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Abstract

Vast empirical evidence points to the existence of a negative correlation, named ”leverage effect,”
between shocks in volatility and shocks in returns. We provide a nonparametric theory of leverage
estimation in the context of a continuous-time stochastic volatility model with jumps in returns,
jumps in volatility, or both. Leverage is defined as a flexible function of the state of the firm,
as summarized by the spot volatility level. We show that its point-wise functional estimates have
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with more negative values associated with higher volatility levels.
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1 Introduction

Shocks to returns have been found to be negatively correlated with shocks to volatility. Due to its tradi-

tional economic justification in the case of common stocks, this stylized fact has been termed ”leverage

effect.” Classical finance principles à la Modigliani-Miller postulate that the fundamental asset of a cor-

poration is the firm itself. Stocks and bonds are simply viewed as being alternative ways to divide up

ownership. This said, changes in the firm’s total value should translate into analogous changes in the

value of the company’s stock. Negative news decrease the firm value (and its stock price) and increase the

debt-to-equity ratio (i.e., financial leverage). The increased debt-to-equity ratio leads to a larger stock

return volatility next period for a given volatility of the total firm’s value. In other words, the firm’s

stock volatility σS depends on the firm’s total volatility σV and on the debt-to-equity, or leverage, value
D
E . Specifically, σS = σV

(
1 + D

E

)
(see Christie, 1982, and Figlewski and Wang, 2000, among others, for

discussions). If the firm’s total volatility is fixed or relatively stable, time-variation in the firm’s stock

volatility will be induced by changing levels of leverage. In particular, increases in financial leverage (as

implied by negative shocks to prices) will increase stock volatility, whereas decreases in financial leverage

(as implied by positive shocks to prices) will decrease stock volatility (Black, 1976). While this simple

logic is appealing, the economics of leverage effects continues to remain somewhat controversial.

The empirical relevance of (alternative forms of) leverage effects has, however, been broadly estab-

lished. The time-varying volatility literature has emphasized the significance of feedback effects between

(innovations in) returns and volatility changes in a variety of parametric settings. Fundamental contri-

butions in terms of modelling and pricing have been provided both in continuous time (Andersen et al.,

2002, Bakshi et al., 1997, and Eraker et al., 2003, inter alia) and in discrete time (Engle and Ng, 1993,

Glosten et al., 1993, Harvey and Shephard, 1996, Jacquier et al., 2004, and Yu, 2008, among others). Yu

(2005) offers a review and an insightful assessment of the extant literature in discrete time.

The ”leverage parameter” (i.e., the correlation between shocks to prices and shocks to volatility) is

generally assumed to be a constant value. Indeed, the economic logic described earlier suggests, among

other implications, that the magnitude of the leverage effect should be roughly independent of whether

shocks to prices are positive or negative. Some recent work has, however, emphasized that there may

be important asymmetries in the way in which volatility responds to prices changes. Figlewski and

Wang (2000) and Yu (2008), for example, stress that, in the presence of positive shocks to prices, return

volatility might not change (or even change positively) whereas negative shocks will likely lead to an

increase in volatility, coherently with traditional - negative - leverage effects. Allowing for changing levels

of correlation between innovations to prices and volatility may be empirically important. We argue that

this time-variation is, indeed, coherent with basic finance principles and study an alternative, continuous-

time, framework for doing so.

This paper provides a nonparametric treatment of leverage estimation in the context of a stochas-

tic volatility, jump-diffusion, model with discontinuities in returns, volatility, or both. The model is

(semi-)nonparametrically specified. Parametric assumptions are solely imposed on the distributions of

the jump sizes for identification. Importantly, we allow leverage to be a function of the state of the

firm and, hence, time-varying. In our model the state of the firm is summarized by spot variance (or

spot volatility). This approach is natural in continuous-time stochastic volatility models - and effectively

extends them - since spot variance is used as a conditioning variable both in the return equation (where
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the return drift may depend on volatility as implied by the presence of risk-return trade-offs) and in

the volatility equation (where the volatility drift and diffusion are generally modelled as functions of

the volatility state). It is also economically meaningful in that it amounts to modelling the size of the

correlation between shocks to returns and shocks to volatility as a function of the riskiness of the firm

(as summarized by its spot volatility). Classical economic logic, as described above, implies that, for

a fairly stable volatility of the firm value, higher return volatility should be positively correlated with

higher financial leverage. Since times of high return volatility should be associated with relatively higher

financial leverage, price changes of a certain size should have a larger, more negative, effect on volatility

changes when leverage is relatively higher (or, equivalently, when volatility is higher). To see this, return

to the expression σS = σV

(
1 + D

E

)
. Then,

∂σS = −σV
D

E2
∂E = −

(
σS − σV

E

)
∂E ⇒ ∂σS

∂E
= −

(
σS − σV

E

)
< 0.

In other words, changes in the value of equity induce negative volatility changes whose magnitude depend

on the volatility itself. In light of this discussion, we conjecture that times of higher return volatility

(generally associated with higher financial leverage) are times in which shocks to returns are more neg-

atively correlated with volatility changes. Our empirical work supports this conjecture. Importantly,

we emphasize that we do not commit to a classical Modigliani-Miller economy. We solely use it here

as a motivating example to stress that even classical economic principles imply time-variation in lever-

age. For instance, while we allow leverage to be a declining function of spot volatility (as implied by a

Modigliani-Miller economy), we are general about its shape.

From a theoretical standpoint, we show that the limiting features of our nonparametric leverage

estimator crucially depend on the continuity properties of the price and volatility processes. Several cases

are considered: absence of jumps in either process, jumps in returns, jumps in volatility, independent

jumps in returns and volatility, contemporaneous jumps (or co-jumps) in returns and volatility. We

show that the fastest convergence rate to a (mixed) normal distribution arises in the absence of jumps

in both returns and volatility. The presence of jumps in returns (without jumps in volatility) does not

affect the rate of convergence of the estimator as compared to the case with no jumps. However, it does

affect asymptotic efficiency negatively by adding an additional term to the leverage estimator’s limiting

variance. The case of jumps in volatility (without jumps in returns) is quite different in that consistent

estimation of the volatility process’ diffusion function can only be conducted at a slower rate. This

slower rate reduces the speed of convergence of the kernel leverage estimator. In particular, its limiting

distribution is now driven by the asymptotic features of the spot variance’s diffusion function estimator.

Interestingly, the addition of jumps in the return process (in a model now with independent jumps

in returns and volatility) does not modify this result. Since, in the presence of jumps in volatility, the

asymptotic variance of the leverage estimator is already completely induced by that of the spot variance’s

diffusion estimator, the addition of independent jumps in returns has now (contrary to the continuous

volatility case with jumps in returns) no effect even in terms of decreased asymptotic efficiency. Finally,

allowing for co-jumps in returns and volatility may yield inconsistency of the leverage estimator unless

the jump sizes are independent and the jumps in returns are mean zero. In this case, we show that

the limiting distribution is completely driven by the features of the price/variance discontinuities and

discuss ways to re-establish consistency of the leverage estimator by virtue, for example, of appropriate
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asymptotic bias corrections. Our limit theory hinges on weaker conditions than stationarity. We solely

assume recurrence1 of the spot variance process, thereby allowing for a considerable amount of variance

persistence in any given sample. Finally, kernel estimation of leverage effects requires suitable filtering of

the spot variance process. We do so by considering kernel estimates of spot variance obtained by virtue of

high-frequency asset price data and, when possible, allow for market microstructure noise as in Bandi and

Renò (2008), BR henceforth. In particular, we show how the estimation error induced by spot variance

estimation can be made asymptotically negligible for the purpose of leverage estimation.

Our empirical findings hinge on S&P500 future data and are, therefore, for a broad-based US market

index. We find important time-variation (as a function of spot volatility) in the correlation between price

and volatility shocks. As conjectured, leverage increases (i.e., becomes more negative) with the volatility

level. We find leverage values around −0.2 for low volatilities and about −0.5 for high volatility values.

BR (2008) have recently introduced a novel nonparametric approach to the estimation of stochastic

volatility models with jumps (in returns and in volatility). The approach does not hinge on the filtering

of the latent spot volatility process by virtue of simulation methods relying on low frequency return

data (as is common in the parametric literature) but on the preliminary filtering on spot volatility using

high-frequency return data. The resulting procedure is (semi-)nonparametric in nature in spite of the un-

observability of spot volatility. From a methodological standpoint, the present paper relates to BR (2008)

in that the price/volatility evolutions are jump-diffusive, the dynamics are estimated nonparametrically,

and the preliminary spot volatility estimates are derived from intra-daily return data. Our exclusive

focus on leverage, along with the attention that leverage has been receiving in the literature, however,

make this contribution of separate interest from our previous work. In the context of leverage evaluation,

and differently from BR (2008), (1 ) we offer economic justification for modelling leverage as a function

of the latent spot volatility process, (2 ) we provide a complete limiting theory for nonparametric lever-

age estimators allowing for increasing layers of complications in the assumed model ranging from simple

diffusive structures to structures with co-jumps and correlated jump sizes, (3 ) we introduce a broader

notion of leverage (dubbed ”generalized leverage”) arising in models in which the jumps are common

to the return and the variance process and their jump sizes are correlated (for which we also discuss

identification methods), and (4 ) we implement extensive empirical work validating the nonparametric

results with appropriately-defined (and theoretically justified) reduced-form parametric models.

The paper proceeds as follows. The next section provides parametric motivation for allowing leverage

to be a function of the spot volatility process. This section is meant to introduce our approach in a more

familiar (parametric) setting and show that the leverage dynamics are not a by-product of the use of

nonparametric methods. Section 3 lays out our nonlinear, continuous-time, stochastic volatility model

with (possibly correlated) jumps. In Section 4 through 8, we present the relevant limiting theory for

an observable spot volatility process. Section 9 discusses ”generalized leverage.” Section 10 adapts the

theory in Section 4 through 8 to the empirically-relevant case of an estimated spot volatility process.

Section 11 provides empirical results pointing to the existence of a higher (more negative) leverage in the

presence of higher volatility. Section 12 contains simulations. Section 13 offers further discussions (and

directions) by returning to a parametric specification allowing for time-varying leverage. This section

relates our approach to extant discrete-time approaches by analysing issues of timing in the estimation of

1For a review of nonparametric methods for continuous-time models under Harris recurrence we refer the interested
reader to Bandi and Phillips (2009).
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leverage (in the form of contemporaneous versus lagged leverage). It also discusses the relative impact of

alternative conditioning variables in the evaluation of time-varying leverage, namely spot volatility (as in

this paper), returns (as in Figlewski and Wang, 2000, and Yu, 2008) and signed - by the contemporaneous

return - volatility (a possible, alternative, state variable which borrows features from the former two).

Section 14 concludes. The proofs are in the Appendix.

2 Time-varying leverage: a parametric motivation

We begin with a parametric approach allowing for time-varying leverage. In order to do so, we partition

the volatility range into N non-overlapping intervals2 and write

√
RVt:t−1 = α + β1

√
RVt−1:t−2 + β2

√
RVt−1:t−6 + β3

√
RVt−1:t−23︸ ︷︷ ︸

HARt−1 component

+ rt

N∑

i=1

δi1{ηi≤
√

RVt−1:t−2≤ηi−1} + εt,

(1)

where
√

RVt:t−1 is the square root of an appropriately-chosen realized variance measure between t−1 and

t,
√

RVt−1:t−k =
√

1
k−1

∑k−1
i=1 RVt−i:t−i−1 for k > 1, rt = log pt − log pt−1 and εt is iid noise. We infer

”implied” leverage over the ith interval (ρ̂i) by the corresponding δi coefficient provided such a coefficient

is rescaled appropriately. In fact, δ̂i ≈ dcov(
√

RVt:t−1−HARt−1,rt|ηi≤
√

RVt−1:t−2≤ηi−1)

dvar(rt|ηi≤
√

RVt−1:t−2≤ηi−1)
. Hence, ρ̂i ≈ δ̂iŜi,

where the scaling factor Ŝi is equal to
cstd(rt|ηi≤

√
RVt−1:t−2≤ηi−1)

cstd(
√

RVt:t−1−HARt−1|ηi≤
√

RVt−1:t−2≤ηi−1)
. In what follows, we set

N = 3 and report three values of ρ̂i corresponding to alternative volatility levels.

Importantly, this approach to (possibly) nonlinear, parametric, leverage estimation can be justified

(more structurally) in the context of a continuous-time specification similar to the one which will represent

(below) the substantive core of our work. To this extent, consider

d log pt = µtdt + σtdW r
t ,

dσt = mtdt + ΛdW σ
t ,

where µt,mt are adapted processes and {W r,Wσ} are correlated standard Brownian motions with <

dW r
t , dW σ

t > = ρdt. This system can be readily discretized as follows

log pt+1 − log pt ≈ µt + σt(W
r
t+1 − W r

t )
︸ ︷︷ ︸

ut+1

σt+1 − σt ≈ mt + Λ
(
W σ

t+1 − W σ
t

)
︸ ︷︷ ︸

vt+1

or, equivalently,

rt+1 ≈ µt + σtut+1

σt+1 ≈ σt + mt + Λ
(
ρut+1 +

(√
1 − ρ2

)
wt+1

)
, (2)

2In the empirical work, the intervals are chosen in such a way as to guarantee that they all contain the same number of
observations.
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where ut and wt are uncorrelated shocks with zero mean and unit variance. Now, substituting ut+1 into

Eq. (2), we arrive at

σt+1 ≈ σt + mt +

(
Λρ

σt

)

︸ ︷︷ ︸
δt

(rt+1 − µt) + Λ
(√

1 − ρ2
)

wt+1. (3)

In agreement with much recent empirical work, we may capture persistence (and model mean-reversion)

in volatility by virtue of an HAR specification (Corsi, 2009). In other words, we may replace σt + mt

with HARt. Set, also, the mean return equal to zero (µt = 0). For N = 1, Eq. (3) is now fully consistent

with Eq. (1) with εt = Λ
(√

1 − ρ2
)

wt and δt = Λρ
σt

.3 This last expression provides a more structural

justification for estimating ρ parametrically by virtue of δ̂Ŝ. The case N ≥ 1, of course, leads to

σt+1 ≈ σt + mt +

N∑

i=1

δi (rt+1 − µt)1{ηi≤σt≤ηi−1} + εt+1

with εt+1 =
∑N

i=1 Λ
(√

1 − ρ2
i

)
wt+11{ηi≤σt≤ηi−1}.

Using the threshold bipower variation estimator to define RVt−i:t−i−1 for all i (see Section 11 for

details), we find that the δ̂i values are equal to −0.226, −0.240, and −0.350 with highly significant t-

statistics equal to −2.93, −6.55, and −7.54 (see Table 1). The implied leverage estimates (ρ̂i ≈ δ̂iŜi)

are −0.152, −0.187, and −0.273. In agreement with our discussion in the Introduction, this result is

suggestive of an increasing leverage for higher volatility levels. We employ this evidence to motivate a

(possibly) nonlinear, continuous-time model in which conditional leverage is allowed to be a function of

the spot volatility level.

3 The continuous-time setting

Assume a complete probability space (Ω,ℑ, P, {ℑt}t≥0). Consider the system

rt,t+dt = d log(pt) = µtdt + σtdW r
t + dJr

t , (4)

dξ(σ2
t ) = mtdt + Λ(σ2

t )dW σ
t + dJσ

t , (5)

where {Jr
t , Jσ

t } is a bi-dimensional compound Poisson process and, given the bi-variate standard Brownian

motion
{
W 1

t ,W 2
t

}
,

{dW r
t , dW σ

t } = {ρ(σ2
t )dW 1

t +
√

1 − ρ2(σ2
t )dW 2

t , dW 1
t }

denotes increments of a bi-dimensional drift-less diffusion or, more explicitly in our framework, contem-

poraneous (continuous) shocks to returns and shocks to monotonic transformations ξ(·) of spot variance.

Clearly, < dW r
t , dW r

t > = < dW s
t , dW s

t > = dt and

< dW r
t , dW s

t > = ρ(σ2
t )dt,

thereby implying that the function ρ(·) is a well-defined infinitesimal (conditional) correlation between

continuous shocks to returns and continuous shocks to spot variance (if bounded between −1 and 1).

3Interestingly, a continuous-time stochastic volatility model like that in Eq. (2) would imply time variation in δ (as a
function of spot volatility) even if ρ is a constant value. Hence, if one takes the continuous-time model seriously, running a
regression like that in Eq. (1) above is justified only if δ is assumed time-varying, as we do.
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In order to specify the vector {Jr
t , Jσ

t }, we define three intensity functions: λσ(σ2
t ), the intensity of

jumps in variance, λr(σ
2
t ), the intensity of jumps in returns, and λr,σ(σ2

t ), the intensity of the co-jumps

(we refer to Remark 8 for more details). The jump sizes of ξ(σ2
t ) and log pt are determined by the random

variables cr and cσ, respectively. We allow for correlation in both jump times and jump sizes, but not

between times and sizes.4 We also assume independence between the jumps and the standard Brownian

shocks W 1,W 2. The monotonic function ξ(·) in the variance process is introduced for generality. It

is meant to allow for alternative specifications including the logarithmic model in, e.g., Jacquier et al.

(1994), the linear (in variance) model proposed by, e.g., Duffie et al. (2000) and Eraker et al. (2003),

and a linear (in volatility) model. The object of econometric interest is the conditional leverage function

ρ(·). Its dependence on spot variance (or spot volatility) generalizes to a nonparametric continuous-time

framework the parametric specification used as a motivation in the previous section.

Assumption 1. The return and variance drifts µt and mt are adapted stochastic processes. The

functions Λ(·), λr(·), λσ(·), λr,σ(·), and ρ(·) are at least twice continuously-differentiable Borel measurable

functions of the Markov state. All objects are such that a unique and recurrent strong solution of (4)-(5)

exists.

We begin by assuming availability of n + 1 observations on both log pt and σ2
t in the time interval

[0, T ]. We denote by ∆n,T = T/n the time distance between adjacent discretely-sampled observations.

Our asymptotic design lets ∆n,T → 0 with n, T → ∞. The case of observability of σ2
t is, of course,

unrealistic in practise. However, it is important in that it allows us to lay out the main ideas while

avoiding the complications induced by spot variance estimation. Having made this point, we stress

that Section 10 discusses the case of spot variance estimation by virtue of kernel methods applied to

high-frequency price data. This section presents conditions which guarantee that the estimation error

associated with the spot variance estimates is asymptotically negligible. These conditions take the nature

of realistic intra-daily price formation mechanisms seriously and allow for market microstructure noise in

spot variance estimation, when possible.

Define the infinitesimal moments

ϑ1,1(σ
2) = lim

∆→0

1

∆
E
[
(log pt+∆ − log pt)

(
ξ(σ2

t+∆) − ξ(σ2
t )
) ∣∣σ2

t = σ2
]
,

ϑj(σ
2) = lim

∆→0

1

∆
E
[(

ξ(σ2
t+∆) − ξ(σ2

t )
)j ∣∣σ2

t = σ2
]
, j = 1, 2, ...

and the corresponding Nadaraya-Watson kernel estimators

ϑ̂1,1(σ
2) =

∑n−1
i=1 K

(
σ2

iT/n−σ2

hn,T

)
(log p(i+1)T/n − log piT/n)

(
ξ(σ2

(i+1)T/n) − ξ(σ2
iT/n)

)

∆n,T

∑n
i=1 K

(
σ2

iT/n
−σ2

hn,T

) , (6)

ϑ̂j(σ
2) =

∑n−1
i=1 K

(
σ2

iT/n−σ2

hn,T

)(
ξ(σ2

(i+1)T/n) − ξ(σ2
iT/n)

)j

∆n,T

∑n
i=1 K

(
σ2

iT/n
−σ2

hn,T

) j = 1, 2, ..., (7)

4It is hard to evaluate the empirical significance of the assumption of independence between times and sizes. While one
could speculate about the economics of the problem, to the best of our knowledge this assumption has not been relaxed in
empirical work on estimation of jump-diffusion stochastic volatility models. This said, we can allow for intensities of the
jumps, as well as for moments of the jump size distributions, which depend on the underlying spot variance process.
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where, as is traditional, hn,T denotes an asymptotically-vanishing window width and K(·) is a kernel

function. The function K(·) satisfies the following assumption.

Assumption 2. K(·) is a bounded, continuously-differentiable, symmetric, and nonnegative func-

tion whose derivative K′(·) is absolutely integrable and bounded and for which
∫

K(s)ds = 1, K1 =
∫

s2K(s)ds < ∞, and K2 =
∫

K2(s)ds < ∞.

In what follows, the kernel estimators ϑ̂1,1(σ
2) and ϑ̂j(σ

2) (with j = 1, . . .) will be employed to

provide point-wise estimates of ρ(σ2) (and ρ(σ), of course) in various scenarios allowing for jumps in

prices, jumps in volatility, or both. We will resort to the classical notation
p→, ⇒ to denote convergence in

probability and weak convergence. The symbol Γz(x) will be used to define h2
n,T K1

[
z

′

(x) s
′
(x)

s(x) + 1
2z

′′

(x)

]
,

where s(dx) is the invariant measure of the spot variance process.5 Finally, the notation L̂σ2(T, x) =

∆n,T

hn,T

∑n
i=1 K

(
σ2

iT/n−x

hn,T

)
will denote kernel estimates of the chronological local time (at T and x) of the

underlying spot variance process.

Since σ2
t is a càdlàg semimartingale, its local time at T and x can be written as

Lσ2(T, x) = lim
ε→0

1

ε

∫ T

0

1[x, x+ε[(σ
2
s)

∂ξ−1(ξ(σ2
s))

∂ξ
Λ2(σ2

s)ds a.s.

The interpretation is standard. Lσ2(T, x) defines the amount of time, in information units or in units of the

continuous component of the process’ quadratic variation, that σ2
t spends in a small right neighborhood

of x between time 0 and time T . Analogously, time can be measured in chronological units by defining

Lσ2(T, x) =
1

∂ξ−1(ξ(x))
∂ξ Λ2(x)

Lσ2(T, x) a.s.

For a fixed T , and under assumptions, L̂σ2(T, x) is known to estimate the latter. Similarly, for an

enlarging T and, again, under assumptions, L̂σ2(T, x) has been shown to inherit the divergence properties

of Lσ2(T, x) (Bandi and Nguyen, 2003). As pointed out earlier, our asymptotic results will hinge on the

recurrence of the variance process, rather than on the stricter assumption of stationarity - stationarity

being a subcase of our more general framework. As a by-product of this generality, the look of our limiting

results will be more explicit, than in the classical stationary framework, about what drives convergence

of the (point-wise) functional moment estimates. The rates of convergence will, in fact, not depend on

the (largely notional) divergence rate of the number of observations, as in the stationary case, but on the

rate of divergence of the number of visits to a generic level x at which functional estimation is performed,

as represented by L̂σ2(T, x).6 For more discussions of the role of recurrence in continuous-time model

estimation and the importance of the notion of local time in this context, we refer the reader to the

review article by Bandi and Phillips (2009).

5In the absence of jumps, this quantity corresponds to the speed measure of the variance process, namely

Φ(dx) =
2dx

S′(x)Λ2(x)

where S′(x) is the first derivative of the scale function, i.e.,

S(x) =

Z x

c
exp

Z y

c

»
−

2m(s)

Λ2(s)

–
ds

ff
dy,

and c is a generic constant in the range of the process.
6Of course, bLσ2 (T, x) diverges at speed T in stationary models.
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We now list conditions which the smoothing sequence hn,T and the chronological local time Lσ2(T, ·)
ought to satisfy (as ∆n,T → 0 with n, T → ∞) for the validity of the limiting results in the following

sections.

Assumption 3. Let Lσ2(T, ·) ∼ v(T ), where v(T ) is a regularly-varying function at infinity. Let, also,

hn,T → 0 with ∆n,T → 0 for n, T → ∞.

3.1 v(T )
hn,T

(
∆n,T log 1

∆n,T

)1/2

→ 0.

3.2
h5

n,T v(T )

∆n,T
→ C, where C is a suitable constant.

3.3 hn,T v(T ) → ∞
3.4 h5

n,T v(T ) → C, where C is a suitable constant.

We begin with a relevant benchmark case.

4 The continuous case: Jr = 0, Jσ = 0

Write the kernel leverage estimator as

ρ̂(σ2) =
ϑ̂1,1(σ

2)

σ

√
ϑ̂2(σ2)

. (8)

In the absence of discontinuities, we note that ϑ1,1(σ
2) = σΛ(σ2)ρ(σ2) and ϑ2(σ

2) = Λ2(σ2). Hence,
ϑ1,1(σ

2)

σ
√

ϑ2(σ2)
= ρ(σ2) and, of course, ρ̂(σ2) is expected to consistently estimate our object of interest. This

result is shown in Theorem 1 below.7

Theorem 1. Assume Jr = Jσ = 0. If Assumption 3.1 is satisfied, then ρ̂(σ2)
p→ ρ(σ2). If Assumption

3.2 is also satisfied, then

√√√√hn,T L̂σ2(T, σ2)

∆n,T

{
ρ̂(σ2) − ρ(σ2) − Γ̃ρ(σ

2)
}
⇒ N

(
0,K2

[
1 − 1

2
ρ2(σ2)

])
, (9)

where

Γ̃ρ(σ
2) =

1

σ
√

ϑ2(σ2)
Γϑ1,1

(σ2) − ϑ1,1(σ
2)

2σ
√

ϑ3
2(σ

2)
Γϑ2

(σ2). (10)

Proof. See Appendix A.

Remark 1. In the absence of jumps in either volatility or returns, the leverage estimator converges at

speed

√
hn,T

bLσ2 (T,σ2)

∆n,T
∼
√

hn,T v(T )
∆n,T

. In particular, both the numerator, ϑ̂1,1(σ
2), and the denominator,

σ

√
ϑ̂2(σ2), converge at this same velocity. The asymptotic distribution of ρ̂(σ2) is therefore a linear

combination (with weights 1

σ
√

ϑ2(σ2)
and − ϑ1,1(σ

2)

2σ
√

ϑ3
2(σ

2)
) of the limiting distributions of its components as

evidenced by the resulting limiting bias (Γ̃ρ(σ
2)).

As is typical in semiparametric models, the rate of convergence of the leverage estimator (in this

section and in the following sections) could be increased by averaging over evaluation points. This

7In agreement with Assumption 3 above, the results in Theorem 1 are stated for an enlarging time span. We do so to
more clearly draw a comparison between this benchmark case and the cases with jumps (below) which, of course, require
an enlarging span of data to identify sample path discontinuities. This said, in the no-jump case, consistency and weak
convergence could be derived for a fixed span of data T .

9



averaging would of course be natural, and beneficial, should one model leverage as a constant value, as

in most existing literature, rather than as a general function, as in this paper.

Remark 2. The asymptotic variance in Eq. (9) is maximal (and equal to K2) for ρ(·) = 0. It tends to
1
2K2 as either ρ(·) → 1 or ρ(·) → −1.

5 The discontinuous case: Jr 6= 0, Jσ = 0

Consider the same estimator as in Eq. (8) above. The case with jumps in returns is presented in Theorem

2.

Theorem 2. Assume Jr 6= 0 and Jσ = 0. Under Assumption 3.1 and Assumption 3.2, we obtain

√√√√hn,T L̂σ2(T, σ2)

∆n,T

{
ρ̂(σ2) − ρ(σ2) − Γ̃ρ(σ

2)
}
⇒ N

(
0,K2

[(
1 − 1

2
ρ2(σ2)

)
+

1

2

λr(σ
2)E[c2

r]

σ2

])
.

Proof. See Appendix A.

Remark 3. Allowing for jumps in returns only affects the (limiting) precision of the estimator. The

asymptotic variance now contains an extra term (1
2

λr(σ2)E[c2
r]

σ2 ) which, of course, depends on the frequency

of the return jumps (λr(σ
2)) as well as on their size (E[c2

r]).

6 The discontinuous case: Jr = 0, Jσ 6= 0

When allowing for jumps in the variance process, ϑ̂2(σ
2) estimates Λ2(σ2) plus the conditional second

moment of the jump component (i.e., λσ(σ2)E(c2
σ)). In what follows, we show that λσ(σ2)E(c2

σ) can

be identified, under appropriate parametric assumptions on the jump sizes, by virtue of the higher-

order conditional moments (namely, ϑ̂j(σ
2) with j = 3, 4, ...) as proposed by BR (2008) in the case of

nonparametric stochastic volatility modelling (see, also, Bandi and Nguyen, 2003, and Johannes, 2004).

The form of the kernel leverage estimator in this section will therefore be

ρ̃(σ2) =
ϑ̂1,1(σ

2)

σf(ϑ̂2, ϑ̂3, ϑ̂4, ...)(σ2)
, (11)

where f(ϑ̂2, ϑ̂3, ϑ̂4, ...)(·) is a specific function of the infinitesimal moments.

To lay out ideas, we turn to a specific identification scheme. Assume ξ(σ2) = σ2 and assume the

variance jumps are exponentially distributed, i.e., cσ ∼ exp(µσ). This specification is widely used in

the parametric literature on volatility estimation (see, e.g., Eraker et al., 2003) and has been shown to

perform very satisfactorily in a (semi-)nonparametric context (BR, 2008).8 The proposed model implies

ϑ2(σ
2) = Λ2(σ2) + 2µ2

σλσ(σ2),

ϑ3(σ
2) = 6µ3

σλσ(σ2),

ϑ4(σ
2) = 24µ4

σλσ(σ2).

8Specifically, the nonparametric jump tests in BR (2008) provide statistical support for the presence of exponential
jumps in variance.
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Hence,

µ̂σ =
1

n

n∑

i=1

ϑ̂4(σ
2
iT/n

)

4ϑ̂3(σ2
iT/n

)
, (12)

λ̂σ(σ2) =
ϑ̂4(σ

2)

24µ̂4
σ

,

and

Λ̂2(σ2) = ϑ̂2(σ
2) − 2µ̂2

σλ̂σ2(σ2),

are (possible) kernel estimators of µσ, λσ(σ2), and Λ2(σ2), respectively.9 These estimators can been

shown to be consistent (with probability one) and (mixed) normally distributed (see, e.g., BR, 2008).

Thus,

f(ϑ̂2, ϑ̂3, ϑ̂4, ...)(σ
2) = Λ̂2(σ2) = ϑ̂2(σ

2) − ϑ̂4(σ
2)

12µ̂2
σ

= ϑ̂2(σ
2) − ϑ̂4(σ

2)

12

(
1
n

n∑
i=1

bϑ4(σ2
iT /n

)

4bϑ3(σ2
iT /n

)

)2 .

Importantly, alternative estimation schemes may be adopted by imposing, for instances, different distri-

butional assumptions on cσ. In these cases, our adopted methods can be adapted accordingly.

In what follows, we assume the use of a slightly smaller bandwidth sequence to identify ϑ̂4 and ϑ̂3 for

the purpose of µ̂σ estimation. This choice will somewhat simplify the look of the limiting bias of ρ̃(·) by

preventing the insurgence of the asymptotic bias of µ̂σ.

Theorem 3. Assume Jr = 0 and Jσ 6= 0. If Assumption 3.1 and Assumption 3.3 are satisfied, then

ρ̃(σ2)
p→ ρ(σ2). If ρ(σ2) 6= 0 and Assumption 3.4 is also satisfied, then

√
hn,T L̂σ2(T, σ2)

{
ρ̃(σ2) − ρ(σ2) − Γ̃

eρ(σ
2)
}
⇒ N

(
0,K2

ρ2(σ2)

4Λ4(σ2)
λσ(σ2)E

((
c2
σ − 1

12µ2
σ

c4
σ

)2
))

(13)

with

Γ̃
eρ(σ

2) =
1

σΛ(σ2)
Γϑ1,1

(σ2) − ϑ1,1(σ
2)

2σΛ3(σ2)

(
Γϑ2

(σ2) − 1

12µ2
σ

Γϑ4
(σ2)

)
.

Proof. See Appendix A.

Remark 4. The estimator f(ϑ̂2, ϑ̂3, ϑ̂4, ...)(·) now converges to Λ2(·) at a slower speed than ϑ̂2(·) for

the case of no jumps (

√
hn,T L̂σ2(T, σ2) versus

√
hn,T

bLσ2 (T,σ2)

∆n,T
). Since ϑ̂1,1(·) continues to converge at

speed

√
hn,T

bLσ2 (T,σ2)

∆n,T
, not only is the slower speed of convergence of f(ϑ̂2, ϑ̂3, ϑ̂4, ...)(·) driving the rate

of convergence of ρ̃(·) but, also, of course, the asymptotic variance of the leverage estimator is fully

determined by the asymptotic variance of f(ϑ̂2, ϑ̂3, ϑ̂4, ...)(·) (times a term
ϑ2

1,1(σ
2)

4σ2Λ6(σ2) = ρ2(σ2)
4Λ4(σ2) which

readily derives from the delta method - see, e.g., Remark 1 above).

Remark 5. Under the assumed exponential jumps, the asymptotic variance in Eq. (13) can be more

explicitly expressed as 46K2
ρ2(σ2)λσ(σ2)

Λ4(σ2) µ4
σ.

9bµσ is defined over a number of observations n growing to infinity over a fixed time span T . This is simply done for
technical reasons in order to simplify the limiting behavior of the sample averages in the nonstationary (but recurrent)
case. From an applied standpoint, the restriction is hardly material in that one could always choose T as being very close
to T . For asymptotic consistency, the kernel estimators bϑ3(·) and bϑ4(·) continue to be defined over an enlarging time span

(T → ∞). We are simply averaging functionals of bϑ3(·) and bϑ4(·) over an infinite number of evaluation points for a fixed
span of data.
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7 The discontinuous case: Jr 6= 0, Jσ 6= 0, with independent

jumps

Consider the same estimator as in Eq. (11) above.

Theorem 4. Assume Jr 6= 0, Jσ 6= 0, and Jr ⊥ Jσ. Under Assumptions 3.1, 3.3, and 3.4:

√
hn,T L̂σ2(T, σ2)

{
ρ̃(σ2) − ρ(σ2) − Γ̃

eρ(σ
2)
}
⇒ N

(
0,K2

ρ2(σ2)

4Λ4(σ2)
λσ(σ2)E

((
c2
σ − 1

12µ2
σ

c4
σ

)2
))

(14)

with

Γ̃
eρ(σ

2) =
1

σΛ(σ2)
Γϑ1,1

(σ2) − ϑ1,1(σ
2)

2σΛ3(σ2)

(
Γϑ2

(σ2) − 1

12µ2
σ

Γϑ4
(σ2)

)
.

Proof. See Appendix A.

Remark 6. Adding independent jumps in returns to the case of jumps in volatility does not modify the

limiting distribution of ρ̃(·) ((14) is the same as (13)). This is, of course, in contrast to the case where

jumps in returns are added to the case of no jumps. Here the addition of independent return jumps does

not translate into efficiency losses, as implied by a higher asymptotic variance, since the limiting variance

of the leverage estimator is again only driven by the denominator, σf(ϑ̂2, ϑ̂3, ϑ̂4, ...)(·).

8 The discontinuous case: Jr 6= 0, Jσ 6= 0, with correlated jumps

Finally, we allow for correlated jumps and, again, evaluate the estimator in Eq. (11).

Theorem 5. Assume Jr = J∗
r 6= 0, Jσ = J∗

σ 6= 0, and the intensity of common shocks λr(σ
2) = λσ(σ2) =

λr,σ(σ2) 6= 0. If Assumptions 3.1 and 3.3 are satisfied, then

ρ̃(σ2)
p→ Ξ(σ2) = ρ(σ2) +

λr,σ(σ2)

σΛ(σ2)
E[crcσ].

If Assumption 3.4 is also satisfied, then

√
hn,T L̂σ2(T, σ2)

{
ρ̃(σ2) − Ξ(σ2) − Γ̃

eρ(σ
2)
}
⇒ N (0,K2VΞ) (15)

with

VΞ =
λr,σ(σ2)

σ2Λ2(σ2)
E

[(
crcσ − ϑ1,1(σ

2)

2Λ2(σ2)

(
c2
σ − c4

σ

12µ2
σ

))2
]

,

and

Γ̃
eρ(σ

2) =
1

σΛ(σ2)
Γϑ1,1

(σ2) − ϑ1,1(σ
2)

2σΛ3(σ2)

(
Γϑ2

(σ2) − 1

12µ2
σ

Γϑ4
(σ2)

)
,

with

ϑ1,1(σ
2) =

√
σ2Λ(σ2)ρ(σ2) + λr,σ(σ2)E[crcσ].

Proof. See Appendix A.
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Remark 7. In this case, the kernel leverage estimator is inconsistent for ρ(·). Since both the numerator,

ϑ̂1,1(·), and the denominator, f(ϑ̂2, ϑ̂3, ϑ̂4, ...)(·), converge at the same rate, the limiting distribution of

ρ̃(·) is that of a linear combination of ϑ̂1,1(·) and f(ϑ̂2, ϑ̂3, ϑ̂4, ...)(·).

Corollary to Theorem 5 (A relevant example: Independent jump sizes with mean zero return

jumps). Under the assumptions of Theorem 5, if cr ⊥ cσ, E[cr] = 0, E[c2
r] = σ2

r , and cσ ∼ exp(µσ), then

ρ̃(σ2)
p→ ρ(σ2) and consistency is preserved. In addition:

√
hn,T L̂σ2(T, σ2)

{
ρ̃(σ2) − ρ(σ2) − Γ̃

eρ(σ
2)
}
⇒ N

(
0,K2

λr,σ(σ2)

σ2Λ2(σ2)

[
2σ2

rµ2
σ + 46

σ2ρ2(σ2)

Λ2(σ2)
µ4

σ

])
, (16)

with

Γ̃
eρ(σ

2) =
1

σΛ(σ2)
Γϑ1,1

(σ2) − ϑ1,1(σ
2)

2σΛ3(σ2)

(
Γϑ2

(σ2) − 1

12µ2
σ

Γϑ4
(σ2)

)
,

and

ϑ1,1(σ
2) =

√
σ2Λ(σ2)ρ(σ2).

Remark 8. (Contemporaneous and non-contemporaneous jumps) The theorem solely assumes

contemporaneous jumps with an infinitesimal probability of co-jumps equal to λr,σ(σ2)dt. This is a

classical case of dependence in the parametric literature. It is considered, for example, in model SVCJ

in Eraker et al. (2003).10 In general, we could assume Jr = J∗
r + J

‖
r and Jσ = J∗

σ + J
‖
σ , with J∗

r ⊥ J∗
σ ,

J∗
r ⊥ J

‖
r , J∗

r ⊥ J
‖
σ and J∗

σ ⊥ J
‖
σ , J∗

σ ⊥ J
‖
r . More explicitly, we could assume that both processes comprise

two components, J∗
r,σ and J

‖
r,σ, which are independent of each other and all others with the exception

of J
‖
r and J

‖
σ , which are dependent. Denote now by c∗r,σ and λ∗

r,σ the jump sizes and intensities of the

jumps of the independent components J∗
r,σ. Similarly, denote by c

‖
r,σ and λ

‖
r,σ = λ

‖
r = λ

‖
σ the jump sizes

of the dependent components and the (common) intensity of the common shocks. The result in Eq. (15)

continues to hold and may be re-written as follows:

√
hn,T L̂σ2(T, σ2)

{
ρ̃(σ2) − Ξ(σ2) − Γ̃

eρ(σ
2)
}

⇒ N


0,K2




λ‖
r,σ(σ2)

σ2Λ2(σ2)E

[(
c
‖
rc

‖
σ − ϑ1,1(σ

2)
2Λ2(σ2)

(
(c

‖
σ)2 − (c‖σ)4

12µ2
σ

))2
]

+
ϑ2

1,1(σ
2)

4σ2Λ6(σ2)λ
∗
σE

[(
(c∗σ)2 − (c∗σ)4

12µ4
σ

)2
]





 ,

where

Ξ(σ2) = ρ(σ2) +
λ
‖
r,σ(σ2)

σΛ(σ2)
E[c‖rc

‖
σ].

In this case, the limiting value of ρ̃(σ2) is the same as that in Theorem 5. The same is true for the con-

vergence rate. However, the limiting variance depends now explicitly on the sizes and common intensity

of the dependent jumps (c
‖
r,σ and λ

‖
r,σ) as well as on the size and intensity of the independent volatility

jumps (c∗σ and λ∗
σ).

10Their model SVIJ assumes independence of the jumps as in Section 6 above.
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9 A notion of ”generalized leverage”

The expression

Ξ(σ2)︸ ︷︷ ︸
generalized leverage

= ρ(σ2)︸ ︷︷ ︸
continuous leverage

+
λ
‖
r,σ(σ2)

σΛ(σ2)
E[c‖rc

‖
σ]

︸ ︷︷ ︸
co-jump leverage

(17)

can be associated with a broader notion of leverage. Specifically, Ξ(σ2) is represented as the sum of the

infinitesimal correlation between ”continuous” shocks in prices and ”continuous” shocks in spot variance

(namely, the traditional leverage component) and a component arising from the presence of co-jumps.

The latter is simply the (standardized) conditional covariance of the co-jumps.

The standardization (by σΛ(σ2)) may be viewed as arbitrary in that one may standardize by the

full conditional second moments of the price and variance processes rather than simply by their diffusive

components. While ad-hoc, it is however a necessary standardization in order to isolate ρ(σ2). It is also

somewhat natural in that it is the standardization which one would employ if the jumps were assumed

not to play a role. In this case, the expression would clarify the impact of the co-jump component on the

continuous leverage estimates, as done in the previous section.

More generally, we can view Ξ(σ2) as an explicit representation of the fact that negative correlations

between shocks to prices and shocks to variances may be imputed to a negative correlation between the

”continuous” components of prices and variances, to a negative correlation between the joint ”discontin-

uous” components of prices and variances, or to both. Disentangling the relative impact of alternative

components is economically important. The following remarks provide further discussions on this issue.

We however plan to elaborate on this issue, both theoretically and empirically, in future work.

Remark 9. (Co-jump identification) Methods have been put forward to identify the co-jumps. Gobbi

and Mancini (2008), for example, suggest identifying the contemporaneous discontinuities of two generic

jump-diffusion processes X1 and X2 by virtue of products of the type

∆X11{(∆X1)
2≥r(∆n,T )}∆X21{(∆X2)

2≥r(∆n,T )},

where r(δ) is a function such that
δ log( 1

δ )
r(δ) → 0 when δ → 0. Asymptotically (for ∆n,T → 0), the

indicators eliminate variations which are smaller than a threshold. Since the threshold is modelled based

on the modulus of continuity of Brownian notion, the variations being eliminated are of the Brownian

type, thereby leading to identification of the contemporaneous Poisson jumps. Once a time-series of co-

jumps is formed, the corresponding intensity (λ
‖
1,2) may be evaluated, possibly under an assumption of

constancy, by computing the in-sample frequency of co-jumps. Similarly, the expected first cross-moment

(E[c
‖
1c

‖
2]) can be consistently identified by virtue of sample averages of the co-jumps (under, of course,

stationarity of the jump distribution). Finally, given Λ̂2(·) = f(ϑ̂2, ϑ̂3, ϑ̂4, ...)(·), the continuous leverage

function ρ(σ2) may be estimated consistently by virtue of ρ̃(σ2) −
bλ‖

r,σ(σ2)

σ
√

f(bϑ2,bϑ3,bϑ4)(σ2)
Ê[c

‖
rc

‖
σ].

Remark 10. (More on co-jump identification) An alternative procedure is implied by the recent

work of Bandi and Renò (2009) on cross-moment estimation. We present some preliminary ideas here.

The procedure hinges on the nonparametric identification of the return/variance cross-moments of order

p1 and p2, i.e.,
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ϑp1,p2
(σ2) = lim

∆→0

1

∆
E
[
(log pt+∆ − log pt)

p1
(
ξ(σ2

t+∆) − ξ(σ2
t )
)p2
∣∣σ2

t = σ2
]
,

with p1 ≥ p2 ≥ 0. The intuition is as follows: the cross-moments of order higher than 1, 1 (i.e., so that

p1 ≥ p2 ≥ 1 and p1 > p2 if p2 = 1 or p2 > p1 if p1 = 1) depend solely on the features of the co-jumps

and may therefore be used to identify λ
‖
r,σ and E[c

‖
rc

‖
σ]. As an example, assume ξ(·) = log(·). Using the

notation in Remark 8, express

Jr = J∗
r + J‖

r = c‖r

(
N∗

r + N‖
r,σ

)

Jσ = J∗
σ + J‖

σ = c‖σ

(
N∗

σ + N‖
r,σ

)

where N∗
r , N∗

σ , and N
‖
r,σ are independent Poisson processes. Now write

(
c
‖
r

c
‖
σ

)
∼ N(0,ΣJ ) and ΣJ =

(
σ2

J,r �

ρJσJ,rσJ,σ σ2
J,σ

)
,

where ΣJ may be a function of σ2.11 Then,





ϑ1,0(·) = µ(·)
ϑ2,0(·) = · + (λ∗

r(·) + λ
‖
r,σ(·))σ2

J,r

ϑ4,0(·) = 3(λ∗
r(·) + λ

‖
r,σ(·))σ4

J,r

ϑ6,0(·) = 15(λ∗
r(·) + λ

‖
r,σ(·))σ6

J,r





yield identification of µ(·), σ2
J,r, and

{
λ∗

r(·) + λ
‖
r,σ(·)

}
. Similarly,





ϑ0,1(·) = m(·)
ϑ0,2(·) = Λ2(·) + (λ∗

σ(·) + λ
‖
r,σ(·))σ2

J,σ

ϑ0,4(·) = 3(λ∗
σ(·) + λ

‖
r,σ(·))σ4

J,σ

ϑ0,6(·) = 15(λ∗
σ(·) + λ

‖
r,σ(·))σ6

J,σ





identify m(·), Λ(·), σ2
J,σ, and

{
λ∗

σ(·) + λ
‖
r,σ(·)

}
. Finally,





ϑ1,1(·) = ρ(·)√·Λ(·) + λ
‖
r,σ2(·)ρJσJ,rσJ,σ

ϑ2,2(·) = λ
‖
r,σ2(·)σ2

J,rσ
2
J,σ(1 + 2ρ2

J )

ϑ3,1(·) = 3λ
‖
r,σ2(·)ρJσ3

J,rσJ,σ

ϑ1,3(·) = 3λ
‖
r,σ2(·)ρJσJ,rσ

3
J,σ





identify ρ(·), ρJ , and λ
‖
r,σ2(·). Naturally, even in this logarithmic model with Gaussian jumps, alternative

identification schemes may be entertained.

10 Allowing for spot variance estimation

The spot variance process is latent. Thus, when implementing ϑ̂1,1(σ
2) and ϑ̂j(σ

2) with j = 1, 2, 3, 4, ...

one must replace σ2
iT/n with spot variance estimates σ̂2

iT/n.

11This can be easily seen. If the moments of the size distribution are treated as parameters, one would have to average
functionals of the higher-order moments across evaluation points to gain efficiency (see, e.g., Eq. (12) above). If the
moments of the size distribution are not treated as parameters, but rather as general functions of the state variable, than
no averaging would take place.
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To this extent, assume availability of k (possibly not equi-spaced) high-frequency observations over

each time interval [i∆n,T , i∆n,T − φn,T ].12 Assume these k observations are employed to estimate the

integrated variance of the logarithmic price process over each interval (i.e.,
∫ i∆n,T

i∆n,T −φn,T
σ2

sds) by virtue of

a generic estimator V̂iT/n. Now define σ̂2
iT/n =

bViT/n

φn,T
and let, asymptotically, φn,T → 0 as k → ∞. BR

(2008) have shown that a theory of consistent (and asymptotically mixed normal) spot variance estimation

based on σ̂2
iT/n can be derived, for a large number of estimators V̂iT/n introduced in the literature, by

controlling the rate at which φn,T vanishes as k goes off to infinity. Specifically, for these estimators, they

have shown that, if φβ
n,T kα → ∞, φβ

n,T kα
(
φn,T log

(
1

φn,T

))1/2

→ 0, and under additional conditions

which are specific to the V̂iT/n used,

φβ
n,T kα

(
V̂iT/n

φn,T
− σ2

iT/n

)
⇒ MN

(
0, a

(
σ4

iT/n

)η

+ b
)

, (18)

where α, β, a, b, and η are parameters which are, again, specific to V̂iT/n. For appropriate choices of these

parameters, the above weak convergence result is satisfied, for example, by the classical realized variance

estimator (Andersen et al., 2003, and Barndorff-Nielsen and Shephard, 2002). For alternative choices of

the same parameters, as well as for appropriate choices of the number of subsamples/autocovariances,

it is also satisfied by the two-scale estimator of Zhang et al. (2005) as well as by the family of flat-top

symmetric kernels suggested by Barndorff-Nielsen et al. (2009). Both are, contrary to realized variance,

robust to market microstructure noise, thereby leading to spot variance estimates which are also robust

to noise. Appendix A in BR (2008) details the values of α, β, a, b, and η for a variety of spot variance

estimators σ̂2
iT/n =

bViT/n

φn,T
with different robustness properties with respect to jumps in returns and market

microstructure noise.13

If feasibility is restored by employing σ̂2
iT/n =

bViT/n

φn,T
, for an appropriate V̂iT/n, in place of the unob-

servable σ2
iT/n, ∀i = 1, ..., n, the resulting estimation error must be controlled by relating the limiting

properties of n, T, and ∆n,T to those of φn,T and k. The following theorem does so.

Theorem 6. Let σ̂2
iT/n =

bViT/n

φn,T
be a spot variance estimator for which Eq. (18) is satisfied. Let, also,

φn,T → 0 and k → ∞. If

Tv(T )−1 log(n)

∆n,T hn,T kαφβ
n,T

+
Tv(T )−1

∆n,T hn,T

(
φn,T log

(
1

φn,T

))1/2

→ 0

the consistency results in Theorems 1-5 hold when replacing σ2
iT/n with σ̂2

iT/n. If

Tv(T )−1/2 log(n)

∆
3/2
n,T h

1/2
n,T kαφβ

n,T

+
Tv(T )−1/2

∆
3/2
n,T h

1/2
n,T

(
φn,T log

(
1

φn,T

))1/2

→ 0

the weak convergence results in Theorems 1 and 2 hold when replacing σ2
iT/n with σ̂2

iT/n. If

Tv(T )−1/2 log(n)

∆n,T h
1/2
n,T kαφβ

n,T

+
Tv(T )−1/2

∆n,T h
1/2
n,T

(
φn,T log

(
1

φn,T

))1/2

→ 0

12Of course, the interval could also be [i∆n,T + φn,T , i∆n,T ]. Alternatively, it could be symmetric around i∆n,T . In all
cases, in fact, φn,T → 0. The interpretation of these alternative choices, and their relation with discrete-time approaches,
are discussed in Subsection 13.2.

13For interesting, alternative approaches to spot variance estimation using realized variance and Fourier estimates, we
refer the reader to the recent work of Malliavin and Mancino (2008) and Kristensen (2008).
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the weak convergence results in Theorems 3 through 5 hold when replacing σ2
iT/n with σ̂2

iT/n.

If the return/volatility dynamics are evaluated by virtue of infinitesimal conditional moment estimates

based on n daily observations, as in this paper, the conditions in the theorem require availability of a

sufficiently large number k of intra-daily observations for the purpose of estimating spot variance for each

day i = 1, ..., n and suitably reducing the resulting measurement error. We now turn to empirical work.

11 Leverage estimates: the S&P 500 index

We apply the leverage estimator to S&P500 index futures. We employ high-frequency stock index future

prices from January 1982 to February 2009 for a total of 6,675 days. As is customary in the literature, we

focus on a broad-based US market index. Admittedly, however, classical economic logic behind leverage

effects makes the analysis of firm-specific data compelling. We leave this analysis for future work.

Our estimated model is for ξ(·) =
√·, the volatility process. We also express the quantities of

interest as a function of spot volatility σ. To reduce the estimation error induced by daily spot volatility

estimation, we use intra-daily observations interpolated on a 5-minute grid (80 intervals per day) to

construct the volatility estimates (k = 80). These estimates are derived as a combination of the threshold

methods advocated by Mancini (2007) and of bipower variation (Barndorff-Nielsen and Shephard, 2004),

as proposed by Corsi et al. (2008), i.e., threshold bipower variation or TBPV .14 We refer the interested

reader to Corsi et al. (2008) for details on the estimator’s construction. Importantly, Theorem 2.3 in

Corsi et al. (2008) implies that TBPV satisfies the result in Eq. (18) with α = 1/2, β = 0, a ≃ 2.6,

b = 0, and η = 1.15 Thus, the spot volatility estimator is

σ̂iT/n =

√
TBPViT/n:iT/n−φn,T

φn,T
.

We consider our more general case of jumps both in returns and in volatility. The nonparametric estimates

ϑ̂1,1(σ) and ϑ̂j(σ) with j = 1, 2, 3, 4 are implemented using hn,T = hsŝn
− 1

5 , where ŝ is the standard

deviation of the time-series of daily spot volatilities. Based on preliminary investigation, we set hs = 2

for ϑ̂1,1(σ) and ϑ̂2(σ) and use hs = 4 for ϑ̂1(σ), ϑ̂3(σ), and ϑ̂4(σ). Nonparametric identification is

conducted by virtue of a first-order correction in ∆n,T . This correction is immaterial asymptotically

but has the potential to improve finite-sample performance, particularly when evaluating the intensity

of the volatility jumps (which, of course, plays a role in the denominator of ρ̃(σ)). Specifically, assuming

exponential jumps in volatility with parameter µσ as done earlier, we obtain

ϑ2(σ) ≈ Λ2(σ) + 2µ2
σλσ(σ),

ϑ3(σ) ≈ 6µ3
σλσ(σ) + 3ϑ1(σ)ϑ2(σ)∆,

ϑ4(σ) ≈ 24µ4
σλσ(σ) +

[
3 (ϑ2(σ))

2
+ 4ϑ1(σ)ϑ3(σ)

]
∆.

14The use of power variation (or solely threshold methods) would not change our results qualitatively. We opt for using
TBPV in light of its ”double-blade” nature and superior robustness to jumps in finite samples (see Corsi et al., 2008, for
further discussions).

15Contrary to threshold bipower variation, for the classical bipower variation estimator of Barndorff-Nielsen and Shephard
(2004), Eq. (18) is not satisfied. However, the conditions in Theorem 6 are still valid with α = β = 1/2.
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We identify the system through

µ̃σ =
1

4

n∑

i=1




ϑ̂4(σ̂iT/n) − 3∆n,T

[(
ϑ̂2(σ̂iT/n)

)2

+ 4ϑ̂1(σ̂iT/n)ϑ̂3(σ̂iT/n)

]

ϑ̂3(σ̂iT/n) − 3∆n,T ϑ̂1(σ̂iT/n)ϑ̂2(σ̂iT/n)


 ,

λ̃σ(σ) =

ϑ̂4(σ) − ∆n,T

[
3
(
ϑ̂2(σ)

)2

+ 4ϑ̂1(σ)ϑ̂3(σ)

]

24µ̂4
σ

,

Λ̃2(σ) = ϑ̂2(σ) − 2µ̂2
σλ̂σ(σ),

and, of course,

˜̃ρ(σ) =
ϑ̂1,1(σ)√
σΛ̃2(σ)

,

with ϑ̂1,1(·) as defined in Eq. (6).16 We apply a similar first-order correction to evaluate the confidence

bands. These are obtained by using the limiting results in Section 7 for the case with independent

return/volatility jumps. Finally, when estimating µσ we weigh the addend by virtue of the estimated

local time at σ̂iT/n ∀i = 1, ..., n.

The empirical findings are presented in Fig. 1 and in Fig. 2. Fig. 1 contains the S&P500 future

volatility of volatility function, the intensity of the jumps in volatility (expressed in terms of the number

of yearly jumps), and the leverage estimates. In all cases, spot volatility is expressed (on the horizontal

axis) in daily percentage terms. In agreement with much empirical work in which volatility is filtered

from low-frequency (daily) stock returns (see, e.g., Eraker et al., 2003), the volatility of volatility is found

to be increasing. The point estimates of the number of yearly jumps are centered around 20 and are

statistically significant. The leverage estimates are, as expected, negative and, barring a very mild hump-

shape for low volatilities, decreasing with the volatility level. These estimates vary between roughly −0.17

and −0.35 in the most populated volatility range, the value −0.6 being reached for high, seldomly seen,

volatility levels. These results are consistent with economic logic, as laid out in the Introduction, and

with the parametric evidence in Section 2. They are, once more, indicative of significant time-variation

in the correlation between shocks to returns and shocks to volatility. For a dynamic assessment of this

time variation, see Fig. 2.17

We, of course, emphasize that, in light of Theorem 5, the reported leverage estimates are theoretically

consistent for ρ(σ) only in the absence of co-jumps (or if, in the presence of co-jumps, the jump sizes are

independent and the mean of the return jumps is equal to zero, as sometimes assumed in the literature

- see the Corollary to Theorem 5). In spite of the impact of co-jumps on estimating ρ(·), however,

the presence of co-jumps does not invalidate the empirical relevance of our methods. As emphasized in

Section 9, the methods simply lead to the estimation of a broader notion of leverage. It is now of interest

to separately identify (and evaluate the relative impact of) the different components of total leverage,

dubbed ”continuous leverage” and ”co-jump leverage” earlier. Ideas on identification are laid out in

16Even though previous work on nonparametric jump-diffusion estimation has shown that jump identification off of higher-
order moments is empirically feasible (Bandi and Nguyen, 2003, and Johannes, 2004, for instance), estimating higher-order
moments is known to be cumbersome. The proposed bias-corrections are bound to improve finite-sample inference by
reducing discretization error. The performance of the resulting leverage estimator is evaluated below by simulation.

17The point estimate of eµσ is 0.3246.
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Remark 10. This study is, however, beyond the scope of the current paper and better left for future

work.

12 Simulations

Consider the discretized system

rt,t+∆ = µ∆ + σt

√
∆εr

t + ξr
t Jr

t ,

σ2
t+∆ − σ2

t = κ(θ − σ2
t )∆ + συσt

√
∆εσ

t + ξσ
t Jσ

t ,

where {Jr
t , Jσ

t } are independent Bernoulli random variables with constant intensities λr∆ and λσ∆,

{εr
t , ε

σ
t } are standard Gaussian random variables with correlation ρ, ξr

t is a mean zero Gaussian shock

with standard deviation σξ, ξσ
t is an exponential shock with mean µσ, and ∆ is an interval corresponding

to a day. Assume µ = 0.0506, κ = 0.025, θ = 0.5585, συ = 0.09, λr = 0.0046, λσ = 0.0055, σξ = 2.98,

µσ = 1.79, and ρ = −0.4. These parameter values are virtually identical to those estimated by Eraker

et al. (2003) and reported in their Table III for similar data. In agreement with our average leverage

estimates, we lowered the ρ value to −0.4 (but leaving it unchanged to the Eraker et al’s value of −0.5

would not affect our findings in any way). In light of the insignificance of the corresponding parameter

in Eraker et al. (2003), we also do not allow for negative mean jumps in returns.

The system is simulated over 2,500 days. Fig. 4 reports the median leverage estimates (for each spot

variance level) as well as 10th and 90th percentile bands across 1,000 simulations. For each simulated

path, we estimate leverage using Eq. (11) in conjunction with the small-sample adjustments discussed

in the previous section. Barring the presence of some upward bias for low spot variance levels, leverage

is estimated rather accurately. Importantly for our purposes, we have no evidence that the reported

nonlinear, decreasing behavior for increasing variance levels is a by-product of the use of nonparametric

methods and their well-known boundary effects.

13 Further discussions

13.1 Issues of timing: contemporaneous vs lagged leverage

The discrete-time model introduced in Section 2 is clearly consistent with the nonparametric model which

is the subject of this paper. The consistency derives from the fact that the implied leverage function ρi

captures the contemporaneous correlation between daily volatility and daily returns (i.e.,
√

TBPVt:t−1−
HARt−1 and rt = log pt − log pt−1) for changing values of ηi. Equivalently, our continuous-time leverage

estimates - which, by necessity, have to rely on discretizations - capture the contemporaneous correlation

between

√
TBPViT/n:iT/n−φn,T

φn,T
−
√

TBPV(i−1)T/n:(i−1)T/n−φn,T

φn,T
and riT/n = log piT/n − log p(i−1)T/n for a

daily φn,T .

While, in order to provide motivation, our treatment in Section 2 had to be consistent with our

continuous-time specification (in its discretized form, of course), it is admittedly somewhat different from

classical specifications in discrete time. It is, in fact, generally the case that, in reduced-form discrete-time

models, leverage is measured as a lagged correlation. To this extent, consider now the model
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√
RVt:t−1 = α + β1

√
RVt−1:t−2 + β2

√
RVt−1:t−6 + β3

√
RVt−1:t−23︸ ︷︷ ︸

HARt−1 component

+rt−1

N∑

i=1

δi1{ηi≤
√

RVt−1:t−2≤ηi−1}+εt,

(19)

where the variables have the same interpretation as earlier but the regression is

on lagged returns rt−1 rather than on contemporaneous returns rt. We now

find that δ̂i ≈ dcov(
√

RVt:t−1−HARt−1,rt−1|ηi≤
√

RVt−1:t−2≤ηi−1)

dvar(rt|ηi≤
√

RVt−1:t−2≤ηi−1)
, ρ̂i ≈ δ̂iŜi, and Ŝi =

cstd(rt−1|ηi≤
√

RVt−1:t−2≤ηi−1)

cstd(
√

RVt:t−1−HARt−1|ηi≤
√

RVt−1:t−2≤ηi−1)
. This lagged definition of leverage may even appear more

consistent with classical economic logic postulating that past changes in firm value (and in the value of

the firm’s stock) lead to future volatility changes of an opposite sign due to variations in the company’s

debt-to-equity ratio. For a daily φn,T , the corresponding expression in our functional framework would

of course be ˜̃ρ
lagged

(σ) =
bϑlagged
1,1 (σ)√

σeΛ2(σ)
with

bϑlagged
1,1 (σ)

=

Pn−1
i=1 K

0
B@

s

T BP ViT/n+φn,T :iT/n

φn,T
−σ

hn,T

1
CA (log p(i+1)T/n − log piT/n)

 r
TBPV(i+1)T/n+φn,T :(i+1)T/n

φn,T
−
r

TBPViT/n+φn,T :iT/n

φn,T

!

∆n,T

Pn
i=1 K

0
B@

s

T BP ViT/n+φn,T :iT/n

φn,T
−σ

hn,T

1
CA

.

(20)

Fig. 3 reports functional estimates of lagged leverage as implied by Eq. (20). Table 2 provides es-

timates of the implied lagged leverage given the parametric model in Eq. (19). We notice that lagging

reduces the size of leverage as compared to the contemporaneous case. This is apparent in both contexts.

Around the bulk of the data (namely, for daily volatility levels between 0.4 and 1.1) both the paramet-

ric and the nonparametric model imply increasingly negative leverage for higher volatility levels. The

nonparametric case yields a bit more action at the boundaries of the volatility range.

The issue of timing is clearly important conceptually and empirically. Interestingly, however, the need

to effectively discretize continuous-time stochastic volatility models for the purpose of their functional

estimation may render both lagged and contemporaneous leverage compatible with a continuous-time

specification in which leverage is, as is natural in continuous-time modelling, a contemporaneous notion

(see the motivating model in Section 2). This can be easily gauged by noticing that, in ϑ̂lagged
1,1 (σ),√

TBPV(i+1)T/n+φn,T :(i+1)T/n

φn,T
can be viewed as an estimate of σ(i+1)T/n (for a shrinking φn,T ”from the

right”). Similarly, in ϑ̂1,1(σ),

√
TBPV(i+1)T/n:(i+1)T/n−φn,T

φn,T
can also be seen as an estimate of σ(i+1)T/n

(for a shrinking φn,T ”from the left”). In both cases, the resulting leverage estimator may be thought of

as estimating the instantaneous correlation between σ(i+1)T/n− σiT/n and log p(i+1)T/n− log piT/n.

Differently put, the fundamental empirical issue is that spot volatility is an instantaneous notion.

Filtering it by virtue of high-frequency kernel estimates (as is the case for TBPV ) requires the choice

of a kernel and a window width. In agreement with our previous discussion, the use of a left-kernel is

more naturally comparable to a discrete-time model in which leverage is contemporaneous whereas the
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use of a right-kernel is more naturally comparable to a discrete-time model in which leverage is lagged.

Needless to say, the kernel could be symmetric about iT/n but, as implied by our previous discussion,

the use of symmetric kernels would complicate intuition as compared to discrete-time specifications.

In sum, we find that the effective use of a flat left-kernel (leading to a notion of contemporaneous

leverage in the language of discrete-time models) yields a a more statistically significant and stronger

negative correlation between shocks to volatility and shocks to returns than the use of a flat right-kernel

(leading to a lagged notion of leverage, again, in the language of discrete-time models). In both cases,

leverage becomes more negative with increasing volatility levels around the bulk of the data.

13.2 Alternative conditioning variables

Conditional leverage is modelled in this paper as a function of spot volatility. We argue that (1 ) this

approach is natural, (2 ) it leads to an economically meaningful interpretation coherent with classical

finance principles, and (3 ) it is technically more feasible, in continuous-time, than alternative conditioning

methods.

First, this modelling approach is natural in continuous-time stochastic volatility models - and, effec-

tively, extends them - since spot volatility is used as a conditioning variable both in the return equation

(where the return drift may depend on volatility as implied by the presence of risk-return trade-offs) and

in the volatility equation (where the volatility drift and diffusion are generally modelled as functions of

the volatility state).

Second, our findings may be easily reconciled with classical economic logic as discussed in the Intro-

duction. In our case, the contemporaneous (or lagged, depending on the employed kernel - see previous

section) negative correlation between shocks to returns and shocks to volatility tends to be higher, the

higher the volatility level. High volatility levels may have been induced by (a series of) negative past

shocks to returns leading to higher debt-to-equity ratios and, consequently, stronger volatility changes

for associated price changes. Conversely, leverage is lower (in absolute value) and less negative for lower

volatility levels associated with smaller past shocks to returns (and relatively lower debt-to-equity ratios).

In other words, volatility may serve as a proxy for the level of the debt-to-equity ratio (and, hence, the

state of the firm). A higher (lower) debt-to-equity ratio associated with higher (lower) volatility levels

translates into a higher (lower) correlation between shocks to returns and shocks to volatility: shocks to

returns are more negatively correlated with shocks to volatility when risk is higher.

Finally, volatility is a ”stock” variable. Alternative conditioning variables used in this literature (stock

returns, for example - see Figlewski and Wang, 2000, and Yu, 2008) have a ”flow” nature. This property

makes conditioning on volatility feasible. When working in continuous-time, conditioning on returns

would not be possible (unless the model is specified for increments in returns - which is unusual - rather

than for increments in prices).

This said, alternative approaches may be entertained, at least in discrete time. The parametric findings

in Figlewski and Wang (2000) and Yu (2008) are notable in this area. When the stock value decreases,

the debt-to-equity ratio increases, so does future volatility. Positive price changes yield reductions in the

debt-to-equity ratio but increase future volatility, thereby leading to an asymmetry in the way in which

volatility responds to price changes - conditionally on a small or positive return, the correlation between

volatility and price changes is small or positive, it is negative when conditioning on a negative return. In
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Table 2 we confirm their results, again, in a parametric framework. Positive or negative returns today

have a different impact on the sign of lagged leverage (namely on the correlation between current returns

and future volatility).18 Exploring nonparametrically (in discrete time, given the infeasibility of return

conditioning in continuous time) their alternative approach is an interesting topic for future work. So

is exploring the conditioning power of signed - by contemporaneous returns - volatility. This approach,

of course, borrows features from both volatility and return conditioning and, again, is only feasible in

discrete-time nonparametric or parametric models of leverage. For completeness, the empirical potential

of this alternative method in parametric models for contemporaneous and lagged leverage is reported in

Table 1 and 2.

14 Conclusions

We adopt a flexible nonparametric specification in the family of discontinuous stochastic volatility models

in order to provide a framework to better understand the nature of the correlation between return and

volatility shocks. We show that kernel estimates of leverage effects have asymptotic sampling distributions

which crucially depend on the features of objects that are fundamentally hard to pin down, namely the

probability and size distribution of the individual and joint discontinuities in the return and volatility

sample paths. We discuss the nature of this dependence and its implications, while providing tools for

feasible identification of (potentially time-varying) leverage effects under mild parametric structures and

weak recurrence assumptions. Our empirical work shows that, for stock index futures, stronger leverage

effects are associated with higher volatility regimes. We argue that this novel finding is coherent with

traditional finance principles and points to the importance of time-varying dynamics in the relation

between shocks to stock returns and shocks to volatility.

15 Proofs

We consider ξ(x) = x for brevity and, when not differently indicated, cσ ∼ exp(µσ). Alternative specifications for

ξ(·) and cσ may be treated similarly. The notation eK(Ai) denotes

eK(Ai) =

Pn−1
i=1 K

„
σ2

iT/n−σ2

hn,T

«
Ai

∆n,T

Pn
i=1 K

„
σ2

iT/n
−σ2

hn,T

« .

Lemma A.1. Given a Borel measurable bounded function g(·), consider the quantity

Ψ(σ2)j = eK
 Z (i+1)T/n

iT/n

`
log ps− − log piT/n

´j
Z

Z

g(z)ν̄σ(ds, dz)

!
,

where ν̄σ is the compensated measure of Jσ. If

v(T )

hn,T

„
∆n,T log

1

∆n,T

«1/2

→ 0,

we have

Ψ(σ2)0 = Op

0
@
s

1

hn,T
bLσ2(T, σ2)

1
A

18Both in Figlewski and Wang (2000) and Yu (2008) leverage is measured in its lagged version, as described in the previous
subsection. When conditioning on the previous period’s return, the sign of contemporaneous leverage may be different. We
find it to always be negative and highly statistically significant (see Table 1).
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and

Ψ(σ2)1 = Op

 s
∆n,T

hn,T
bLσ2(T, σ2)

!
.

Moreover: q
hn,T

bLσ2(T, σ2)Ψ(σ2)0 ⇒ N
`
0,K2λσ(σ2)E[g2]

´
,

s
hn,T

bLσ2(T, σ2)

∆n,T
Ψ(σ2)1 ⇒ N

„
0,

1

2
K2

ˆ
λr(σ

2)E[c2
r] + σ

2˜
λσ(σ2)E[g2]

«
.

Remark to Lemma A.1. Similar results hold if we replace ν̄σ with ν̄r (the compensated measure of Jr) or
ν̄r,σ (the compensated measure of the contemporaneous jumps between r and σ2) and, of course, if we replace
log ps− − log piT/n with σ2

s− − σ2
iT/n.

Lemma A.2. Consider the quantity

Φ(σ2)j = eK
 Z (i+1)T/n

iT/n

`
log ps− − log piT/n

´j
Λ(σ2

s−)dW
σ
s

!
.

If

v(T )

hn,T

„
∆n,T log

1

∆n,T

«1/2

→ 0

we have

Φ(σ2)0 = Op

0
@
s

1

hn,T
bLσ2(T, σ2)

1
A

and

Φ(σ2)1 = Op

 s
∆n,T

hn,T
bLσ2(T, σ2)

!
.

Moreover: q
hn,T

bLσ2(T, σ2)Φ(σ2)0 ⇒ N
`
0,K2Λ

2(σ2)
´
,

s
hn,T

bLσ2(T, σ2)

∆n,T
Φ(σ2)1 ⇒ N

„
0,

1

2
K2

ˆ
λr(σ

2)E[c2
r] + σ

2˜Λ2(σ2)

«
.

Remark to Lemma A.2. Similar results hold if we replace W σ with W r and, of course, if we replace log ps− −
log piT/n with σ2

s− − σ2
iT/n.

Proof of Lemma A.1. We prove the lemma for Ψ(σ2)1. The case Ψ(σ2)0 follows analogously. Let T be fixed
and define:

s
hn,T

∆n,T
Ψnum :=

1p
hn,T ∆n,T

n−1X

i=1

K

 
σ2

iT/n − σ2

hn,T

!Z (i+1)T/n

iT/n

`
log ps− − log piT/n

´ Z

Z

g(z)ν̄σ(ds, dz)

:=

n−1X

i=1

uiT/n,(i+1)T/n,

where the uiT/n,(i+1)T/ns are square-integrable martingale difference sequences. We immediately have

n−1X

i=1

E[uiT/n,(i+1)T/n|ℑiT/n] = 0

and, by virtue of Ito’s Lemma on
`
log ps− − log piT/n

´2
:

n−1X

i=1

E[u2
iT/n,(i+1)T/n|ℑiT/n]
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2
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2
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r]
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λσ(σ2
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= eVT .
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Now write
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but K

„
σ2

iT/n−σ2
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«R (i+1)T/n

iT/n

`
log ps− − log piT/n

´ R
Z

g(z)ν̄σ(ds, dz) = Op(∆n,T ). Hence, the indicator converges

in probability to 1 and, given boundedness of eVT , Eq. (21) converges in probability to 0 (as ∆n,T → 0). This is
a conditional Lindeberg condition. Using Theorem VIII.3.33 in Jacod and Shiryaev (2002), we conclude that, for

each T ,
q

hn,T

∆n,T
Ψnum ⇒ W
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eVT

”
and W is an independent Brownian motion. This implies that

s
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uniformly in T . By the Quotient limit theorem (see, e.g., Revuz and Yor, 1998, Theorem 3.12) we now have that,
as T → ∞ (with hn,T → 0),

eVT

1
hn,T

R T

0
K

„
σ2

s−−σ2

hn,T

« p−→ 1

2
K2

`
σ

2 + λr(σ
2)
´
λσ(σ2)E[g2]

which, using Skorohod embedding arguments as in Theorem 4.1 in Van Zanten (2000), for example, gives the
desired result. �

Proof of Lemma A.2. The proof follows the same lines as that of Lemma A.1.
Proof of Theorem 1. Under the assumptions of the theorem, Bandi and Phillips (2003) prove that bϑ2(σ

2) →
ϑ2(σ

2) = Λ2(σ2) with probability one and

s
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Now consider bϑ1,1. Itô’s lemma gives:
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Using Lemma A.2. we get:
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The asymptotic covariance between
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Hence,
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since, by the Quotient limit theorem,

eK
 Z (i+1)T/n

iT/n

ρ(σ2
s−)σs−Λ(σ2

s−)ds

!
− ϑ1,1(σ

2) = Γϑ1,1(σ
2) + op(h2

n,T ).

In the same way,
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Hence, the asymptotic covariance between bϑ1,1 and bϑ2 is given by:

Asycov(bϑ1,1, bϑ2) = K2
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.

Finally, by the delta method:
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Hence,
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As for the asymptotic bias, clearly

eΓρ(σ
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�

Proof of Theorem 2. Since Jσ = 0, the speed of convergence and asymptotic distribution of bϑ2 do not change.
On the other hand, Ito’s lemma now implies that

bϑ1,1 = bϑc
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where bϑc
1,1 is defined in Eq. (23). The extra term does not affect consistency (nor does it contribute to the

asymptotic bias) and does not change the speed of convergence. However, the limiting variance of bϑ1,1 (and
bρ(σ2)) does change. Notice, in fact, that by Lemma A.1.,
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This implies that, by the delta method in Eq. (24):
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Proof of Theorem 3. BR (2008) show that bΛ2(σ2)
p→ Λ2(σ2) and

q
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Ito’s lemma now implies
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. Hence, the rate convergence of bΛ2(σ2) is slower and

therefore dominating. In other words, from Eq. (24), the limiting variance of bρ(σ2) solely depends on
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thereby giving the stated result. �

Proof of Theorem 4. See BR (2008), Theorem 7. �

Proof of Theorem 5. The result in Eq. (25) still holds. Using Itô’s lemma in the presence of contemporaneous
jumps gives:
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Similarly, since the lower-order term in bϑ2(σ
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Due to the presence of co-jumps, compensation of the object
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thereby leading to the stated result.�
Proof of Theorem 6. Denote by eϑ1,1(σ

2) and by eϑj(σ
2) with j = 2, 3, 4, the moment estimators constructed

using estimated spot variance in place of the true, unknown spot variance. Using the method of proof of Theorem
2 of BR (2008), we can show that

eϑ1,1(σ
2) = bϑ1,1(σ

2) + Op

 
Tv(T )−1 log(n)

∆n,T hn,T kαφ
β
n,T

+
Tv(T )−1

∆n,T hn,T

„
φn,T log

„
1

φn,T

««1/2
!

and

eϑj(σ
2) = bϑj(σ

2) + Op

 
Tv(T )−1 log(n)

∆n,T hn,T kαφ
β
n,T

+
Tv(T )−1

∆n,T hn,T

„
φn,T log

„
1

φn,T

««1/2
!

with j = 2, 3, 4. Therefore,
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is sufficient for consistency of the feasible leverage estimator. For weak convergence, this condition ought to be
strenghtened. The relevant condition is
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for Theorem 1 and 2 (i.e., when the convergence rate is
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Figure 1: Functional estimates of Λ2(σ) (top left), λσ(σ) (top right), and ρ(σ) (bottom) for the spot
volatility process of the S&P500 index futures. With the exception of the jump intensity which is in terms
of the number of jumps per year, all estimates are daily and in percentage form.
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Figure 2: Estimated time series of spot volatility (top) and leverage (bottom) for the S&P500 index futures.
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Figure 3: Functional estimates of lagged leverage for the S&P500 index futures.
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Figure 4: Estimated leverage on simulated paths. The table reports the 10th, 50th, and 90th percentile of
the leverage estimates across 1,000 simulated paths.



Model:

√
RVt:t−1 = HARt−1 + rt

N∑

i=1

δi1{ηi≤X≤ηi−1} + εt,

Conditioning on volatility (X =
√

RVt−1:t−2)

i Range δi standard error t-stat implied leverage

1 0.250 < X < 0.536 -0.226 0.077 -2.93 -0.152
2 0.536 < X < 0.780 -0.240 0.037 -6.55 -0.187
3 0.780 < X < 1.700 -0.350 0.046 -7.54 -0.273

Conditioning on returns (X = rt−1)

i Range δi standard error t-stat implied leverage

1 -1.700 < X < -0.043 -0.478 0.168 -2.85 -0.187
2 -0.043 < X < 0.061 -0.374 0.043 -8.59 -0.054
3 0.061 < X < 1.700 -0.358 0.063 -5.65 -0.164

Conditioning on signed volatility (X =
√

RVt−1:t−2 · sign(rt−1))

i Range δi standard error t-stat implied leverage

1 -1.700 < X < -0.525 -0.317 0.046 -6.88 -0.155
2 -0.525 < X < 0.531 -0.221 0.074 -2.99 -0.143
3 0.531 < X < 1.700 -0.321 0.037 -8.76 -0.178

Table 1: Parametric models with contemporaneous leverage



Model:

√
RVt:t−1 = HARt−1 + rt−1

N∑

i=1

δi1{ηi≤X≤ηi−1} + εt,

Conditioning on volatility (X =
√

RVt−1:t−2)

i Range δi standard error t-stat implied leverage

1 0.250 < X < 0.536 -0.163 0.110 -1.48 -0.110
2 0.536 < X < 0.780 -0.096 0.035 -2.75 -0.075
3 0.780 < X < 1.700 -0.136 0.044 -3.06 -0.105

Conditioning on returns (X = rt−1)

i Range δi standard error t-stat implied leverage

1 -1.700 < X < -0.043 -0.716 0.114 -6.28 -0.280
2 -0.043 < X < 0.061 -0.018 0.132 -0.14 -0.003
3 0.061 < X < 1.700 0.158 0.072 2.21 0.072

Conditioning on signed volatility (X =
√

RVt−1:t−2 · sign(rt−1))

i Range δi standard error t-stat implied leverage

1 -1.700 < X < -0.525 -0.338 0.059 -5.70 -0.165
2 -0.525 < X < 0.531 -0.129 0.121 -1.07 -0.084
3 0.531 < X < 1.700 0.083 0.060 1.40 0.046

Table 2: Parametric models with lagged leverage


