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1. Introduction

∙What kinds of questions can we answer using a “modern” approach to

treatment effect estimation? Here are some examples:

1. What are the effects of a job training program on employment or

labor earnings?

2. What are the effects of a school voucher program on student

performance?

3. Does a certain medical intervention increase the likelihood of

survival?

∙ The main issue in program evaluation concerns the nature of the

assignment, intervention, or “treatment.”
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∙ For example, is the “treatment” randomly assigned? Hardly ever in

economics, and problematical even in clinical trials because those

chosen to be eligible can and do opt out. But there is a push in some

fields, for example, development economics, to use more randomized

trials.

∙With retrospective or observational data, a reasonable possibility is to

assume that treatment is effectively randomly assigned conditional on

observable covariates. (“Unconfoundedness” or “ignorability” of

treatment or “selection on observables.” Sometimes called “exogenous

treatment.”)
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∙ Or, does assignment depend fundamentally on unobservables, where

the dependence cannot be broken by controlling for observables?

(“Confounded” assignment or “selection on unobservables” or

“endogenous treatment”)

∙ Often there is a component of self-selection in program evaluation.

4



∙ Broadly speaking, approaches to treament effect estimation fall into

one of three situations: (1) Assume unconfoundedness of treatment, and

then worry about how to exploit it in estimation; (2) Allow

self-selection on unobservables but exploit an exogenous instrumental

variable; (3) Exploit a “regression discontinuity” design, where the

treatment is determined (or its probability) as a discontinuous function

of observed variable.

∙ Here we consider estimation under unconfoundedness.
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∙ Unconfoundedness leads to many possible estimation methods. We

can usually put these into one of three categories: (1) regression

adjustment; (2) propensity score weighting; (3) matching.

∙ Combinations of these methods can be very effective, but all maintain

unconfoundedness.

∙ Unconfoundedness is fundamentally untestable, although in some

cases there are ways to assess its plausibility or study sensitivity of

estimates.
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∙ A second key assumption is “overlap,” which concerns the similarity

of the covariate distributions for the treated and untreated

subpopulations. It plays a key role in any of the estimation methods

based on unconfoundedness. In cases where parametric models are

used, it can be too easily overlooked.

∙ If overlap is weak, may have to redefine the population of interest in

order to precisely estimate a treatment effect on some subpopulation.
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2. Basic Concepts

Counterfactual Outcomes and Parameters of Interest

∙ First assume a binary treatment. For each population unit, two

possible outcomes: Y0 (the outcome without treatment) and Y1 (the

outcome with treatment). The binary “treatment” indicator isW, where

W  1 denotes “treatment.” The nature of Y0 and Y1 – discrete,

continuous, some mix – is, for now, unspecified. (The generality this

affords is one of the attractions of the Rubin Causal Model.)

∙ The gain from treatment is

Y1 − Y0.
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∙ For a particular unit i, the gain from treatment is

Yi1 − Yi0.

If we could observe these gains for a random sample, the problem

would be easy: just average the gain across the random sample.

∙ Problem: For each unit i, only one of Yi0 and Yi1 is observed.

∙ In effect, we have a missing data problem (even though we will

eventually assume a random sample of units).
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∙ Two parameters are of primary interest. The average treatment

effect (ATE) is

ate  EY1 − Y0.

The expected gain for a randomly selected unit from the population.

This is sometimes called the average causal effect.

∙ The average treatment effect on the treated (ATT) is the average

gain from treatment for those who actually were treated:

att  EY1 − Y0|W  1
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∙With heterogeneous treatment effects, ate and att can be very

different. ATE averages across gain from units that might never be

subject to treatment.

∙ Important point: ate and att are defined without reference to a model

or a discussion of the nature of the treatment. In particular, these

definitions hold when whether assignment is randomized,

unconfounded, or endogenous.
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∙ Not suprisingly, how we estimate ate and att depends on what we

assume about treatment assignment.

∙We can also define ATEs and ATTs conditional on a set of observed

covariates; in fact, some approaches to estimating ate and att rely on

first estimating conditional average treatment effects.
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Sampling Assumptions

∙ Assume independent, identically distributed observations from the

underlying population. The data we would like to have is

Yi0,Yi1 : i  1, . . . ,N, but we only observe Wi and

Yi  1 − WiYi0  WiYi1  Yi0  WiYi1 − Yi0.     (4)

∙ Random sampling rules out treatment of one unit having an effect on

other units. (So the “stable unit treatment value assumption,” or

SUTVA, is in force.)
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Estimation under Random Assignment

∙ Strongest form of random assignment: Y0,Y1 is independent of

W. Then

EY|W  1 − EY|W  0  EY1 − EY0  ate  att     (5)

under mean independence and the means on the left hand side can be

estimated by using sample averages on the two subsamples.

∙ The randomization of treatment needed for the simple

comparison-of-means estimator to consistently estimate the ATE is rare

in practice.
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Multiple Treatments

∙ If the treatmentWi takes on G  1 levels, say 0, 1, . . . ,G, it is

straightforward to extend the counterfactual framework. Simply let

Y0, . . . ,YG denote the counterfactual outcomes associated with each

level of treatment. If

g  EYg

then we can define the expected gain in going from treatment level

g − 1 to g as g − g−1. In some cases, Y0 might denote the response

under no treatment, but generally the different values ofW simply

denote different treatment arms.
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3. The Key Assumptions: Unconfoundedness and Overlap

∙ Rather than assume random assignment, for each unit i we also draw

a vector of covariates, Xi. Let X be the random vector with a

distribution in the population.

A.1. Unconfoundedness: Conditional on a set of covariates X, the pair

of counterfactual outcomes, Y0,Y1, is independent of W, which is

often written as

Y0,Y1  W ∣ X,     (1)

where the symbol “” means “independent of” and “∣” means

“conditional on.”
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∙We can also write unconfoundedness, or ignorability, as

DW|Y0,Y1,X  DW|X, where D| denotes conditional

distribution.

∙ Unconfoundedness is controversial. In effect, it underlies standard

regression methods to estimating treatment effects (via a “kitchen sink”

regression that includes covariates, the treatment indicator, and possibly

interactions).
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∙ Essentially, unconfoundedness leads to a comparison-of-means after

adjusting for observed covariates; even if one doubts we have “enough”

of the “right” covariates, it is hard to envision not attempting such a

comparison.
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∙ Can show unconfoundedness is generally violated if X includes

variables that are themselves affected by the treatment. For example, in

evaluating a job training program, X should not include post-training

schooling because that might have been chosen in response to being

assigned or not to the job training program.
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∙ In fact, suppose Y0,Y1 is independent of W but

DX|W ≠ DX. In other words, assignment is randomized with

respect to Y0,Y1 but not with respect to X. (Think of assignment

being randomized but then X includes a post-assignment variable that

can be affected by assignment.)

∙ Can show that unconfoundedness generally fails unless

EYg|X  EYg, g  0, 1.
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∙ To see this, by iterated expectations,

EYg|W  EEYg|W,X|W, g  0, 1

But, because W is independent of Yg, the left-hand-side does not

depend on W, and EYg|W,X does not depend on W if (1) is

supposed to hold.
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∙Write gX ≡ EYg|X. If EYg|W  EYg and

EYg|W,X  gX we must have

EYg  EgX|W,

which is impossible if the right-hand-side depends on W.

∙ In convincing applications, X includes variables that are measured

prior to treatment assignment, such as previous labor market history. Of

course, gender, race, and other demographic variables can be included.
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∙ A weaker version of unconfoundedness:

A.1′. Unconfoundedness in Conditional Mean:

EYg|W,X  EYg|X, g  0, 1.     (2)

∙ Seems unlikely that this weaker version of the assumption holds

without the stronger version. With weaker version, mean effects on

different transformations of Yg not identified.
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∙ An argument in favor of an analyisis based on unconfoundedness is

that the quantities we need to estimate are nonparametrically identified.

Thus, if we used unconfoundedness we need impose few additional

assumptions (other than overlap). By contrast, instrumental variables

methods are either limited in what parameter they estimate or impose

functional form and distributional restrictions.

∙ Can write down simple economic models where unconfoundedness

holds, but the models limit the information available to agents when

choosing “participation.”
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∙ To identify att  EY1 − Y0|W  1, can get away with the

weaker unconfoundedness assumption,

Y0  W ∣ X

or the mean version, EY0|W,X  EY0|X. For example, the

unit-specific gain, Yi1 − Yi0, can depend on treatment status Wi in

an arbitrary way.
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A.2. Overlap: For all x in the support X of X,

0  PW  1|X  x  1.     (3)

In other words, each unit in the defined population has some chance of

being treated and some chance of not being treated. The probability of

treatment as a function of x is known as the propensity score, which we

denote

px  PW  1|X  x.     (4)
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∙ Strong Ignorability [Rosenbaum and Rubin (1983)] 

Unconfoundedness plus Overlap.

∙ For ATT, (3) can be relaxed to px  1 for all x ∈ X; px  0 is

allowed (because we only average over the treated subpopulation).
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4. Identification of Average Treatment Effects

∙ Use two ways to show the treatment effects are identified under

unconfoundedness and overlap.

∙ First is based on regression functions. Define the average treatment

effect conditional on x as

x  EY1 − Y0|X  x  1x − 0x     (5)

where gx ≡ EYg|X  x, g  0, 1.

∙ The function x is of interest in its own right, as it provides the

mean effect for different segments of the population described by the

observables, x.
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∙ By iterated expectations, it is always true (without any assumptions)

that

ate  EY1 − Y0  EX  E1X − 0X     (6)

It follows that ate is identified if 0 and 1 are identified over the

support of X, because we observe a random sample on x and can

average across its distribution.
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∙ To see 0 and 1 are identified under unconfoundedness (and

overlap), note that

EY|X,W  1 − WEY0|X,W  WEY1|X,W
 1 − WEY0|X  WEY1|X
≡ 1 − W0X  W1X,     (7)

where the second equality holds by unconfoundedness. Define the

always identified functions

m0X  EY|X,W  0,m1X  EY|X,W  1     (8)
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∙ Under overlap, m0 and m1 are nonparametrically identified on X
because we assume the availability of a random sample on Y,X,W.

∙When we add unconfoundedness we identify 0 and 1 because

EY|X,W  0  0X, EY|X,W  1  1X     (9)

31



∙ For ATT,

EY1 − Y0|W  EEY1 − Y0|X,W|W
 E1X − 0X|W.     (10)

∙ Therefore,

att  E1X − 0X|W  1,

and we know 0 and 1 are identified by unconfoundedness and

overlap.
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∙ In terms of the always identified mean functions,

ate  Em1X − m0X.     (12)

att  Em1X − m0X|W  1.     (13)

By definition we can always estimate Em1X|W  1, and so, for att,

we can get by with “partial” overlap. Namely, we need to be able to

estimate m0x for values of x taken on by the treatment group, which

translates into px  1 for all x ∈ X.
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∙We can also establish identification of ate and att using the

propensity score. Also assuming unconfoundedness,

E WY
pX  E WY1

pX  E EW|XEY1|X
pX  EY1,     (14)

E 1 − WY
1 − pX  EY0.     (15)

∙ In (14) we need px  0 and in (15) we need px  1 (both for all

x ∈ X).

∙ Putting the two expressions together gives

ate  E WY
pX −

1 − WY
1 − pX  E W − pXY

pX1 − pX .     (16)
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∙ Can also show

att  E
W − pXY
1 − pX ,     (17)

where   PW  1 is the unconditional probability of treatment.

∙Makes intuitive sense that we only need px  1 because att is an

average effect for those eventually treated. Therefore, for this

parameter, it does not matter if some units have no chance of being

treated. (In effect, this is one way to define the quantity of interest in a

way that the necessary overlap assumption has a better chance of

holding. But there are other ways based on X.)
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Efficiency Bounds

∙ How well can we hope to do in estimate ate or att? Let

0
2X  VarY0|X and 1

2X  VarY1|X. From Hahn (1998),

the lower bounds for asymptotic variances of N -consistent estimators

are

E 1
2X
pX  0

2X
1 − pX  X − ate

2

and

E pX1
2X

  pX20
2X

21 − pX
 X − att2pX

2

for ate and att, respectively, where   EpX.
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∙ These expressions assume the propensity score, p, is unknown. As

shown by Hahn (1998), knowing the propensity score does not affect

the variance lower bound for estimating , but it does change the lower

bound for estimating att.

∙ Estimators exist that achieve these bounds. The more mass on px

closer to zero and one, the harder it is to estimate ate. att only cares

about px close to unity.
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5. Estimating ATEs

∙When we assume unconfounded treatment and overlap, there are

three general approaches to estimating the treatment effects (although

they can be combined): (i) regression-based methods; (ii) propensity

score methods; (iii) matching methods.

∙ Can mix the various approaches, and often this helps.

∙ Sometimes regression or matching are done on the propensity score.

PS matching is especially popular.

∙ Need to keep in mind that all methods work under unconfoundedness

and overlap. But they may behave quite differently when overlap is

weak.
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Regression Adjustment

∙ First step is to obtain m̂0x from the “control” subsample, Wi  0,

and m̂1x from the “treated” subsample, Wi  1. Can be as simple as

(flexible) linear regression or as complicated as full nonparametric

regression.

∙ Key is that we compute a fitted values for each outcome for all units

in sample. So even though we only use the treated units to obtain

m̂1x, we need m̂1Xi for all i  1, . . . ,N.
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∙ The regression-adjustment estimators are

̂ate,reg  N−1∑
i1

N

m̂1Xi − m̂0Xi     (18)

̂att,reg  N1
−1∑

i1

N

Wim̂1Xi − m̂0Xi     (19)
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∙ Because the ATE as a function of x is consistently estimated by

̂regx  m̂1x − m̂0x,

we can easily estimate the ATE for subpopulations described by

functions of x. For example, let R ⊂ X be a subset of the possible

values of x. Then we can estimate

ate,R  EY1 − Y0|X ∈ R

as

̂ate,R  NR−1 ∑
Xi∈R

m̂1Xi − m̂0Xi     (20)

where NR is the number of observations with Xi ∈ R.
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∙ The restriction Xi ∈ R can help with problems of overlap. If we have

sufficient numbers of treated and control units with Xi ∈ R, ate,R can

be identified when ate is not.

∙ Of course, in problems with overlap, we might just redefine the

population to begin with as X ∈ R. For example, only consider people

with somewhat poor labor market histories to be eligible for job

training.
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∙ If both functions are linear, m̂gx  ̂g  x̂g for g  0, 1, then

̂ate,reg  ̂1 − ̂0  X̄̂1 − ̂0     (21)

where X̄ is the row vector of sample averages. (The definition of ate
means that we average any nonlinear functions in x, rather than

inserting the averages into the nonlinear functions.)
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∙ Easiest way to obtain standard error for ̂ate,reg is to ignore sampling

error in X̄ and use the coefficient on Wi in the regression

Yi on 1,Wi,Xi,Wi  Xi − X̄, i  1, . . . ,N.

̂ate,reg is the coefficient on Wi.

∙ Accounting for the sampling error in X̄ (as an estimator of

X  EX) is possible, but unlikely to matter much.
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∙ Note how Xi is demeaned before forming interaction. This is critical

because we do not want to estimate 1 − 0 unless 1  0 is imposed.

We want to estimate ate.

∙ Demeaning the covariates before constructing the interactions is

known to often “solve” the multicollinearity problem in regression. But

it “solves” the problem because it redefines the parameter we are trying

to estimate to be the ATE. Usually we can much more easily estimate

an ATE than the treatment effect at x  0 which, except by fluke, is

unlikely to be of much interest.
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∙ The linear regression estimate of att is

̂att,reg  ̂1 − ̂0  X̄1̂1 − ̂0

where X̄1 is the average of the Xi over the treated subsample.

∙ If we want to use linear regression to estimate

̂ate,R  ̂1 − ̂0  X̄R̂1 − ̂0, where X̄R is the average over some

subset of the sample, then the regression

Yi on 1,Wi,Xi,Wi  Xi − X̄R, i  1, . . . ,N

can be used.

46



∙ Note that it uses all the data to estimate the parameters; it simply

centers about X̄R rather than X̄. Might instead just restrict the analysis

to Xi ∈ R so that the parameters in the linear regression are estimated

only using observations with Xi ∈ R
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∙ If common slopes are imposed, ̂1  ̂0, ̂ate,reg  ̂att,reg is just the

coefficient on Wi from the regression across all observations:

Yi on 1,Wi,Xi, i  1, . . . ,N.     (22)

∙ If linear models do not seem appropriate for EY0|X and

EY1|X, the specific nature of the Yg can be exploited.

∙ If Y is a binary response, or a fractional response, estimate logit or

probit separately for the Wi  0 and Wi  1 subsamples and average

differences in predicted values:

̂ate,reg  N−1∑
i1

N

G̂1  Xi̂1 − G̂0  Xi̂0.     (23)
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∙ Each summand in (23) is the difference in estimate probabilities

under treatment and nontreatment for unit i, and the ATE just averages

those differences. Still use this expression if ̂1  ̂0 is imposed.

∙ Or, for general Y ≥ 0, Poisson regression with exponential mean is

attractive:

̂ate,reg  N−1∑
i1

N

exp̂1  Xi̂1 − exp̂0  Xi̂0.     (24)

∙ In nonlinear cases, can use delta method or bootstrap for standard

error of ̂ate,reg.
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∙ General formula for asymptotic variance of ̂ate,reg in the parametric

case. Let m0,0 and m1,1 be general parametric models of 0

and 1; as a practical matter, m0 and m1 would have the same

structure but with different parameters. Assuming that we have

consistent, N -asymptotically normal estimators ̂0 and ̂1,

̂ate,reg  N−1∑
i1

N

m1Xi, ̂1 − m0Xi, ̂0

will be such that Avar N ̂ate,reg − ate is asymptotically normal with

zero mean.
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∙ From Wooldridge (2010, Problem 12.17), it can be shown that

Avar N ̂ate,reg − ate  Em1Xi,1 − m0Xi,0 − ate2

 E∇0m0Xi,0V0E∇0m0Xi,0 ′

 E∇1m1Xi,1V1E∇1m1Xi,1 ′,

where V0 is the asymptotic variance of N ̂0 − 0 and similarly for

V1.

∙ Clearly better to use more efficient estimators of 0 and 1 as that

makes the quadratic forms smaller.
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∙ Each of the quantities above is easy to estimate by replacing

expectations with sample averages and replacing unknown parameters

with estimates:

N  Avar̂ate,reg  N−1∑
i1

N

m1Xi, ̂1 − m0Xi, ̂0 − ̂ate,reg2

 N−1∑
i1

N

∇0m0Xi, ̂0 V̂0 N−1∑
i1

N

∇0m0Xi, ̂0

′

 N−1∑
i1

N

∇1m1Xi, ̂1 V̂1 N−1∑
i1

N

∇1m1Xi, ̂1

′
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∙ Can use a formal nonparametric analysis. Imbens, Newey, and Ridder

(2005) and Chen, Hong, and Tarozzi (2005) consider series estimation:

essentially polynomial linear regression with an increasing number of

terms. Estimator achieves the asymptotic efficiency bound for ate.

∙ Heckman, Ichimura, and Todd (1997) and Heckman, Ichimura,

Smith, and Todd (1998) use local linear regression. For kernel function

K and bandwidth hN  0, obtain, say, m̂1x as ̂1,x from

min
1,x,1,x
∑
i1

N

WiK Xi − x
hN

Yi − 1,x − Xi − x1,x
2

and similarly for m̂0x.
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∙Without good overlap in the covariate distribution, we must

extrapolate a parametric model – linear or nonlinear – into regions

where we do not have much or any data. For example, suppose, after

defining the population of interest for the effects of job training, those

with better labor market histories are unlikely to be treated. Then, we

have to estimate EY|X,W  1 only using those who participated –

where X includes variables measuring labor market history – and then

extrapolate this function to those who did not participate. This can lead

to sensitive estimates if nonparticipants have very different values of X.
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∙ In the linear case with unrestricted regression functions, can see how

lack of overlap can make ̂ate,reg sensitive to changes in the

specification. Can write ̂ate,reg as

̂ate,reg  Ȳ1 − Ȳ0 − X̄1 − X̄0f0̂1 − f1̂0

where f0  N0/N0  N1 and f1  N1/N0  N1 are the relative

fractions. If X̄1 and X̄0 are very different, minor changes in slope

coefficients across the regimes can have large effects on ̂ate,reg.
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∙ Nonparametric methods are not helpful in overcoming poor overlap.

If they are global “series” estimators based on flexible parametric

models, they require extrapolation. With local estimation methods we

cannot easily estimate, say, m1x for x values far away from those in

the treated subsample.

∙ At least using local methods the problem of overlap is more obvious:

we have little or even no data to estimate the regression functions for

values of x with poor overlap.
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∙ Using att has advantages because it requires only one extrapolation.

From

̂att,reg  N1
−1∑

i1

N

Wim̂1Xi − m̂0Xi,

we only need to estimate m1x for values of x taken on by the treated

group, which we can do well. Unlike with the ATE, we do not need to

estimate m1x for values of x in the untreated group. But we need to

estimate m̂0x for the treated group, and this can be difficult if we have

units in the treated group with covariate values very different from all

units in the control group.
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∙ Classic study by Lalonde (1986): the nonexperimental data combined

the treated group from the experiment with a random sample from a

different source. The result was a much more heterogeneous control

group than treatment group. Regression on the treatment group, where

covariates had restricted range (particularly pre-training earnings), and

using this to predict subsequent earnings for the control group (with

some very high values of pre-training earnings), led to very poor

imputations for estimating ate.
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∙ Things are better with att because do have untreated observations

similar to the control group. But should we use all control observations

to estimate m0? Local regression methods help so that the many

controls in Lalonde’s sample with, say, large pre-training earnings, do

not affect estimation of m0 for the low earners.

∙ Get better results by redefining the population, either based on

propensity scores or a variable such as average pre-training earnings.
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∙ It also makes sense to think more carefully about the population

ahead of time. If high earners are not going to be eligible for job

training, why include them in the analysis at all? The notion of a

population is not immutable.

∙ Note that it is easy to use sampling weights with regression

adjustment. If stratification is based on the covariates, may not need to

use weights for estimating mean functions. But would have to use

weights in estimate ate and att.
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Propensity Score Weighting

∙ The formula that establishes identification of ate base on population

moments suggests an imediate estimator of ate:

̃ate,psw  N−1∑
i1

N
WiYi
pXi

− 1 − WiYi
1 − pXi

.     (25)

∙ ̃ate,psw is not feasible because it depends on the propensity score p.

∙ Interestingly, we would not use it if we could! Even if we know p,

̃ate,psw is not asymptotically efficient. It is better to estimate the

propensity score!
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∙ Two approaches: (1) Model p parametrically, in a flexible way.

Can show estimating the propensity score leads to a smaller asymptotic

variance when the parametric model is correctly specified. (2) Use an

explicit nonparametric approach, as in Hirano, Imbens, and Ridder

(2003, Econometrica) or Li, Racine, and Wooldridge (2009, JBES).

̂ate,psw  N−1∑
i1

N
WiYi
p̂Xi

− 1 − WiYi
1 − p̂Xi

 N−1∑
i1

N
Wi − p̂XiYi
p̂Xi1 − p̂Xi

.     (26)
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∙ Very simple to compute given p̂.

̂att,psw  N−1∑
i1

N
Wi − p̂XiYi
̂1 − p̂Xi

    (27)

where ̂  N1/N is the fraction of treated in the sample.

∙ Clear that ̂ate,psw can be sensitive to the choice of model for p

because now tail behavior can matter when px is close to zero or one.

(For att, only close to one matters.)

∙ Can use (26) and (27) as motivation for trimming based on the

propensity score.
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∙ To exploit estimation error, write

̂ate,psw  N−1∑
i1

N
Wi − p̂XiYi
p̂Xi1 − p̂Xi

≡ N−1∑
i1

N

k̂i.     (28)

The adjustment for estimating  by MLE turns out to be a regression

“netting out” of the score for the binary choice MLE. Let

d̂i  dWi,Xi, ̂ 
∇pXi, ̂′Wi − pXi, ̂
pXi, ̂1 − pXi, ̂

    (29)

be the score for the propensity score binary response estimation. Let êi
be the OLS residuals from the regression

k̂i on 1, d̂i
′, i  1, . . . ,N.     (30)
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∙ Then the asymptotic standard error of ̂ate,psw is

N−1∑
i1

N

êi2
1/2

/ N .     (31)

This follows from Wooldridge (2007, Journal of Econometrics).

∙ For logit PS, estimation,

d̂i
′
 XiWi − p̂i     (32)

where Xi is the 1  R vector of covariates (including unity) and

p̂i  Xi̂  expXi̂/1  expXi̂.
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∙ As noted by Robins and Rotnitzky (1995, JASA), one never does

worse by adding functions of Xi to the PS model, even if they do not

predict treatment! They can be correlated with

ki 
Wi − pXiYi
pXi1 − pXi

,

which reduces the error variance in ei.

∙ Hirano, Imbens, and Ridder (2003) show that the efficient estimator

keeps adding terms as the sample size grows – that is, when we think of

the PS estimation as being nonparametric.
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∙ An alternative is to use bootstrapping, where the binary response

estimation and averaging (to get ̂ate,psw) are included in each bootstrap

iteration. Unfortunately, lots of bootstrap samples may give fitted

probabilities that are zero or one.

∙ It is conservative to ignore the estimation error in the k̂i and simply

treat it as data. That corresponds to just computing the standard error

for a sample average: se̂ate,psw  N−1∑i1
N k̂i − ̂ate,psw2 1/2

/ N .

This is always larger than (31) and is gotten by the regression k̂i on 1.

∙ For ̂att,psw, adjustment to standard error somewhat different

(Wooldridge, 2010, Chapter 21).
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∙ Can see directly from ̂ate,psw and ̂att,psw that the inverse probability

weighted (IPW) estimators can be very sensitive to extreme values of

p̂Xi. ̂att,psw is sensitive only to p̂Xi ≈ 1, but ̂ate,psw is also sensitive

to p̂Xi ≈ 0.

∙ Imbens and coauthors have provided a rule-of-thumb: only use

observations with . 1 ≤ p̂Xi ≤. 9 (for ATE).

∙ Sometimes the problem is p̂Xi “close” to zero for many units,

which suggests the original population was not carefully chosen.
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Regression on the Propensity Score

∙ The motivation is that one can show, given unconfoundedness

conditional on X, unconfoundedness actually holds conditional only on

pX:

Y0,Y1  W ∣ pX

This is a key finding of Rosenbaum and Rubin (1983).

∙ Conditional independence implies

EYg|pX,W  EYg|pX, g  0, 1.
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∙ In other words, it is sufficient to condition only on the propensity

score to break the dependence between W and Y0,Y1. We need

not condition on X.

∙ By iterated expectations,

ate  EY1 − Y0  EEY1|pX − EY0|pX.
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∙ By unconfoundedness,

EY|pX,W  1 − WEY0|pX,W  WEY1|pX,W
 1 − WEY0|pX  WEY1|pX

and so

EY|pX,W  0  EY0|pX
EY|pX,W  1  EY1|pX
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∙ So, after estimating px, we estimate EY|pX,W  0 and

EY|pX,W  1 using each subsample.

∙ In the linear case,

Yi on 1, p̂Xi for Wi  0 and Yi on 1, p̂Xi for Wi  1,     (33)

which gives fitted values ̂0  ̂0p̂xi and ̂1  ̂1p̂xi, respectively.

∙ A consistent estimator of ate is

̂ate,regps  N−1∑
i1

N

̂1 − ̂0  ̂1 − ̂0p̂Xi.     (34)

∙ Linearity might be a poor assumption because the fitted values are

necessarily bounded.
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∙ Conservative inference: ignore estimation of the propensity score.

Same as using usual statistics on Wi in the regression

Yi on 1,Wi, p̂Xi,Wi  p̂Xi − ̂ p̂, i  1, . . . ,N     (35)

where ̂ p̂  N−1∑i1
N p̂Xi. Or, use bootstrap, which will provide the

smaller (valid) standard errors.

∙ Actually, somewhat more common is to drop the interaction term.

Yi on 1,Wi, p̂Xi, i  1, . . . ,N.     (36)

∙ Theoretically, regression on the propensity score in regression has

little to offer compared with other methods.
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∙ Linear regression estimates such as (36) should not be too sensitive to

p̂i close to zero or one, but that might only mask the problem of poor

covariate balance.

∙ For a better fit, might use functions of the log-odds ratio,

r̂i ≡ log p̂Xi
1 − p̂Xi

,

as regressors when Y has a wide range. So, regress Yi on 1, r̂i, r̂i2, . . . , r̂i
Q

for some Q using both the control and treated samples, and then

average the difference in fitted values to obtain ̂ate,regprop.
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Combining Regression Adjustment and PS Weighting

∙ Question: Why use regression adjustment combined with PS

weighting?

∙ Answer: With X having large dimension, still common to rely on

parametric methods for regression and PS estimation. Even if we make

functional forms flexible, still might worry about misspecification.

∙ Idea: Let m0,0 and m1,1 be parametric functions for

EYg|X,g  0, 1. Let p, be a parametric model for the propensity

score. In the first step we estimate  by Bernoulli maximum likelihood

and obtain the estimated propensity scores as pXi, ̂ (probably logit or

probit).
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∙ In the second step, we use regression or a quasi-likelihood method,

where we weight by the inverse probability. For example, to estimate

1  1,1
′ ′, we might solve the WLS problem

min
1,1
∑
i1

N

WiYi − 1 − Xi1
2/pXi, ̂;     (37)

for 0, we weight by 1/1 − p̂Xi and use the Wi  0 sample.

∙ ATE is estimated as

̂ate,pswreg  N−1∑
i1

N

̂1  Xi̂1 − ̂0  Xi̂0.     (38)

∙ Same as regression adjustment, but different estimates of g,g!
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∙ Scharfstein, Rotnitzky, and Robins (1999, JASA) showed that

̂ate,psreg has a “double robustness” property: only one of the models

[mean or propensity score] needs to be correctly specified provided the

the mean and objective function are properly chosen [see Wooldridge

(2007, Journal of Econometrics)].

∙ Yg continuous, negative and positive values: linear mean, least

squares objective function, as above.

∙ Yg binary or fractional: logit mean (not probit!), Bernoulli quasi-log

likelihood:
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min
1,1
∑
i1

N

Wi1 − Yi log1 − 1  Xi1

 Yi log1  Xi1/pXi, ̂.

    (39)

∙ That is, probably use logit for Wi and Yi (for each subset, Wi  0 and

Wi  1).

∙ The ATE is estimated as before:

̂ate,pswreg  N−1∑
i1

N

̂1  Xi̂1 − ̂0  Xi̂0.

If EYg|X  g  Xg, g  0, 1 or PW  1|X  pX,, then

̂ate,pswreg
p
→ ate.
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∙ Of course, if we want x  1x − 0x, then the conditional

mean models must be correctly specified. But the approximation may

be good under misspecification.
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∙ Yg nonnegative, including count, continuous, or corners at zero:

exponential mean, Poisson QLL.

∙ In each case, must include a constant in the index models for

EY|W,X!

∙ Asymptotic standard error for ̂ate,pswreg: bootstrapping is easiest but

analytical formulas not difficult.
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Matching on Covariates

∙Matching estimators are based on imputing a value on the

counterfactual outcome for each unit. That is, for a unit i in the control

group, we observe Yi0, but we need to impute Yi1. For each unit i in

the treatment group, we observe Yi1 but need to impute Yi0.

∙ For ate, matching estimators take the general form

̂ate,match  N−1∑
i1

N

Ŷi1 − Ŷi0

∙ Looks like regression adjustment but the imputed values are not fitted

values from regression.
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∙ For att,

̂att,match  N1
−1∑

i1

N

WiYi − Ŷi0

where this form uses the fact that WiYi  WiYi1 (we never need to

impute Yi1 for the treated subsample.)
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∙ Abadie and Imbens (2006, Econometrica) consider several

approaches. The simplest is to find a single match for each observation.

Suppose i is a treated observation (Wi  1). Then

Ŷi1  Yi,Ŷi0  Yh for h such that Wh  0 and unit h is “closest” to

unit i based on some metric (distance) in the covariates. In other words,

for the treated unit i we find the “most similar” untreated observation,

and use its response as Yi0.

∙ Similarly, if Wi  0,Ŷi0  Yi,Ŷi1  Yh where now Wh  1 and

Xh is “closest” to Xi.

∙ Abadie and Imbens matching has been programmed in Stata in the

command nnmatch. The default is to use the single nearest neighbor.
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∙ The default matrix in defining distance is the inverse of the diagonal

matrix with sample variances of the covariates on the diagonal. [That

is, diagonal Mahalanobis.]

∙More generally, we can impute the missing values using an average

of M nearest neighbors. If Wi  1 then

Ŷi1  Yi
Ŷi0  M−1 ∑

h∈ℵMi

Yh

where ℵMi contains the M untreated nearest matches to observation i,

based on the covariates. So for all h ∈ ℵMi, Wh  0.
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∙ Similarly, if Wi  0,

Ŷi0  Yi
Ŷi1  M−1 ∑

h∈ℑMi

Yh

where ℑMi contains the M treated nearest matches to observation i.

∙ Remarkably, can write the matching estimator as

̂ate,match  N−1∑
i1

N

2Wi − 11  KMiYi,

where KMi is the number of times observation i is used as a match.

(See Abadie and Imbens.)
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∙ KMi is a function of the data on W,X, which is important for

variance calculations. Under unconfoundedness, W,X are effectively

“exogenous.”

∙ How can we obtain a confidence interval? Bootstrapping does not

work with matching.
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∙ Instead, the conditional variance of the matching estimator is

Var̂ate,match|WN,XN  N−2∑
i1

N

2Wi − 11  KMi2

 VarYi|,Wi,Xi.

∙ The unconditional variance is more complicated because of a

conditional bias (see Abadie and Imbens), but estimators are

programmed in nnmatch. Need to “estimate” VarYi|,Wi,xi, but they

do not have to be good pointwise estimates.
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∙ AI suggest

VarYi|,Wi,Xi  Yi − Yhi2/2

where hi is the closest match to observation i with Whi  Wi. [The

idea is that Yi − Yhi ≈ Ui − Uhi.]

∙ Could instead use flexible parametric models for first two moments of

DYi|Wi,Xi, exploiting the nature of Y. For example, if Y is binary, use

flexible logits for Wi  0, Wi  1, which is what we would do for

regression adjustment.
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∙ There is another way to think of the variance estimator. Define the

sample average treatment effect, sate, as

sate  N−1∑
i1

N

Yi1 − Yi0

∙ Notice that sate is not a population parameter; it changes across

random samples. But the estimator of ate and sate is the same. The

way we estimate the asymptotic variance depends on ate versus sate.

∙ A similar definition holds for satt.
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Matching with Regression Adjustment

∙ The matching estimators have a large-sample bias if Xi has

dimension greater than one, on the order of N−1/K where K is the

number of covariates. Dominates the variance asymptotically when

K ≥ 3.

∙ The bias of the matching estimator comes from terms of the form

wXhi − wXi where wx  EY|X,W  w.
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∙ Let ̂w be estimators – probably nonparametric – of the conditional

means. Then define new imputations as

Ỹi1  Yi if Wi  1
Ỹi1  Yhi  ̂1Xi − ̂1Xhi if Wi  0
Ỹi0  Yi if Wi  0
Ỹi0  Yhi  ̂0Xi − ̂0Xhi if Wi  1
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∙ The bias-corrected matching estimator is

̂ate,bcme  N−1∑
i1

N

Ỹi1 − Ỹi0

∙ The BCME has the same sampling variance as the matching

estimator, but the bias has been removed from the asymptotic

distribution [provided w are sufficiently smooth].

∙ The nnmatch command in Stata allows for bias adjustment.
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Matching on the Propensity Score

∙ It is also possible to match on the estimated propensity score. This is

computationally easier because it is a single variable with range in

0, 1.

∙ The Stata command is psmatch2, and it allows a variety of options.

(For example, whether to estimate ATT or ATE, how many matches to

use, whether to use smoothing.)

∙ Until recently, valid inference not available for (unsmoothed) PS

matching unless we know propensity score. Bootstrapping not justified,

but this is how Stata computes the standard errors.
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∙ The technical problem is that matching is not smooth in p̂Xi. A

small change in p̂Xi can change the match (matching is discontinuous

in the PS).

∙ Abadie and Imbens (2011, unpublished, “Matching on the Estimated

Propensity Score”): Using matching with replacement, it is possible to

estimate the sampling variance of the PS matching estimator.

∙ The estimator that ignores estimation of the PS turns out to be

conservative. So can apply nnmatch with an estimated propensity

score to obain conservative inference.
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6. Assessing Unconfoundedness

∙ As mentioned, unconfoundedness is not directly testable. So any

assessment is indirect.

∙ There are several possibilities. With multiple control groups, can

establish that a “treatment effect” for, say, comparing two control

groups is not statistically different from zero. For example, as in

Heckman, Ichimura, and Todd (1997), can have ineligibles and eligible

nonparticipants. If there is no treatment effect using, say, ineligibles as

the control and eligibility as the treatment, have more faith in

unconfoundedness for the actual treatment. But, of course,

unconfoundeness of treatment and of eligibility are different.
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∙ Can formalize by having three treatment values, Di ∈ −1, 0, 1, with

Di  −1, Di  0 representing two different controls. If

unconfoundedness holds with respect to Di, then it follows that

Yi  Di ∣ Xi,Di ∈ −1, 0

which is testable by using Di  −1 as the “control” and Di  0 as the

“treated” and estimating an ATE using the previous methods.

∙ Problem is that the implication only goes one way: passing this test

does not mean unconfounded holds; it is suggestive.
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∙ If have several pre-treatment outcomes, can construct a treatment

effect on a pseudo outcome and establish that it is not statistically

different from zero.

∙ For concreteness, suppose controls consiste of time-constant

characteristics, Zi, and three pre-assignment outcomes on the response,

Yi,−1,Yi,−2, and Yi,−3. Let the counterfactuals be for time period zero,

Yi00 and Yi01. Suppose we are willing to assume unconfoundedness

given two lags:

Yi00,Yi01  Wi ∣ Yi,−1,Yi,−2,Zi
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∙ If the process generating Yisg is appropriately stationary and

exchangeable, it can be shown that

Yi,−1  Wi,∣ Yi,−2,Yi,−3,Zi,

and this of course is testable. Conditional on Yi,−2,Yi,−3,Zi, Yi,−1

should not differ systematically for the treatment and control groups.
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∙ Alternatively, can try to assess sensitivity to failure of

unconfoundedness by using a specific alternative mechanism. For

example, suppose unconfoundedness holds conditional on an

unobservable, V, in addition to X:

Yi0,Yi1  Wi ∣ Xi,Vi

If we parametrically specify EYig|Xi,Vi, g  0, 1, specify

PWi  1|Xi,Vi, assume (typically) that Vi and Xi are independent,

then ate can be obtained in terms of the parameters of all

specifications.
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∙ In practice, we consider the version of ATE conditional on the

covariates in the sample, cate – the “conditional” ATE – so that we

only have to integrate out Vi. Often, Vi is assumed to be very simple,

such as a binary variable (indicating two “types”).

∙ Even for rather simple schemes, approach is complicated. One set of

parameters are “sensitivity” parameters, other set is estimated. Then,

evaluate how cate changes with the sensitivity parameters.

∙ See Imbens (2003) or Imbens and Wooldridge (2009) for details.
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∙ Altonji, Elder, and Taber (2005) propose a different strategy. In a

constant treatment effect setting, write the observed response as

Yi    Wi  Xi  ui
EXi

′ui  0

and then project a latent variable determiningWi onto the observables

and unobservables,

Wi
∗    Xi  ui  ei

Eei  0, CovXi,ei  Covui,ei  0.
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∙ AET define “selection on unobservables is the same as selection on

observables” as the restriction   . The idea is, other than the

treatment Wi, the factors affecting Yi, the observable part Xi and the

unobservable ui, have the same regression effect on Wi
∗. In

counterfactual setting, Yi0    Xi  ui. AET argue that in fact

 ≤  is reasonable, and so view estimates with    as a lower

bound (assuming positive selection and   0) and estimates with

  0 (OLS in this case) as an upper bound.

∙ Can apply to other kinds of Yi, such as binary.
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∙ In case where Yi follows linear model, estimation imposes

Yi    Wi  Xi  ui
Wi  1  Xi  vi ≥ 0

uv 
u2CovXi,Xi
VarXi

(OLS sets uv  0.) Cannot really estimate uv even though it is

technically identified.

∙ If we replace model for Yi with probit, u2  1 and

uv    Corrui,vi.
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7. Assessing and Improving Overlap

∙ A simple step is to compute normalized differences for each

covariate. Let X̄1j and X̄0j be the means of covariate j for the treated and

control subsamples, respectively, and let S1j and S0j be the estimated

standard deviations. Then the normalized difference is

normdiffj 
X̄1j − X̄0j

S1j
2  S0j

2

∙ Imbens and Rubin discuss rules-of-thumb. Normalized differences

above about . 25 should raise flags.

104



∙ normdiffj is not the t statistic for comparing the means of the

distribution. The t statistic depends fundamentally on the sample size.

Here interested in difference in population distributions, not statistical

significance.

∙ Limitation of looking at the normalized differences: they only

consider each marginal distribution. There can still be areas of weak

overlap in the support X even if the normalized differences are all

similar.

∙ Look directly at the propensity scores or the log-odds of the

propensity score. In other words, compute the normalized difference of

a single function of Xi.
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∙ Also look directly at the histograms of estimated propensity scores for

the treated and control groups. The command psgraph does this after

using psmatch2.

∙ If there are problems with overlap in the original sample, may have to

redefine the population. [Focusing on att rather than ate can solve part

of the overlap problem because PW  1|X  0 is allowed.]

∙ Earlier mentioned the rule of dropping i if p̂Xi ∉ . 1, . 9

∙ Can lose a lot of data – including treated observations – and resulting

population might not be what we want.
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∙ An alternative approach is to use the estimated PS to match each

treated unit with a single control unit, to obtain a new sample with the

same number of treated and controls.

∙ After using all of the data to estimate the PS, for treated units order

from largest to smallest PS. Starting at top, match the first treated unit

to the closest control. Then do the same for the next treated unit (not

replacing the control units). If there are N1 treated units, we wind up

with N1 controls, too.

∙ The new (smaller – in some cases, much smaller) sample is better

balanced. Can apply all the usual methods for att.
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∙ Has the advantage of keeping all treated observations. But the

population is hard to interpret.

∙Might be better to think about a sensible population ahead of time.

For example, would people with above median incomes be eligible for

a job training program?
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Applications

Lalonde (1986) Job Training Data

∙ Focus on a nonexperimental data set constructed by Lalonde.

Everything works with the experimental data.

∙ Available as JTRAIN3.DTA at MIT Press web site.

∙ Response re78 is a corner solution. For regression adjustment, could

use exponential, Tobit, or Cragg instead of linear regression.
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. tab train

1 if in |
job |

training | Freq. Percent Cum.
-----------------------------------------------

0 | 2,490 93.08 93.08
1 | 185 6.92 100.00

-----------------------------------------------
Total | 2,675 100.00

. reg re78 train, robust

Linear regression Number of obs  2675
F( 1, 2673)  537.36
Prob  F  0.0000
R-squared  0.0609
Root MSE  15.152

------------------------------------------------------------------------------
| Robust

re78 | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

train | -15.20478 .6559143 -23.18 0.000 -16.49093 -13.91863
_cons | 21.55392 .311785 69.13 0.000 20.94256 22.16529

------------------------------------------------------------------------------
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. * Regression adjustment:

. reg re78 train age educ black hisp married unem74 unem75 re74 re75, robust

Linear regression Number of obs  2675
F( 10, 2664)  244.41
Prob  F  0.0000
R-squared  0.5871
Root MSE  10.064

------------------------------------------------------------------------------
| Robust

re78 | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

train | .1153847 .831752 0.14 0.890 -1.51556 1.74633
age | -.0897655 .0232735 -3.86 0.000 -.1354014 -.0441296

educ | .5141238 .0924729 5.56 0.000 .3327978 .6954498
black | -.4542188 .4461159 -1.02 0.309 -1.328987 .4205498

hisp | 2.197368 1.22836 1.79 0.074 -.2112669 4.606004
married | 1.204787 .4963532 2.43 0.015 .2315101 2.178063

unem74 | 2.389527 1.360835 1.76 0.079 -.2788731 5.057927
unem75 | -1.461964 1.412258 -1.04 0.301 -4.231196 1.307269

re74 | .31262 .0616021 5.07 0.000 .1918272 .4334129
re75 | .5436543 .0682471 7.97 0.000 .4098318 .6774769

_cons | .9536064 1.500485 0.64 0.525 -1.988628 3.895841
------------------------------------------------------------------------------
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. qui reg re78 age educ black hisp married unem74 unem75 re74 re75 if ~train

. predict re78_0
(option xb assumed; fitted values)

. qui reg re78 age educ black hisp married unem74 unem75 re74 re75 if train

. predict re78_1
(option xb assumed; fitted values)

. gen ate_i  re78_1 - re78_0

. sum ate_i

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

ate_i | 2675 -8.819958 7.75979 -83.80467 7.277479

. sum ate_i if train

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

ate_i | 185 .8431944 3.262634 -13.71843 5.917717
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. do ateregjtrain3.do

. clear all

. capture program drop ateboot

. program ateboot, eclass
1.

. * Estimate linear model on each treatment group

. tempvar touse
2. gen byte ‘touse’  1
3. reg re78 age educ black hisp married unem74 unem75 re74 re75 if train
4. predict re78h_1
5. reg re78 age educ black hisp married unem74 unem75 re74 re75 if ~train
6. predict re78h_0
7.

. gen ate_i  re78h_1 - re78h_0
8. sum ate_i
9. scalar ate  r(mean)

10. sum ate_i if train
11. scalar att  r(mean)
12.

. matrix b  (ate, att)
13. matrix colnames b  ate att
14.

. ereturn post b , esample(‘touse’)
15. ereturn display
16.

. drop re78h_1 re78h_0 ate_i
17.

. end

. use jtrain3

.

. bootstrap _b[ate] _b[att], reps(1000) seed(123): ateboot
(running ateboot on estimation sample)
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Bootstrap replications (1000)
------- 1 ------ 2 ------ 3 ------ 4 ------ 5
.................................................. 50
..................................................
.................................................. 1000

Bootstrap results Number of obs  2675
Replications  1000

command: ateboot
_bs_1: _b[ate]
_bs_2: _b[att]

------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
_bs_1 | -8.819958 4.525198 -1.95 0.051 -17.68918 .0492667
_bs_2 | .8431944 .925601 0.91 0.362 -.9709502 2.657339

------------------------------------------------------------------------------

.

. program drop ateboot

end of do-file
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. * Nearest-neighbor matching, no bias (regression) adjustment:

. nnmatch re78 train age educ black hisp married unem74 unem75 re74 re75,
tc(ate)

Matching estimator: Average Treatment Effect ate

Weighting matrix: inverse variance Number of obs  2675
Number of matches (m)  1

------------------------------------------------------------------------------
re78 | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
SATE | -13.25807 4.125526 -3.21 0.001 -21.34396 -5.17219

------------------------------------------------------------------------------
Matching variables: age educ black hisp married unem74 unem75 re74 re75

. nnmatch re78 train age educ black hisp married unem74 unem75 re74 re75,
tc(att)

Matching estimator: Average Treatment Effect for the Treated

Weighting matrix: inverse variance Number of obs  2675
Number of matches (m)  1

------------------------------------------------------------------------------
re78 | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
SATT | 2.07348 1.673616 1.24 0.215 -1.206747 5.353707

------------------------------------------------------------------------------
Matching variables: age educ black hisp married unem74 unem75 re74 re75
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* With bias (regression) adjustment:

. nnmatch re78 train age educ black hisp married unem74 unem75 re74 re75,
tc(ate) biasadj(bias)

Matching estimator: Average Treatment Effect ate

Weighting matrix: inverse variance Number of obs  2675
Number of matches (m)  1

------------------------------------------------------------------------------
re78 | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
SATE | -6.599812 3.413632 -1.93 0.053 -13.29041 .0907829

------------------------------------------------------------------------------
Matching variables: age educ black hisp married unem74 unem75 re74 re75
Bias-adj variables: age educ black hisp married unem74 unem75 re74 re75

. nnmatch re78 train age educ black hisp married unem74 unem75 re74 re75,
tc(att) biasadj(bias)

Matching estimator: Average Treatment Effect for the Treated

Weighting matrix: inverse variance Number of obs  2675
Number of matches (m)  1

------------------------------------------------------------------------------
re78 | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
SATT | 2.415483 1.679509 1.44 0.150 -.8762945 5.70726

------------------------------------------------------------------------------
Matching variables: age educ black hisp married unem74 unem75 re74 re75
Bias-adj variables: age educ black hisp married unem74 unem75 re74 re75
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* Propensity score matching:

. logit train age educ black hisp married unem74 unem75 re74 re75

Logistic regression Number of obs  2675
LR chi2(9)  926.52
Prob  chi2  0.0000

Log likelihood  -209.38931 Pseudo R2  0.6887

------------------------------------------------------------------------------
train | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
age | -.1109206 .0177106 -6.26 0.000 -.1456327 -.0762084

educ | -.1008807 .0561133 -1.80 0.072 -.2108608 .0090994
black | 2.650097 .3605668 7.35 0.000 1.943399 3.356795

hisp | 2.247747 .5908963 3.80 0.000 1.089611 3.405882
married | -1.560628 .2817913 -5.54 0.000 -2.112928 -1.008327

unem74 | 3.272456 .4887585 6.70 0.000 2.314507 4.230405
unem75 | -1.371405 .4545789 -3.02 0.003 -2.262363 -.4804465

re74 | .0201797 .0313149 0.64 0.519 -.0411963 .0815557
re75 | -.2743162 .0477066 -5.75 0.000 -.3678194 -.1808129

_cons | 1.794543 .979261 1.83 0.067 -.1247735 3.713859
------------------------------------------------------------------------------
Note: 78 failures and 0 successes completely determined.
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. predict phat
(option pr assumed; Pr(train))

. sum phat

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

phat | 2675 .0691589 .2041418 8.86e-21 .9889598

. count if phat  .1
2366

. count if phat  .9
83

. psmatch2 train age educ black hisp married unem74 unem75 re74 re75,
outcome(re78) logit ate

Logistic regression Number of obs  2675
LR chi2(9)  926.52
Prob  chi2  0.0000

Log likelihood  -209.38931 Pseudo R2  0.6887

------------------------------------------------------------------------------
train | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
age | -.1109206 .0177106 -6.26 0.000 -.1456326 -.0762085

educ | -.1008807 .0561131 -1.80 0.072 -.2108604 .0090991
black | 2.650097 .3605654 7.35 0.000 1.943402 3.356792

hisp | 2.247747 .5908943 3.80 0.000 1.089615 3.405878
married | -1.560628 .28179 -5.54 0.000 -2.112926 -1.008329

unem74 | 3.272456 .4887569 6.70 0.000 2.31451 4.230402
unem75 | -1.371405 .4545768 -3.02 0.003 -2.262359 -.4804507

re74 | .0201797 .0313146 0.64 0.519 -.0411959 .0815552
re75 | -.2743162 .0477056 -5.75 0.000 -.3678175 -.1808149
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_cons | 1.794543 .979257 1.83 0.067 -.1247656 3.713851
------------------------------------------------------------------------------
Note: 78 failures and 0 successes completely determined.
There are observations with identical propensity score values.
The sort order of the data could affect your results.
Make sure that the sort order is random before calling psmatch2.
----------------------------------------------------------------------------------------

Variable Sample | Treated Controls Difference S.E. T-stat
---------------------------------------------------------------------------------------

re78 Unmatched | 6.34914538 21.5539213 -15.2047759 1.15461436 -13.17
ATT | 6.34914538 4.10456445 2.24458093 1.58543438 1.42
ATU | 21.5539213 6.77791717 -14.7760042 . .
ATE | -83.8046722 . .

---------------------------------------------------------------------------------------
Note: S.E. does not take into account that the propensity score is estimated.

| psmatch2:
psmatch2: | Common
Treatment | support

assignment | On suppor | Total
--------------------------------

Untreated | 2,490 | 2,490
Treated | 185 | 185

--------------------------------
Total | 2,675 | 2,675
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. psgraph, bin(40)

-1
-.8

-.6
-.4

-.2
0

.2

0 .2 .4 .6 .8 1
PS

Untreated Treated

Histograms of Propensity Scores

122



. keep if phat  .1 & phat  .9
(2449 observations deleted)

. psmatch2 train age educ black hisp married unem74 unem75 re74 re75,
outcome(re78) logit ate

Logistic regression Number of obs  226
LR chi2(9)  86.34
Prob  chi2  0.0000

Log likelihood  -111.48296 Pseudo R2  0.2791

------------------------------------------------------------------------------
train | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
age | -.138872 .0290637 -4.78 0.000 -.1958358 -.0819082

educ | -.1239302 .0739195 -1.68 0.094 -.2688096 .0209493
black | 3.062403 .6672729 4.59 0.000 1.754572 4.370234

hisp | 2.722197 .8657224 3.14 0.002 1.025412 4.418981
married | -1.942727 .4091421 -4.75 0.000 -2.744631 -1.140823

unem74 | 4.273888 .8025175 5.33 0.000 2.700983 5.846794
unem75 | -2.345185 .6734993 -3.48 0.000 -3.66522 -1.025151

re74 | .0270945 .0445556 0.61 0.543 -.0602329 .1144218
re75 | -.4978745 .1039551 -4.79 0.000 -.7016227 -.2941263

_cons | 3.203055 1.302987 2.46 0.014 .6492481 5.756862
------------------------------------------------------------------------------
There are observations with identical propensity score values.
The sort order of the data could affect your results.
Make sure that the sort order is random before calling psmatch2.
----------------------------------------------------------------------------------------

Variable Sample | Treated Controls Difference S.E. T-stat
---------------------------------------------------------------------------------------

re78 Unmatched | 6.55048374 6.73236973 -.181885992 .965331308 -0.19
ATT | 6.55048374 7.39334926 -.842865517 1.94904014 -0.43
ATU | 6.73236973 5.20654872 -1.52582101 . .
ATE | -7.42042017 . .
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---------------------------------------------------------------------------------------
Note: S.E. does not take into account that the propensity score is estimated.

| psmatch2:
psmatch2: | Common
Treatment | support

assignment | On suppor | Total
--------------------------------

Untreated | 128 | 128
Treated | 98 | 98

--------------------------------
Total | 226 | 226
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. nnmatch re78 train age educ black hisp married unem74 unem75 re74 re75,
tc(att)

Matching estimator: Average Treatment Effect for the Treated

Weighting matrix: inverse variance Number of obs  226
Number of matches (m)  1

------------------------------------------------------------------------------
re78 | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
SATT | 1.586371 1.763594 0.90 0.368 -1.870209 5.042951

------------------------------------------------------------------------------
Matching variables: age educ black hisp married unem74 unem75 re74 re75

. nnmatch re78 train age educ black hisp married unem74 unem75 re74 re75,
tc(ate)

Matching estimator: Average Treatment Effect ate

Weighting matrix: inverse variance Number of obs  226
Number of matches (m)  1

------------------------------------------------------------------------------
re78 | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
SATE | .2957925 1.364623 0.22 0.828 -2.378819 2.970404

------------------------------------------------------------------------------
Matching variables: age educ black hisp married unem74 unem75 re74 re75
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. * Can use simpler rules for selecting the sample based on covariates that

. * should matter for treatment assignment.

. use jtrain3

. des avgre

storage display value
variable name type format label variable label
-----------------------------------------------------------------------------------------
avgre float %9.0g (re74  re75)/2

. sum avgre if train

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

avgre | 185 1.813815 3.679893 0 23.28835

. count if avgre  10 & train
6

. keep if avgre  10
(1910 observations deleted)
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. tab train

1 if in |
job |

training | Freq. Percent Cum.
-----------------------------------------------

0 | 586 76.60 76.60
1 | 179 23.40 100.00

-----------------------------------------------
Total | 765 100.00

. reg re78 train, robust

Linear regression Number of obs  765
F( 1, 763)  8.77
Prob  F  0.0032
R-squared  0.0091
Root MSE  9.0224

------------------------------------------------------------------------------
| Robust

re78 | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

train | -2.03739 .68789 -2.96 0.003 -3.387772 -.6870082
_cons | 8.185696 .3889923 21.04 0.000 7.422074 8.949318

------------------------------------------------------------------------------
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. reg re78 train age educ black hisp married unem74 unem75 re74 re75, robust

Linear regression Number of obs  765
F( 10, 754)  27.48
Prob  F  0.0000
R-squared  0.2472
Root MSE  7.9108

------------------------------------------------------------------------------
| Robust

re78 | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

train | 2.229707 .8322748 2.68 0.008 .5958553 3.863558
age | -.1258557 .0265928 -4.73 0.000 -.1780604 -.0736509

educ | .3048632 .1188998 2.56 0.011 .0714492 .5382773
black | -1.51669 .619149 -2.45 0.015 -2.732151 -.3012295

hisp | -.9766242 1.084878 -0.90 0.368 -3.106366 1.153117
married | 2.012687 .6918517 2.91 0.004 .654502 3.370871

unem74 | 1.69765 1.24419 1.36 0.173 -.7448382 4.140138
unem75 | .6463203 1.247726 0.52 0.605 -1.80311 3.09575

re74 | .4240549 .1024877 4.14 0.000 .2228597 .6252501
re75 | .8437341 .1606773 5.25 0.000 .5283061 1.159162

_cons | 1.788739 1.998809 0.89 0.371 -2.135155 5.712632
------------------------------------------------------------------------------

129



. * Separate regressions:

. bootstrap _b[ate] _b[att], reps(1000) seed(123): ateboot
(running ateboot on estimation sample)

Bootstrap replications (1000)

Bootstrap results Number of obs  765
Replications  1000

command: ateboot
_bs_1: _b[ate]
_bs_2: _b[att]

------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
_bs_1 | -1.120044 1.429752 -0.78 0.433 -3.922306 1.682218
_bs_2 | 3.170748 .9101968 3.48 0.000 1.386795 4.954701

------------------------------------------------------------------------------
.
. program drop ateboot

. * ATE estimate is negative but ATT is positive, large, and statistically

. * significant.
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* PS weighting: still does not work well:

. do atepswjtrain3

. capture program drop ateboot

. program ateboot, rclass
1.

. * Estimate propensity score

.

. logit train age educ black hisp married unem74 unem75 re74 re75
2. predict phat
3. gen kiate  (train - phat)*re78/(phat*(1 - phat))
4. sum kiate
5. return scalar atew  r(mean)
6. sum train
7. scalar rho  r(mean)
8. gen kiatt  (train - phat)*re78/(1 - phat)
9. sum kiatt

10. return scalar attw  r(mean)/rho
11.

. drop phat kiate kiatt
12.

. end
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. bootstrap r(atew) r(attw), reps(1000) seed(123): ateboot
(running ateboot on estimation sample)

Bootstrap results Number of obs  765
Replications  1000

command: ateboot
_bs_1: r(atew)
_bs_2: r(attw)

------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
_bs_1 | -3.021999 2.361112 -1.28 0.201 -7.649694 1.605696
_bs_2 | -.4351315 3.279641 -0.13 0.894 -6.863109 5.992846

------------------------------------------------------------------------------
.
. program drop ateboot
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. psmatch2 train age educ black hisp married unem74 unem75 re74 re75,
outcome(re78) logit ate

Logistic regression Number of obs  765
LR chi2(9)  492.18
Prob  chi2  0.0000

Log likelihood  -170.10568 Pseudo R2  0.5913

----------------------------------------------------------------------------------------
Variable Sample | Treated Controls Difference S.E. T-stat

---------------------------------------------------------------------------------------
re78 Unmatched | 6.14830643 8.18569633 -2.03738991 .770511114 -2.64

ATT | 6.14830643 3.98120016 2.16710627 1.50085659 1.44
ATU | 8.18569633 9.13622201 .950525678 . .
ATE | 1.23518963 . .

---------------------------------------------------------------------------------------
Note: S.E. does not take into account that the propensity score is estimated.

| psmatch2:
psmatch2: | Common
Treatment | support

assignment | On suppor | Total
--------------------------------

Untreated | 586 | 586
Treated | 179 | 179

--------------------------------
Total | 765 | 765
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. nnmatch re78 train age educ black hisp married unem74 unem75 re74 re75,
tc(att)

Matching estimator: Average Treatment Effect for the Treated

Weighting matrix: inverse variance Number of obs  765
Number of matches (m)  1

------------------------------------------------------------------------------
re78 | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
SATT | 2.48946 1.753482 1.42 0.156 -.9473009 5.926221

------------------------------------------------------------------------------
Matching variables: age educ black hisp married unem74 unem75 re74 re75

. nnmatch re78 train age educ black hisp married unem74 unem75 re74 re75,
tc(att) biasadj(bias)

Matching estimator: Average Treatment Effect for the Treated

Weighting matrix: inverse variance Number of obs  765
Number of matches (m)  1

------------------------------------------------------------------------------
re78 | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
SATT | 2.676588 1.796669 1.49 0.136 -.8448188 6.197995

------------------------------------------------------------------------------
Matching variables: age educ black hisp married unem74 unem75 re74 re75
Bias-adj variables: age educ black hisp married unem74 unem75 re74 re75
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Effects of Right Heart Catheterization on Death Rates

∙ The response variable, Yi  deathi, is binary. Exploit that in

regression adjustment. Matching and PS methods do not need to be

altered (although one might want to if the methods are combined with

regression adjustment).

∙ Treatment is Wi  rhci.
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. tab rhc

1 if |
received |

right heart |
catheteriza |

tion | Freq. Percent Cum.
-----------------------------------------------

0 | 3,551 61.92 61.92
1 | 2,184 38.08 100.00

-----------------------------------------------
Total | 5,735 100.00

. tab death

1 if |
patient |

died within |
180 days | Freq. Percent Cum.

-----------------------------------------------
0 | 2,013 35.10 35.10
1 | 3,722 64.90 100.00

-----------------------------------------------
Total | 5,735 100.00
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. reg death rhc, robust

Linear regression Number of obs  5735
F( 1, 5733)  15.56
Prob  F  0.0001
R-squared  0.0027
Root MSE  .47673

------------------------------------------------------------------------------
| Robust

death | Coef. Std. Err. t P|t| [95% Conf. Interval]
-----------------------------------------------------------------------------

rhc | .0507212 .0128566 3.95 0.000 .0255174 .0759249
_cons | .6296818 .0081049 77.69 0.000 .6137931 .6455705

------------------------------------------------------------------------------
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. * Regression adjustment using logit models for death, unrestricted

. * coefficients:

. do atereg_rhc

. capture program drop ateboot

.

. program ateboot, eclass
1.

. * Estimate logit on each treatment group

.

. tempvar touse
2. gen byte ‘touse’  1
3. xi: logit death i.sex i.race i.income i.cat1 i.cat2 i.ninsclas age if rhc
4. predict d1hat
5. xi: logit death i.sex i.race i.income i.cat1 i.cat2 i.ninsclas age if ~rhc
6. predict d0hat
7. gen diff  d1hat - d0hat
8. sum diff
9. scalar ate  r(mean)

10. sum diff if rhc
11. scalar att  r(mean)
12. matrix b  (ate, att)
13. matrix colnames b  ate att
14. ereturn post b , esample(‘touse’)
15. ereturn display
16. drop d1hat d0hat diff _I*
17.

. end

.
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. bootstrap _b[ate] _b[att], reps(1000) seed(123): ateboot
(running ateboot on estimation sample)

Bootstrap results Number of obs  5735
Replications  1000

command: ateboot
_bs_1: _b[ate]
_bs_2: _b[att]

------------------------------------------------------------------------------
| Observed Bootstrap Normal-based
| Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
_bs_1 | .0776176 .0129611 5.99 0.000 .0522143 .1030208
_bs_2 | .0656444 .01366 4.81 0.000 .0388713 .0924175

------------------------------------------------------------------------------

. program drop ateboot

. * Controlling for factors only makes the effect larger, not smaller.

140



. xi: logit rhc i.female i.race i.income i.cat1 i.cat2 i.ninsclas age
i.female _Ifemale_0-1 (naturally coded; _Ifemale_0 omitted)
i.race _Irace_0-2 (naturally coded; _Irace_0 omitted)
i.income _Iincome_0-3 (naturally coded; _Iincome_0 omitted)
i.cat1 _Icat1_1-9 (naturally coded; _Icat1_1 omitted)
i.cat2 _Icat2_1-7 (naturally coded; _Icat2_1 omitted)
i.ninsclas _Ininsclas_1-6 (naturally coded; _Ininsclas_1 omitted)

Iteration 0: log likelihood  -3810.7005
Iteration 1: log likelihood  -3503.6889
Iteration 2: log likelihood  -3497.9775
Iteration 3: log likelihood  -3497.9617
Iteration 4: log likelihood  -3497.9617

Logistic regression Number of obs  5735
LR chi2(26)  625.48
Prob  chi2  0.0000

Log likelihood  -3497.9617 Pseudo R2  0.0821

------------------------------------------------------------------------------
rhc | Coef. Std. Err. z P|z| [95% Conf. Interval]

-----------------------------------------------------------------------------
_Ifemale_1 | .1630495 .0587579 2.77 0.006 .0478861 .2782129

_Irace_1 | .0424279 .0827591 0.51 0.608 -.1197771 .2046328
_Irace_2 | .0393684 .1361998 0.29 0.773 -.2275784 .3063151

_Iincome_1 | .0443619 .0762726 0.58 0.561 -.1051296 .1938535
_Iincome_2 | .151793 .0892757 1.70 0.089 -.0231841 .3267701
_Iincome_3 | .1579471 .1140752 1.38 0.166 -.0656361 .3815303

_Icat1_2 | .498032 .107388 4.64 0.000 .2875553 .7085086
_Icat1_3 | -1.226306 .1495545 -8.20 0.000 -1.519428 -.9331849
_Icat1_4 | -.7173791 .1714465 -4.18 0.000 -1.053408 -.3813501
_Icat1_5 | -1.002513 1.085305 -0.92 0.356 -3.129671 1.124645
_Icat1_6 | -.6941957 .1260198 -5.51 0.000 -.94119 -.4472013
_Icat1_7 | -1.258815 .4833701 -2.60 0.009 -2.206203 -.3114273
_Icat1_8 | -.2076635 .1177652 -1.76 0.078 -.438479 .0231519
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_Icat1_9 | 1.003787 .0768436 13.06 0.000 .8531766 1.154398
_Icat2_2 | .9804654 1.465085 0.67 0.503 -1.891048 3.851979
_Icat2_3 | -.4141065 .4428411 -0.94 0.350 -1.282059 .4538461
_Icat2_4 | -.8864827 .8454718 -1.05 0.294 -2.543577 .7706116
_Icat2_5 | -.195389 .3933026 -0.50 0.619 -.966248 .57547
_Icat2_6 | 1.034498 .369503 2.80 0.005 .3102859 1.758711
_Icat2_7 | .1415088 .3649828 0.39 0.698 -.5738443 .8568619

_Ininsclas_2 | .1849583 .1216214 1.52 0.128 -.0534153 .4233318
_Ininsclas_3 | .1082916 .152243 0.71 0.477 -.1900992 .4066824
_Ininsclas_4 | .5216726 .1495659 3.49 0.000 .2285288 .8148164
_Ininsclas_5 | .468176 .1122184 4.17 0.000 .248232 .6881199
_Ininsclas_6 | .3742273 .1249122 3.00 0.003 .1294038 .6190508

age | .0006419 .002252 0.29 0.776 -.0037719 .0050557
_cons | -1.36677 .3834979 -3.56 0.000 -2.118412 -.6151284

------------------------------------------------------------------------------

. predict phat
(option pr assumed; Pr(rhc))

. sum phat

Variable | Obs Mean Std. Dev. Min Max
---------------------------------------------------------------------

phat | 5735 .3808195 .1564252 .0435625 .7379614

. qui xi: psmatch2 rhc i.female i.race i.income i.cat1 i.cat2 i.ninsclas age,
outcome(death)

Note: S.E. does not take into account that the propensity score is estimated.

. psgraph
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. xi: psmatch2 rhc i.female i.race i.income i.cat1 i.cat2 i.ninsclas age,
outcome(death) logit ate

There are observations with identical propensity score values.
The sort order of the data could affect your results.
Make sure that the sort order is random before calling psmatch2.
----------------------------------------------------------------------------------------

Variable Sample | Treated Controls Difference S.E. T-stat
---------------------------------------------------------------------------------------

death Unmatched | .68040293 .62968178 .050721151 .012963982 3.91
ATT | .68040293 .619505495 .060897436 .019021326 3.20
ATU | .62968178 .705153478 .075471698 . .
ATE | .069921534 . .

---------------------------------------------------------------------------------------
Note: S.E. does not take into account that the propensity score is estimated.

| psmatch2:
psmatch2: | Common
Treatment | support

assignment | On suppor | Total
--------------------------------

Untreated | 3,551 | 3,551
Treated | 2,184 | 2,184

--------------------------------
Total | 5,735 | 5,735
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