CONTROL FUNCTION AND RELATED METHODS Jeff Wooldridge Michigan State University LABOUR Lectures, EIEF October 18-19, 2011 - 1. Linear-in-Parameters Models: IV versus Control Functions - 2. Correlated Random Coefficient Models - 3. Nonlinear Models - 4. Semiparametric and Nonparametric Approaches - 5. Methods for Panel Data # 1. Linear-in-Parameters Models: IV versus Control Functions - Most models that are linear are estimated using standard IV methods: two stage least squares (2SLS) or generalized method of moments (GMM). - An alternative, the control function (CF) approach, relies on the same kinds of identification conditions. But even in models linear in parameters it can lead to different estimators. • Let y_1 be the response variable, y_2 the endogenous explanatory variable (EEV), and **z** the $1 \times L$ vector of exogenous variables (with $z_1 = 1$): $$y_1 = \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + u_1, \tag{1}$$ where \mathbf{z}_1 is a $1 \times L_1$ strict subvector of \mathbf{z} . • First consider the exogeneity assumption $$E(\mathbf{z}'u_1) = \mathbf{0}. \tag{2}$$ Reduced form for y_2 : $$y_2 = \mathbf{z}\pi_2 + v_2, E(\mathbf{z}'v_2) = \mathbf{0}$$ (3) where π_2 is $L \times 1$. Write the linear projection of u_1 on v_2 , in error form, as $$u_1 = \rho_1 v_2 + e_1, \tag{4}$$ where $\rho_1 = E(v_2u_1)/E(v_2^2)$ is the population regression coefficient. By construction, $E(v_2e_1) = 0$ and $E(\mathbf{z}'e_1) = \mathbf{0}$. Plug (4) into (1): $$y_1 = \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + \rho_1 v_2 + e_1, \tag{5}$$ where v_2 is an explanatory variable in the equation. The new error, e_1 , is uncorrelated with y_2 as well as with v_2 and \mathbf{z} . - Suggests a two-step estimation procedure: - (i) Regress y_2 on **z** and obtain the reduced form residuals, \hat{v}_2 . - (ii) Regress $$y_1 \text{ on } \mathbf{z}_1, y_2, \text{ and } \hat{v}_2.$$ (6) The implicit error in (6) is $e_{i1} + \rho_1 \mathbf{z}_i(\hat{\boldsymbol{\pi}}_2 - \boldsymbol{\pi}_2)$, which depends on the sampling error in $\hat{\boldsymbol{\pi}}_2$ unless $\rho_1 = 0$. OLS estimators from (6) will be consistent for δ_1, α_1 , and ρ_1 . - The OLS estimates from (6) are *control function* estimates. - The OLS estimates of δ_1 and α_1 from (6) are *identical* to the 2SLS estimates starting from (1). - A test of H_0 : $\rho_1 = 0$ in the equation $$y_{i1} = \mathbf{z}_{i1} \mathbf{\delta}_1 + \alpha_1 y_{i2} + \rho_1 \hat{v}_{i2} + error_i$$ is the regression-based Hausman test for H_0 : $Cov(y_2, u_1) = 0$. Is easily made robust to heteroskedasticity of unknown form. • The equivalence of IV and CF methods does not always. Add a quadratic in y_2 : $$y_1 = \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + \gamma_1 y_2^2 + u_1 \tag{7}$$ $$E(u_1|\mathbf{z}) = 0. (8)$$ - Cannot get very far now without the stronger assumption (8). - Let z_2 be a (nonbinary) scalar not also in \mathbf{z}_1 . Under assumption (8), we can use, say, z_2^2 as an instrument for y_2^2 . So the IVs would be $(\mathbf{z}_1, z_2, z_2^2)$ for $(\mathbf{z}_1, y_2, y_2^2)$. We could also use interactions $z_2\mathbf{z}_1$. - What does the CF approach entail? Because of the nonlinearity in y_2 , the CF approach is based on the conditional mean, $E(y_1|\mathbf{z},y_2)$, rather than a linear projection. - Therefore, we now assume $$E(u_1|\mathbf{z}, y_2) = E(u_1|v_2) = \rho_1 v_2 \tag{9}$$ where $$y_2 = \mathbf{z}\mathbf{\pi}_2 + v_2.$$ • Independence of (u_1, v_2) and **z** is sufficient for the first equality. Even under the independence assumption, linearity of $E(u_1|v_2)$ is a substantive restriction. • Under $E(u_1|\mathbf{z},y_2) = \rho_1 v_2$, we have $$E(y_1|\mathbf{z},y_2) = \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + \gamma_1 y_2^2 + \rho_1 v_2.$$ (10) A CF approach is immediate: replace v_2 with \hat{v}_2 and use OLS on (10). Not equivalent to a 2SLS estimate. - If the assumptions hold, CF likely more efficient; it is less robust than an IV approach, which requires only $E(u_1|\mathbf{z}) = 0$. - At a minimum the CF approach requires $E(v_2|\mathbf{z}) = 0$ or $E(y_2|\mathbf{z}) = \mathbf{z}\boldsymbol{\pi}_2$, which puts serious restrictions on y_2 . • Even in linear models with constant coefficients, CF approaches can impose extra assumptions when we base it on $E(y_1|\mathbf{z},y_2)$, particularly when y_2 is (partially) discrete. Generally, the estimating equation is $$E(y_1|\mathbf{z},y_2) = \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + E(u_1|\mathbf{z},y_2). \tag{11}$$ • Suppose y_2 is binary. Generally, $E(u_1|\mathbf{z}, y_2)$ depends on the joint distribution of (u_1, y_2) given \mathbf{z} . If $y_2 = 1[\mathbf{z}\delta_2 + e_2 \ge 0]$, (u_1, e_2) is independent of \mathbf{z} , $E(u_1|e_2) = \rho_1 e_2$, and $e_2 \sim Normal(0, 1)$, then $$E(u_1|\mathbf{z},y_2) = \rho_1[y_2\lambda(\mathbf{z}\boldsymbol{\delta}_2) - (1-y_2)\lambda(-\mathbf{z}\boldsymbol{\delta}_2)], \tag{12}$$ where $\lambda(\cdot)$ is the inverse Mills ratio (IMR). • The CF approach is based on $$E(y_1|\mathbf{z},y_2) = \mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1y_2 + \rho_1[y_2\lambda(\mathbf{z}\boldsymbol{\delta}_2) - (1-y_2)\lambda(-\mathbf{z}\boldsymbol{\delta}_2)]$$ and the Heckman two-step approach (for endogeneity, not sample selection): - (i) Probit to get $\hat{\delta}_2$ and compute $\widehat{gr}_{i2} \equiv y_{i2}\lambda(\mathbf{z}_i\hat{\delta}_2) (1 y_{i2})\lambda(-\mathbf{z}_i\hat{\delta}_2)$ (generalized residual). - (ii) Regress y_{i1} on \mathbf{z}_{i1} , y_{i2} , \widehat{gr}_{i2} , i = 1, ..., N (and adjust the standard errors). - Consistency of the CF estimators hinges on the model for $D(y_2|\mathbf{z})$ being correctly specified, along with linearity in $E(u_1|e_2)$. If we just apply 2SLS directly to $y_1 = \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + u_1$, it makes no distinction among discrete, continuous, or some mixture for y_2 . - How might we robustly use the binary nature of y_2 in IV estimation? Obtain the fitted probabilities, $\Phi(\mathbf{z}_i\hat{\boldsymbol{\delta}}_2)$, from the first stage probit, and then use these as IVs (not regressors!) for y_{i2} . Fully robust to misspecification of the probit model, usual standard errors from IV asymptotically valid. Efficient IV estimator if $P(y_2 = 1|\mathbf{z}) = \Phi(\mathbf{z}\boldsymbol{\delta}_2)$ and $Var(u_1|\mathbf{z}) = \sigma_1^2$. - Similar suggestions work for y_2 a count variable or a corner solution. #### 2. Correlated Random Coefficient Models • Modify the original equation as $$y_1 = \eta_1 + \mathbf{z}_1 \mathbf{\delta}_1 + a_1 y_2 + u_1 \tag{13}$$ where a_1 , the "random coefficient" on y_2 . Heckman and Vytlacil (1998) call (13) a correlated random coefficient (CRC) model. For a random draw i, $y_{i1} = \eta_1 + \mathbf{z}_{i1} \mathbf{\delta}_1 + a_{i1} y_2 + u_{i1}$. • Write $a_1 = \alpha_1 + v_1$ where $\alpha_1 = E(a_1)$ is the parameter of interest. We can rewrite the equation as $$y_1 = \eta_1 + \mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + v_1 y_2 + u_1 \tag{14}$$ $$\equiv \eta_1 + \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + e_1. \tag{15}$$ • The potential problem with applying instrumental variables is that the error term $v_1y_2 + u_1$ is not necessarily uncorrelated with the instruments **z**, even under $$E(u_1|\mathbf{z}) = E(v_1|\mathbf{z}) = 0. {16}$$ We want to allow y_2 and v_1 to be correlated, $Cov(v_1, y_2) \equiv \tau_1 \neq 0$. A suffcient condition that allows for any *unconditional* correlation is $$Cov(v_1, y_2|\mathbf{z}) = Cov(v_1, y_2), \tag{17}$$ and this is sufficient for IV to consistently estimate (α_1, δ_1) . - The usual IV estimator that ignores the randomness in a_1 is more robust than Garen's (1984) CF estimator, which adds \hat{v}_2 and \hat{v}_2y_2 to the original model, or the Heckman-Vytlacil (1998) "plug-in" estimator, which replaces y_2 with $\hat{y}_2 = \mathbf{z}\hat{\boldsymbol{\pi}}_2$. - The condition $Cov(v_1, y_2|\mathbf{z}) = Cov(v_1, y_2)$ cannot really hold for discrete y_2 . Further, Card (2001) shows how it can be violated even if y_2 is continuous. Wooldridge (2005) shows how to allow parametric heteroskedasticity. • In the case of binary y_2 , we have what is often called the "switching regression" model. If $y_2 = 1[\mathbf{z}\delta_2 + v_2 \ge 0]$ and $v_2|\mathbf{z} \sim Normal(0, 1)$, then $$E(y_1|\mathbf{z},y_2) = \eta_1 + \mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1 y_2 + \rho_1 h_2(y_2,\mathbf{z}\boldsymbol{\delta}_2) + \xi_1 h_2(y_2,\mathbf{z}\boldsymbol{\delta}_2) y_2,$$ where $$h_2(y_2, \mathbf{z}\boldsymbol{\delta}_2) = y_2\lambda(\mathbf{z}\boldsymbol{\delta}_2) - (1 - y_2)\lambda(-\mathbf{z}\boldsymbol{\delta}_2)$$ is the generalized residual function. • Reminder: The expression for $E(y_1|\mathbf{z},y_2)$ is an *estimating* equation for α_1 . We do not use $E(y_1|\mathbf{z},y_2)$, evaluated at $y_2=1$ and $y_2=0$, to obtain the treatment effect at different values of \mathbf{z} . The ATE in the model is constant and equal to α_1 . - Common to add the interactions $y_{i2}(\mathbf{z}_{i1} \mathbf{\bar{z}}_1)$ (same as estimating $y_2 = 0$, $y_2 = 1$ separately) and then α_1 remains the average treatment effect (with the sample average $\mathbf{\bar{z}}_1$ replacing $E(\mathbf{z}_1)$. - If δ_1 is replaced with random coefficients correlated with y_2 , can interact \mathbf{z}_1 with $h_2(y_{i2}, \mathbf{z}_i \hat{\delta}_2)$ under joint normality of the random coefficients and v_2 . - Can allow $E(v_1|v_2)$ to be more flexible [Heckman and MaCurdy (1986), Powell, Newey, and Walker (1990)]. - Also easy to allow for y_2 to follow a "heteroskedastic probit" model: replace v_2 with $e_2 = v_2/\exp(\mathbf{z}_2 \mathbf{\gamma}_2)$ where $\exp(\mathbf{z}_2
\mathbf{\gamma}_2) = sd(e_2|\mathbf{z})$. Estimate δ_2 , γ_2 by heteroskedastic probit. #### 3. Nonlinear Models - Typically three approaches to nonlinear models with EEVs. - (1) Plug in fitted values from a first step regression (in an attempt to mimic 2SLS in linear model). More generally, try to find $E(y_1|\mathbf{z})$ or $D(y_1|\mathbf{z})$ and then impose identifying restrictions. - (2) CF approach: plug in residuals in an attempt to obtain $E(y_1|y_2, \mathbf{z})$ or $D(y_1|y_2, \mathbf{z})$. - (3) Maximum Likelihood (often limited information): Use models for $D(y_1|y_2, \mathbf{z})$ and $D(y_2|\mathbf{z})$ jointly. - All strategies are more difficult with nonlinear models when y_2 is discrete. Some poor practices have lingered. ### **Binary and Fractional Responses** Probit model: $$y_1 = 1[\mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + u_1 \ge 0], \tag{18}$$ where $u_1|z$ ~Normal(0, 1). Analysis goes through if we replace (\mathbf{z}_1, y_2) with any known function $\mathbf{x}_1 \equiv \mathbf{g}_1(\mathbf{z}_1, y_2)$. • The Rivers-Vuong (1988) approach [Smith and Blundell (1986) for Tobit] is to make a homoskedastic-normal assumption on the reduced form for y_2 , $$y_2 = \mathbf{z}\pi_2 + v_2, \ v_2|\mathbf{z} \sim Normal(0, \tau_2^2).$$ (19) • RV approach comes close to requiring $$(u_1, v_2)$$ independent of **z**. (20) If we also assume $$(u_1, v_2) \sim \text{Bivariate Normal}$$ (21) with $\rho_1 = Corr(u_1, v_2)$, then we can proceed with MLE based on $f(y_1, y_2|\mathbf{z})$. A CF approach is available, too, based on $$P(y_1 = 1 | \mathbf{z}, y_2) = \Phi(\mathbf{z}_1 \mathbf{\delta}_{\rho 1} + \alpha_{\rho 1} y_2 + \theta_{\rho 1} v_2)$$ (22) where each coefficient is multiplied by $(1 - \rho_1^2)^{-1/2}$. The RV two-step approach is - (i) OLS of y_2 on **z**, to obtain the residuals, \hat{v}_2 . - (ii) Probit of y_1 on $\mathbf{z}_1, y_2, \hat{v}_2$ to estimate the scaled coefficients. A simple t test on \hat{v}_2 is valid to test $H_0: \rho_1 = 0$. - Can recover the original coefficients, which appear in the partial effects. Or, $$\widehat{ASF}(\mathbf{z}_1, y_2) = N^{-1} \sum_{i=1}^{N} \Phi(\mathbf{x}_1 \hat{\boldsymbol{\beta}}_{\rho 1} + \hat{\boldsymbol{\theta}}_{\rho 1} \hat{\boldsymbol{v}}_{i2}), \tag{23}$$ that is, we average out the reduced form residuals, \hat{v}_{i2} . This formulation is useful for more complicated models. • The two-step CF approach easily extends to fractional responses: $$E(y_1|\mathbf{z},y_2,q_1) = \Phi(\mathbf{x}_1\boldsymbol{\beta}_1 + q_1), \tag{24}$$ where \mathbf{x}_1 is a function of (\mathbf{z}_1, y_2) and q_1 contains unobservables. Can use the the *same* two-step because the Bernoulli log likelihood is in the linear exponential family. Still estimate scaled coefficients. APEs must be obtained from (23). To account for first-stage estimation, the bootstrap is convenient. • Wooldridge (2005, Rothenberg Festschrift) describes some simple ways to make the analysis starting from (24) more flexible, including allowing $Var(q_1|v_2)$ to be heteroskedastic. ## **Example**: Effects of school spending on student performance. . sum math4 lunch rexpp found if y97 | Variable | 0bs | Mean | Std. Dev. | Min | Max | |----------|------|----------|-----------|-------|-------| | math4 | 1763 | .6058803 | .1966755 | .029 | 1 | | lunch | 2270 | .3614616 | .2535764 | .0019 | .9939 | | rexpp | 2329 | 4261.201 | 789.124 | 1895 | 11779 | | found | 2357 | 5895.984 | 1016.795 | 4816 | 10762 | . glm math4 lrexpp lunch lenrol lrexpp94 if y97, fam(bin) link(probit) robust note: math4 has noninteger values | Generalized linear | models | No. of obs | = | 1208 | |---------------------|-------------------|-----------------|---|-----------| | Optimization : | ML | Residual df | = | 1203 | | | | Scale parameter | = | 1 | | | | AIC | = | .9079682 | | Log pseudolikelihoo | od = -543.4128012 | BIC | = | -8378.243 | | math4 |
 Coef. | Robust
Std. Err. | z | P> z | [95% Conf. | Interval] | |----------|-------------|---------------------|--------|-------|------------|-----------| | lrexpp | .2726134 | .113923 | 2.39 | 0.017 | .0493285 | .4958983 | | lunch | -1.120498 | .0582561 | -19.23 | 0.000 | -1.234678 | -1.006318 | | lenrol | .0108851 | .0390534 | 0.28 | 0.780 | 0656581 | .0874283 | | lrexpp94 | .1854712 | .0829582 | 2.24 | 0.025 | .0228761 | .3480664 | | _cons | -3.118799 | .9207049 | -3.39 | 0.001 | -4.923347 | -1.31425 | 26 | variable | | Std. Err. | z | P> z | [95% Conf. | Interval] | |----------|----------|-----------|--------|--------|------------|-----------| | lrexpp | .0998487 | .0416701 | 2.40 | 0.017 | .0181768 | .1815205 | | lunch | 4103988 | .020199 | -20.32 | 0.000 | 4499882 | 3708094 | | lenrol | .0039868 | .0143069 | 0.28 | 0.781 | 0240542 | .0320278 | | lrexpp94 | .0679316 | .0303795 | 2.24 | 0.025 | .0083889 | .1274742 | - . * Compare with OLS: - . reg math4 lrexpp lunch lenrol lrexpp94 if y97, robust | Linear regression | Number of obs = | 1208 | |-------------------|-----------------|--------| | | F(4, 1203) = | | | | Prob > F = | 0.0000 | | | R-squared = | 0.3114 | | | Root MSE = | 168 | | math4 | Coef. | Robust
Std. Err. | t | P> t | [95% Conf. | Interval] | |----------|----------|---------------------|--------|-------|------------|-----------| | lrexpp | .0934219 | .0415276 | 2.25 | 0.025 | .0119474 | .1748964 | | lunch | 4205896 | .0215956 | -19.48 | 0.000 | 4629588 | 3782204 | | lenrol | 0002997 | .0146181 | -0.02 | 0.984 | 0289795 | .0283802 | | lrexpp94 | .0590509 | .0302958 | 1.95 | 0.052 | 0003877 | .1184894 | | _cons | 4838692 | .3261972 | -1.48 | 0.138 | -1.123848 | .1561094 | - . * Estimate the reduced form treating lrexpp as endogenous and - . * lfound as its IV: - . reg lrexpp lfound lunch lenrol lrexpp94 if y97 & e(sample) | Source | SS | df | MS | | Number of obs F(4, 1203) | = 1208
= 244.58 | |---------------------------------------|---|--|----------------------------------|----------------------------------|--|---| | Model
Residual | 14.1288484
17.3739986 | | 5322121
4442227 | | Prob > F R-squared Adj R-squared | = 0.0000 $= 0.4485$ | | Total | 31.502847 | 1207 .02 | 6100122 | | Root MSE | = .12018 | | lrexpp | Coef. | Std. Err. | t | P> t | [95% Conf. | Interval] | | lfound
lunch
lenrol
lrexpp94 | .5443139
.1419003
0961736
.1358278 | .0302413
.0135798
.0083231
.0235749 | 18.00
10.45
-11.55
5.76 | 0.000
0.000
0.000
0.000 | .4849824
.1152575
112503
.0895753 | .6036454
.1685431
0798442
.1820803 | [.] predict v2h, resid (7694 missing values generated) . glm math4 lrexpp lunch lenrol lrexpp94 v2h if y97, fam(bin) link(probit) robust note: math4 has noninteger values | Generalized linear models Optimization : ML Deviance = 157.5338068 Pearson = 146.5468582 | | | | Resi
Scal
(1/d | dual df
e parameter
f) Deviance | = 1 | |---|---|--|---|--|--|--| | Variance function: $V(u) = u*(1-u/1)$
Link function : $g(u) = invnorm(u)$ | | | | [Bin
[Pro | omial]
bit] | | | Log pseudolikelihood = -542.6234317 | | | | AIC
BIC | | = .9083169
= -8372.725 | | math4 | Coef. | Robust
Std. Err. | z
 | P> z | [95% Conf | . Interval] | | lrexpp lunch lenrol lrexpp94 v2h _cons | .9567996
-1.18315
.0616713
0784249
8593559
-6.966712 | .2012636
.0585657
.0399644
.1063432
.2374808
1.259552 | 4.75
-20.20
1.54
-0.74
-3.62
-5.53 | 0.000
0.000
0.123
0.461
0.000
0.000 | .5623302
-1.297937
0166574
2868536
-1.32481
-9.435388 | 1.351269
-1.068363
.14
.1300039
3939021
-4.498036 | ^{. *} Easily reject null that spending is exogenous. | variable |
 Coef. | Std. Err. | z | P> z | [95% Conf. | Interval] | |----------|-------------|-----------|--------|-------|------------|-----------| | lrexpp | .3501127 | .0734569 | 4.77 | 0.000 | .2061399 | .4940855 | | lunch | 432939 | .0202452 | -21.38 | 0.000 | 4726189 | 393259 | | lenrol | .0225668 | .014639 | 1.54 | 0.123 | 0061252 | .0512588 | | lrexpp94 | 0286973 | .0389071 | -0.74 | 0.461 | 1049537 | .0475592 | | v2h | 314455 | .086817 | -3.62 | 0.000 | 4846132 | 1442968 | ^{. *} Standard errors need to be fixed up for two-step estimation. . ivreg math4 lunch lenrol lrexpp94 (lrexpp = lfound) if y97, robust Instrumental variables (2SLS) regression Number of obs = 1208 F(4, 1203) = 114.28Prob > F = 0.0000 R-squared = 0.2908 Root MSE = .1705 ----- | math4 |
 Coef. | Robust
Std. Err. | t | P> t | [95% Conf. | Interval] | |----------|-------------|---------------------|--------|-------|------------|-----------| | lrexpp | .3082997 | .0710983 | 4.34 | 0.000 | .1688093 | .4477901 | | lunch | 4389034 | .0219076 | -20.03 | 0.000 | 4818848 | 3959221 | | lenrol | .0155435 | .0154313 | 1.01 | 0.314 | 0147317 | .0458187 | | lrexpp94 | 026911 | .0393419 | -0.68 | 0.494 | 1040974 | .0502754 | | _cons | -1.66758 | .4360251 | -3.82 | 0.000 | -2.523035 | 8121261 | Instrumented: lrexpp Instruments: lunch lenrol lrexpp94 lfound _____ - The control function approach has some decided advantages over another two-step approach one that appears to mimic the 2SLS estimation of the linear model. - Consider the binary response case. Rather than conditioning on v_2 along with **z** (and therefore y_2) to
obtain $$P(y_1 = 1|z, v_2) = P(y_1 = 1|\mathbf{z}, y_2, v_2)$$, we can obtain $P(y_1 = 1|\mathbf{z})$. • To find $P(y_1 = 1|\mathbf{z})$, we plug in the reduced form for y_2 to get $y_1 = 1[\mathbf{z}_1 \boldsymbol{\delta}_1 + \alpha_1(\mathbf{z}\boldsymbol{\delta}_2) + \alpha_1 v_2 + u_1 > 0]$. Because $\alpha_1 v_2 + u_1$ is independent of \mathbf{z} and normally distributed, $P(y_1 = 1|\mathbf{z}) = \Phi\{[\mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1(\mathbf{z}\boldsymbol{\delta}_2)]/\omega_1\}$. So first do OLS on the reduced form, and get fitted values, $\hat{y}_{i2} = \mathbf{z}_i\hat{\boldsymbol{\delta}}_2$. Then, probit of y_{i1} on $\mathbf{z}_{i1}, \hat{y}_{i2}$ to estimate scaled coefficients. Harder to estimate APEs and test for endogeneity. • Danger with plugging in fitted values for y_2 is that one might be tempted to plug \hat{y}_2 into nonlinear functions, say y_2^2 or $y_2\mathbf{z}_1$. This does **not** result in consistent estimation of the scaled parameters or the partial effects. If we believe y_2 has a linear RF with additive normal error independent of z, the addition of \hat{v}_2 solves the endogeneity problem regardless of how y_2 appears. Plugging in fitted values for y_2 only works in the case where the model is linear in y_2 . Plus, the CF approach makes it much easier to test the null that for endogeneity of y_2 as well as compute APEs. - Can understand the limits of CF approach by returning to $E(y_1|\mathbf{z},y_2,q_1) = \Phi(\mathbf{z}_1\mathbf{\delta}_1 + \alpha_1y_2 + q_1)$, where y_2 is discrete. Rivers-Vuong approach does not generally work. - Suppose y_1 and y_2 are both binary and $$y_2 = 1[\mathbf{z}\boldsymbol{\delta}_2 + v_2 \ge 0] \tag{25}$$ and we maintain joint normality of (u_1, v_2) . We should *not* try to mimic 2SLS as follows: (i) Do probit of y_2 on \mathbf{z} and get the fitted probabilities, $\hat{\Phi}_2 = \Phi(\mathbf{z}\hat{\delta}_2)$. (ii) Do probit of y_1 on $\mathbf{z}_1, \hat{\Phi}_2$, that is, just replace y_2 with $\hat{\Phi}_2$. - In general, the only strategy we have is maximum likelihood estimation based on $f(y_1|y_2, \mathbf{z})f(y_2|\mathbf{z})$. [Perhaps this is why some, such as Angrist (2001), Angrist and Pischke (2009), promote the notion of just using linear probability models estimated by 2SLS.] - "Bivariate probit" software can be used to estimate the probit model with a binary endogenous variable. - Parallel discussions hold for ordered probit, Tobit. # **Multinomial Responses** • Recent push by Petrin and Train (2006), among others, to use control function methods where the second step estimation is something simple – such as multinomial logit, or nested logit – rather than being derived from a structural model. So, if we have reduced forms $$\mathbf{y}_2 = \mathbf{z} \mathbf{\Pi}_2 + \mathbf{v}_2, \tag{26}$$ then we jump directly to convenient models for $P(y_1 = j | \mathbf{z}_1, \mathbf{y}_2, \mathbf{v}_2)$. The average structural functions are obtained by averaging the response probabilities across $\hat{\mathbf{v}}_{i2}$. No convincing way to handle discrete \mathbf{y}_2 , though. ## **Exponential Models** • IV and CF approaches available for exponential models. Write $$E(y_1|\mathbf{z}, y_2, r_1) = \exp(\mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + r_1), \tag{27}$$ where r_1 is the omitted variable. As usual, CF methods based on $$E(y_1|\mathbf{z},y_2) = \exp(\mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1y_2)E[\exp(r_1)|\mathbf{z},y_2].$$ For continuous y_2 , can find $E(y_1|\mathbf{z},y_2)$ when $D(y_2|\mathbf{z})$ is homoskedastic normal (Wooldridge, 1997) and when $D(y_2|\mathbf{z})$ follows a probit (Terza, 1998). In the probit case, $$E(y_1|\mathbf{z},y_2) = \exp(\mathbf{z}_1\boldsymbol{\delta}_1 + \alpha_1y_2)h(y_2,\mathbf{z}\boldsymbol{\pi}_2,\theta_1)$$ $$h(y_2, \mathbf{z}\pi_2, \theta_1) = \exp(\theta_1^2/2) \{ y_2 \Phi(\theta_1 + \mathbf{z}\pi_2) / \Phi(\mathbf{z}\pi_2) + (1 - y_2) [1 - \Phi(\theta_1 + \mathbf{z}\pi_2)] / [1 - \Phi(\mathbf{z}\pi_2)] \}.$$ • IV methods that work for any y_2 are available [Mullahy (1997)]. If $$E(y_1|\mathbf{z},\mathbf{y}_2,r_1) = \exp(\mathbf{x}_1\boldsymbol{\beta}_1 + r_1)$$ (28) and r_1 is independent of **z** then $$E[\exp(-\mathbf{x}_1\boldsymbol{\beta}_1)y_1|\mathbf{z}] = E[\exp(r_1)|\mathbf{z}] = 1, \tag{29}$$ where $E[\exp(r_1)] = 1$ is a normalization. The moment conditions are $$E[\exp(-\mathbf{x}_1\boldsymbol{\beta}_1)y_1 - 1|\mathbf{z}] = 0. \tag{30}$$ # 4. Semiparametric and Nonparametric Approaches • Blundell and Powell (2004) show how to relax distributional assumptions on (u_1, v_2) in the model $y_1 = 1[\mathbf{x}_1\boldsymbol{\beta}_1 + u_1 > 0]$, where \mathbf{x}_1 can be any function of (\mathbf{z}_1, y_2) . Their key assumption is that y_2 can be written as $y_2 = g_2(\mathbf{z}) + v_2$, where (u_1, v_2) is independent of \mathbf{z} , which rules out discreteness in y_2 . Then $$P(y_1 = 1 | \mathbf{z}, v_2) = E(y_1 | \mathbf{z}, v_2) = H(\mathbf{x}_1 \boldsymbol{\beta}_1, v_2)$$ (31) for some (generally unknown) function $H(\cdot, \cdot)$. The average structural function is just $ASF(\mathbf{z}_1, y_2) = E_{v_{i2}}[H(\mathbf{x}_1\boldsymbol{\beta}_1, v_{i2})].$ • Two-step estimation: Estimate the function $g_2(\cdot)$ and then obtain residuals $\hat{v}_{i2} = y_{i2} - \hat{g}_2(\mathbf{z}_i)$. BP (2004) show how to estimate H and β_1 (up to scaled) and $G(\cdot)$, the distribution of u_1 . The ASF is obtained from $G(\mathbf{x}_1\beta_1)$ or $$\widehat{ASF}(\mathbf{z}_1, y_2) = N^{-1} \sum_{i=1}^{N} \widehat{H}(\mathbf{x}_1 \hat{\boldsymbol{\beta}}_1, \hat{v}_{i2});$$ (32) • Blundell and Powell (2003) allow $P(y_1 = 1 | \mathbf{z}, y_2)$ to have general form $H(\mathbf{z}_1, y_2, v_2)$, and the second-step estimation is entirely nonparametric. Further, $\hat{g}_2(\cdot)$ can be fully nonparametric. Parametric approximations might produce good estimates of the APEs. • BP (2003) consider a very general setup: $y_1 = g_1(\mathbf{z}_1, \mathbf{y}_2, u_1)$, with $$ASF_1(\mathbf{z}_1, \mathbf{y}_2) = \int g_1(\mathbf{z}_1, \mathbf{y}_2, u_1) dF_1(u_1),$$ (33) where F_1 is the distribution of u_1 . Key restrictions are that \mathbf{y}_2 can be written as $$\mathbf{y}_2 = \mathbf{g}_2(\mathbf{z}) + \mathbf{v}_2,\tag{34}$$ where (u_1, \mathbf{v}_2) is independent of **z**. - Key: ASF can be obtained from $E(y_1|\mathbf{z}_1,\mathbf{y}_2,\mathbf{v}_2)=h_1(\mathbf{z}_1,\mathbf{y}_2,\mathbf{v}_2)$ by averaging out \mathbf{v}_2 , and fully nonparametric two-step estimates are available. - The focus on the ASF is liberating. It justifies flexible parametric approaches that need not be tied to "structural" equations. In particular, we can just skip modeling $g_1(\cdot)$ and start with $E(y_1|\mathbf{z}_1,\mathbf{y}_2,\mathbf{v}_2)$. - \bullet For example, if y_1 is binary or a fraction and y_2 is a scalar, $$E(y_1|\mathbf{z}_1, y_2, v_2) = \Phi(\mathbf{z}_1 \mathbf{\delta}_1 + \alpha_1 y_2 + \rho_1 v_2 + \eta_1 v_2^2 + \mathbf{z}_1 v_2 \mathbf{\xi}_1 + \omega_1 y_2 v_2 + \dots)$$ ### 5. Methods for Panel Data - Combine methods for correlated random effects models with CF methods for nonlinear panel data models with unobserved heterogeneity and EEVs. - Illustrate a parametric approach used by Papke and Wooldridge (2008), which applies to binary and fractional responses. - Nothing appears to be known about applying "fixed effects" probit to estimate the fixed effects while also dealing with endogeneity. Likely to be poor for small *T*. • Model with time-constant unobserved heterogeneity, c_{i1} , and time-varying unobservables, v_{it1} , as $$E(y_{it1}|y_{it2},\mathbf{z}_i,c_{i1},v_{it1}) = \Phi(\alpha_1 y_{it2} + \mathbf{z}_{it1} \boldsymbol{\delta}_1 + c_{i1} + v_{it1}).$$ (35) Allow the heterogeneity, c_{i1} , to be correlated with y_{it2} and \mathbf{z}_i , where $\mathbf{z}_i = (\mathbf{z}_{i1}, \dots, \mathbf{z}_{iT})$ is the vector of strictly exogenous variables (conditional on c_{i1}). The time-varying omitted variable, v_{it1} , is uncorrelated with \mathbf{z}_i – strict exogeneity – but may be correlated with y_{it2} . As an example, y_{it1} is a female labor force participation indicator and y_{it2} is other sources of income. - Write $\mathbf{z}_{it} = (\mathbf{z}_{it1}, \mathbf{z}_{it2})$, so that the time-varying IVs \mathbf{z}_{it2} are excluded from the "structural." - Chamberlain approach: $$c_{i1} = \psi_1 + \mathbf{\bar{z}}_i \boldsymbol{\xi}_1 + a_{i1}, a_{i1} | \mathbf{z}_i \sim Normal(0, \sigma_{a_1}^2).$$ (36) Next step: $$E(y_{it1}|y_{it2},\mathbf{z}_i,r_{it1}) = \Phi(\alpha_1y_{it2} + \mathbf{z}_{it1}\delta_1 + \psi_1 + \mathbf{\bar{z}}_i\xi_1 + r_{it1})$$ where $r_{it1} = a_{i1} + v_{it1}$. Next, assume a linear reduced form for y_{it2} : $$y_{it2} = \psi_2 + \mathbf{z}_{it}\delta_2 + \mathbf{\bar{z}}_i\boldsymbol{\xi}_2 + v_{it2}, t = 1, \dots, T.$$ (37) • Rules out discrete y_{it2} because $$r_{it1} = \eta_1 v_{it2} + e_{it1}, \tag{38}$$ $$e_{it1}|(\mathbf{z}_i, v_{it2}) \sim Normal(0, \sigma_{e_1}^2), t = 1, \dots, T.$$ (39) Then $$E(y_{it1}|\mathbf{z}_{i},y_{it2},v_{it2}) = \Phi(\alpha_{e1}y_{it2} + \mathbf{z}_{it1}\boldsymbol{\delta}_{e1} + \psi_{e1} + \mathbf{\bar{z}}_{i}\boldsymbol{\xi}_{e1} + \eta_{e1}v_{it2})$$ (40) where the "e" subscript denotes division by $(1 + \sigma_{e_1}^2)^{1/2}$. This equation is the basis for CF estimation. - Simple two-step procedure: (i) Estimate the reduced form for y_{it2} (pooled across t, or maybe for each t separately; at a minimum, different time period intercepts should be allowed). Obtain the residuals, \hat{v}_{it2} for all (i,t) pairs. The estimate of δ_2 is the fixed effects estimate. (ii) Use the pooled probit (quasi)-MLE of y_{it1} on y_{it2} , \mathbf{z}_{it1} , $\mathbf{\bar{z}}_i$, \hat{v}_{it2} to estimate α_{e1} , δ_{e1} ,
ψ_{e1} , ξ_{e1} and η_{e1} . - Delta method or bootstrapping (resampling cross section units) for standard errors. Can ignore first-stage estimation to test $\eta_{e1} = 0$ (but test should be fully robust to variance misspecification and serial independence). • Estimates of average partial effects are based on the average structural function, $$E_{(c_{i1},v_{it1})}[\Phi(\alpha_1y_{t2} + \mathbf{z}_{t1}\boldsymbol{\delta}_1 + c_{i1} + v_{it1})], \tag{41}$$ which is consistently estimated as $$N^{-1} \sum_{i=1}^{N} \Phi(\hat{\alpha}_{e1} y_{t2} + \mathbf{z}_{t1} \hat{\mathbf{\delta}}_{e1} + \hat{\psi}_{e1} + \mathbf{\bar{z}}_{i} \hat{\boldsymbol{\xi}}_{e1} + \hat{\eta}_{e1} \hat{v}_{it2}). \tag{42}$$ These APEs, typically with further averaging out across t and perhaps over y_{t2} and \mathbf{z}_{t1} , can be compared directly with fixed effects IV estimates. # **EXAMPLE**: Effects of Spending on Test Pass Rates - Reform occurs between 1993/94 and 1994/95 school year; its passage was a surprise to almost everyone. - Since 1994/95, each district receives a foundation allowance, based on revenues in 1993/94. - Intially, all districts were brought up to a minimum allowance \$4,200 in the first year. The goal was to eventually give each district a basic allowance (\$5,000 in the first year). - Districts divided into three groups in 1994/95 for purposes of initial foundation allowance. Subsequent grants determined by statewide School Aid Fund. - Catch-up formula for districts receiving below the basic. Initially, more than half of the districts received less than the basic allowance. By 1998/99, it was down to about 36%. In 1999/00, all districts began receiving the basic allowance, which was then \$5,700. Two-thirds of all districts now receive the basic allowance. - From 1991/92 to 2003/04, in the 10th percentile, expenditures rose from \$4,616 (2004 dollars) to \$7,125, a 54 percent increase. In the 50th percentile, it was a 48 percent increase. In the 90th percentile, per pupil expenditures rose from \$7,132 in 1992/93 to \$9,529, a 34 percent increase. - Response variable: *math*4, the fraction of fourth graders passing the MEAP math test at a school. - Spending variable is log(avgrexppp), where the average is over the current and previous three years. - The linear model is $$math4_{it} = \theta_t + \beta_1 \log(avgrexp_{it}) + \beta_2 lunch_{it} + \beta_3 \log(enroll_{it}) + c_{i1} + u_{it1}$$ Estimating this model by fixed effects is identical to adding the time averages of the three explanatory variables and using pooled OLS. • The "fractional probit" model: $$E(math4_{it}|\mathbf{x}_{i1},\mathbf{x}_{i2},\ldots,\mathbf{x}_{iT}) = \Phi(\theta_{at} + \mathbf{x}_{it}\boldsymbol{\beta}_a + \mathbf{\bar{x}}_i\boldsymbol{\xi}_a).$$ • Allowing spending to be endogenous. Controlling for 1993/94 spending, foundation grant should be exogenous. Exploit nonsmoothness in the grant as a function of initial spending. $$math4_{it} = \theta_t + \beta_1 \log(avgrexp_{it}) + \beta_2 lunch_{it} + \beta_3 \log(enroll_{it})$$ $$+ \beta_{4t} \log(rexppp_{i,1994}) + \xi_1 \overline{lunch_i} + \xi_2 \overline{\log(enroll_i)} + v_{it1}$$ • And, fractional probit version of this. #### . use meap92_01 . xtset distid year panel variable: distid (strongly balanced) time variable: year, 1992 to 2001 delta: 1 unit #### . des math4 avgrexp lunch enroll found | variable name | _ | display
format | value
label | variable label | |---------------|--------|-------------------|----------------|--| | math4 | double | %9.0g | | fraction satisfactory, 4th grade math | | avgrexp | float | %9.0g | | <pre>(rexppp + rexppp_1 + rexppp_2 + rexppp_3)/4</pre> | | lunch | float | %9.0g | | fraction eligible for free lunch | | enroll | float | %9.0g | | district enrollment | | found | int | %9.0g | | foundation grant, \$: 1995-2001 | #### . sum math4 rexppp lunch | Variable | 0bs | Mean | Std. Dev. | Min | Max | |----------|------|----------|-----------|----------|----------| | math4 | 5010 | .6149834 | .1912023 | .059 | 1 | | rexppp | 5010 | 6331.99 | 1168.198 | 3553.361 | 15191.49 | | lunch | 5010 | .2802852 | .1571325 | .0087 | .9126999 | . xtreg math4 lavgrexp lunch lenroll y96-y01, fe cluster(distid) | Fixed-effects (within) regression Group variable: distid | 1.4 | = | 3507
501 | |---|----------------------------------|-----|------------------| | R-sq: within = 0.4713
between = 0.0219
overall = 0.2049 | Obs per group: mir
avg
max | 3 = | 7
7.0
7 | | $corr(u_i, Xb) = -0.1787$ | F(9,500)
Prob > F | = = | 171.93
0.0000 | (Std. Err. adjusted for 501 clusters in distid) _____ | | math4 | Coef. | Robust
Std. Err. | t | P> t | [95% Conf. | Interval] | |-----|-------|-----------|---------------------|-------|-------|------------|-----------| | lav | grexp | .3770929 | .0705668 | 5.34 | 0.000 | .2384489 | .5157369 | | | lunch | 0419467 | .0731611 | -0.57 | 0.567 | 1856877 | .1017944 | | le | nroll | .0020568 | .0488107 | 0.04 | 0.966 | 0938426 | .0979561 | | | у96 | 0155968 | .0063937 | -2.44 | 0.015 | 0281587 | 003035 | | | y97 | 0589732 | .0095232 | -6.19 | 0.000 | 0776837 | 0402628 | | | у98 | .0781686 | .0112949 | 6.92 | 0.000 | .0559772 | .1003599 | | | у99 | .0642748 | .0123103 | 5.22 | 0.000 | .0400884 | .0884612 | | | у00 | .0895688 | .0133223 | 6.72 | 0.000 | .0633942 | .1157434 | | | y01 | .0630091 | .014717 | 4.28 | 0.000 | .0340943 | .0919239 | | | cons | -2.640402 | .8161357 | -3.24 | 0.001 | -4.24388 | -1.036924 | | | + | | |---------|-----------|-----------------------------------| | sigma_u | .1130256 | | | sigma_e | .08314135 | | | rho | .64888558 | (fraction of variance due to u_i) | ### . des alavgrexp alunch alenroll | variable name | _ | display
format | value
label | variable label | |---------------|-------|-------------------|----------------|----------------------------------| | alavgrexp | | %9.0g | | time average lavgrexp, 1995-2001 | | alunch | iloat | %9.0g | | time average lunch, 1995-2001 | | alenroll | float | %9.0g | | time average lenroll, 1995-2001 | #### Linear regression Number of obs = 3507 F(12, 500) = 161.09 Prob > F = 0.0000 R-squared = 0.4218 Root MSE = .11542 (Std. Err. adjusted for 501 clusters in distid) ·----- | math4 | Coef. | Robust
Std. Err. | t | P> t | [95% Conf. | Interval] | |--|--|---|--|--|--|---| | lavgrexp alavgrexp lunch alunch lenroll alenroll y96 y97 y98 y99 y00 y01 | .377092
286541
0419466
3770088
.0020566
0031646
0155968
0589731
.0781687
.064275
.089569
.0630093 | .0705971
.0731797
.0731925
.0766141
.0488317
.0491534
.0063965
.0095273
.0112998
.0123156
.013328 | 5.34
-3.92
-0.57
-4.92
0.04
-0.06
-2.44
-6.19
6.92
5.22
6.72
4.28 | 0.000
0.000
0.567
0.000
0.966
0.949
0.015
0.000
0.000
0.000 | .2383884
4303185
1857494
5275341
093884
0997373
0281641
0776916
.0559678
.0400782
.0633831
.0340821 | .51579561427635 .10185622264835 .0979972 .093408200302950402546 .1003696 .0884717 .1157548 .0919365 | | _cons | 0006233 | .2450239 | -0.00 | 0.998 | 4820268 | .4807801 | - . * Now use fractional probit. - . glm math4 lavgrexp alavgrexp lunch alunch lenroll alenroll y96-y01, fa(bin) link(probit) cluster(distid) note: math4 has non-integer values | Generalized linear | models | No. of obs | = | 3507 | |--------------------|-------------|-----------------|---|----------| | Optimization : | ML | Residual df | = | 3494 | | | | Scale parameter | = | 1 | | Deviance = | 237.643665 | (1/df) Deviance | = | .0680148 | | Pearson = | 225.1094075 | (1/df) Pearson | = | .0644274 | (Std. Err. adjusted for 501 clusters in distid) ----- | math4 | Coef. | Robust
Std. Err. | Z | P> z | [95% Conf. | Interval] | |---|---|--|---|---|---|--| | lavgrexp alavgrexp lunch alunch lenroll alenroll y96 y97 y98 y99 y00 y01 cons | .8810302
5814474
2189714
9966635
.0887804
0893612
0362309
1467327
.2520084
.2152507
.3049632
.2257321
-1.855832 | .2068026
.2229411
.2071544
.2155739
.1382077
.1387674
.0178481
.0273205
.0337706
.0367226
.0399409
.0439608
.7556621 |
4.26
-2.61
-1.06
-4.62
0.64
-0.64
-2.03
-5.37
7.46
5.86
7.64
5.13
-2.46 | 0.000
0.009
0.290
0.000
0.521
0.520
0.042
0.000
0.000
0.000
0.000 | .4757045 -1.0184046249865 -1.41918118210173613404071212520028 .1858192 .1432757 .2266805 .1395705 -3.336902 | 1.2863561444909 .18704375741465 .3596626 .182618100124930931855 .3181975 .2872257 .3832459 .31189383747616 | | | • | | | | | | | variable | Coef. | Std. Err. | Z | P> z | [95% Conf. | Interval] | |--|---|--|--|--|--|---| | lavgrexp alavgrexp lunch alunch lenroll alenroll y96 y97 y98 y99 y00 y01 | .2968496195909707377913358104 .0299132030108901229240508008 .0809879 .0696954 .0970224 .0729829 | .0695326
.0750686
.0698318
.0723725
.0465622
.0467477
.0061107
.0097646
.0100272
.0111375
.0115066
.0132849 | 4.27
-2.61
-1.06
-4.64
0.64
-0.64
-2.01
-5.20
8.08
6.26
8.43
5.49 | 0.000
0.009
0.291
0.000
0.521
0.520
0.044
0.000
0.000
0.000 | .160568234304142106469477657906134712173260242692069939 .0613349 .0478662 .0744698 .046945 | .4331310487781 .06308871939629 .1211734 .061514900031560316625 .1006408 .0915245 .119575 .0990208 | | | | | | | | | ^{. *} These standard errors are very close to bootstrapped standard errors. | GEE population-averaged model | | Number of obs | = | 3507 | |-------------------------------|--------------|-------------------|------|---------| | Group variable: | distid | Number of groups | = | 501 | | Link: | probit | Obs per group: mi | .n = | 7 | | Family: | binomial | av | 7g = | 7.0 | | Correlation: | exchangeable | ma | ax = | 7 | | | | Wald chi2(12) | = | 1815.43 | | Scale parameter: | 1 | Prob > chi2 | = | 0.0000 | (Std. Err. adjusted for clustering on distid) | math4 | Coef. | Semi-robust
Std. Err. | | P> z | [95% Conf. | Interval] | |--|---|--|--|--|--|---| | lavgrexp
alavgrexp
lunch
alunch
lenroll
alenroll
y96
y97
y98
y99
y00 | .884564
5835138
2372942
9754696
.0875629
0820307
0364771
1471389
.2515377
.2148552
.3046286
.2256619 | .2060662
.2236705
.2091221
.2170624
.1387427
.1393712
.0178529
.0273264
.0337018
.0366599
.0399143
.0438877 | 4.29
-2.61
-1.13
-4.49
0.63
-0.59
-2.04
-5.38
7.46
5.86
7.63
5.14 | 0.000
0.009
0.256
0.000
0.528
0.556
0.041
0.000
0.000
0.000 | .4806817
-1.0219
6471659
-1.400904
1843677
3551933
0714681
2006976
.1854833
.143003
.2263981
.1396437 | 1.2884461451277 .17257755500351 .3594935 .19113180014860935801 .317592 .2867073 .3828591 .3116801 | | _cons | -1.914975 | .7528262 | -2.54 | 0.011 | -3.390487 | 4394628 | . margeff Average partial effects after xtgee y = Pr(math4) | variable | Coef. | Std. Err. | z | P> z | [95% Conf. | Interval] | |--|--|---|--|--|---|---| | lavgrexp alavgrexp lunch alunch lenroll alenroll y96 y97 y98 y99 y00 y01 | .2979576196551507993053285784 .029494802763130123730509306 .0808226 .0695541 .0968972 .0729416 | .0692519
.0752801
.0704803
.0728656
.0467283
.0469381
.0061106
.0097618
.010009
.0111192
.0115004 | 4.30
-2.61
-1.13
-4.51
0.63
-0.59
-2.02
-5.22
8.08
6.26
8.43
5.50 | 0.000
0.009
0.257
0.000
0.528
0.556
0.043
0.000
0.000
0.000 | .1622263
3440978
2180693
4713924
0620909
1196283
0243497
0700633
.0612054
.0477609
.0743568
.0469478 | .43368890490052 .05820821857644 .1210805 .064365600039640317979 .1004399 .0913472 .1194376 .0989353 | | 7 0 = 1 | | | 3.30 | 2.000 | | | - . * Now allow spending to be endogenous. Use foundation allowance, and - . * interactions, as IVs. - . * First, linear model: - . ivreg math4 lunch alunch lenroll alenroll y96-y01 lexppp94 le94y96-le94y01 (lavgrexp = lfound lfndy96-lfndy01), cluster(distid) Instrumental variables (2SLS) regression Number of obs = 3507 F(18, 500) = 107.05 Prob > F = 0.0000 R-squared = 0.4134 Root MSE = .11635 (Std. Err. adjusted for 501 clusters in distid) Robust Std. Err. t P>|t| Coef. [95% Conf. Interval] math4 .2205466 .1212123 lavgrexp .5545247 0.012 .987837 2.51 -.0621991 .0742948 -0.84 -.2081675 .0837693 lunch 0.403 alunch -.4207815 .0758344 -5.55 0.000 -.5697749 -.2717882 .1831484 lenroll .0463616 0.506 -.0904253 .0696215 0.67 alenroll -.049052 .070249 -0.700.485 -.1870716 .0889676 -1.085453 .2736479 -3.97 0.000 -1.623095 -.5478119 у96 -1.049922 .376541 -2.79-.3101244 0.005 у97 -1.78972 -.4548311 .4958826 -0.92 0.359 .5194394 у98 -1.429102.7218439 0.460 y99 -.4360973 .5893671 -0.74-1.594038-.3559283 .6509999 -0.55 0.585 -1.634961 .923104 у00 -.704579 -2.140941 .7317831 .7310773 -0.96 0.336 y01 .2189488 -.0041482 lexppp94 -.4343213 -1.980.048 -.8644944 le94y96 .1253255 .0318181 0.000 3.94 .0628119 .1878392 .1984534 .1688636 le94y97 .11487 .0425422 2.70 0.007 .0312865 .0599439 le94y98 .0554377 0.280 -.0489757 1.08 .0661784 le94y99 .0557854 0.84 0.400 -.0742367 .1858075 .048899 le94y00 .0727172 0.67 0.502 -.0939699 .1917678 | le94y01
_cons | .0865874 | .0816732 | 1.06
-1.29 | 0.290
0.197 | 0738776
8442955 | .2470524 | |----------------------------|--------------|-------------|---------------|----------------|--|----------| | Instrumented: Instruments: | lexppp94 le9 | 4y96 le94y9 | 7 le94y98 | 3 le94y99 | 8 y99 y00 y01
le94y00 le94
fndy00 lfndy0 | y01 | [.] \star Estimate is substantially larger than when spending is treated as exogenous. - . * Get reduced form residuals for fractional probit: - . reg lavgrexp lfound lfndy96-lfndy01 lunch alunch lenroll alenroll y96-y01 lexppp94 le94y96-le94y01, cluster(distid) Linear regression Number of obs = 3507 F(24, 500) = 1174.57 Prob > F = 0.0000 R-squared = 0.9327 Root MSE = .03987 (Std. Err. adjusted for 501 clusters in distid) Robust Std. Err. t P>|t| [95% Conf. Interval] lavgrexp Coef. .2447063 .0417034 5.87 .0254713 0.21 .1627709 .3266417 -.044649 .0554391 0.000 .1627709 lfound lfndy96 0.832 .0053951 .0254713 -.0848789 .0729687 -.0957972 .1048685 -.0049497 .1891074 .0401705 lfndy97 -0.15 -.0059551 0.882 lfndy98 .0045356 .0510673 0.09 0.929 1.86 lfndy99 .0920788 .0493854 0.063 .1364484 2.78 .0401074 .2327894 .127188 .3456198 lfndy00 0.006 .0490355 .2364039 .0555885 4.25 0.000 lfndy01359117 .1632959 .0996687 1.64 0.102 -.0325251 _cons [.] predict v2hat, resid (1503 missing values generated) . glm math4 lavgrexp v2hat lunch alunch lenroll alenroll y96-y01 lexppp94 le94y96-le94y01, fa(bin) link(probit) cluster(distid) note: math4 has non-integer values | Generalized linear | models | No. of obs | = | 3507 | |--------------------|-------------|-----------------|---|----------| | Optimization : | ML | Residual df | = | 3487 | | | | Scale parameter | = | 1 | | Deviance = | 236.0659249 | (1/df) Deviance | = | .0676989 | | Pearson = | 223.3709371 | (1/df) Pearson | = | .0640582 | Variance function: $V(u) = u^*(1-u/1)$ [Binomial] Link function : g(u) = invnorm(u) [Probit] (Std. Err. adjusted for 501 clusters in distid) | math4 | Coef. | Robust
Std. Err. | z | P> z | [95% Conf. | Interval] | |---|--|--|--|--|---|--| | lavgrexp
v2hat
lunch
alunch
lenroll
alenroll |
1.731039
-1.378126
2980214
-1.114775
.2856761
2909903 | .6541194
.720843
.2125498
.2188037
.197511
.1988745 | 2.65
-1.91
-1.40
-5.09
1.45
-1.46 | 0.008
0.056
0.161
0.000
0.148
0.143 | .4489886
-2.790952
7146114
-1.543623
1014383
6807771 | 3.013089
.0347007
.1185686
685928
.6727905
.0987966 | |
_cons | -2.455592 | .7329693 | -3.35 | 0.001 | -3.892185 | -1.018998 | . margeff Average partial effects after glm y = Pr(math4) | variable | Coef. | Std. Err. | z | P> z | [95% Conf. | Interval] | |--|--|---|--|--|---|---| | lavgrexp v2hat lunch alunch lenroll alenroll | .5830163
4641533
1003741
3754579
.0962161
0980059 | .2203345
.242971
.0716361
.0734083
.0665257
.0669786 | 2.65
-1.91
-1.40
-5.11
1.45
-1.46 | 0.008
0.056
0.161
0.000
0.148
0.143 | .151168694036782407782519335503417192292817 | 1.014864
.0120611
.04003
2315803
.2266041
.0332698 | . * These standard errors do not account for the first-stage estimation. Should ^{. *} use the panel bootstrap accounting for both stages. ^{. *} Only marginal evidence that spending is endogenous, but the negative sign ^{. *} fits the story that districts increase spending when performance is ^{. * (}expected to be) worse, based on unobservables (to us). | Model: | Linear | Fractional Probit | | | |---------------------------|------------------------|-------------------|--------|--| | Estimation Method: | Instrumental Variables | Pooled QMLE | | | | | Coefficient | Coefficient | APE | | | log(arexppp) | .555 | 1.731 | .583 | | | | (.221) | (.759) | (.255) | | | lunch | 062 | 298 | 100 | | | | (.074) | (.202) | (.068) | | | log(enroll) | .046 | .286 | .096 | | | | (.070) | (.209) | (.070) | | | \hat{v}_2 | 424 | -1.378 | | | | | (.232) | (.811) | | | | Scale Factor | | .337 | | |