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1 Objectives

The purpose of these notes is to provide a soft introduction to one of the ap-
proaches to causal inference from a personal perspective. The objective is not
a philosophical disquisition into causality but a formal framework for handling
causal questions.



2 Counterfactuals, why not ?

Or, Potential Outcomes (PO), belong to what I like to call ”scientific fiction”, that
i1s mental constructions which some find inspiring. I only disagree with Rubin and
his School who have often claimed that one cannot discuss inference without PO.
In most of Pearl’s construction, with which I feel more comfortable, counterfac-
tual variables are, so to speak, optional. At least for the problems I am familiar
with, I claim that we can comfortably do without.

Scientific fiction depend strongly on personal taste. Here are some of the reason
why I do not like PO:

e my condition (whether unemployed) if I had not gone to university (contrary
to what I did) is not well defined; some refer to the so called “most closed
world” to the actual one, a notion which I find hard to hard to understand;

e perhaps many people reason in terms of PO because they had been led to
believe they could not do without and never asked themselves what the notion
exactly means;

e we could not do without counterfactuals if we really were interested in deter-
mining individual causal effects (which, however, are never identifiable and
hardly of scientific interest).



2 Why a ”grammar” for reasoning on causation ?

Consider the following examples:

e In a study of income and height for a sample of adults somebody finds that
income increases with height;

e [t has been established that the probability of being unemployed is lower
among young people who took a course relative to those who did not, though
offered a chance to do so.

Has height a causal effect on income ? Probably, had we recorded sex of partici-
pants, we could have observed that, conditionally on sex, height has no effect on
income.

In the second instance one could argue that, if we could have recorded individual
attitudes, we could have noted that subjects with certain attitudes were more likely
to take the course and also to get a job. If this was the case, intuitively, in order to
asses the causal effect of taking the course, we would have to compare individuals
with similar attitudes.



3 The Simpson’s paradox

It is well known that if, say, X, Y, Z are qualitative ordered variables, the marginal
distribution of X, Y can exhibit independence or positive association, irrespec-
tively of the fact that in the conditional distribution X, Y | Z there is positive or
even negative association. Thus the marginal association is not even an “average”
of the conditional association.

Thus, if X is the possible ”cause” and Y the “effect”, it is crucial to know whether
or not we should control for Z. The message that, hopefully, will emerge from
these notes is that there is not a simple answer and that we should describe in more
detail our understanding of the system.



4 Structural equations and DAGs

In many contexts we can formalize our knowledge (or hypothesis) by a system of
non parametric structural equations

X; = filG(Xi), €]

where X is one of the variables that describe a given problem, G(X;) is a subset
of X1, ..., X,_1, called the "parents” of X;, which, together with ¢;, are expected
to determine X;. The system is recursive because only “earlier” variables can
cause “later” ones.

From a counterfactual point of view, the right hand side is the value that X; would
take for a given subject if, possibly contrary to facts, the “causes” were set to
G(X;). A structural equation may also be interpreted as defining the conditional
distribution of X; within an exchangeable population of subjects with the same
value of G(X;).

A system of structural equations with such recursive property may be represented
by a directed acyclic graph (DAG). However, the contrary is not true: a DAG in
itself defines only a possible factorization of a joint distribution satisfying certain
constraints of conditional independence and the arrows do not have necessarily a
causal interpretation.



5 Conditional independence and DAGs

Intuitively, whenever an earlier variable does not appear in the structural equation
of a later one, there must be some conditional independence. The problem is
whether we can detect any possible independence constraint without algebraic
manipulations but simply by inspecting the DAG. The answer is yes and there are
several methods for doing this; the d-separation rule derived by Pearl is perhaps
the most direct; however it requires some preliminary terminology.

a path is a sequence of arrows joining two nodes (variables), regardless of their
direction;

a collider is an internal node contained in a path with converging arrows;

descendant: a node V' is a descendant of U if there is a directed path from U to
%

Examples: in the DAG below V' is a collider, but 1V and 7" are not;

X—V~—Y X |%.% Y X~—T—Y
in the following DAG Y is a descendant of U, but 1" and W are not

U—V~—T

SN

X—Y 14



6 d-separation
A path from X to Y is said to be intercepted by a set Z:

by conditioning: the path includes at least a node V' € Z which is not a collider,
as in the following example:

X—V—W-—Y

by marginalization: the path includes at least a node V" such that: (i) V is a
collider (ii) V' ¢ Z, (iii) no element of Z is a descendant of V/, as in the
example below:

X—V—Y X—V-—Y.
| NS
A Z

d-separation: X LY | Z if and only if Z intercepts all possible paths from X
to Y.



7 Causal effect and the ”do” operator

Following Pearl (1995), we say that, if the causal structure of a problem can be
represented by a DAG, to compute the causal effect of X on a variable Y, we
should first remove from the DAG all arrows pointing to X and then marginalize
all other variables. This is equivalent to remove the structural equation in which
X is determined by its “parents”.

This definition may be motivated as follows: in order to measure the effect of a
given cause, we must take full control of its variations by preventing other vari-
ables to change the value of X.

The distribution of Y induced by an hypothetical intervention on X will be de-
noted with P(Y"\ X), a notation which is similar to that of conditioning though,
as we will see, intervention is equivalent to conditioning only in special cases.
Once the distribution has been constructed, the causal effect may be measured in
different ways, a rather general formulation is outlined below

h|P(Y € AAX =z,)] — h[P(Y € A\X = )],

where h(-) is an arbitrary link function and A is a set of interest.



8 The intervention distribution

Formally, apart from the marginalization which follow the usual rules of probabil-
ity, the operation of removing the arrows pointing to X is equivalent to divide the
joint distribution associated with the DAG by P(X | G(X)). The resulting distri-
bution is, in all respects, a proper probability distribution for any given value of X
which is determined by the original joint distribution and by the causal question
of interest.

If we could run an experiment where the values of X for each unit were fixed from
the outside while the remaining variables of the system were left free, there would
be no arrows pointing to X in the corresponding DAG. Thus, to compute the in-
tervention distribution is equivalent to perform an ideally randomized experiment
in a context where we were unable or did not care to do so.



9 Intervention equals conditioning ?

The intuitive notion that to compute the causal effect we should ”control for co-
variates” is true is the following example

U

L\

X—Y

the intervention distribution gives

P(Y\X):ZP(“) (X(’;)‘UYX“ ZP P(Y | X,u)

U

thus, if U was a known covariate, we should first compute the effect conditionally
on U and then average across possible values of U. However, if U was unobserv-
able, both operations could not be performed from knowledge of the distribution

of the observable variables and we would say that the effect of X on Y is "con-
founded” by U.



10 Direct and indirect effects
Now consider a DAG only slightly different

Z

/]

X—Y
and suppose we want to compute the causal effect on the linear scale
PY > y\z1) — P(Y > y\zo).

because there are no arrows pointing to X, the intervention distribution is now
equal to Y, P(z | X)P(Y | X,2)=P(Y | X), so here we should not adjust
for covariates. Now expand on Z; by algebraic manipulation and the fact that, if
Z 2z, Pl |z)=1=%_, ., P(z|z)

Z[P(Y >y ‘ Zaaj1> _P(Y >>Y ’ ZaxO)]P(’Z ‘ 'CUO)

+ Z (z | z1) = P(z | z)|P(Y >y | 2,21)}

see next ...



11 Natural direct effect
= Z[P(Y >y | z,x) — P(Y >y z,20)|P(z | z)

+Z (z | 1) — Pz | 2)][P(Y >y | z,21) — P(Y >y | 2, 21)]-

2>20

The last decomposition shows that, when there are multiple paths from X to Y,
the causal effect may be decomposed into two components:

1. the direct effect weighted with the distribution of Z induced by setting X =
To; this is called “natural direct effect;

2. the indirect effect, which is the sum of the product of the effect of setting X
to x; rather than xy on Z, times the effect of setting Z = 2z rather than z; on
Y, while controlling for X

Note that the above decomposition is not unique. In addition, several different
definitions of direct effects have been proposed in the literature, each definition
corresponds to a different wasy of decomposing the total effect.



12 Identifiability of causal effects

Now the question is: can the observed distribution answer the causal query of
interest or we should have organized a different experiment or collected different
data ? Clearly, the problem arise only when the causal DAG contains nodes which
were not observed or could not be observed.

When there are unobserved nodes and we are not prepared to make parametric
assumptions concerning the joint distribution, in addition to those which are en-
coded in the causal DAG, the question is whether the intervention distribution of
interest can be marginalized or, in other words, whether the quantities which are
required to do so can be estimated from the observables.



13 The ’back-door” rule

This 1s a result due to Pearl stating that, under certain conditions based on the
DAG, certain causal effects are identifiable. Special cases of the same result are
known as ”Average Partial Effect”, see for instance the book by Wooldrige.

A set of nodes Z satisfy the back-door condition for computing the causal effect
of X onY if:

e no element of Z is a descendant of X,

e any path between X and Y which contains an arrow pointing to X is inter-
cepted by Z

In the example below where U is latent, W, R or I", R satisfy the back-door con-
ditions for the effect of X on Y

TH
T
W

™
R Y
N%



14 Computing the effect with back-door variables

To compute the causal effect in the previous DAG, first compute

P(Y,U, R, W, T\ X and marginalize W
P(Y\X) = S‘S‘Tp P(t | w)P(r | wPY | X, u)

with arrow into X removed, note that U L X | R,T and Y 1L R,T" | X, U and
that P(U, R, T)= P(R, T)P(U | R, T), then by standard manipulation

P(Y\X) = Y?‘S‘Puyr t, X)P(r,t)P(Y | X,u,r,t)
YYYPT?S (Yiu | X,r,t)
— ZZPY!Xtr P(t,r).

Rule Condition on back-door variables and then average.




15 Other examples

To familiarize with the notion, consider the following example where U is latent
and Z satisfy the back-door conditions

U—Z
7]

write the intervention distribution

P(Y\X) = ZZP P(z | w)P(Y | X, 2)

and note that, because > . P(u)P(z | u) = P(z), the latent U can be marginal-
ized in a more direct way and the resulting expression may be interpreting again
as “’condition on the back-door and average”.



16 Identification by indicator variables
Consider the two DAGs below

W—U W~—U

o o

X—Y X—Y

first nota that in both cases W is a back-door variable and that, once the interven-
tion distribution is written down, U is easily marginalized and the final expression
1s the same for the two cases

P(Y\X) = ZPY\Xw )P(w).



17 Models with a proxy

Some would call the variabile Z in the DAG below a proxy because, being deter-
mined by U, it provides, intuitively, an observable substitute for the latent J

Z—U

L\

X—Y

however it can be verified that Z does not satisfy the back-door conditions and we
get

P(Y\X) = ZZP Pz | wP(Y |u,X) = ZP P(Y | u, X)

which 1s the basic formula for a confounded causal effect. However, intuition
suggests that, if Z was strongly correlated with UU, we could approximate the
causal effect by replacing U with Z. This is true and can be verified easily by
simulation.

However, if U is unobservable, there is no way to check how strong is the associ-
ation between U and Z.



18 The front-door rule

Though the following DAG is apparently similar to those seen so far, here the
effect of X carries through Z and is confounded with the effect of U

X—U.

L

Z—Y

Apparently, there is no obvious way to marginalize U from the expression below
PY\X) = ZZP P(z | X)P(Y | u, 2).

However, Z satisfies the conditions for the ”front-door” formula
e / intercepts all directed paths from X to Y,
e there is no back-door path between X and 7.
e X intercepts all paths from Y with an arrow into Z.

A result due to Pearl shows that under these conditions the causal effect of X on

Y.



19 The front-door formula

For an algebraic derivation use the identity P(U) =) P(U | x)P(x) and ex-

ploit the following conditional independencies: Y L X | Z, U and U Z | X,
reorganizing terms and marginalize to obtain

PY\X) = S‘S‘S‘Puyaz )P(z | X)P(Y | u,2)
:sz\XZP ZPnyuzP(u\x,z)
:ZPZ\XZP ZPYuy:cz
:ZPz\XZP P(Y | z,2).

The final formula is, essentially, the average causal effect of Z on Y with X as a
back-door, weighted with the distribution of Z conditionally on X .




20 Models with an instrumental variable

The DAG below corresponds to a basic model with an instrumental variable Z

U

L\

—X—Y

where U represents individual heterogeneity and is marginally independent from
the “instrument” Z and Y is independent from 2 given X, U.

It is well known that the effect of X on Y is not identifiable without paramet-
ric restrictions of the model, for instance, in the case of binary variables, Balke
and Pearl(1997) or Dawid (2002) have determined appropriate upper and lower
bounds for the effect.

Observe also that the DAG contains the confounded component U, X, Y and that
in the binary case the observable distribution is determined by 7 independent pa-
rameters while the latent requires at least 8: 2 for the marginals of Z, U and 3 for
each conditional distribution of X, Y | U.



21 An IV model of partial compliance

A context to which the instrumental variable model can be applied is one where a
treatment / is assigned at random so that assignment is independent of individ-
ual heterogeneity. If X denotes received treatment, when experimental units are
not aware of which treatment they have been assigned to, it seems reasonable to
assume that Z is irrelevant to the response once X, U are given.

To describe the full latent structure, suppose that the assigned treatment Z is bi-
nary and that the received treatment X is discrete and varies between 0 (no com-
pliance) to 1 (perfect compliance). For simplicity we also assume that U is dis-
crete, meaning that individual heterogeneity can be represented with ¢ distinct
latent types.

The latent distribution is determined by the following vectors with one entry for
each latent class: 7r, the marginal distribution of U, 7, = P(X =z | u, 2) and
0. =FE(Y | u,x). When we marginalize with respect to U, let p,. = P(X = z |
2)=T .



22 Effect of treatment on the treated

Let also 7. be the vector containing the posterior probabilities P(U = u | X =
x,Z = z). These can be interpreted as the weights of the different latent classes
within the population of those who would self select a given level of compliance.
If X was binary, there would be a vector of causal effects 8; — 0, with 1 entry
for each latent class. The effect of treatment on the treated is the average across
the latent, when the posterior (rather than the marginal) probabilities of the latent
are used

here A((1, 1) is the effect of full compliance among those assigned to Z = 1 who
would have self selected X = 1. Had we averaged with the marginal of U, we
would have obtained the overall causal effect which, however, is not identifiable.



23 The IV estimaand and partial compliance

When Z is binary, the IV estimand can be written as

Cov(Y,Z) E(Y|Z=1)-EY |Z=0)

T Cow(X,Z) EX|Z=1)-EX|Z=0)

Orv

To clarify the relation between the IV estimand and causal effects when X can
take any value between 0 and 1, we introduce a generalized definition of effect of
treatment on the treated

A.(t;z) = (0; — 0y)'7,.

which may be interpreted as the effect of an amount of treatment equal to ¢ among
those who would self select X = x when assigned to Z = z.



24 Decomposing the IV numerator

Using the fact that Z 1L U and Y L Z | T, U and the identities:
To. = ]-c — Zt>0 Ttz diag(Ttm)Tr = TyzPxz

E(Y|Z) =) Y E(Y|utZ)P(t|u,Z)Pu|Z)

= Oy diag(1 — ) 7..)+ > 6,) diag(te.)w

t>0 t>0

= Oy + Z — 0,) diag(T.)7.

t>0

The numerator of the IV estimand may then be expanded in terms of the effects
of treatment on the treated noting that diag(7 ., )7 = 7.p;.

EY|Z=1)—-EY|Z=0)
— Z(Ht — 0) (Tt pn — TP

t>0

= Z[A1(t; t)(Pa — Pro) + Pro(Ar(t; 1) — Ao(t;1))].

t>0



25 The IV estimand as an average causal effect

A sufficient condition for interpreting the IV estimand as a causal effect is that

Y oAt t) — Do(t:)] = 0, (1)

when (1) holds, the IV numerator reduces to » ., Ay(¢;¢)(ps — pio). This may
happen in the following cases:

e treatment not available to controls, that is p;y = 0;

e no effect modification by assignment, meaning that A\ (¢;t) = A(¢; t) for all
t; a condition which, however, has not a clear interpretation.

Within the Principal Strata approach, it can be shown that, under “monotonicity”
(Defiers are not allowed), 07y is always equal to the average causal effect among
Compliers.



26 .. continuation

From the decomposition of the numerator of the IV estimand it is clear that, if (1)
holds, by direct calculations

Sy = D _z0lB1(%; T) /2|2 (ot — Pur)
z:z:>0 :U(pxl _ pr)

This may be interpreted as a weighted average of Aj(x, x)/x; if we assume that
Ai(z,z) =xA(1,x), then &y is a weighted average of A;(1, z), the effect of
full compliance across subjects who self selected different values & of compliance.
Note also that, because x < 1, the assumed linear model implies that A;(z, x)
must be inflated to recover A (1, ).

On the other hand, A;(x, x) is a hybrid causal effect because it measures the
effect of a variable amount of treatment x among those who self selected exactly
that amount.



27 An extended IV estimand

The interpretation of the IV estimand somehow relies on the assumption that,
within a certain sub-populations of compliers, the effect of received treatment is
proportional to the amount of compliance.

This could be relaxed by assuming that Ay(t;t) = g(t)A(1;t), where g(t) is
increasing in ¢, g(0) = 0, g(1) = 1. Under this assumption, if we replace X
with g(X) in the denominator of the IV estimand, we obtain a slightly different
estimand which has an interpretation as average effect of treatment on the treated
whenever equation (1) holds.



28 Linear models

It is worth noting that, when E(Y | u,z) = h(x;3) + k(u), that is the effect
of individual heterogeneity and that of treatment are assumed to be additive, the
causal effect conditional on the latent, that is the vector @, — @, will be a constant
vector with entry equal to h(z; 3) — h(0; B) = A, (z; x).

This implies that:

1. the effect of treatment on the treated and the overall average effect coincide
because no averaging is necessary;

2. there is no effect modification by Z, thus the IV estimand is an average causal
effect irrespective of whether treatment is available to controls.



29 Structural marginal mean models

This is a class of models which somehow extend the IV estimand and were intro-
duced by J.M. Robins (1994). Let ¢ denote the amount of received treatment and
v be a vector of individual covariates and assume a linear model for the effect of
receiving an amount ¢ of treatment conditionally on covariates

Al(t; t | 'U> = M, v — Hot,v = @b/g(ta 'U) (2)

where 1) is a vector of unknown parameters, g(¢, v) is a known function of ¢ and
covariates such that g(0,v) =0 and ¢g(1,v) = 1.

It is important to note that while a consistent estimate of (i , would be provided
by individuals with covariates equal to v who self selected I' = ¢, there is no
unbiased estimate of /4, , the average response of those who would have selected
t but were not allowed to reveal their preferences.



30 .. continuation

However, under the assumption that treatment is not available among controls,
Er(or, »), being the expected response for any subject with covariates equal to
x, can be estimated consistently by the corresponding sample average.

In the following let ¥, ; denote the sample average among subjects with covariate
configuration v; who were assigned to treatment, ¥, the overall average among
controls and g, the average of g(t, v;), then define

yl { ¢ gz gO,i

and note that, under the above assumptions, F/(d;) = 0. Suppose that ?) has size k
and that there are n > k distinct covariate configurations, let d be the vector with
elements d;; then a £ X n matrix S exists which makes the generalized method
of moments applied to the equation S'd = 0 most efficient.



31 Generalized marginal mean models

Let h(p) be a suitable link function; in principle the above formulation may be
extended by assuming

h(puei) — hpos) = ¥'g;(t)

which implies
h=H () — 9'gi(8)] — ot = 0.

After averaging with respect to ¢, a set of estimating equations would have the

form
d; =h7'[h (J1) — ¥'9;] — Gou;

unfortunately these are not applicable to the logit link for two reasons: (i) adjust-
ments are required when observations are 0 or 1, (ii) F/(d;) is not 0 unless 2 is 0.
Thus estimation will be biased.



32 Latent class models

Traditional latent class models try to explain association among observed re-
sponses by individual heterogeneity, modeled as a collection of discrete types so
that, conditionally on the latent, responses are independent.

Such a model is determined by the marginal distribution of the latent and by the
conditional distribution of each response given the latent. It is the structure of
these conditional distributions which can characterize the latent type of each class.
Ordinary finite mixture models are latent class models when a single categorical
response and covariates are available.



33 Extended latent class models

Recent extensions of latent class models allow
e the marginal distribution of the latent to depend on covariates,
e certain pairs of responses to be associated even conditionally on the latent;

the only restrictions being determined by the need for the model to be identifiable.



34 Latent class models and causal inference

Suppose that we can describe a causal model with a DAG with one or more modes
representing unobserved individual heterogeneity. In this DAG any variables hav-
ing an unobserved parent would be treated as endogenous and one could try to
model the joint distribution of the latent and the endogenous variables condition-
ally on covariates.

The joint distribution could be factorized recursively and the model estimated. An
early outline of this approach was described by Hagenaars (2002).



35 Causal interpretation of parameters

To be specific, consider the following example: let U denote a latent affecting
treatment received and response, I’ is the amount of received treatment, Y is the
response and @ is a vector of covariates. In an observational study, the causal
effect of 7" on Y would be confounded and not identifiable.

However, if a parametric model describing the conditional distributions of U |
x, T | Uz, Y | T,U, & were identifiable, this model would have parameters
specifying the dependence of Y on 1" for given U, x, thus, adjustment for the
unobservable confounder would be provided and these parameters would have a
causal interpretation.

In addition, the parameters describing the dependence of Y on U for given T', x
would allow to measure the effect of individual heterogeneity.



36 Identifiability of latent class models

Obviously all of this does not come for free: without important parametric restric-
tions, most of these models would not be i1dentifiable. In addition, it will not be
possible to submit to empirical test the assumed restrictions.

In principle, assessing local identifiability requires checking that the jacobian of
the parameters for the unrestricted observed distribution with respect to the pa-
rameters of the latent class model is of full rank.

Except for very special cases where general results are available: though the jaco-
bian can be written down, its rank is very hard to determine algebraically. How-
ever, algorithms for numerical computation of the jacobian are simple and fast.
This suggests a practical solution: to determine identifiability of a complex model,
sample the parameter space and determine the rank of the jacobian, if this is of
full rank for a reasonably sample of parameter values, the model is very likely to
be identifiable because simulations suggest that, if a model is not identifiable, the
jacobian will be singular on most sample points.



