Liquidity, Contagion and Crisis

Alexander Guembel and Oren Sussman

Learning from Crisis Rome, 12-13 November 2009

The "classic" view

"our credit system [is] much more delicate

at some times than at others ...

panics come according to a fixed rule ...

every ten years or so we must have one of them"

Walter Bagehot, Lombard Street, 1873 Ch. V: "Why Lombard street is often very dull and sometimes extremely excited"

The Fisher Effect

Source: Fisher, Econometrica, 1933

Related literature

- Corporate finance & macroeconomics
 - Bernanke & Gertler (1989)
 - Kiyotaki & Moore (1997, 2000)
 - Suarez & Sussman (1997, 2007)
- Role of liquidity for corporations
 - Complete contracts: Holmstrom & Tirole (1998, 2008)
 - Spot markets: Caballero & Krishnamurty (2001, 2003, 2004), Lorenzoni (2008)
- Equilibrium supply of liquidity
 - Gorton & Huang (2004)
 - Fostel & Geanakoplos (2008)
 - Acharya, Shin & Yorulmazer (2009)

Main results

- Integration: *debt*, liquidity, contagion. crisis, ...
 - all implied a market "abnormality":
 - supply and demand are both downwards sloping
- (Very) preliminary: quantitative implications
- Equilibrium is generically inefficient
 but welfare gains of policy are small
- Crisis and liberalized capital flows

The model

• Agents: speculators and entrepreneurs (measure 1)

– entrepreneur + project (size 1) = "company"

The model (cont.)

- All earnings: observable but not verifiable
- Deter. aggregate capital: $W = \theta \underline{w} + (1-\theta)w^n = 1$
 - no economic distress
- Liquidation destroys value
- Clearing house: all repossessions are sold off

• Arbitrage:
$$\rho_1 = \frac{\delta}{q}$$

Abnormality: demand is decreasing in q

- Demand: $\theta(1-\pi) q \cdot b(q)$
 - b(q): fraction of investment collateralized
- As liquidation become more costly
 - their equilibrium volume increases

$$b(q) = \frac{\frac{\delta}{q}(1 - \underline{w})}{q(1 - \lambda\pi) + \lambda\pi y}$$

Parameterization

Structural parameters for the numerical examples below.				
Description	Model's notation	Parameterization		
Project parameters				
IRR	2y-1	150%		
prob. liquidity shortage	$1-\pi$	25%		
capital shortage	$1-\underline{w}$	40%		
depreciation	δ	50%		
bargaining power	λ	50%		
Market parameters				
ex-ante riskless rate	$\rho_0 - 1$	5%		
worse-case incidence of shortfall	$\overline{ heta}$	40%		
distribution of θ	h	uniform		

Table 1

t=0,...,3 is interpreted as five years

Ex-post equilibrium

- Three equilibrium regimes
 - liquidity slack: q= δ , β =b(δ) \leq 1
 - liquidity shortage: $q=\underline{q}$, $b(\underline{q})=1$
 - credit rationing, with probability: (1-µ)
 - in between: multiple equilibria

Implications of the "abnormality"

- contagion
 - no "domino assumption" needed
- liquidity black holes
- crisis: discont. price drops
- panics
 - multiple equilibria
- multiplier effects

and also

- simul. hoarding-rationing

Ex-ante equilibrium

- Assume: the government coordinates expectations
 - towards the "good" equilibrium credit guarantees
 - that have zero fiscal cost (once the policy is successful)
- There is a unique ex-ante equilibrium,
 - with cut-off θ^* , probability of crisis is 1-H(θ^*)
 - $H(\theta^*)+[1-H(\theta^*)](\delta/q)=\rho_0$
- Crisis is part of the "normal" functioning
 of competitive financial markets!

Quantitative fitness

Table 2

Competitive equilibrium, numerical example. For structural parameters see Table 1. Source for actual data is Reinhart and Rogoff (RR), from top to bottom: (a) peak-to-trough house and equity price decline, RR (2009) Figures 1 and 2; (b) calculations based on depth and duration of GDP decline, annualized (left) or stretched over a five-year period relative to a growth trend of 2% per annum (right), RR (2009) Figure 4; (c) share of years in banking crisis, RR (2008) Table 5a.

		,			
Description	Model	Values	Actual data		
Competitive equilibrium					
price drop in crisis	$\frac{q}{\delta} - 1$	-39.3%	$-35.5\%, -55.9\%^{(a)}$		
loan to security	$\frac{(1-\underline{w})}{b(\delta)}, \frac{(1-\underline{w})}{b(\underline{q})}$	78%, 40%	_		
output drop at $ heta^*$	$Y _{q=q} \nearrow Y _{q=\delta} - 1$	-3.9%	$-3.5\%, -8.8\%^{(b)}$		
credit rationing at θ^*	$[\overline{1} - \mu \left(\theta^* \right)]$	1.1%	_		
probability of a crisis	$1-H\left(heta ^{st } ight)$	7.7%	7.2% ^(c)		

Welfare analysis

- Competitive equilibrium is generically inefficient
 - fire sale price do not reflect "fundamental" value
- We consider
 - liquidity injection, to the fire-sale market
 - "monetary policy" (in a dolarized economy)
 - equity injection, E, lump-sum transfer, indiscriminately
 - bailouts, of distressed companies only
- Funded by government borrows at ρ_0
 - repaid by lump-sum taxes

Policy: results

- With uniform h, optimal liquidity injection: (1-H)=0
 - the crowding out problem
 - $H(\theta^*)+[1-H(\theta^*)](\delta/q)=\rho_0$ still determines H
- Equity injections dominate liquidity injections
 - consider the supply of liquidity
 - $F + (1-\theta)(w^n+E-1) + \theta(1-\mu)(\underline{w}+E)$

Bailouts

- Since distress is not verifiable
- Applying for a bailout must be incentive compatible
- γ = units bailed out / units liquidated
- or equivalently
 - $-\sigma = \gamma / (1-\gamma)$, a subsidy paid upon liquidation
 - crucial: companies cannot fake a liquidation
- Incentive compatibility constraint: $\sigma \leq (y-q)/q$

Quantitative implications

Table 4

A comparison of welfare and national debt (ND) under competitive equilibrium (CE), liquidity injection (LI), equity injection (EI) and bailouts (BO). EI is implemeted at two levels: either bringing the probability of crisis down to zero (ZC), or at ND = 1%. BO is implemeted at a level that would achieve the same β as the second EI policy (for any realization of θ), leaving the government with a slack of liquidity, generically. ND is expressed as a percentage of full-capacity (i.e. no rationing) capital stock, namely one unit. For structural parameters see Table 1.

Description	Model	
Liquidity injection		
welfare gain at ZC	$SW^{LI-ZC}/SW^{CE}-1$	0.3%
ND under LI-ZC	$\overline{\theta}\delta\left(1-\pi ight)eta$	2.6%
Equity Injection		
welfare gain at ZC	$SW^{EI-ZC} / SW^{CE} - 1$	0.4%
ND under EI-ZC	$\overline{\theta}\delta\left(1-\pi\right)\beta^{EI}$	2.4%
welfare gain at 1% injection	$SW^{EI-1\%}/SW^{CE}-1$	0.06%
ND		1%
prob. of crisis	$1-H\left(heta^{EI-1\%} ight)$	7.4%
Bailouts equivalent to 1% EI		
ND	$\overline{\theta}\delta\left(1-\pi\right)\beta^{BO}$	0.3%
government's liquidity slack		0 to 0.3%

Extension: an island model

• Split the shock, θ , across "regions" A and B

– with a joint density $h(\theta_A, \theta_B)$

- such that $\theta_A + \theta_B$ is, still, uniformly distributed
- A region: a bank, a sector or a country
- Each region has domestic liquidity $-L_A$ and L_B

· Pooled liquidity, F serves both islands

Domestic versus mobile liquidity

SW mobile liquidity mobile liquidity liquidity injected

Regional liquidity would vanish in a competitive equilibrium

Summary (policy)

- Is the case for "financial stability" policy that clear?
 quantitatively!
- There is room for pure coordination policies
 but how do we identify, in practice, these cases?
- Does "monetary policy" effective at all?
- Were the recent bailouts incentive compatible?