CONTROL FUNCTION AND RELATED METHODS

Jeff Wooldridge Michigan State University LABOUR Lectures, EIEF October 18-19, 2011

- 1. Linear-in-Parameters Models: IV versus Control Functions
- 2. Correlated Random Coefficient Models
- 3. Nonlinear Models
- 4. Semiparametric and Nonparametric Approaches
- 5. Methods for Panel Data

1. Linear-in-Parameters Models: IV versus Control Functions

- Most models that are linear are estimated using standard IV methods: two stage least squares (2SLS) or generalized method of moments (GMM).
- An alternative, the control function (CF) approach, relies on the same kinds of identification conditions. But even in models linear in parameters it can lead to different estimators.

• Let y_1 be the response variable, y_2 the endogenous explanatory variable (EEV), and **z** the $1 \times L$ vector of exogenous variables (with $z_1 = 1$):

$$y_1 = \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + u_1, \tag{1}$$

where \mathbf{z}_1 is a $1 \times L_1$ strict subvector of \mathbf{z} .

• First consider the exogeneity assumption

$$E(\mathbf{z}'u_1) = \mathbf{0}. \tag{2}$$

Reduced form for y_2 :

$$y_2 = \mathbf{z}\pi_2 + v_2, E(\mathbf{z}'v_2) = \mathbf{0}$$
 (3)

where π_2 is $L \times 1$. Write the linear projection of u_1 on v_2 , in error form, as

$$u_1 = \rho_1 v_2 + e_1, \tag{4}$$

where $\rho_1 = E(v_2u_1)/E(v_2^2)$ is the population regression coefficient. By construction, $E(v_2e_1) = 0$ and $E(\mathbf{z}'e_1) = \mathbf{0}$.

Plug (4) into (1):

$$y_1 = \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + \rho_1 v_2 + e_1, \tag{5}$$

where v_2 is an explanatory variable in the equation. The new error, e_1 , is uncorrelated with y_2 as well as with v_2 and \mathbf{z} .

- Suggests a two-step estimation procedure:
- (i) Regress y_2 on **z** and obtain the reduced form residuals, \hat{v}_2 .
- (ii) Regress

$$y_1 \text{ on } \mathbf{z}_1, y_2, \text{ and } \hat{v}_2.$$
 (6)

The implicit error in (6) is $e_{i1} + \rho_1 \mathbf{z}_i(\hat{\boldsymbol{\pi}}_2 - \boldsymbol{\pi}_2)$, which depends on the sampling error in $\hat{\boldsymbol{\pi}}_2$ unless $\rho_1 = 0$. OLS estimators from (6) will be consistent for δ_1, α_1 , and ρ_1 .

- The OLS estimates from (6) are *control function* estimates.
- The OLS estimates of δ_1 and α_1 from (6) are *identical* to the 2SLS estimates starting from (1).
- A test of H_0 : $\rho_1 = 0$ in the equation

$$y_{i1} = \mathbf{z}_{i1} \mathbf{\delta}_1 + \alpha_1 y_{i2} + \rho_1 \hat{v}_{i2} + error_i$$

is the regression-based Hausman test for H_0 : $Cov(y_2, u_1) = 0$. Is easily made robust to heteroskedasticity of unknown form.

• The equivalence of IV and CF methods does not always. Add a quadratic in y_2 :

$$y_1 = \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + \gamma_1 y_2^2 + u_1 \tag{7}$$

$$E(u_1|\mathbf{z}) = 0. (8)$$

- Cannot get very far now without the stronger assumption (8).
- Let z_2 be a (nonbinary) scalar not also in \mathbf{z}_1 . Under assumption (8), we can use, say, z_2^2 as an instrument for y_2^2 . So the IVs would be $(\mathbf{z}_1, z_2, z_2^2)$ for $(\mathbf{z}_1, y_2, y_2^2)$. We could also use interactions $z_2\mathbf{z}_1$.

- What does the CF approach entail? Because of the nonlinearity in y_2 , the CF approach is based on the conditional mean, $E(y_1|\mathbf{z},y_2)$, rather than a linear projection.
- Therefore, we now assume

$$E(u_1|\mathbf{z}, y_2) = E(u_1|v_2) = \rho_1 v_2 \tag{9}$$

where

$$y_2 = \mathbf{z}\mathbf{\pi}_2 + v_2.$$

• Independence of (u_1, v_2) and **z** is sufficient for the first equality. Even under the independence assumption, linearity of $E(u_1|v_2)$ is a substantive restriction.

• Under $E(u_1|\mathbf{z},y_2) = \rho_1 v_2$, we have

$$E(y_1|\mathbf{z},y_2) = \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + \gamma_1 y_2^2 + \rho_1 v_2.$$
 (10)

A CF approach is immediate: replace v_2 with \hat{v}_2 and use OLS on (10). Not equivalent to a 2SLS estimate.

- If the assumptions hold, CF likely more efficient; it is less robust than an IV approach, which requires only $E(u_1|\mathbf{z}) = 0$.
- At a minimum the CF approach requires $E(v_2|\mathbf{z}) = 0$ or $E(y_2|\mathbf{z}) = \mathbf{z}\boldsymbol{\pi}_2$, which puts serious restrictions on y_2 .

• Even in linear models with constant coefficients, CF approaches can impose extra assumptions when we base it on $E(y_1|\mathbf{z},y_2)$, particularly when y_2 is (partially) discrete. Generally, the estimating equation is

$$E(y_1|\mathbf{z},y_2) = \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + E(u_1|\mathbf{z},y_2). \tag{11}$$

• Suppose y_2 is binary. Generally, $E(u_1|\mathbf{z}, y_2)$ depends on the joint distribution of (u_1, y_2) given \mathbf{z} . If $y_2 = 1[\mathbf{z}\delta_2 + e_2 \ge 0]$, (u_1, e_2) is independent of \mathbf{z} , $E(u_1|e_2) = \rho_1 e_2$, and $e_2 \sim Normal(0, 1)$, then

$$E(u_1|\mathbf{z},y_2) = \rho_1[y_2\lambda(\mathbf{z}\boldsymbol{\delta}_2) - (1-y_2)\lambda(-\mathbf{z}\boldsymbol{\delta}_2)], \tag{12}$$

where $\lambda(\cdot)$ is the inverse Mills ratio (IMR).

• The CF approach is based on

$$E(y_1|\mathbf{z},y_2) = \mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1y_2 + \rho_1[y_2\lambda(\mathbf{z}\boldsymbol{\delta}_2) - (1-y_2)\lambda(-\mathbf{z}\boldsymbol{\delta}_2)]$$

and the Heckman two-step approach (for endogeneity, not sample selection):

- (i) Probit to get $\hat{\delta}_2$ and compute $\widehat{gr}_{i2} \equiv y_{i2}\lambda(\mathbf{z}_i\hat{\delta}_2) (1 y_{i2})\lambda(-\mathbf{z}_i\hat{\delta}_2)$ (generalized residual).
- (ii) Regress y_{i1} on \mathbf{z}_{i1} , y_{i2} , \widehat{gr}_{i2} , i = 1, ..., N (and adjust the standard errors).

- Consistency of the CF estimators hinges on the model for $D(y_2|\mathbf{z})$ being correctly specified, along with linearity in $E(u_1|e_2)$. If we just apply 2SLS directly to $y_1 = \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + u_1$, it makes no distinction among discrete, continuous, or some mixture for y_2 .
- How might we robustly use the binary nature of y_2 in IV estimation? Obtain the fitted probabilities, $\Phi(\mathbf{z}_i\hat{\boldsymbol{\delta}}_2)$, from the first stage probit, and then use these as IVs (not regressors!) for y_{i2} . Fully robust to misspecification of the probit model, usual standard errors from IV asymptotically valid. Efficient IV estimator if $P(y_2 = 1|\mathbf{z}) = \Phi(\mathbf{z}\boldsymbol{\delta}_2)$ and $Var(u_1|\mathbf{z}) = \sigma_1^2$.
- Similar suggestions work for y_2 a count variable or a corner solution.

2. Correlated Random Coefficient Models

• Modify the original equation as

$$y_1 = \eta_1 + \mathbf{z}_1 \mathbf{\delta}_1 + a_1 y_2 + u_1 \tag{13}$$

where a_1 , the "random coefficient" on y_2 . Heckman and Vytlacil (1998) call (13) a correlated random coefficient (CRC) model. For a random draw i, $y_{i1} = \eta_1 + \mathbf{z}_{i1} \mathbf{\delta}_1 + a_{i1} y_2 + u_{i1}$.

• Write $a_1 = \alpha_1 + v_1$ where $\alpha_1 = E(a_1)$ is the parameter of interest. We can rewrite the equation as

$$y_1 = \eta_1 + \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + v_1 y_2 + u_1 \tag{14}$$

$$\equiv \eta_1 + \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + e_1. \tag{15}$$

• The potential problem with applying instrumental variables is that the error term $v_1y_2 + u_1$ is not necessarily uncorrelated with the instruments **z**, even under

$$E(u_1|\mathbf{z}) = E(v_1|\mathbf{z}) = 0. {16}$$

We want to allow y_2 and v_1 to be correlated, $Cov(v_1, y_2) \equiv \tau_1 \neq 0$. A suffcient condition that allows for any *unconditional* correlation is

$$Cov(v_1, y_2|\mathbf{z}) = Cov(v_1, y_2), \tag{17}$$

and this is sufficient for IV to consistently estimate (α_1, δ_1) .

- The usual IV estimator that ignores the randomness in a_1 is more robust than Garen's (1984) CF estimator, which adds \hat{v}_2 and \hat{v}_2y_2 to the original model, or the Heckman-Vytlacil (1998) "plug-in" estimator, which replaces y_2 with $\hat{y}_2 = \mathbf{z}\hat{\boldsymbol{\pi}}_2$.
- The condition $Cov(v_1, y_2|\mathbf{z}) = Cov(v_1, y_2)$ cannot really hold for discrete y_2 . Further, Card (2001) shows how it can be violated even if y_2 is continuous. Wooldridge (2005) shows how to allow parametric heteroskedasticity.

• In the case of binary y_2 , we have what is often called the "switching regression" model. If $y_2 = 1[\mathbf{z}\delta_2 + v_2 \ge 0]$ and $v_2|\mathbf{z} \sim Normal(0, 1)$, then

$$E(y_1|\mathbf{z},y_2) = \eta_1 + \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + \rho_1 h_2(y_2,\mathbf{z}\boldsymbol{\delta}_2) + \xi_1 h_2(y_2,\mathbf{z}\boldsymbol{\delta}_2) y_2,$$

where

$$h_2(y_2, \mathbf{z}\boldsymbol{\delta}_2) = y_2\lambda(\mathbf{z}\boldsymbol{\delta}_2) - (1 - y_2)\lambda(-\mathbf{z}\boldsymbol{\delta}_2)$$

is the generalized residual function.

• Reminder: The expression for $E(y_1|\mathbf{z},y_2)$ is an *estimating* equation for α_1 . We do not use $E(y_1|\mathbf{z},y_2)$, evaluated at $y_2=1$ and $y_2=0$, to obtain the treatment effect at different values of \mathbf{z} . The ATE in the model is constant and equal to α_1 .

- Common to add the interactions $y_{i2}(\mathbf{z}_{i1} \mathbf{\bar{z}}_1)$ (same as estimating $y_2 = 0$, $y_2 = 1$ separately) and then α_1 remains the average treatment effect (with the sample average $\mathbf{\bar{z}}_1$ replacing $E(\mathbf{z}_1)$.
- If δ_1 is replaced with random coefficients correlated with y_2 , can interact \mathbf{z}_1 with $h_2(y_{i2}, \mathbf{z}_i \hat{\delta}_2)$ under joint normality of the random coefficients and v_2 .

- Can allow $E(v_1|v_2)$ to be more flexible [Heckman and MaCurdy (1986), Powell, Newey, and Walker (1990)].
- Also easy to allow for y_2 to follow a "heteroskedastic probit" model: replace v_2 with $e_2 = v_2/\exp(\mathbf{z}_2 \mathbf{\gamma}_2)$ where $\exp(\mathbf{z}_2 \mathbf{\gamma}_2) = sd(e_2|\mathbf{z})$. Estimate δ_2 , γ_2 by heteroskedastic probit.

3. Nonlinear Models

- Typically three approaches to nonlinear models with EEVs.
- (1) Plug in fitted values from a first step regression (in an attempt to mimic 2SLS in linear model). More generally, try to find $E(y_1|\mathbf{z})$ or $D(y_1|\mathbf{z})$ and then impose identifying restrictions.
- (2) CF approach: plug in residuals in an attempt to obtain $E(y_1|y_2, \mathbf{z})$ or $D(y_1|y_2, \mathbf{z})$.
- (3) Maximum Likelihood (often limited information): Use models for $D(y_1|y_2, \mathbf{z})$ and $D(y_2|\mathbf{z})$ jointly.
- All strategies are more difficult with nonlinear models when y_2 is discrete. Some poor practices have lingered.

Binary and Fractional Responses

Probit model:

$$y_1 = 1[\mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + u_1 \ge 0], \tag{18}$$

where $u_1|z$ ~Normal(0, 1). Analysis goes through if we replace (\mathbf{z}_1, y_2) with any known function $\mathbf{x}_1 \equiv \mathbf{g}_1(\mathbf{z}_1, y_2)$.

• The Rivers-Vuong (1988) approach [Smith and Blundell (1986) for Tobit] is to make a homoskedastic-normal assumption on the reduced form for y_2 ,

$$y_2 = \mathbf{z}\pi_2 + v_2, \ v_2|\mathbf{z} \sim Normal(0, \tau_2^2).$$
 (19)

• RV approach comes close to requiring

$$(u_1, v_2)$$
 independent of **z**. (20)

If we also assume

$$(u_1, v_2) \sim \text{Bivariate Normal}$$
 (21)

with $\rho_1 = Corr(u_1, v_2)$, then we can proceed with MLE based on $f(y_1, y_2|\mathbf{z})$. A CF approach is available, too, based on

$$P(y_1 = 1 | \mathbf{z}, y_2) = \Phi(\mathbf{z}_1 \mathbf{\delta}_{\rho 1} + \alpha_{\rho 1} y_2 + \theta_{\rho 1} v_2)$$
 (22)

where each coefficient is multiplied by $(1 - \rho_1^2)^{-1/2}$.

The RV two-step approach is

- (i) OLS of y_2 on **z**, to obtain the residuals, \hat{v}_2 .
- (ii) Probit of y_1 on $\mathbf{z}_1, y_2, \hat{v}_2$ to estimate the scaled coefficients. A simple t test on \hat{v}_2 is valid to test $H_0: \rho_1 = 0$.
- Can recover the original coefficients, which appear in the partial effects. Or,

$$\widehat{ASF}(\mathbf{z}_1, y_2) = N^{-1} \sum_{i=1}^{N} \Phi(\mathbf{x}_1 \hat{\boldsymbol{\beta}}_{\rho 1} + \hat{\boldsymbol{\theta}}_{\rho 1} \hat{\boldsymbol{v}}_{i2}), \tag{23}$$

that is, we average out the reduced form residuals, \hat{v}_{i2} . This formulation is useful for more complicated models.

• The two-step CF approach easily extends to fractional responses:

$$E(y_1|\mathbf{z},y_2,q_1) = \Phi(\mathbf{x}_1\boldsymbol{\beta}_1 + q_1), \tag{24}$$

where \mathbf{x}_1 is a function of (\mathbf{z}_1, y_2) and q_1 contains unobservables. Can use the the *same* two-step because the Bernoulli log likelihood is in the linear exponential family. Still estimate scaled coefficients. APEs must be obtained from (23). To account for first-stage estimation, the bootstrap is convenient.

• Wooldridge (2005, Rothenberg Festschrift) describes some simple ways to make the analysis starting from (24) more flexible, including allowing $Var(q_1|v_2)$ to be heteroskedastic.

Example: Effects of school spending on student performance.

. sum math4 lunch rexpp found if y97

Variable	0bs	Mean	Std. Dev.	Min	Max
math4	1763	.6058803	.1966755	.029	1
lunch	2270	.3614616	.2535764	.0019	.9939
rexpp	2329	4261.201	789.124	1895	11779
found	2357	5895.984	1016.795	4816	10762

. glm math4 lrexpp lunch lenrol lrexpp94 if y97, fam(bin) link(probit) robust note: math4 has noninteger values

Generalized linear	models	No. of obs	=	1208
Optimization :	ML	Residual df	=	1203
		Scale parameter	=	1
		AIC	=	.9079682
Log pseudolikelihoo	od = -543.4128012	BIC	=	-8378.243

math4	 Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
lrexpp	.2726134	.113923	2.39	0.017	.0493285	.4958983
lunch	-1.120498	.0582561	-19.23	0.000	-1.234678	-1.006318
lenrol	.0108851	.0390534	0.28	0.780	0656581	.0874283
lrexpp94	.1854712	.0829582	2.24	0.025	.0228761	.3480664
_cons	-3.118799	.9207049	-3.39	0.001	-4.923347	-1.31425

26

variable		Std. Err.	z	P> z	[95% Conf.	Interval]
lrexpp	.0998487	.0416701	2.40	0.017	.0181768	.1815205
lunch	4103988	.020199	-20.32	0.000	4499882	3708094
lenrol	.0039868	.0143069	0.28	0.781	0240542	.0320278
lrexpp94	.0679316	.0303795	2.24	0.025	.0083889	.1274742

- . * Compare with OLS:
- . reg math4 lrexpp lunch lenrol lrexpp94 if y97, robust

Linear regression	Number of obs =	1208
	F(4, 1203) =	
	Prob > F =	0.0000
	R-squared =	0.3114
	Root MSE =	168

math4	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lrexpp	.0934219	.0415276	2.25	0.025	.0119474	.1748964
lunch	4205896	.0215956	-19.48	0.000	4629588	3782204
lenrol	0002997	.0146181	-0.02	0.984	0289795	.0283802
lrexpp94	.0590509	.0302958	1.95	0.052	0003877	.1184894
_cons	4838692	.3261972	-1.48	0.138	-1.123848	.1561094

- . * Estimate the reduced form treating lrexpp as endogenous and
- . * lfound as its IV:
- . reg lrexpp lfound lunch lenrol lrexpp94 if y97 & e(sample)

Source	SS	df	MS		Number of obs F(4, 1203)	= 1208 = 244.58
Model Residual	14.1288484 17.3739986		5322121 4442227		Prob > F R-squared Adj R-squared	= 0.0000 $= 0.4485$
Total	31.502847	1207 .02	6100122		Root MSE	= .12018
lrexpp	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lfound lunch lenrol lrexpp94	.5443139 .1419003 0961736 .1358278	.0302413 .0135798 .0083231 .0235749	18.00 10.45 -11.55 5.76	0.000 0.000 0.000 0.000	.4849824 .1152575 112503 .0895753	.6036454 .1685431 0798442 .1820803

[.] predict v2h, resid
(7694 missing values generated)

. glm math4 lrexpp lunch lenrol lrexpp94 v2h if y97, fam(bin) link(probit) robust note: math4 has noninteger values

Generalized linear models Optimization : ML Deviance = 157.5338068 Pearson = 146.5468582				Resi Scal (1/d	dual df e parameter f) Deviance	= 1
Variance function: $V(u) = u*(1-u/1)$ Link function : $g(u) = invnorm(u)$				[Bin [Pro	omial] bit]	
Log pseudolikelihood = -542.6234317				AIC BIC		= .9083169 = -8372.725
math4	Coef.	Robust Std. Err.	z 	P> z	[95% Conf	. Interval]
lrexpp lunch lenrol lrexpp94 v2h _cons	.9567996 -1.18315 .0616713 0784249 8593559 -6.966712	.2012636 .0585657 .0399644 .1063432 .2374808 1.259552	4.75 -20.20 1.54 -0.74 -3.62 -5.53	0.000 0.000 0.123 0.461 0.000 0.000	.5623302 -1.297937 0166574 2868536 -1.32481 -9.435388	1.351269 -1.068363 .14 .1300039 3939021 -4.498036

^{. *} Easily reject null that spending is exogenous.

variable	 Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lrexpp	.3501127	.0734569	4.77	0.000	.2061399	.4940855
lunch	432939	.0202452	-21.38	0.000	4726189	393259
lenrol	.0225668	.014639	1.54	0.123	0061252	.0512588
lrexpp94	0286973	.0389071	-0.74	0.461	1049537	.0475592
v2h	314455	.086817	-3.62	0.000	4846132	1442968

^{. *} Standard errors need to be fixed up for two-step estimation.

. ivreg math4 lunch lenrol lrexpp94 (lrexpp = lfound) if y97, robust

Instrumental variables (2SLS) regression Number of obs = 1208

F(4, 1203) = 114.28Prob > F = 0.0000

R-squared = 0.2908

Root MSE = .1705

math4	 Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lrexpp	.3082997	.0710983	4.34	0.000	.1688093	.4477901
lunch	4389034	.0219076	-20.03	0.000	4818848	3959221
lenrol	.0155435	.0154313	1.01	0.314	0147317	.0458187
lrexpp94	026911	.0393419	-0.68	0.494	1040974	.0502754
_cons	-1.66758	.4360251	-3.82	0.000	-2.523035	8121261

Instrumented: lrexpp

Instruments: lunch lenrol lrexpp94 lfound

- The control function approach has some decided advantages over another two-step approach one that appears to mimic the 2SLS estimation of the linear model.
- Consider the binary response case. Rather than conditioning on v_2 along with **z** (and therefore y_2) to obtain

$$P(y_1 = 1|z, v_2) = P(y_1 = 1|\mathbf{z}, y_2, v_2)$$
, we can obtain $P(y_1 = 1|\mathbf{z})$.

• To find $P(y_1 = 1|\mathbf{z})$, we plug in the reduced form for y_2 to get $y_1 = 1[\mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1(\mathbf{z}\boldsymbol{\delta}_2) + \alpha_1 v_2 + u_1 > 0]$. Because $\alpha_1 v_2 + u_1$ is independent of \mathbf{z} and normally distributed,

 $P(y_1 = 1|\mathbf{z}) = \Phi\{[\mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1(\mathbf{z}\boldsymbol{\delta}_2)]/\omega_1\}$. So first do OLS on the reduced form, and get fitted values, $\hat{y}_{i2} = \mathbf{z}_i\hat{\boldsymbol{\delta}}_2$. Then, probit of y_{i1} on $\mathbf{z}_{i1}, \hat{y}_{i2}$ to estimate scaled coefficients. Harder to estimate APEs and test for endogeneity.

• Danger with plugging in fitted values for y_2 is that one might be tempted to plug \hat{y}_2 into nonlinear functions, say y_2^2 or $y_2\mathbf{z}_1$. This does **not** result in consistent estimation of the scaled parameters or the partial effects. If we believe y_2 has a linear RF with additive normal error independent of z, the addition of \hat{v}_2 solves the endogeneity problem regardless of how y_2 appears. Plugging in fitted values for y_2 only works in the case where the model is linear in y_2 . Plus, the CF approach makes it much easier to test the null that for endogeneity of y_2 as well as compute APEs.

- Can understand the limits of CF approach by returning to $E(y_1|\mathbf{z},y_2,q_1) = \Phi(\mathbf{z}_1\mathbf{\delta}_1 + \alpha_1y_2 + q_1)$, where y_2 is discrete. Rivers-Vuong approach does not generally work.
- Suppose y_1 and y_2 are both binary and

$$y_2 = 1[\mathbf{z}\boldsymbol{\delta}_2 + v_2 \ge 0] \tag{25}$$

and we maintain joint normality of (u_1, v_2) . We should *not* try to mimic 2SLS as follows: (i) Do probit of y_2 on \mathbf{z} and get the fitted probabilities, $\hat{\Phi}_2 = \Phi(\mathbf{z}\hat{\delta}_2)$. (ii) Do probit of y_1 on $\mathbf{z}_1, \hat{\Phi}_2$, that is, just replace y_2 with $\hat{\Phi}_2$.

- In general, the only strategy we have is maximum likelihood estimation based on $f(y_1|y_2, \mathbf{z})f(y_2|\mathbf{z})$. [Perhaps this is why some, such as Angrist (2001), Angrist and Pischke (2009), promote the notion of just using linear probability models estimated by 2SLS.]
- "Bivariate probit" software can be used to estimate the probit model with a binary endogenous variable.
- Parallel discussions hold for ordered probit, Tobit.

Multinomial Responses

• Recent push by Petrin and Train (2006), among others, to use control function methods where the second step estimation is something simple – such as multinomial logit, or nested logit – rather than being derived from a structural model. So, if we have reduced forms

$$\mathbf{y}_2 = \mathbf{z} \mathbf{\Pi}_2 + \mathbf{v}_2, \tag{26}$$

then we jump directly to convenient models for $P(y_1 = j | \mathbf{z}_1, \mathbf{y}_2, \mathbf{v}_2)$. The average structural functions are obtained by averaging the response probabilities across $\hat{\mathbf{v}}_{i2}$. No convincing way to handle discrete \mathbf{y}_2 , though.

Exponential Models

• IV and CF approaches available for exponential models. Write

$$E(y_1|\mathbf{z}, y_2, r_1) = \exp(\mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + r_1), \tag{27}$$

where r_1 is the omitted variable. As usual, CF methods based on

$$E(y_1|\mathbf{z},y_2) = \exp(\mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1y_2)E[\exp(r_1)|\mathbf{z},y_2].$$

For continuous y_2 , can find $E(y_1|\mathbf{z},y_2)$ when $D(y_2|\mathbf{z})$ is homoskedastic normal (Wooldridge, 1997) and when $D(y_2|\mathbf{z})$ follows a probit (Terza, 1998). In the probit case,

$$E(y_1|\mathbf{z},y_2) = \exp(\mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1y_2)h(y_2,\mathbf{z}\boldsymbol{\pi}_2,\theta_1)$$

$$h(y_2, \mathbf{z}\pi_2, \theta_1) = \exp(\theta_1^2/2) \{ y_2 \Phi(\theta_1 + \mathbf{z}\pi_2) / \Phi(\mathbf{z}\pi_2) + (1 - y_2) [1 - \Phi(\theta_1 + \mathbf{z}\pi_2)] / [1 - \Phi(\mathbf{z}\pi_2)] \}.$$

• IV methods that work for any y_2 are available [Mullahy (1997)]. If

$$E(y_1|\mathbf{z},\mathbf{y}_2,r_1) = \exp(\mathbf{x}_1\boldsymbol{\beta}_1 + r_1)$$
 (28)

and r_1 is independent of **z** then

$$E[\exp(-\mathbf{x}_1\boldsymbol{\beta}_1)y_1|\mathbf{z}] = E[\exp(r_1)|\mathbf{z}] = 1, \tag{29}$$

where $E[\exp(r_1)] = 1$ is a normalization. The moment conditions are

$$E[\exp(-\mathbf{x}_1\boldsymbol{\beta}_1)y_1 - 1|\mathbf{z}] = 0. \tag{30}$$

4. Semiparametric and Nonparametric Approaches

• Blundell and Powell (2004) show how to relax distributional assumptions on (u_1, v_2) in the model $y_1 = 1[\mathbf{x}_1\boldsymbol{\beta}_1 + u_1 > 0]$, where \mathbf{x}_1 can be any function of (\mathbf{z}_1, y_2) . Their key assumption is that y_2 can be written as $y_2 = g_2(\mathbf{z}) + v_2$, where (u_1, v_2) is independent of \mathbf{z} , which rules out discreteness in y_2 . Then

$$P(y_1 = 1 | \mathbf{z}, v_2) = E(y_1 | \mathbf{z}, v_2) = H(\mathbf{x}_1 \boldsymbol{\beta}_1, v_2)$$
(31)

for some (generally unknown) function $H(\cdot, \cdot)$. The average structural function is just $ASF(\mathbf{z}_1, y_2) = E_{v_{i2}}[H(\mathbf{x}_1\boldsymbol{\beta}_1, v_{i2})].$

• Two-step estimation: Estimate the function $g_2(\cdot)$ and then obtain residuals $\hat{v}_{i2} = y_{i2} - \hat{g}_2(\mathbf{z}_i)$. BP (2004) show how to estimate H and β_1 (up to scaled) and $G(\cdot)$, the distribution of u_1 . The ASF is obtained from $G(\mathbf{x}_1\beta_1)$ or

$$\widehat{ASF}(\mathbf{z}_1, y_2) = N^{-1} \sum_{i=1}^{N} \widehat{H}(\mathbf{x}_1 \hat{\boldsymbol{\beta}}_1, \hat{v}_{i2});$$
(32)

• Blundell and Powell (2003) allow $P(y_1 = 1 | \mathbf{z}, y_2)$ to have general form $H(\mathbf{z}_1, y_2, v_2)$, and the second-step estimation is entirely nonparametric. Further, $\hat{g}_2(\cdot)$ can be fully nonparametric. Parametric approximations might produce good estimates of the APEs.

• BP (2003) consider a very general setup: $y_1 = g_1(\mathbf{z}_1, \mathbf{y}_2, u_1)$, with

$$ASF_1(\mathbf{z}_1, \mathbf{y}_2) = \int g_1(\mathbf{z}_1, \mathbf{y}_2, u_1) dF_1(u_1),$$
 (33)

where F_1 is the distribution of u_1 . Key restrictions are that \mathbf{y}_2 can be written as

$$\mathbf{y}_2 = \mathbf{g}_2(\mathbf{z}) + \mathbf{v}_2,\tag{34}$$

where (u_1, \mathbf{v}_2) is independent of **z**.

- Key: ASF can be obtained from $E(y_1|\mathbf{z}_1,\mathbf{y}_2,\mathbf{v}_2)=h_1(\mathbf{z}_1,\mathbf{y}_2,\mathbf{v}_2)$ by averaging out \mathbf{v}_2 , and fully nonparametric two-step estimates are available.
- The focus on the ASF is liberating. It justifies flexible parametric approaches that need not be tied to "structural" equations. In particular, we can just skip modeling $g_1(\cdot)$ and start with $E(y_1|\mathbf{z}_1,\mathbf{y}_2,\mathbf{v}_2)$.
- \bullet For example, if y_1 is binary or a fraction and y_2 is a scalar,

$$E(y_1|\mathbf{z}_1, y_2, v_2) = \Phi(\mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + \rho_1 v_2 + \eta_1 v_2^2 + \mathbf{z}_1 v_2 \mathbf{\xi}_1 + \omega_1 y_2 v_2 + \dots)$$

5. Methods for Panel Data

- Combine methods for correlated random effects models with CF methods for nonlinear panel data models with unobserved heterogeneity and EEVs.
- Illustrate a parametric approach used by Papke and Wooldridge (2008), which applies to binary and fractional responses.
- Nothing appears to be known about applying "fixed effects" probit to estimate the fixed effects while also dealing with endogeneity. Likely to be poor for small *T*.

• Model with time-constant unobserved heterogeneity, c_{i1} , and time-varying unobservables, v_{it1} , as

$$E(y_{it1}|y_{it2},\mathbf{z}_i,c_{i1},v_{it1}) = \Phi(\alpha_1 y_{it2} + \mathbf{z}_{it1} \boldsymbol{\delta}_1 + c_{i1} + v_{it1}).$$
(35)

Allow the heterogeneity, c_{i1} , to be correlated with y_{it2} and \mathbf{z}_i , where $\mathbf{z}_i = (\mathbf{z}_{i1}, \dots, \mathbf{z}_{iT})$ is the vector of strictly exogenous variables (conditional on c_{i1}). The time-varying omitted variable, v_{it1} , is uncorrelated with \mathbf{z}_i – strict exogeneity – but may be correlated with y_{it2} . As an example, y_{it1} is a female labor force participation indicator and y_{it2} is other sources of income.

- Write $\mathbf{z}_{it} = (\mathbf{z}_{it1}, \mathbf{z}_{it2})$, so that the time-varying IVs \mathbf{z}_{it2} are excluded from the "structural."
- Chamberlain approach:

$$c_{i1} = \psi_1 + \mathbf{\bar{z}}_i \boldsymbol{\xi}_1 + a_{i1}, a_{i1} | \mathbf{z}_i \sim Normal(0, \sigma_{a_1}^2).$$
 (36)

Next step:

$$E(y_{it1}|y_{it2},\mathbf{z}_i,r_{it1}) = \Phi(\alpha_1y_{it2} + \mathbf{z}_{it1}\delta_1 + \psi_1 + \mathbf{\bar{z}}_i\xi_1 + r_{it1})$$

where $r_{it1} = a_{i1} + v_{it1}$. Next, assume a linear reduced form for y_{it2} :

$$y_{it2} = \psi_2 + \mathbf{z}_{it}\delta_2 + \mathbf{\bar{z}}_i\boldsymbol{\xi}_2 + v_{it2}, t = 1, \dots, T.$$
 (37)

• Rules out discrete y_{it2} because

$$r_{it1} = \eta_1 v_{it2} + e_{it1}, \tag{38}$$

$$e_{it1}|(\mathbf{z}_i, v_{it2}) \sim Normal(0, \sigma_{e_1}^2), t = 1, \dots, T.$$
 (39)

Then

$$E(y_{it1}|\mathbf{z}_{i},y_{it2},v_{it2}) = \Phi(\alpha_{e1}y_{it2} + \mathbf{z}_{it1}\boldsymbol{\delta}_{e1} + \psi_{e1} + \mathbf{\bar{z}}_{i}\boldsymbol{\xi}_{e1} + \eta_{e1}v_{it2})$$
(40)

where the "e" subscript denotes division by $(1 + \sigma_{e_1}^2)^{1/2}$. This equation is the basis for CF estimation.

- Simple two-step procedure: (i) Estimate the reduced form for y_{it2} (pooled across t, or maybe for each t separately; at a minimum, different time period intercepts should be allowed). Obtain the residuals, \hat{v}_{it2} for all (i,t) pairs. The estimate of δ_2 is the fixed effects estimate. (ii) Use the pooled probit (quasi)-MLE of y_{it1} on y_{it2} , \mathbf{z}_{it1} , $\mathbf{\bar{z}}_i$, \hat{v}_{it2} to estimate α_{e1} , δ_{e1} , ψ_{e1} , ξ_{e1} and η_{e1} .
- Delta method or bootstrapping (resampling cross section units) for standard errors. Can ignore first-stage estimation to test $\eta_{e1} = 0$ (but test should be fully robust to variance misspecification and serial independence).

• Estimates of average partial effects are based on the average structural function,

$$E_{(c_{i1},v_{it1})}[\Phi(\alpha_1y_{t2} + \mathbf{z}_{t1}\boldsymbol{\delta}_1 + c_{i1} + v_{it1})], \tag{41}$$

which is consistently estimated as

$$N^{-1} \sum_{i=1}^{N} \Phi(\hat{\alpha}_{e1} y_{t2} + \mathbf{z}_{t1} \hat{\mathbf{\delta}}_{e1} + \hat{\psi}_{e1} + \mathbf{\bar{z}}_{i} \hat{\boldsymbol{\xi}}_{e1} + \hat{\eta}_{e1} \hat{v}_{it2}). \tag{42}$$

These APEs, typically with further averaging out across t and perhaps over y_{t2} and \mathbf{z}_{t1} , can be compared directly with fixed effects IV estimates.

EXAMPLE: Effects of Spending on Test Pass Rates

- Reform occurs between 1993/94 and 1994/95 school year; its passage was a surprise to almost everyone.
- Since 1994/95, each district receives a foundation allowance, based on revenues in 1993/94.
- Intially, all districts were brought up to a minimum allowance \$4,200 in the first year. The goal was to eventually give each district a basic allowance (\$5,000 in the first year).
- Districts divided into three groups in 1994/95 for purposes of initial foundation allowance. Subsequent grants determined by statewide School Aid Fund.

- Catch-up formula for districts receiving below the basic. Initially, more than half of the districts received less than the basic allowance. By 1998/99, it was down to about 36%. In 1999/00, all districts began receiving the basic allowance, which was then \$5,700. Two-thirds of all districts now receive the basic allowance.
- From 1991/92 to 2003/04, in the 10th percentile, expenditures rose from \$4,616 (2004 dollars) to \$7,125, a 54 percent increase. In the 50th percentile, it was a 48 percent increase. In the 90th percentile, per pupil expenditures rose from \$7,132 in 1992/93 to \$9,529, a 34 percent increase.

- Response variable: *math*4, the fraction of fourth graders passing the MEAP math test at a school.
- Spending variable is log(avgrexppp), where the average is over the current and previous three years.
- The linear model is

$$math4_{it} = \theta_t + \beta_1 \log(avgrexp_{it}) + \beta_2 lunch_{it} + \beta_3 \log(enroll_{it}) + c_{i1} + u_{it1}$$

Estimating this model by fixed effects is identical to adding the time averages of the three explanatory variables and using pooled OLS.

• The "fractional probit" model:

$$E(math4_{it}|\mathbf{x}_{i1},\mathbf{x}_{i2},\ldots,\mathbf{x}_{iT}) = \Phi(\theta_{at} + \mathbf{x}_{it}\boldsymbol{\beta}_a + \mathbf{\bar{x}}_i\boldsymbol{\xi}_a).$$

• Allowing spending to be endogenous. Controlling for 1993/94 spending, foundation grant should be exogenous. Exploit nonsmoothness in the grant as a function of initial spending.

$$math4_{it} = \theta_t + \beta_1 \log(avgrexp_{it}) + \beta_2 lunch_{it} + \beta_3 \log(enroll_{it})$$
$$+ \beta_{4t} \log(rexppp_{i,1994}) + \xi_1 \overline{lunch_i} + \xi_2 \overline{\log(enroll_i)} + v_{it1}$$

• And, fractional probit version of this.

. use meap92_01

. xtset distid year

panel variable: distid (strongly balanced)
time variable: year, 1992 to 2001

delta: 1 unit

. des math4 avgrexp lunch enroll found

variable name	_	display format	value label	variable label
math4	double	%9.0g		fraction satisfactory, 4th grade math
avgrexp	float	%9.0g		<pre>(rexppp + rexppp_1 + rexppp_2 + rexppp_3)/4</pre>
lunch	float	%9.0g		fraction eligible for free lunch
enroll	float	%9.0g		district enrollment
found	int	%9.0g		foundation grant, \$: 1995-2001

. sum math4 rexppp lunch

Variable	0bs	Mean	Std. Dev.	Min	Max
math4	5010	.6149834	.1912023	.059	1
rexppp	5010	6331.99	1168.198	3553.361	15191.49
lunch	5010	.2802852	.1571325	.0087	.9126999

. xtreg math4 lavgrexp lunch lenroll y96-y01, fe cluster(distid)

Fixed-effects (within) regression Group variable: distid	1.4	=	3507 501
R-sq: within = 0.4713 between = 0.0219 overall = 0.2049	Obs per group: mir avg max	3 =	7 7.0 7
$corr(u_i, Xb) = -0.1787$	F(9,500) Prob > F	= =	171.93 0.0000

(Std. Err. adjusted for 501 clusters in distid)

	math4	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lav	grexp	.3770929	.0705668	5.34	0.000	.2384489	.5157369
	lunch	0419467	.0731611	-0.57	0.567	1856877	.1017944
le	nroll	.0020568	.0488107	0.04	0.966	0938426	.0979561
	у96	0155968	.0063937	-2.44	0.015	0281587	003035
	y97	0589732	.0095232	-6.19	0.000	0776837	0402628
	у98	.0781686	.0112949	6.92	0.000	.0559772	.1003599
	у99	.0642748	.0123103	5.22	0.000	.0400884	.0884612
	у00	.0895688	.0133223	6.72	0.000	.0633942	.1157434
	y01	.0630091	.014717	4.28	0.000	.0340943	.0919239
	cons	-2.640402	.8161357	-3.24	0.001	-4.24388	-1.036924

	+	
sigma_u	.1130256	
sigma_e	.08314135	
rho	.64888558	(fraction of variance due to u_i)

. des alavgrexp alunch alenroll

variable name	_	display format	value label	variable label
alavgrexp		%9.0g		time average lavgrexp, 1995-2001
alunch	iloat	%9.0g		time average lunch, 1995-2001
alenroll	float	%9.0g		time average lenroll, 1995-2001

Linear regression Number of obs = 3507

F(12, 500) = 161.09 Prob > F = 0.0000 R-squared = 0.4218 Root MSE = .11542

(Std. Err. adjusted for 501 clusters in distid)

·-----

math4	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
lavgrexp alavgrexp lunch alunch lenroll alenroll y96 y97 y98 y99 y00 y01	.377092 286541 0419466 3770088 .0020566 0031646 0155968 0589731 .0781687 .064275 .089569 .0630093	.0705971 .0731797 .0731925 .0766141 .0488317 .0491534 .0063965 .0095273 .0112998 .0123156 .013328	5.34 -3.92 -0.57 -4.92 0.04 -0.06 -2.44 -6.19 6.92 5.22 6.72 4.28	0.000 0.000 0.567 0.000 0.966 0.949 0.015 0.000 0.000 0.000	.2383884 4303185 1857494 5275341 093884 0997373 0281641 0776916 .0559678 .0400782 .0633831 .0340821	.51579561427635 .10185622264835 .0979972 .093408200302950402546 .1003696 .0884717 .1157548 .0919365
_cons	0006233	.2450239	-0.00	0.998	4820268	.4807801

- . * Now use fractional probit.
- . glm math4 lavgrexp alavgrexp lunch alunch lenroll alenroll y96-y01,

fa(bin) link(probit) cluster(distid)

note: math4 has non-integer values

Generalized linear	models	No. of obs	=	3507
Optimization :	ML	Residual df	=	3494
		Scale parameter	=	1
Deviance =	237.643665	(1/df) Deviance	=	.0680148
Pearson =	225.1094075	(1/df) Pearson	=	.0644274

(Std. Err. adjusted for 501 clusters in distid)

math4	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
lavgrexp alavgrexp lunch alunch lenroll alenroll y96 y97 y98 y99 y00 y01 cons	.8810302 5814474 2189714 9966635 .0887804 0893612 0362309 1467327 .2520084 .2152507 .3049632 .2257321 -1.855832	.2068026 .2229411 .2071544 .2155739 .1382077 .1387674 .0178481 .0273205 .0337706 .0367226 .0399409 .0439608 .7556621	4.26 -2.61 -1.06 -4.62 0.64 -0.64 -2.03 -5.37 7.46 5.86 7.64 5.13 -2.46	0.000 0.009 0.290 0.000 0.521 0.520 0.042 0.000 0.000 0.000 0.000	.4757045 -1.0184046249865 -1.41918118210173613404071212520028 .1858192 .1432757 .2266805 .1395705 -3.336902	1.2863561444909 .18704375741465 .3596626 .182618100124930931855 .3181975 .2872257 .3832459 .31189383747616
	•					

variable	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
lavgrexp alavgrexp lunch alunch lenroll alenroll y96 y97 y98 y99 y00 y01	.2968496195909707377913358104 .0299132030108901229240508008 .0809879 .0696954 .0970224 .0729829	.0695326 .0750686 .0698318 .0723725 .0465622 .0467477 .0061107 .0097646 .0100272 .0111375 .0115066 .0132849	4.27 -2.61 -1.06 -4.64 0.64 -0.64 -2.01 -5.20 8.08 6.26 8.43 5.49	0.000 0.009 0.291 0.000 0.521 0.520 0.044 0.000 0.000 0.000	.160568234304142106469477657906134712173260242692069939 .0613349 .0478662 .0744698 .046945	.4331310487781 .06308871939629 .1211734 .061514900031560316625 .1006408 .0915245 .119575 .0990208

^{. *} These standard errors are very close to bootstrapped standard errors.

GEE population-averaged model		Number of obs	=	3507
Group variable:	distid	Number of groups	=	501
Link:	probit	Obs per group: mi	.n =	7
Family:	binomial	av	7g =	7.0
Correlation:	exchangeable	ma	ax =	7
		Wald chi2(12)	=	1815.43
Scale parameter:	1	Prob > chi2	=	0.0000

(Std. Err. adjusted for clustering on distid)

math4	Coef.	Semi-robust Std. Err.		P> z	[95% Conf.	Interval]
lavgrexp alavgrexp lunch alunch lenroll alenroll y96 y97 y98 y99 y00	.884564 5835138 2372942 9754696 .0875629 0820307 0364771 1471389 .2515377 .2148552 .3046286 .2256619	.2060662 .2236705 .2091221 .2170624 .1387427 .1393712 .0178529 .0273264 .0337018 .0366599 .0399143 .0438877	4.29 -2.61 -1.13 -4.49 0.63 -0.59 -2.04 -5.38 7.46 5.86 7.63 5.14	0.000 0.009 0.256 0.000 0.528 0.556 0.041 0.000 0.000 0.000	.4806817 -1.0219 6471659 -1.400904 1843677 3551933 0714681 2006976 .1854833 .143003 .2263981 .1396437	1.2884461451277 .17257755500351 .3594935 .19113180014860935801 .317592 .2867073 .3828591 .3116801
_cons	-1.914975	.7528262	-2.54	0.011	-3.390487	4394628

. margeff
Average partial effects after xtgee
 y = Pr(math4)

variable	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lavgrexp alavgrexp lunch alunch lenroll alenroll y96 y97 y98 y99 y00 y01	.2979576196551507993053285784 .029494802763130123730509306 .0808226 .0695541 .0968972 .0729416	.0692519 .0752801 .0704803 .0728656 .0467283 .0469381 .0061106 .0097618 .010009 .0111192 .0115004	4.30 -2.61 -1.13 -4.51 0.63 -0.59 -2.02 -5.22 8.08 6.26 8.43 5.50	0.000 0.009 0.257 0.000 0.528 0.556 0.043 0.000 0.000 0.000	.1622263 3440978 2180693 4713924 0620909 1196283 0243497 0700633 .0612054 .0477609 .0743568 .0469478	.43368890490052 .05820821857644 .1210805 .064365600039640317979 .1004399 .0913472 .1194376 .0989353
7 0 = 1			3.30	2.000		

- . * Now allow spending to be endogenous. Use foundation allowance, and
- . * interactions, as IVs.
- . * First, linear model:
- . ivreg math4 lunch alunch lenroll alenroll y96-y01 lexppp94 le94y96-le94y01 (lavgrexp = lfound lfndy96-lfndy01), cluster(distid)

Instrumental variables (2SLS) regression

Number of obs = 3507 F(18, 500) = 107.05 Prob > F = 0.0000 R-squared = 0.4134 Root MSE = .11635

(Std. Err. adjusted for 501 clusters in distid)

Robust Std. Err. t P>|t| Coef. [95% Conf. Interval] math4 .2205466 .1212123 lavgrexp .5545247 0.012 .987837 2.51 -.0621991 .0742948 -0.84 -.2081675 .0837693 lunch 0.403 alunch -.4207815 .0758344 -5.55 0.000 -.5697749 -.2717882 .1831484 lenroll .0463616 0.506 -.0904253 .0696215 0.67 alenroll -.049052 .070249 -0.700.485 -.1870716 .0889676 -1.085453 .2736479 -3.97 0.000 -1.623095 -.5478119 у96 -1.049922 .376541 -2.79-.3101244 0.005 у97 -1.78972 -.4548311 .4958826 -0.92 0.359 .5194394 у98 -1.429102.7218439 0.460 y99 -.4360973 .5893671 -0.74-1.594038-.3559283 .6509999 -0.55 0.585 -1.634961 .923104 у00 -.704579 -2.140941 .7317831 .7310773 -0.96 0.336 y01 .2189488 -.0041482 lexppp94 -.4343213 -1.980.048 -.8644944 le94y96 .1253255 .0318181 0.000 3.94 .0628119 .1878392 .1984534 .1688636 le94y97 .11487 .0425422 2.70 0.007 .0312865 .0599439 le94y98 .0554377 0.280 -.0489757 1.08 .0661784 le94y99 .0557854 0.84 0.400 -.0742367 .1858075 .048899 le94y00 .0727172 0.67 0.502 -.0939699 .1917678

le94y01 _cons	.0865874	.0816732	1.06 -1.29	0.290 0.197	0738776 8442955	.2470524
Instrumented: Instruments:	lexppp94 le9	4y96 le94y9	7 le94y98	3 le94y99	8 y99 y00 y01 le94y00 le94 fndy00 lfndy0	y01

[.] \star Estimate is substantially larger than when spending is treated as exogenous.

- . * Get reduced form residuals for fractional probit:
- . reg lavgrexp lfound lfndy96-lfndy01 lunch alunch lenroll alenroll y96-y01 lexppp94 le94y96-le94y01, cluster(distid)

Linear regression

Number of obs = 3507 F(24, 500) = 1174.57 Prob > F = 0.0000 R-squared = 0.9327 Root MSE = .03987

(Std. Err. adjusted for 501 clusters in distid)

Robust Std. Err. t P>|t| [95% Conf. Interval] lavgrexp Coef. .2447063 .0417034 5.87 .0254713 0.21 .1627709 .3266417 -.044649 .0554391 0.000 .1627709 lfound lfndy96 0.832 .0053951 .0254713 -.0848789 .0729687 -.0957972 .1048685 -.0049497 .1891074 .0401705 lfndy97 -0.15 -.0059551 0.882 lfndy98 .0045356 .0510673 0.09 0.929 1.86 lfndy99 .0920788 .0493854 0.063 .1364484 2.78 .0401074 .2327894 .127188 .3456198 lfndy00 0.006 .0490355 .2364039 .0555885 4.25 0.000 lfndy01359117 .1632959 .0996687 1.64 0.102 -.0325251 _cons

[.] predict v2hat, resid
(1503 missing values generated)

. glm math4 lavgrexp v2hat lunch alunch lenroll alenroll y96-y01 lexppp94 le94y96-le94y01, fa(bin) link(probit) cluster(distid) note: math4 has non-integer values

Generalized linear	models	No. of obs	=	3507
Optimization :	ML	Residual df	=	3487
		Scale parameter	=	1
Deviance =	236.0659249	(1/df) Deviance	=	.0676989
Pearson =	223.3709371	(1/df) Pearson	=	.0640582

Variance function: $V(u) = u^*(1-u/1)$ [Binomial] Link function : g(u) = invnorm(u) [Probit]

(Std. Err. adjusted for 501 clusters in distid)

math4	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
lavgrexp v2hat lunch alunch lenroll alenroll	1.731039 -1.378126 2980214 -1.114775 .2856761 2909903	.6541194 .720843 .2125498 .2188037 .197511 .1988745	2.65 -1.91 -1.40 -5.09 1.45 -1.46	0.008 0.056 0.161 0.000 0.148 0.143	.4489886 -2.790952 7146114 -1.543623 1014383 6807771	3.013089 .0347007 .1185686 685928 .6727905 .0987966
 _cons	-2.455592	.7329693	-3.35	0.001	-3.892185	-1.018998

. margeff
Average partial effects after glm
 y = Pr(math4)

variable	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
lavgrexp v2hat lunch alunch lenroll alenroll	.5830163 4641533 1003741 3754579 .0962161 0980059	.2203345 .242971 .0716361 .0734083 .0665257 .0669786	2.65 -1.91 -1.40 -5.11 1.45 -1.46	0.008 0.056 0.161 0.000 0.148 0.143	.151168694036782407782519335503417192292817	1.014864 .0120611 .04003 2315803 .2266041 .0332698

. * These standard errors do not account for the first-stage estimation. Should

^{. *} use the panel bootstrap accounting for both stages.

^{. *} Only marginal evidence that spending is endogenous, but the negative sign

^{. *} fits the story that districts increase spending when performance is

^{. * (}expected to be) worse, based on unobservables (to us).

Model:	Linear	Fractional Probit		
Estimation Method:	Instrumental Variables	Pooled QMLE		
	Coefficient	Coefficient	APE	
log(arexppp)	.555	1.731	.583	
	(.221)	(.759)	(.255)	
lunch	062	298	100	
	(.074)	(.202)	(.068)	
log(enroll)	.046	.286	.096	
	(.070)	(.209)	(.070)	
\hat{v}_2	424	-1.378		
	(.232)	(.811)		
Scale Factor		.337		