -1467327 -0273205 -5.37 0.000 -.20028 -0931855
yo8 | -2520084 .0337706 7.46  0.000 .1858192 -3181975
yo9 | .2152507 -0367226 5.86 0.000 -1432757 .2872257
y00 | -3049632 -0399409 7.64 0.000 .2266805 -3832459
yo1l | .2257321 -0439608 5.13 0.000 -1395705 -3118938
cons | -1.855832 . 7556621 -2.46 0.014 -3.336902 .3747616

58



. margeff

Average partial effects after glm
y = Pr(math4)

lavgrexp
alavgrexp
lunch
alunch
lenroll
alenroll
y96

y97

y98

y99

y00

y01

.0695326
.0750686
.0698318
.0723725
.0465622
.0467477
.0061107
.0097646
.0100272
.0111375
.0115066
.0132849

[95% Conf.
.2968496
-1959097
.0737791
.3358104
.0299132
.0301089
.0122924
-0508008
-0809879
-0696954
-0970224
-0729829

.1605682
.3430414
.2106469
4776579
-.061347
.1217326
.0242692
-.069939
.0613349
.0478662
.0744698

.046945

Interval]

-433131

.0487781
.0630887
-1939629
.1211734
.0615149
-0003156
.0316625
-1006408
.0915245

.119575

-0990208

. * These standard errors are very close to bootstrapped
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. xtgee math4 lavgrexp alavgrexp lunch alunch lenroll alenroll y96-y01,

fa(bin) link(probit) corr(exch) robust

GEE population-averaged model

Number of obs
Number of groups
Obs per group: min

avg
max

Wald chi2(12)

Prob > chi2

3507
501

7

7.0

Z
1815.43
0.0000

Group variable: distid
Link: probit
Family: binomial
Correlation: exchangeable
Scale parameter: 1
(Std. Err
| Semi-robust
math4 | Coef Std. Err. z
_____________ +

lavgrexp | .884564 .2060662 4.29

alavgrexp | -.5835138 .2236705 -2.61

lunch | .2372942 .2091221 -1.13

alunch | -9754696 .2170624 -4.49

lenroll | .0875629 .1387427 0.63

alenroll | .0820307 .1393712 -0.59

y96 | .0364771 .0178529 -2.04

yo7 | -1471389 .0273264 -5.38

yo8 | .2515377 .0337018 7.46

yo9 | .2148552 -0366599 5.86

y00 | -3046286 .0399143 7.63

yo1l | .2256619 .0438877 5.14

cons | -1.914975 . 7528262 -2.54
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4806817
-1.0219
6471659

-1.400904

.1843677
.3551933
.0714681
.2006976
.1854833

-143003

.2263981

1396437

~3.390487

[95% Conf.

Interval]

1.288446

-.1451277

1725775

-.5500351

.3594935
.1911318
-.001486

-.0935801

.317592
.2867073
.3828591
.3116801

-.4394628



. margeff

Average partial effects after xtgee

y = Pr(math4)

lavgrexp
alavgrexp
lunch
alunch
lenroll
alenroll
y96

y97

y98

y99

y00

y01

.0692519
.0752801
.0704803
.0728656
.0467283
.0469381
.0061106
.0097618

-010009

.0111192
.0115004
.0132624

[95% Conf.
.2979576
-.1965515
-.0799305
-.3285784
.0294948
-.0276313
-.012373
-.0509306
-0808226
-0695541
-0968972
.0729416

.1622263
.3440978
.2180693
.4713924
-0620909
-1196283
.0243497
.0700633
.0612054
.0477609
.0743568
.0469478

Interval]

-4336889
.0490052
.0582082
.1857644
.1210805
.0643656
-.0003964
.0317979
-1004399
.0913472
.1194376
.0989353



. * Now allow spending to be endogenous. Use foundation allowance, and
. * Interactions, as IVs.
. * First, linear model:

ivreg math4 lunch alunch lenroll alenroll y96-y01 lexppp94 1€94y96-1e94y01
(lavgrexp = Ifound 1fndy96-1fndy0l1l), cluster(distid)

Instrumental variables (2SLS) regression Number of obs = 3507
F(C 18, 500) = 107.05
Prob > F = 0.0000
R-squared = 0.4134
Root MSE = .11635

(Std. Err. adjusted for 501 clusters in distid)

| Robust
math4 | Coef Std. Err. t P>|t] [95% Conf. Interval]
_____________ +________________________________________________________________
lavgrexp | .5545247 .2205466 2.51 0.012 .1212123 .987837
lunch | -.0621991 -0742948 -0.84 0.403 -.2081675 -0837693
alunch | -.4207815 .0758344 -5.55 0.000 -.5697749  -.2717882
lenroll | .0463616 -0696215 0.67 0.506 -.0904253 .1831484
alenroll | -.049052 .070249 -0.70 0.485 -.1870716 -0889676
y96 | -1.085453 .2736479 -3.97 0.000 -1.623095 -.5478119
y97 | -1.049922 .376541 -2.79 0.005 -1.78972 -.3101244
y98 | -.4548311 -4958826 -0.92 0.359 -1.429102 -5194394
y99 | -.4360973 .5893671 -0.74 0.460 -1.594038 .7218439
yoO0 | --3559283 -6509999 -0.55 0.585 -1.634961 .923104
yo1l | -.704579 .7310773 -0.96 0.336 -2.140941 .7317831
lexppp94 | -.4343213 .2189488 -1.98 0.048 -.8644944  -.0041482
1e94y96 | .1253255 .0318181 3.94 0.000 .0628119 .1878392
1€94y97 | .11487 .0425422 2.70 0.007 .0312865 .1984534
1e94y98 | .0599439 .0554377 1.08 0.280 -.0489757 .1688636
1e94y99 | .0557854 -0661784 0.84 0.400 -.0742367 -1858075
1e94y00 | -048899 .0727172 0.67 0.502 -.0939699 .1917678



1e94y01 | .0865874 .0816732 1.06 0.290 -.0738776 .2470524
_cons | -.334823 .2593105 -1.29 0.197 -.8442955 .1746496
Instrumented: lavgrexp
Instruments: lunch alunch lenroll alenroll y96 y97 y98 y99 y00 yO01
lexppp94 1e94y96 1e94y97 1e94y98 1e94y99 1e94y00 1e94y01
Ifound Ifndy96 I1fndy97 1fndy98 I1fndy99 Ifndy00 Ifndy0l

. * Estimate i1s substantially larger than when spending is treated as exogenous.
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. * Get reduced form residuals for fractional probit:

. reg lavgrexp Ifound Ifndy96-1fndy0l lunch alunch lenroll alenroll y96-y01

lexppp94 1e94y96-1e94y01, cluster(distid)

Linear regression

Number of obs
F( 24,

Prob > F
R-squared
Root MSE

500)

3507
1174.57
0.0000
0.9327
.03987

(Std. Err. adjusted for 501 clusters in distid)

| Robust
lavgrexp | Coef Std. Err t
_____________ +

Ifound | .2447063 .0417034 5.87
1fndy96 | .0053951 .0254713 0.21
1ndy97 | .0059551 -0401705 0.15
1fndy98 | -0045356 -0510673 0.09
I1fndy99 | .0920788 .0493854 1.86
1ndy00 | .1364484 -0490355 2.78
I1fndy01 | .2364039 .0555885 4.25
cons | .1632959 -0996687 1.64

[95% Conf.
.3266417
-0554391
.0729687
-1048685
.1891074
.2327894
.3456198

.1627709
-.044649
.0848789
.0957972
.0049497
.0401074

.127188

.0325251

Interval]

.359117

. predict vZhat, resid
(1503 missing values generated)
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. glm math4 lavgrexp v2Zhat lunch alunch lenroll alenroll y96-y01 lexppp94
1€94y96-1e94y01, fa(bin) link(probit) cluster(distid)
note: math4 has non-integer values
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Generalized linear models No. of obs = 3507
Optimization I ML Residual df = 3487
Scale parameter = 1
Deviance = 236.0659249 (1/df) Deviance = .0676989
Pearson = 223.3709371 (1/df) Pearson = .0640582

Variance function: V(u) = u*(1-u/l) [Binomial]

Link function : g(u) = invnorm(u) [Probit]
(Std. Err. adjusted for 501 clusters in distid)
| Robust

math4 | Coef Std. Err. z P>|z] [95% Conf. Interval]
_____________ +________________________________________________________________
lavgrexp | 1.731039 .6541194 2.65 0.008 -4489886 3.013089
v2hat | -1.378126 .720843 -1.91 0.056 -2.790952 -0347007
lunch | -.2980214 .2125498 -1.40 0.161 -.7146114 .1185686
alunch | -1.114775 .2188037 -5.09 0.000 -1.543623 -.685928
lenroll | .2856761 .197511 1.45 0.148 -.1014383 .6727905
alenroll | -.2909903 .1988745 -1.46 0.143 -.6807771 -0987966
cons | -2.455592 7329693  -3.35 0.001  -3.892185 -1.018998



. margeff

Average partial effects after glm
y = Pr(math4)

variable |

Coef.

Std. Err.

[95% Conf.

Interval]

_____________ - e

lavgrexp |
vZhat |
lunch |
alunch |
lenroll |
alenroll |

.5830163
-4641533
-1003741
.3754579
.0962161
.0980059

.2203345

.242971
.0716361
.0734083
.0665257
.0669786

.1511686
.9403678
.2407782
.5193355
.0341719
.2292817

1.014864
.0120611
-04003
-.2315803
.2266041
.0332698

These standard errors do not account for the first-stage estimation. Should

use the panel bootstrap accounting for both stages.

Only marginal evidence that spending is endogenous, but the negative sign
fits the story that districts increase spending when performance is

(expected to be) worse, based on unobservables (to us).
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Model: Linear Fractional Probit
Estimation Method: | Instrumental Variables  Pooled QMLE
Coefficient Coefficient  APE
log(arexppp) 555 1.731 583
(.221) (.759) (.255)
lunch —. 062 —.298 —.100
(.074) (.202) (.068)
log(enroll) 046 .286 .096
(.070) (.209) (.070)
V2 —. 424 —1.378 —
(.232) (.811) —
Scale Factor — 337
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