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Abstract

Many countries have relied on subsidies to promote the adoption of renewable energy

technologies. We study a particularly generous program, which promoted the adoption

of solar photovoltaic (PV) systems through subsidies on future electricity production.

We develop and estimate a tractable dynamic model of technology adoption, also ac-

counting for local market heterogeneity. We exploit rich variation at pre-announced

dates in the future production subsidies. Although the program led to a massive adop-

tion, we �nd that households signi�cantly undervalued the future bene�ts from the

new technology. This implies that an upfront investment subsidy program would have

promoted the technology at a much lower budgetary cost, so that the government

essentially shifted the subsidy burden to future generations of electricity consumers.
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1 Introduction

Many countries have relied on subsidies to promote the adoption of renewable energy tech-

nologies for electricity production, such as wind power and solar photovoltaic (PV) systems.

The generous support has often been motivated on the grounds that there is not only an

environmental externality (CO2 emissions from fossil sources), but also a technology market

failure (insu¢ cient incentives to innovate and adopt a new technology). The subsidies for

the green technologies often consist of a combination of investment subsidies, which are paid

upfront at the moment of installation, and production subsidies, which are paid in the future

when the systems are producing the electricity (or equivalently, a combination of investment

and production tax credits, as reviewed for the U.S. in Murray et al. (2014)).

In this paper we investigate the incentive to adopt a new green technology, and the role

played by investment and production subsidies. The adoption decision involves a fundamental

trade-o¤ between the immediate investment costs and the future bene�ts from electricity

production. The successful adoption of the new technology thus depends on how much

households discount future bene�ts, and on the extent to which subsidies apply to the upfront

investment costs or the future electricity production. We study a particularly generous

program for residential solar PV systems, running in the region of Flanders (Northern part

of Belgium) during 2006�2012, and responsible for a particularly high adoption rate compared

with other countries.1 The program heavily relied on future production subsidies in the form

of Green Current Certi�cates (GCCs), which were committed for up to 20 years. The program

was similar to the German and several other European programs but it di¤ered from the

U.S. programs, which mainly relied on upfront subsidies or rebates.2 Interestingly, the GCC

subsidy program revised its conditions many times at pre-announced dates. The considerable

variation in the subsidies enables us to identify the households�discount factor in a reliable

way. Because the program mainly consisted of future production subsidies, it potentially

enabled the government to shift the �nancial burden to future electricity consumers and we

will assess to which extent this was the case.

To estimate the impact of the subsidy program, we develop a dynamic discrete choice

1Belgium ranked 3rd in the European Union with a total capacity of 240 Watt peak/capita at the end of

2012 (Eurobserv�er 2013), mostly due to the adoption in Flanders. According to our own calculations, total

capacity in Flanders reached 318 Watt peak/capita at the end of 2012, which is the second highest after

Germany with 399.5 Watt peak/capita.
2In the U.S. there were federal tax credits of 30%, and several states took additional measures. For

example, the famous California Solar Initiative (CSI) had a budget of $2.2 billion and aimed to install

1.9GW of solar PV capacity. Combined with the federal tax credits, the investment subsidies could amount

to 50% of the cost of a solar PV system. Source: https://en.wikipedia.org/wiki/California_Solar_Initiative.
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model, where in each period households face the decision to adopt the new technology or

to postpone their investment. We propose a novel approach to estimate the dynamic model

based on aggregate, country-level data on adoption rates, investment costs and expected

future bene�ts. We also show how to extend the model to account for rich forms of local

market heterogeneity in a tractable way.

We obtain the following main �ndings. First, although the program led to a massive

adoption of solar PV systems, households signi�cantly undervalued the future bene�ts from

the new technology. They use a implicit real interest rate of 13% in evaluating these future

bene�ts, which is much above the real market interest rate of about 3%. This implies a

considerable undervaluation of the future bene�ts from electricity production, as consumers

are only willing to pay 0.53 Euro upfront for one Euro of discounted future bene�ts from

electricity production. Our �nding of undervaluation is robust with respect to various as-

sumptions, such as political uncertainty on the program. The considerable consumer myopia

in technology adoption raises speci�c policy concerns, at least from a budgetary and distrib-

utional perspective. The government could have saved 47% or e 1.8 billion by giving upfront

investment subsidies instead of future production subsidies. This is a saving of almost e 700

per household, a very large number given that only 8.5% of the households had adopted

a PV at the end of the program. We conclude that the government essentially shifted the

subsidy burden to future households, as both adopters and non-adopters pay for the subsidy

through higher electricity prices.

Our paper makes several contributions. First, we contribute to the empirical intertem-

poral choice literature, which studies how consumers value future payo¤s. Much of this work

focuses on the important question whether there is consumer myopia or inattention in the

valuation of future energy cost savings, as this could be responsible for the so-called energy

e¢ ciency gap (Allcott and Greenstone (2012)). After Hausman�s (1979) seminal contribu-

tion, the recent evidence ranges from moderate undervaluation to correct valuation, see for

example Allcott and Wozny (2013) and Busse, Knittel and Zettelmeyer (2013). All this

evidence is based on energy-saving investments of existing, mature technologies (such as

cars). This paper instead focuses on the decision to adopt an entirely new technology, which

aims to obtain a shift from traditional energy sources to renewables. Our evidence suggests

that consumer myopia is much stronger in this case, with important implications for policy

programs.

Second, because we focus on the adoption decision of a new technology we also make

a methodological contribution. Other empirical work on consumers� valuation of future

payo¤s typically ignored the timing dimension of adoption. It focuses on the decision of how
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much to invest in energy cost savings, without accounting for the option value of waiting.

This approach may be reasonable for mature technologies where households simply replace

their current products. However, it is unrealistic in new markets when new energy-saving

technologies are just introduced, when prices are quickly decreasing and quality is increasing.

In these circumstances, consumers do not only face a traditional investment problem. They

also must decide on the timing of their investment, as it can be bene�cial to postpone

adoption even if it is already pro�table to invest now.

To incorporate the timing decision, we develop a dynamic discrete choice model that

captures the optimal stopping problem in the spirit of Rust (1987). The discount factor now

plays a double role: it in�uences both how much households value the future bene�ts of

their investments, and how much they are prepared to wait for better investment opportu-

nities. The �rst is inherent in every investment decision, but does not necessitate the use of

a dynamic model as it can treated as a static model with discounted bene�ts. The second

is particularly important for new technologies as they are often characterized by increasing

quality and decreasing prices. This aspect does require a dynamic model. The dynamic

discrete choice literature has stressed that the discount factor is not identi�ed without addi-

tional restrictions; see Manski (1993), Rust (1994) and Magnac and Thesmar (2002). In our

setting we obtain identi�cation by assuming the discount factor that weigh investment costs

against future bene�ts is the same as the discount factor for the timing decision to adopt. We

thus obtain identi�cation from variation in the investment costs and future bene�ts across

product varieties and over time, as in traditional investment situations where households

do not face an option value of waiting. Although this is common in static choice models,

it has not yet been applied in dynamic models where the discount factor plays this double

role. Our particular identi�cation strategy relies on the large variation in investment costs,

combined with the considerable variation in the GCC subsidies, which were revised many

times on pre-announced dates.

Third, we contribute by proposing a novel method to estimate a dynamic choice model

with aggregate data on adoption rates, investment costs and future bene�ts, and we also

show how to extend the model to account for local market heterogeneity in a tractable way.

We follow several steps. In a �rst step, we make use of Hotz and Miller�s (1993) inversion

approach, which writes the dynamic discrete choice model as a static one with a correction

term. This not only simpli�es estimation, but also allows us to limit the assumptions about

household expectations of the evolution of prices and subsidies (Arcidiacono & Ellickson

2011). In a second step, we show how to invert the demand model to solve for the unobserved

error term, using a similar approach as in Berry (1994) for static choice models. Conditional

on the discount factor, this gives rise to a linear regression equation, where the current
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adoption rate depends on current and future prices, as well as the next period adoption rate.

One can use a standard nonlinear GMM estimator to also estimate the discount factor and

account for the endogeneity of several variables. In a third step, we also account for rich forms

of household heterogeneity at a very disaggregate local market level (with on average only 295

households per local market).3 We include household size, income and other demographics,

interacted with the constant, price and capacity size, by adding suitable micro-moments

to the aggregate moment conditions. Although these controls are important in explaining

adoption behavior, they do not a¤ect our conclusions for the discount factor, and our implied

policy implications.

The rest of the paper is structured as follows. Section 2 describes the datasets, the solar

PV technology, the most important policy measures to promote PV adoption in Flanders,

and takes a �rst look at the evolution of adoption and costs and bene�ts. Section 3 speci�es

the model that can be estimated with only aggregate data, and also its extension to account

for local market heterogeneity. Section 4 discusses the empirical results, performs a detailed

sensitivity analysis and derives policy implications. Finally, we conclude in section 5.

2 Industry background

In this section we describe the market of residential photovoltaic (PV) systems. We begin

with a brief description of the available datasets. We then discuss the technology and the

various sources of costs and bene�ts of installing PV systems. Finally, we provide descriptive

statistics on the magnitude of the costs and bene�ts during the considered period, and on

the evolution of the number of adopters of the new technology.4

2.1 Datasets

Our main dataset contains information of all installed PVs across Flanders during 2006�

2012. We will analyze this dataset at the monthly frequency, �rst at the aggregate level of

Flanders (covering about 2.7 million households) and in an extension at the disaggregate

local area level (which divides the entire region in 9,182 statistical sectors, with an average

of 295 households per statistical sector).

3Other dynamic adoption models with aggregate data have ignored persistent heterogeneity (Melnikov

2013), or allowed for it through random coe¢ cients (Gowrisankaran and Rysman (2012)) or unobservable

types in the population (Scott 2013).
4External sources that were used for the policy overview and the database creation are listed in the

appendix.
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We combine the information from this main dataset with several additional datasets.

First, we collected information on the prices of PV systems from May 2009 until December

2012. Second, we have information on the bene�ts from adopting PVs, including the public

support measures in the form of Green Current Certi�cates (GCCs), electricity cost savings,

and tax bene�ts. Finally, for our extension to the disaggregate local area level, we collected

detailed socio-demographic information, such as income, household and house characteristics.

In the Appendix we provide further details on the data sources and the data construction.

2.2 Technology and public support measures

A PV system consists of solar panels, which absorb sunlight and convert this into electricity.

One can distinguish between residential and commercial PV systems. Residential PV systems

are usually installed on top of a roof and typically have a capacity size no larger than 10

kilowatt (kW). Commercial PV systems may also be on the top of a roof or they may be

grount-mounted, and they generally reach much larger capacity sizes than residential PV

systems.

Our focus is on residential PV systems, with capacity limited to 10 kW. In Flanders, a

PV system produces 0.85 MWh per year for each kW of capacity (CREG 2010). All resi-

dential PV systems are connected to the grid, so that households do not need to synchronise

their electricity consumption and production, or use batteries to store excess production.

Households pay an upfront investment price for a PV system, and they receive two main

sources of future bene�ts from installing a PV system: Green Current Certi�cates (GCCs)

and electricity bill savings from net-metering. We discuss these elements in turn.

Investment price The investment price is the price households have to pay for a PV sys-

tem, including all additional costs. This mainly depends on the capacity, measured in kW.

In 2006 and 2007 households could apply for a 10% investment subsidy for PV installations.5

Furthermore, there was a general tax credit of 40% for renewable energy investments, includ-

ing PV installations. The maximum allowed tax credit varied over the period, ranging from

2,600e in 2008 to 3,600e in 2011 (and since 2009 households could transfer the remaining

amount to the following three years if their house was built at least �ve years ago). In 2012

the tax credits for PV installations were abolished. Finally, PV installations that were built

in houses of at least �ve years old also bene�ted from a reduced VAT rate of 6% instead of

21%.
5The subsidizable investment cost was capped at 7000e per kWp and a maximum subsidizable capacity

of 3kW.
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Subsidies from Green Current Certi�cates (GCCs) The Flemish government has

actively promoted the adoption of PV systems through the program of tradable GCCs.

Households obtained a GCC for eachMWh of electricity production through their PV system,

and they could sell these to the distribution system operators (DSOs) at a guaranteed price

for a �xed number of years. This guaranteed price was substantially above the market price

of GCCs. At the start in 2006, the program was very generous, paying e450 per MWh for 20

years. The program became less favourable in 2010, and was subsequently gradually phased

out. By the end of 2012, new PV systems only received a guaranteed price of e90 per MWh

for a period of 10 years. In January 2013, the government introduced a so-called banding

factor. This restricted the number of GCCs per MWh, and e¤ectively led to an abolishment

of the entire GCC system in February 2014.6

From the point of view of PV adopters, the GCCs are a subsidy for future electricity

production. The DSOs were responsible to buy these GCCs at the contracted price. They

subsequently resell them at the prevailing market price to the electricity suppliers, who are

required to purchase a su¢ cient amount every year to meet their renewable energy sources

requirements. The GCCs are thus a cost to both the DSOs and the electricity suppliers, and

these costs are eventually passed on to retail electricity prices. As such, the GCC subsidy

scheme is not �nanced through taxes, but rather through increased electricity prices to all

consumers.

Electricity bill savings from net-metering Households with a PV system with a ca-

pacity limited to 10 kW bene�t from a net-metering principle. This means that they only

have to pay for their net annual electricity consumption, i.e. their consumption after sub-

tracting the annual electricity production generated by their PV system and transmitted on

the grid.7 Hence, in addition to the subsidies from GCCs, a second main source of bene�ts

from installing a PV system is given by the annual electricity bill savings, i.e. the PV�s

annual electricity production multiplied by the retail price of electricity.

Access to the grid was initially o¤ered without any charge. In July 2015, the DSOs were

able to introduce an annual grid fee of around 100e/kW. This came after a long public

debate and several legislative procedures. The grid fee enabled the DSOs to partly �nance

their cost of the GCC subsidies, aiming to avoid further electricity price increases to all

6The idea of the banding factor was to limit the number of GCCs for every produced MWh, in such a

way that the net present value of installing a PV would essentially be zero at the prevailing market prices of

PV systems. Since the prices of PV systems continued to drop, the net present value soon became positive
even without GCCs, so that GCCs were e¤ectively abolished in February 2014.

7Note that there is no reimbursement in case a household would produce more electricity than it consumes

on an annual basis.
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consumers.

2.3 Evolution of costs, bene�ts and adoption

Figure 1 summarizes of the costs and bene�ts of a PV system of 4kW. We calculate future

Figure 1: Costs and bene�ts of 4kW PV in EUR 2013, discounted at market interest rate
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bene�ts in present value terms using a real interest rate of 3% and an expected life time

of 20 years and we convert all prices to 2013 prices. The gross purchase price (net of any

investment tax cuts) dropped from e 21,700 in May 2009 to e 8,791 at the end of 2012. The

present value of future bene�ts was highest in 2009 and rapidly decreased afterwards. The

most important bene�ts came from the GCCs. They provided a present value of e 20,000

until January 2010, and subsequently declined until they almost disappeared at the end of

2012. Bene�ts from tax cuts were also high, especially from 2009 on, but they were removed

in 2012. Finally, the bene�ts from net-metering (i.e. electricity cost savings) formed a fairly

stable source of bene�ts. These bene�ts became the most important reason to adopt PVs

since the end of 2012, but only because other bene�t components decreased over time.
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Figure 2 shows the evolution of the monthly number of new adopters between January

2006 and June 2013. Vertical lines indicate drops in the GCC prices, as typically announced

Figure 2: 2006-2013: Time series of new PV adoptions and drops in nominal GCC price
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a few months in advance. The number of new adopters remained very low until 2009,

which may be because households did not fully value the bene�ts or because they postponed

their adoption in anticipation of better future investment opportunities. From 2009 onwards

the number of new adopters started to increase to reach a sharp peak just before the �rst

announced drop in the GCC price in January 2010. There was again a gradual increase in

the number of adopters in 2010 with a new peak just before the second drop in the GCC

price in January 2011. The same pattern of gradual increases and peaks just before a next

announced drop in the GCC price has been repeated several times until the beginning of

2013 when the GCC policy changed drastically and became less generous. This adoption

pattern illustrates the dynamic nature of the households�decision problem to adopt a PV

installation. Households take into account the announced drops in the GCC price, and they

may speed up their purchases to avoid falling under a less advantageous future subsidy

scheme.

Figure 3 shows the cumulative number of adopters over the considered period, broken

down into �ve groups of capacity size: 2kW, 4kW, 6kW, 8kW and 10kW. This shows a

gradual long-term increase in the number of adopters, with several kink points around the
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Figure 3: 2006-2013: Time series of total adoption of PVs of di¤erent capacity
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time of new GCC schemes. The 4kW and 6kW systems were the most popular choices for

a PV. This is because households only bene�t from net-metering for the production that is

below their household consumption. In practice, an average household consumes 3.5MWh

per year, while a 4kW system produces about 3.4 MWh per year, so that larger PV systems

are only of value for households that are su¢ ciently larger than average. Nevertheless,

there is a modest shift during the period towards PV systems of larger capacity: whereas in

January 2010 the market share of PV systems of 8kW and 10kW was only 12%, it reached

18 % by 2013.

By the end of June 2013, the cumulative number of adopters had reached 222,077,

amounting to an adoption rate of 8.5% of the households (and an identical 8.5% of the

number of buildings). The total capacity of residental PV systems had at that time reached

1,065MW, or 5.1% of total electricity capacity in Belgium.8

Adoption rates vary widely within the region, as illustrated in Figure 4. Adoption rates

are very high (over 20%) in rural areas often in the west and east parts of the region.

Conversely, adoption rates are extremely small in cities such as Ghent (west of center) and

Antwerp (north of center), or the areas around Brussels (south of center). Various socio-

demographic factors may explain this variation, such as average household size, house size

and income. In an extension of our aggregate demand model, we will take into account the

8According to the US Energy Information Administration, Belgium had a total installed electrical capacity

of 21 000 MW in 2012.
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role of these socio-demographic characteristics.

Figure 4: PV adoption rates in Flanders

Adoption data: VREG, household data: ADSEI census 2011

3 The model of technology adoption

We �rst specify a dynamic model that can be estimated with aggregate market data: we

describe to adoption decision (subsection 3.1), derive the estimating equation (subsection

3.2) and discuss estimation and identi�cation (subsection 3.3). We subsequently show how

to extend the appraoch to estimate the model at a highly disaggregate local market level.

This makes it possible to account for heterogeneity across households (subsection 3.4).

3.1 The adoption decision

In a given period t a household i = 1; : : : ; N may either choose not adopt a PV, j = 0, or it

may choose to adopt one of the available PV alternatives, j = 1; : : : ; J . In our application,

the PV alternatives refer to systems with di¤erent capacity sizes. A key feature of the model

is that the adoption decision (j > 0) is a terminating state. Not adopting gives the option

of adopting at a later period, when the price for a given size may have decreased, or when

the �nancial bene�ts may have increased or decreased.

In each period a household obtains a random taste shock "i;j;t, which we assume to follow

a type I extreme value distribution. Let vi;j;t be the conditional value of household i for

alternative j at period t, i.e. the expected discounted utility from choosing j at t before the

realization of the random taste shock "i;j;t. In general, one can decompose vi;j;t = �j;t+�i;j;t,

where �j;t is the mean utility and �i;j;t is the individual-speci�c utility. In this section, we set
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�i;j;t = 0, so that vi;j;t = �j;t. Household heterogeneity then only enters through the extreme

value term "i;j;t.

Assume that in each period t households choose the alternative j that maximizes random

utility vi;j;t + "i;j;t. This will give rise to a choice probability, or approximately an aggregate

market share, for each alternative j in each period t. Before deriving this, we �rst describe the

conditional value of adoption (vi;j;t, j = 1; : : : ; J) and the conditional value of not adopting

(vi;0;t) in period t.

Conditional value of adoption (vi;j;t, j = 1; : : : ; J)
The conditional value of adoption is particularly simple because it is the expected discounted

utility in a terminating state, after which the household no longer takes any actions. We

specify vi;j;t as follows:

vi;j;t = �j;t = xj;t � �pj;t + �j;t; (1)

where xj;t is a vector of characteristics of alternative j at period t, pj;t = pj;t (�) is the price

variable as a function of the monthly discount factor �, and �j;t is the unobserved quality

of alternative j at period t. In our speci�cation, xj;t will contain a set of �xed e¤ects for

the alternatives. The price variable is the sum of the upfront investment price (pINVj;t ) and

the discounted future �ow bene�ts from GCC subsidies (pGCCj;t ) and electricity cost savings

(pELj;t ):

pj;t = pj;t (�) � pINVj;t (�)�
1�

�
�G
�SGt

1� �G| {z }
�Gt

pGCCj;t �
1�

�
�E
�SE

1� �E| {z }
�E

pELj;t ; (2)

where �G and �E are monthly adjusted discount factors:

�G = (1� �)(1� �)� (3)

�E = (1� �)(1 + #)�;

i.e. the monthly discount factor � adjusted for the depreciation parameter �, the in�ation

rate � and the trend in real electricity prices #. We now discuss the three terms in (2) in

more detail.

The �rst term in (2), pINVj;t , is the real upfront net investment price of the PV system j

at period t, i.e. the real gross investment price minus the tax cuts:

pINVj;t (�) = pGROSSj;t �
4X
�=1

�12� taxcutj;t+12� : (4)
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The tax cuts were capped at an indexed maximum amount. But since 2009 any remaining

tax cuts could be shifted to the following three years for houses that were built at least �ve

years ago, so that the last three terms in the summation in (4) become non-zero.9

The second and third terms in (2) capture the discounted future bene�ts from electricity

production: pGCCj;t and pELj;t are �ow variables measuring the monthly bene�ts from the �xed

subsidies from the GCCs and the electricity savings associated with the PV system. Both

pGCCj;t and pELj;t are essentially prices per kW at period t (pGCCt and pELt ), multiplied by the

capacity size kj of the alternative j (in kW) and a factor that translates PV capacity in

monthly electricity production (0:85
12
MWh=kW ).10 The parameters �Gt and �

E are capital-

ization factors that convert the monthly bene�ts for SGt months of GCCs and S
E months of

electricity savings into present value terms using the adjusted monthly discount factors �G

and �E. According to (3), these are the monthly discount factor � net of any depreciation.

The parameter � captures physical deterioriation of electricity production, whereas � is the

monthly in�ation rate (because GCC are �xed in nominal prices, while our model is in real

prices) and # captures a trend in real electricity prices. As we make several assumptions in

constructing the price variable, we provide a detailed sensitivity analysis in section 4.2.11

Conditional value of not adopting (vi;0;t)
The conditional value of not adopting is the �ow utility in period t, u0;t, plus the option

value of waiting. More precisely,

vi;0;t = �0;t = u0;t + �E�t+1V t+1 (5)

where V t+1 is the ex ante value function, i.e. the expected continuation value from behaving

optimally from period t + 1 onwards. This expectation integrates over uncertainty about

the next period mean utilities �t+1 = (�0;t+1; �1;t+1; :::; �J;t+1). With a type I extreme value

distribution for the random taste shocks "i;j;t the ex ante value function V t+1 has the well-

9The VAT on the gross investment price is reduced from 21% to 6% for houses older than 5 years.

Furthermore, the possibility to shift tax cuts to the next three years is only possible for houses older than

5 years. We account for this by taking a weighted average of the VAT rate and tax cuts over new and old

houses (where 91% is the fraction of old houses).
10We follow CREG, VEA and 3E (2010).
11In our main speci�cation we assume a yearly physical deterioration rate of 1%, � = 1:011=12�1 (following

Audenaert et al., 2010), a yearly in�ation of 2%, � = 1:021=12�1, and estimate a yearly growth in electricity
prices of 3.4%, # = 0:0028148. We assume SE = 240 months (the expected life time of a PV, following

CREG, 2010), and based on the GCC schemes announced by the government we set SGt = 240 months for

January 2006 - July 2012, SGt = 120 for August 2012 - December 2012, and S
G
t = 180 months for January

2013.
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known closed form logsum expression:

V t+1 = 0:577 +

Z
ln

JX
j=0

exp (�j;t+1) d�t+1 (6)

where 0:577 is Euler�s constant (the mean of the extreme value distibution).

With random utility maximization and a type I extreme value distribution for the random

taste shocks "i;j;t, we obtain the following choice probability, or approximately the aggregate

market share, for each alternative j = 0; : : : ; J at period t:

sj;t =
exp (�j;t)PJ
j0=0 exp (�j0;t)

: (7)

The aggregate market share for alternative j = 1; : : : ; J at period t is measured as sj;t =

qj;t=Nt, i.e. the actual number of adopters of j at t, qj;t, divided by the potential number

of adopters at period t, Nt. Since adoption is a terminating state, the potential number of

adopters is the total number of households N minus the number of households that adopted

in the past, Nt = N �
Pt�1

�=1

PJ
j=1 qj;� .

3.2 Estimating equation

The aggregate market share equation (7) involves two complications. First, the conditional

value for not adopting �0;t involves the expected future V t+1, which is recursively de�ned

by (6). Second, the error term �j;t enters nonlinearly. We now show how to solve both

complications, by combining Hotz and Miller�s (1993) conditional choice probability (CCP)

approach to deal with dynamic discrete choice problems, and Berry�s (1994) market share

inversion to deal with aggregate choice data (market shares).

CCP approach
The �rst step is to compute the conditional value or mean utility for not adopting �0;t.

Substituting (6) in (5), the mean utility from not adopting is:

�0;t = u0;t + �

 
0:577 +

Z
ln

JX
j=0

exp (�j;t+1) d�j;t+1

!
: (8)

Hotz and Miller�s (1993) insight is to compute the next period logsum expression directly

from the next period conditional choice probability (CCP) of a terminating choice, j =

1; : : : ; J . Any arbitrary terminating choice can be taken, so we take j = 1. The conditional

choice probability of alternative j = 1 in the next period t+ 1 is given by

Pr(jt+1 = 1j�t+1) =
exp (�1;t+1)PJ
j=0 exp (�j;t+1)
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After rewriting and taking logs:

ln
XJ

j=0
exp (�j;t+1) = �1;t+1 � ln Pr(jt+1 = 1j�t+1)

this can be substituted in the mean utility from not adopting (8) to obtain:

�0;t = u0;t + �

�
0:577 +

Z
(�1;t+1 � ln Pr(jt+1 = 1j�t+1)) d�j;t+1

�
= �

Z
(�1;t+1 � ln Pr(jt+1 = 1j�t+1)) d�j;t+1 (9)

where the second equality follows from normalizing u0+�0:577 = 0. As discussed in Arcidi-

acono and Ellickson (2011), expression (9) has an intuitive interpretation. The conditional

value of not adopting is essentially equal to the present value of choosing option j = 1 in the

next period and the CCP correction term � ln Pr(jt+1 = 1j�t+1) � 0. The correction term

adjusts for the fact that j = 1 may not be optimal in the next period so that the expected

utilility is generally higher than that of adopting j = 1 (unless Pr(jt+1 = 1j�t+1) = 1).
We now impose an assumption on households�expectations about mean utilities in the

next month: we assume that households can perfectly predict the mean utilities of all alter-

natives in the next month. We do not need to make an assumption on how they expect the

future to evolve after that. This allows us to write the last expression without uncertainty,

so that the CCP correction term is equal to the aggregate market share of alternative 1 in

the next period, i.e. Pr(jt+1 = 1j�t+1) = s1;t+1:

�0;t = � (�1;t+1 � ln s1;t+1) (10)

The bene�t of this approach is that we do not need to predict the mean utilities or the

CCP before estimation, as we simply observe the variables in �1;t+1 and the next period

market share s1;t+1 in the data.

Market share inversion
The second step follows Berry�s (1994) approach to estimate static choice models with ag-

gregate market share data. Using the market share expressions (7), we can divide sj;t for

each j = 1; : : : ; J by s0;t and take logs to obtain

ln sj;t=s0;t = �j;t � �0;t, j = 1; : : : ; J (11)

Substitute the expressions for the mean utilities (1) and (10) in (11), and rewrite to obtain

the following main estimating equation:

ln sj;t=s0;t = (xj;t � �x1;t+1)  � � (pj;t � �p1;t+1) + � ln s1;t+1 + e�j;t: (12)
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where e�j;t � �j;t � ��1;t+1 is the econometric error term. In the static case where � = 0,

this is Berry�s standard aggregate logit regression for the number of new adopters on current

prices and other control variables. To gain further intuition when � > 0, assume there is

only one adoption alternative j = 1. The estimating equation can then be written as:

ln
s1;t=s

�
1;t+1

s0;t
= x1;t � �x1;t+1 � � (p1;t � �p1;t+1) + �1;t � ��1;t+1:

With � close to 1, this is essentially a regression for the change in the number of new adopters

on the change in price and possibly other characteristics. Intuitively, with forward-looking

consumers one may expect that the number of current period adopters is small relative to

the next period adopters when the expected price drop is large.

3.3 Estimation and identi�cation

The estimating equation (12) contains the price variable pj;t, which is given by (2). This

depends on the upfront investment price pINVj;t , the future �nancial bene�ts from GCCs

pGCCj;t and electricity savings pELj;t , and it is a non-linear function of the discount factor �.

To �x ideas, �rst consider the case in which � is known and all variables are exogenous,

i.e. uncorrelated with the error term e�j;t. In this case, it is possible to estimate (12) using
a simple linear OLS regression for the di¤erenced adoption variable ln sj;t=s0;t � � ln s1;t+1
on the di¤erenced product characteristics xj;t � �x1;t+1 and the di¤erenced price variable
pj;t � �p1;t+1.
Now consider the more general case where � has to be estimated and the upfront invest-

ment price pINVj;t may be correlated with the error term e�j;t. Notice �rst that the estimating
equation (12) is non-linear in � because it enters the price term (2) non-linearly, so a non-

linear regression is necessary. Several variables in equation (12) give rise to endogeneity

concerns. First, pj;t may be correlated with the error term as it contains the investment price

variable pINVj;t , so we need an instrument to identify the price coe¢ cient �. Second, pj;t also

contains the electricity price variable pELj;t , which may be endogenous because GCC subsi-

dies were �nanced through higher electricity prices. Third, the next period adoption share

ln s1;t+1 may be correlated with the error term, since it contains a next period unobservablee�j;t � �j;t � ��1;t+1. We therefore also need an instrument to identify the discount factor �.
To account for these problems we construct an instrument vector zj;t and apply the

moment conditions E
�
zj;te�j;t (�)� = 0 with � = (�; �; ). More speci�cally, we include the

following variables in our instrument vector zj;t. First, we include a price index of Chinese

PV modules on the European market, pMOD
j;t . Since these modules are the most important

cost component of PV installations, the price index pMOD
j;t is expected to be correlated with
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the endogenous upfront investment price pINVj;t , and as a cost shifter it is reasonable to

assume it does not directly in�uence demand. Hence, the price index of Chinese PV modules

provides a strong instrument to identify the price coe¢ cient �. Second, we include the future

bene�ts from the GCC subsidies pGCCj;t as an instrument. This variable refers to the main

source of future bene�ts from adopting a PV. There is considerable variation in pGCCj;t across

alternatives and over time, even in the short run as the bene�ts showed discontinuous drop

in several months. This variation is therefore helpful to identify how households trade o¤

upfront investment costs with future bene�ts. Third, we use the oil price as an instrument,

as this may be correlated with the endogenous electricity price variable. Note however that

the GCC subsidies are a much more important source of variation of future bene�ts than the

electricity cost savings. These instruments are su¢ cient to identify the model, but further

e¢ ciency gains are possible by using Chamberlain�s (1987) optimal instruments, as applied in

static aggregate discrete choice models by Berry, Levinsohn and Pakes (1999) and Reynaert

& Verboven (2014). We explain this in Appendix A.2.

The dynamic discrete choice literature has stressed that the discount factor is not identi-

�ed without additional restrictions; see (Manski 1993), Rust (1994) and (Magnac & Thesmar

2002). In our setting we obtain identi�cation by assuming the discount factor that weighs

the upfront investment cost with future bene�ts (i.e. the discount factor that enters pj;t
through (2)) is the same as the discount factor for the timing decision to adopt (i.e. the

discount factor that directly enters (12)). This then gives rise to traditional instruments

coming from variation in the determinants of the upfront investment costs and future �ow

bene�ts. As such, our identi�cation approach for estimating the discount factor is the same

as �static�models of intertemporal choice, which abstract from the timing decision and only

focus on the investment decision. For example, a detailed literature on the car market fo-

cuses on how households trade o¤ future fuel cost savings against higher upfront purchase

prices, without explicitly modeling the timing of the purchase decision; see Verboven (2002),

Allcott and Wozny (2013) and Busse, Knittel and Zettelmeyer (2013)). Lee (2013) uses a

related identi�cation approach in an application on the timing of hardware purchases (video

game consoles) when there are future bene�ts from new software (games). He makes use of

variation in the time until new games arrive, and assumes the discount factor for the timing

of adoption is the same as that for the valuation of investment costs versus future bene�ts.12

12Related approaches to identify the discount factor in dynamic choice problems have relied on exclusion

restrictions (Magnac & Thesmar 2002), stated choice data (Dube et al. 2012), unexpected shocks in expec-

tations about future states (Bollinger 2013) or choices in both static and dynamic contexts (Yao et al. 2012).
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3.4 Accounting for local market heterogeneity

The previous subsections provided a framework to study the adoption of PV systems at the

aggregate country level. In this subsection we show how to extend the empirical analysis to

account for rich observed heterogeneity across 9,182 local markets, where each market m

consists on average of 295 households. We match information on the number of adopters in

each market m for each alternative j in each period t to several demographic characteristics.

This enables us to include a rich set of demographics and interact this with a constant,

price and capacity size in the utility speci�cation. An alternative approach to account

for heterogeneity would be to estimate random coe¢ cients, similar to Gowrisankaran and

Rysman (2012), or estimate a �nite mixture of unobserved types in the population as in

Scott (2013), based on the EM algorithm of Arcidiacono and Miller (2011).

The basic set-up is as before, except that we now observe adoption decisions at the local

market level m and we can match this with an H � 1 vector of household demographics
Dm. In each period t a household i living in market m chooses its preferred alternative

j = 0; 1; : : : ; J , where j = 0 is the option not to adopt (yet).

The conditional value of adoption vi;j;t (j = 1; : : : ; J) is the sum of the mean utility �j;t
and an individual-speci�c component �m;j;t, which depends on demographics in the local

market m. We specify:

vi;j;t = �j;t + �m;j;t

= �j;t + wj;t�m; (13)

where �j;t was given earlier by (1), and wj;t is a 1 � K vector of characteristics of the PV

alternatives (which is allowed to di¤er from xj;t entering �j;t). We specify the K � 1 vector
�m = �Dm, where � is a K �H parameter matrix with interaction e¤ects to be estimated.

The vector of characteristics wj;t will include a constant, the additional capacity to a reference

capacity (we take j=1, which is the 4kW alternative), and the price variable. The vector of

household demographics Dm includes income, household size, house size, etc. We will not

estimate all the interaction e¤ects in �, so we constrain some of these coe¢ cients to be zero.

The conditional value of not adopting vi;0;t is

vi;0;t = um;0;t + �V m;t+1:

where the ex ante value function is now speci�c to market m and given by

V m;t+1 = 0:577 + ln

JX
j=0

exp(vi;j;t+1)
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Finally, the logit choice probabilities in market m are

sm;j;t =
exp(vi;j;t)PJ
j0=0 exp(vi;j0;t)

: (14)

As before, one could in principle consider to set the choice probabilities equal to the ob-

served local market shares sm;j;t = qm;j;t=Nm;t, where qm;j;t.is the actual number of adopters

in market m of alternative j at period t and Nm;t is the potential number of adopters,

Nm;t = Nm�
Pt�1

�=1

PJ
j=1 qm;j;� (with Nm is the total number of households). In principle, we

could then take similar steps as for the country-level aggregate model to obtain a regression

equation at the local market, parallel to (12). In practice, however, this regression approach

is not possible because we observe many zero market shares at the disaggregate local level

(qm;j;t = 0), so that the logarithmic expressions in the Hotz-Miller and Berry inversions are

not de�ned. We therefore take an alternative approach, which essentially amounts to com-

bining the moment conditions from the aggregate model with a set of micro-moments that

consist of the score vector from the likelihood function of the model. We outline the details

of this procedure in Appendix A.3.

4 Empirical results

We �rst discuss our main �ndings with a focus on the estimated discount factor (subsection

4.1). To interpret these �ndings more thoroughly, we then perform a detailed sensitivity

analysis with respect to alternative assumptions about how future payo¤s enter utility (sub-

section 4.2). Finally, we use the parameter estimates to consider the budgetary impact of an

alternative policy to promote PV adoption (subsection 4.3).

4.1 Main �ndings

Table 1 provides summary statistics of the included variables and instruments for the sample

on which we estimate the model (May 2009 �December 2012).

The �rst panel shows summary statistics for the number of adopters. At the aggregate

country level, we observe the number of adopters for 5 levels of capacity during 44 months,

resulting in 220 observations. At the disaggregate level, we observe the number of adopters

for 9,182 local markets, resulting in more than 2 million observations. The average number

of adopters per capacity level is 894 at the country level, and it has always been positive

for every capacity and month. At the local market level, the average number of adopters

is evidently much smaller at 0:10. Because of the highly disaggregate level, the number of
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adoptions is zero for many local markets. The median number of adopters for a capacity

level/month/local market is actually zero.

The second panel presents information on the components of the price variable. This

shows for example that the investment price of a PV has on average been 20,700e, with a

large standard deviation both because of falling prices over time and large di¤erences depend-

ing on the capacity size. The third panel shows the excluded instruments, i.e. the variables

that do not enter the model directly but are correlated with the endogenous investment cost

and electricity price.

The fourth panel shows information on the household characteristics for the cross-section

of 9,182 local markets. This shows for example that the household size is on average 2:47,

but varies between 1 and 6. Similarly, median yearly income is on average 24; 000 EUR, and

varies between 4; 800 and 51; 800 across the statistical sectors.
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Table 1: Summary statistics
Variable Notation Mean Std. Dev. Min Median Max Obs.

Adoptions

Country level qj;t 894.17 1297.26 4 311 7164 220

Local level qm;j;t 0.10 0.41 0 0 26 2,020,040

Price variable (in 103 EUR)

Investment cost pGROSSj;t 20.70 10.85 48.20 19.61 50.82 220

Monthly GCC subsidies pGCCj;t 0.14 0.08 0.01 0.13 0.35 220

Monthly electricity bill savings pELj;t 0.09 0.04 0.03 0.09 0.17 220

Tax cut year 1 taxcutj;t+12 2.63 1.62 0 3.69 3.69 220

Tax cut year 2 taxcutj;t+24 1.83 1.57 0 2.44 3.36 220

Tax cut year 3 taxcutj;t+36 1.20 1.50 0 0 3.36 220

Tax cut year 4 taxcutj;t+48 0.55 1.11 0 0 3.36 220

Excluded instruments

Module price (103 EUR) pMOD
j;t 7.81 5.01 10.60 6.56 2.33 220

Oil price (EUR / barrel) pOILt 68.37 12.10 40.69 71.20 88.37 44

Local market variables (Nm and Dm)

Households Nm 295.26 320.88 1 191 3608 9,182

Pop. density (104 inhab / m2) 0.16 0.24 0.00 0.09 2.89 9,182

Average house size 5.93 0.64 1.85 5.96 9 9,182

Average household size 2.47 0.34 1 2.49 6 9,182

Median income (104 EUR) 2.40 0.36 0.48 2.40 5.18 9,182

% home owners 0.77 0.17 0 0.82 1 9,182

% higher education 0.26 0.11 0 0.25 1 9,182

% foreign 0.06 0.09 0 0.03 1 9,182

Notes: The total number of observations is 2,020,040 = 44 time periods x 5 capacity choices x 9,182

local markets. All prices are corrected for in�ation using the HICP and set to prices of January 2013.

Half-yearly electricity prices extrapolated using cubic spline interpolation, missing values on local market

level replaced by averages within the 308 municipalities (642 markets for median income and between

0 and 146 markets for other variables).

Table 2 shows the empirical results. We begin with a discussion of speci�cation (1) and (2),

which are estimated with country-level data and do not account for household heterogeneity.

Both speci�cations include �xed e¤ects for each capacity size using the most popular 4kW

system as the base. Speci�cation (2) in addition includes several time variables: seasonal

dummies and a trend.

The investment price coe¢ cient is negative and statistically signi�cant, meaning that

consumers responded positively to the declining investment prices of PV systems. The mag-
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Table 2: Empirical results

(1) (2) (3)

Dynamic + time controls + micro-moments

Price sensitivity in 103 EUR (��) -0.470*** (0.097) -0.438*** (0.115) -0.547*** (0.116)

Monthly discount factor (�) 0.9884*** (0.0025) 0.9896*** (0.0016) 0.9900*** (0.0016)

Annual real interest rate (r � 1
�12

� 1) 15.05%*** (3.44%) 13.37%*** (2.23%) 12.78%*** (2.22%)

Choice-speci�c constants (�j)

Common constant -1.353 (16.465) -645.698 (1,033.221) -1013.889 1114.771

2kW -1.820*** (0.567) -1.589*** (0.436) -1.319** (0.557)

6kW -0.516 (0.600) -0.741 (0.476) -1.107* (0.594)

8kW -2.461** (1.168) -2.923*** (0.913) -3.715*** (1.153)

10kW -2.619 (1.698) -3.319** (1.308) -4.588*** (1.671)

Control variables ()

Linear time trend 1.243 (2.022) 1.485 (2.178)

Spring -0.177 (0.469) -0.167 (0.468)

Summer -0.049 (0.492) -0.040 (0.493)

Fall -0.021 (0.357) -0.028 (0.358)

Local market variables (�)

Interactions with constant

Pop. density (104 inhab / m2) 2.701 (4.106)

Average house size -8.856*** (2.439)

Average household size 58.063*** (10.041)

Median income (104 EUR) 41.120*** (7.536)

% home owners 99.130*** (17.976)

% higher education 43.036*** (11.957)

% foreign -292.078*** (50.285)

308 Municipality dummy variables YES

Interactions with capacity di¤erence to benchmark 4kW

Pop. density (104 inhab / m2) -0.694*** (0.018)

Average house size 0.055*** (0.005)

Average household size 0.085*** (0.011)

Median income (104 EUR) -0.087*** (0.024)

% home owners -0.059** (0.026)

% higher education -0.108*** (0.027)

% foreign 0.272*** (0.030)

Interaction with price

Median income (104 EUR) 0.047*** (0.006)

Obs. macro moments (JxT) 220 220 220

Obs. micro moments (NxJxT) 0 0 2,020,040

Notes: Macro moments clustered within 44 time periods, micro moment clustered within 9182 local

markets. Instruments are approximations of optimal instruments (Chamberlain, 1987). Standard errors

of r, common constant, linear time trend and interaction of local market variables with constant,

obtained via delta method. *** p<0.01, ** p<0.05, * p<0.1



nitude of the investment price coe¢ cient is comparable for both speci�cations (-0.470 and

-0.437). The estimated (real) discount factor measures the valuation of the future bene-

�ts relative to the investment price. The monthly discount factor is very similar for both

speci�cations (0.988 and 0.990), and di¤ers signi�cantly from 1. It is more informative to

convert the monthly discount factor in an annual implicit interest rate. The results show

that the real implicit interest rate is 15.1% in the �rst speci�cation (standard error of 3.4%),

and a similar 13.4% in the second speci�cation (standard error of 2.2%). These estimates

are much higher than the interest rate on risk-free or moderate risk investments, such as

savings accounts or checking accounts. Imperfect capital markets and high market interest

rates may in principle be responsible for this, but this is not plausible in this market because

between 2009 and 2011 the federal government subsized loans for environmentally friendly

investments.13 This then suggests there is much more consumer myopia in investment deci-

sions for new technologies such as PV installations than has been observed in recent work on

mature technologies such as the car industry. Put di¤erently, if consumers would have been

more forward looking, the generous GCC subsidy policy would have led to an even faster

adoption of PV systems.

In the next subsection, we will investigate the sources of the high interest rates, by

investing the sensitivity of the estimates with respect to alternative assumptions.

Before turning to this, we discuss the results of speci�cation (3), which is estimated with

local market data and accounts for household heterogeneity. The investment price coe¢ cient

increases somewhat (from -0.437 to -0.547), which can be explained by the inclusion of an

interaction variable for median income with price. This interaction e¤ect shows that high

income households tend to be less price sensitive, so that for the average income household

the price coe¢ cient is close to the estimate from the aggregate model.

Most importantly, the estimated discount factor remains almost identical when we ac-

count for household heterogeneity. The implied annual implicit interest rate is 12.8% (com-

pared with 13.4% in the model without heterogeneity), so also in the richer model there is

evidence of consumer myopia in adopting the new PV technology.

The coe¢ cients for most of the household characteristics have an intuitive interpretation.

First consider how the household characteristics in�uence the valuation for the reference

PV with a capacity of 4kW. As expected, this valuation increases with household size,

income, home ownership and education level. Furthermore, the valuation for the 4kW PV

is lower for foreign nationals and larger houses. Now consider the interaction e¤ects, i.e.

how the household characteristics in�uence the valuation for the capacity size of PVs. A

13Source: http://min�n.fgov.be/portail2/nl/themes/dwelling/energysaving/green.htm
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large capacity is especially valued among large households and households living in large

houses or in areas with a low population density. The other coe¢ cients indicate that some

of the valuations for the reference PV of 4kW become less important when the size of a

PV increases. For example, home owners and highly educated households have a positive

valuation for the reference PV of 4kW, but this positive valuation becomes less important

for larger PV systems.

4.2 Sensitivity analysis

Before turning to the implications for the government�s GCC policy, we consider several

possible explanations for the high estimate of the real implicit interest rate. We look into

this by assessing the impact of the various assumptions we made in section 3.1 when con-

structing the up-front investment price and the future bene�ts. As such, this also serves as

a sensitivity analysis of our main results. We use the aggregate adoption model, because the

estimates of the implicit interest rate were very close to the disaggregate model with house-

hold heterogeneity and because it is computationally much faster so that a very detailed

sensitivity analysis becomes possible.

We distinguish between three possible explanations for the high implicit interest rate: the

durability of the PV technology, consumer expectations about government�s commitment,

and intrinsic consumer myopia.

Durability of the PV technology A �rst explanation for the high implicit interest rate

is that the durability of the PV technology is lower than assumed in our main speci�cation,

so that the future bene�ts are in practice lower. Figure 5 shows how the estimated implicit

interest rate varies as we change the assumptions on the durability of the PV technology:

the life expectancy S and the yearly deterioration rate �. The vertical lines denote the

assumptions made in the base model.

Figure 5 shows that the estimated implicit interest rate remains robust if we increase

the life expectancy S above the assumed value of 20 years or if we reduce it by several

years. We only estimate a low, market-oriented implicit interest rate under unrealistically

low values for the life expectancy, say 10 years or shorter. The estimated implicit interest

rate decreases as we assume a higher value for the deterioration rate � in the production of

electricity. However, even an unrealistically high deteriation rate of 5% anunally does not

bring market interest rate within the con�dence interval of our estimates. We conclude that

the estimated implicit interest rate would only become close to market interest rates under

unrealistic assumptions regarding the durability of the PV technology.
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Figure 5: Estimate of annual real interest rate under di¤erent investment assumptions
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Consumer expectations about government�s commitment A second explanation

for the high implicit interest rate is that consumers may fear that the government will not

ful�ll its subsidy policy. The government had guaranteed the net metering principle for the

life time of a PV (assumed to be 20 years), and had similarly guaranteed the payment of

the GCC subsidies for a �xed number of years (15 or 20 years, depending on the date of

installation). Figure 6 shows how the estimated implicit interest rate varies as consumers

expect a di¤erent duration for net metering bene�ts or GCC subsidies, i.e. when we either

change the value of SE or SGt in (2).
14

Changes in expectations about net metering does not a¤ect the estimated implicit interest

rate. This is interesting, because the government has in practice introduced a fee for using net

metering, but any anticipation of this by consumers cannot explain the high implicit interest

14A breach in both contracts is equivalent to the change in the lifetime of a PV, which we considered

earlier in Figure 5.
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Figure 6: Estimate of annual real interest rate under di¤erent bliefs in goverment�s commit-

ments
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rate. In contrast, a change in expectations about GCC subsidies does have an impact on

the results. If consumers fear that the government will remove the 20 year subsidy program

already after 5 years, the estimated interest rate comes close to market rates. Hence, one

could rationalize consumer behavior if they expect that the government will breach the

contract by removing the subsidies after a short period. We note however that such a breach

in contract has not actually occurred.

These �gures also highlight how identi�cation of the discount factor in our model comes

mainly from changes in GCC subsidies, rather than changes in net metering bene�ts. This

can be explained by the larger variation in the GCC price than in the electricity price.

Consumer myopia A remaining explanation for the high implicit interest rate would be

that this is evidence for consumer myopia. It is then still interesting to ask where such myopia

might come from. A �rst possibility is that consumers only take into account the future
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subsidies but fail to take into account the tax cuts. Another possibility is that consumers

only correctly value the bene�ts up to the pay-back period, and undervalue the bene�ts

after that. The pay-back period is that time when all collected beneifts are equal to the

investment costs: this number is often quoted in advertizing or media coverage, so it may be

an important source of information for households who cannot do a net present calculation.

Figure 7 shows how the estimated implicit interest rate varies if consumers do not correctly

account for the tax cuts or for the bene�ts after the pay-back period.

Figure 7: Estimate of annual real interest rate under bounded rationality
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To assess the role of an incorrect valuation of the tax cuts, we multiply the tax cut bene�ts

by a parameter between 0 and 100%. The estimated implicit interest rate remains high even

for quite severe undervaluation of the tax cuts. Hence, a failure to take into account the tax

cuts may partly explain household myopia, but the high interest rate appears to be mainly

due to undervaluation of the GCC bene�ts.

To assess the role of the payback period, we multiply the bene�ts after the payback period

by another parameter between 0 and 100%. The estimated implicit interest rate becomes
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close to the market interest rate for strong undervaluation after the payback period (at about

40% or lower of the actual bene�ts).

In sum, our �nding of a high implicit interest rate remains robust after using more con-

servative assumptions regarding the durability of the PV technology. Potential explanations

for the high implicity interest rate are consumer distrust in the government�s commitment

to provide the GCC subsidies for up to 20 years, or intrinsic consumer myopia, for example

stemming from a failure to take into account bene�ts after the payback period.

4.3 Policy implication

Our �nding that consumers use a real implicit interest rate of 13% when deciding to adopt

a PV system has an important policy implication. One may ask the question whether the

government could not have achieved the same level of adoption by removing the future

GCC subsidy program and instead paying an equivalent upfront subsidy, and borrowing the

required amount on the capital market at the long run government bond real interest rate

of 3%. More precisely, according to the utility speci�cation (2) and (3), a household who

adopts a PV system j at time t perceives a net present value from the GCC subsidy during

SGt = 240 months of

NPVj;t =
1� ((1� �)(1� �)�)S

G
t

1� (1� �)(1� �)� pGCCj;t ;

where the estimated monthly discount factor � = 0:9896 corresponds to an implicit annual

interest rate of r = ��12�1 = 13:7%. The government could thus have paid out the amount
NPVj;t as an upfront subsidy program. If the government instead spreads the subsidies over

the next SGt months, the net present value at the government bond interest rate rgov =

��12gov � 1 = 3% amounts to

NPV ACTUALj;t =
1�

�
(1� �)(1� �)�gov

�SGt
1� (1� �)(1� �)�gov

pGCCj;t :

Hence, the government could have reached an identical number of adopters with an upfront

subsidy NPVj;t and saved the amount NPV ACTUALj;t �NPVj;t for a household that adopts PV
system j at time t. Summing this over all adopters, we �nd that the cost of the actual subsidy

program was e 3.77 billion in net present value terms, while the cost of an upfront subsidy

program would have been only e 2.00 billion (actualized to 2013). Hence, the government

could have achieved the same adoption rates at only 53.3% of the current subsidy costs,

amounting to a saving of e 1.77 billion (with a 90% con�dence interval of [e1.46�e2.02]
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billion.15 This is a saving of almost e 700 per household, which is a very large number

given that only 8.5% of the households had adopted a PV by June 2013. Savings would have

been even higher if the government would have abandoned the net metering principle (future

bene�ts through electricity cost savings pELj;t ) in favour of an even larger upfront subsidy, or

if the government would also have followed an upfront subsidy policy for commercial users

(capacity size higher than 10kW).

5 Conclusion

This paper studied the incentives to adopt a new renewable energy technology for electricity

production, and the role played by upfront investment and future production subsidies. We

considered a generous subsidy program for solar PV adoption, and exploited rich variation at

pre-announced dates in the future subsidy conditions. Although the program led to a massive

adoption of solar PV systems, we �nd that households signi�cantly undervalued the future

bene�ts from the new technology, which has important budgetary and distributional impli-

cations. The government could have saved 47% or e1.8 billion by giving upfront investment

subsidies, and it essentially shifted the subsidy burden to future electricity consumers.

We contribute to the literature on how consumers discount future energy costs. We show

that consumers are apparently considerably more myopic in the adoption decision of an

entirely new green technology, than in the energy-saving investment decision of existing

technologies.

We adopted a tractable dynamic model of technology adoption, and several directions of

future work are possible. First, with our data it may be possible to further exploit the local

market data and estimate the distribution of the discount factor conditional on sociodemo-

graphic characteristics. This would make it possible to further understand the distributional

e¤ects of the subsidization policy. Another path of research is to extend the model to account

for peer e¤ects, which may provide a rationale for a subsidy path that is declining over time.

Third, it would be interesting to use our framework to study the adoption of new tech-

nologies in other applications. Regarding renewables, we focused on residential PV adoption,

and further work could investigate whether investment myopia also applies to commercial

PV adopters. It would also be interesting to apply our framework to other countries or re-

gions, or other renewable technologies, such as wind power, to analyze how di¤erent subsidy

schemes may in�uence the outcomes.

15To calculate the con�dence interval, we take 1000 draws of � which as a GMM estimate is normally

distributed with mean of 0:9896 and standard error of 0:0016. We calculate the government loss for each

draw of � to obtain a distribution of this loss.
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A Appendix

A.1 Data construction

As discussed in the text, the main dataset contains information of all installed PVs across

Flanders during 2006�2012. We combine this dataset with various additional datasets on

prices, investment tax bene�ts, electricity cost savings, GCCs and socio-demographic data

at the local area level.

A.1.1 PV installations

The main dataset comes from VREG, the Flemish regulator of the electricity and gas market.

The data records the following three key variables for every new PV installation: the adoption

date, the size of the installation and the address of the installation. We aggregate the data to

the monthly level, distinguishing between �ve categories of capacity sizes: 2kW, 4kW, 6kW,

8kW and 10kW. Each category includes all capacity sizes up to the indicated maximum.

For example, a capacity size of 6kW refers to all capacity sizes between 4kW and 6kW.

To focus on residential solar panels, we exclude all installations with a capacity size larger

than 10kW. This is a commonly used cut-o¤ point for distinguishing between residential and

non-residential PVs (see e.g. Kwan (2012)). Furthermore, systems of more than 10kW do

not qualify from the same public support measures in Flanders.

Our main model aggregates the number of installations to the level of the entire region

of Flanders. The extended model considers the highly disaggregate level of the statistical

sector, as de�ned by ADSEI, the Belgian statistical o¢ ce. The region has 9,182 statistical

sectors, with on average slightly more than 600 inhabitants. To organize the data at the
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level of the statistical sector, we use of a geographic dataset from ADSEI that assigns street

addresses of each installation to statistical sectors.

A.1.2 Gross investment price

We obtained price information of PV systems from two independent sources: an internet

forum, zonstraal.be, where consumers posted their received o¤ers; and a website, compare-

mysolar.be, which contains historical data. This resulted in a dataset of 2,659 o¤ers fromMay

2009 until December 2012. To construct a monthly price index for each of the �ve capacity

size categories (between 2kW and 10kW), we then proceed as follows. For each month and

each size category we take the median price per watt, multiplied by the size of the category.

If there are less than ten price observations in a given month and category (usually the less

popular 8kW and 10kW PVs), we consider the median to be insu¢ ciently accurate. As a

price measure for these cases, we use the prediction from a quantile regression model for the

median price per watt on monthly �xed e¤ects, capacity �xed e¤ects and capacity interacted

with a linear trend.

To combine the price information with the data on PV installations per month and per

size category, we assume there was a time lag of two months between the posted prices and

the actual installment. In some months, especially when subsidies would drop in the near

future, consumers report the expected waiting time together with the posted price o¤er. If

such information on the announced waiting time was available, we use this instead of the

assumption of a two month time lag.

A.1.3 Public support measures

We obtained information of public support measures from various sources.

Investment tax credits Tax credits fall under the competence of the Belgian Federal

government. Information on a doubling of the tax credit ceilings comes from the o¢ cial doc-

ument �Programmawet�of 28 December 2006, and announcements on the the website of the

government agency VEA before and after this publication.16 Information on spreading tax

cuts or splitting bills over multiple years comes from newspaper articles17 and the Economic

Recovery Plan of the Federal Government (March 2009). Details about the abolishment

16Announcements on the doubling of the tax credit ceiling on 6 and 16 December 2006 and information on

the increase from 2000 to 2600e between 1 and 21 March 2007 on VEA�s website energiesparen.be. Historic

copies from this website are on Internet Archive (https://web.archive.org).
17Gazet Van Antwerpen: �Zonnepanelen zijn tot drie keer �scaal aftrekbaar�, 19 Mei 2008; Het Nieuws-

blad: �Belastingvoordeel klanten nekt installateurs zonnepanelen�, 13 December 2008
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of the tax cut were found on the o¢ cial website of the �nance department of the federal

government.18 Information on the VAT rules also can be found on this website.19

We combine this information with the price data to compute the net investment price,

as described more formally in the next Appendix.

Electricity cost savings and Green Current Certi�cates (GCCs) Information

on retail electricity prices comes from Eurostat. These data are half-yearly, and we transform

it to monthly data using a cubic spline interpolation. We multiply the electricity prices

with the expected electricity production to compute the expected electricity cost savings, as

described more formally in the next Appendix.

Information on the background and start of the GCC policy relating to PVs in 2006 comes

from the website of the Flemish energy regulator VREG (www.vreg.be) and from o¢ cial

documents and government information brochures.20 The price of a GCC was guaranteed

for a �xed period, but it was initially expected that GCCs could continue to be sold at

the (much lower) market price for the entire life time of the PV system. The renewal of

the energy decree in 2012 (Flemish Energy Decree, 30 July 2012) no longer allowed for the

possibility to obtain GCCs after the experation of the �xed period with the guaranteed price.

In practice, this does not change much because the life expectancy of PV systems (about 20

years) is close to the �xed period with the guaranteed price.

Information on the �nancial details of the GCC policy comes from the Belgian energy

regulator CREG (2010). Announcements of new subsidy policies were gathered from newspa-

pers. The �rst change in policy was announced in February 2009 (De Standaard, 7 February

2009, p2) for PVs installed from 2010 on. The second change was announced in June 2011

(De Standaard, 6 June 2011, Economie p12) for PVs from July 2011 on. The third change

was announced in May 2012 (De Standaard, 26 May 2012) for PVs installed from August

2012 on and the �nal change was in July 2012 (Degree proposal amending the Energy Decree

of 8 May 2009 (6 July 2012) and Energy decree 8 May 2009, changed 30 July 2012) for PVs

installed from 2013 on.

Based on the information from these sources, Table A1 provides an overview of the

policy support measures during the period 2006�2012. Figure 1 in the text makes use of this

18http://www.min�n.fgov.be/portail2/nl/current/spokesperson-11-11-30.htm, consulted 14 May 2014.
19http://min�n.fgov.be/portail2/nl/themes/dwelling/renovation/vat.htm, consulted 14 May 2014.
20See the Flemish Energy Decree, changed on 6 July 2012, KB 10 February 1983, changed by the Flemish

government on 15 July 2005, 16 June 1998: �Besluit van de Vlaamse Regering tot wijziging van het koninklijk

besluit van 10 februari 1983 houdende aanmoedigingsmaatregelen voor het rationeel energieverbruik.�The

latter also included information about the investment subsidies of which more information was found in a

government brochure �Subsidieregeling voor elektriciteit uit zonlicht�(2005).
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information to express the various subsidies in present value terms.

Table A1: PV support policy Flanders: 2006-2013/06

Date of investment GCC Subsidy Tax cut on investment
Price Duration Percentage Ceiling
(EUR) (years) (EUR 1988)

2006 450 20 10% 40% 1000

2007 450 20 10% 40% 2600*

2008 450 20 0% 40% 2600

2009 450 20 0% 40% 2600 x 4**

2010 350 20 0% 40% 2600 x 4**

2011/01-2011/06 330 20 0% 40% 2600 x 4**

2011/07-2011/09 300 20 0% 40% 2600 x 4**

2011/10 - 2011/12 270 20 0% 40%*** 2600 x 4***

2012/01 - 2012/03 250 20 0% 0% 0

2012/04 - 2012/06 230 20 0% 0% 0

2012/07 210 20 0% 0% 0

2012/08 - 2012/12 90 10 0% 0% 0

2013/01-2013/06 21.39**** 15 0% 0% 0

*Announced as 2000 but changed to 2600. New announcement made: 18 March 2007.

** If house > 5years old, the tax cut could be spread over 4 years. Announced March 2009.

*** Contract had to be signed before 28 November 2011. Announced on the same date.

**** Corrected for banding factor

A.1.4 Socio-demographic characteristics

For the disaggregate model at the local market level we collected socio-demographic infor-

mation per statistical sector. This data is freely downloadable from the website of ADSEI,

the Belgian Statistics O¢ ce. We have population data for each statistical sector in 2011 on

the following variables: income, population density, house size (number of rooms), household

size, % of house owners, % with a higher education degree and % foreign. For con�dentiality

reasons, some variables are not reported when the number of households in the statistical

sector is very small. This applies to a small subset of statistical sectors. In these cases, we

use the average of the municipality to which the statistical sector belongs.
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A.2 Optimal instruments

We estimate the model using an approximation of Chamberlain�s (1987) optimal instruments.

While any set of exogenous instruments leads to consistent estimates, more e¢ cient and

stable estimates can be found using approximations to optimal instruments . We focus here

on the model that only uses macro data but we use a similar set of instruments to interact

with the macro-moments in the model that includes micro-moments.

The conditional moment conditions are

E
�e�j;t(�)jzj;t� = 0

where

e�j;t(�) = ln sj;t=s0;t � (xj;t � �x1;t+1)  + � (pj;t(�)� �p1;t+1(�))� � ln s1;t+1
De�ning the parameter vector � = (�; �; ), the optimal instrument matrix of Chamberlain

(1987) for a single-equation GMM estimator is:

Djt(zjt) =

 
E

"
@e�j;t(�)
@�0

����� zjt
#!

=

 
E

"
@e�j;t(�)
@�

����� zjt
#

E

"
@e�j;t(�)
@�0

����� zjt
#

E

"
@e�j;t(�)
@0

����� zjt
#!

We now derive the optimal instruments for these various parameters. First, for the linear

parameter vector  we simply have:

E

"
@e�j;t(�)
@0

����� zjt
#
= �E [xj;t � �x1;t+1jzjt] = � (xj;t � �x1;t+1) : (15)

The optimal instrument for  is therefore just a di¤erence term for the exogenous variable

xj;t, where � is substituted by an estimate b� in a �rst stage using non-optimal instruments.
For the other linear parameter � we have

E

"
@e�j;t(�)
@�

����� zjt
#
= E [pj;t(�)� �p1;t+1(�)jzjt] = E [pj;t(�)jzjt]� �E [p1;t+1(�)jzjt] : (16)

In this expression the expected price is

E [pj;t(�)jzjt] = E
�
pINVj;t (�)jzjt

�
� �Gt (�)E

�
pGCCj;t jzjt

�
� �E (�)E

�
pELj;t jzjt

�
= E

�
pGROSSj;t jzjt

�
�

4X
�=1

�12�E [taxcutj;t+12� jzjt]

��Gt (�) pGCCj;t � �E (�)E
�
pELt jzjt

�
kj (17)
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where the capitalization factors �Gt (�) and �
E (�) are de�ned in (2) and depend on the

discount factor �. The optimal instrument for � thus also depends on � for which we use

an estimate b� in a �rst stage using non-optimal instruments. In contrast with the optimal
instrument for , it is now also necessary to compute several conditional expectations, namely

for the upfront investment cost of a solar panel, the future tax cuts and the electricity

price. The predicted gross investment cost E
�
pGROSSj;t (�)

�� zjt� is obtained from a Poisson

regression model with exponential conditional mean (e.g. Silva and Tenreyro (2006). We

include logarithmic regressions and �xed e¤ects for each alternative j. We then obtain

E
�
pGROSSj;t (�)

�� zjt�. Based on this predicted value we can also calculate the predicted future
eligble tax cuts E [taxcutj;t+12� jzjt]. The predicted electricity price E

�
pELt jzjt

�
is obtained

similarly using the oil price as an exogenous regressor. We show the regression results in

Tables A2 and A3. Note that any misspeci�cation of these structural assumptions only

in�uences the optimality of our instrument set and not the consistency of the estimates.

Finally, the optimal instrument for the nonlinear parameter � is

E

"
@e�j;t(�)
@�

����� zjt
#
= x1;t+1 � E [ ln s1;t+1j zjt]

+�

�
E

�
@pj;t(�)

@�

���� zjt�� E [p1;t+1(�)j zjt]� E � @p1;t+1(�)@�

���� zjt� �� :(18)
In the above expression the expected value of the derivative of price with respect to � is

E

�
@pj;t(�)

@�

���� zjt� = �
4X
�=1

12��12��1E [taxcutj;t+12� jzjt]

�@�
G
t (�)

@�
pGCCj;t � @�

E (�)

@�
E
�
pELt jzjt

�
kj

�E [ln s1;t+1jzjt] (19)

where the derivatives with respect to the capitalization factors �Gt (�) and �
E (�) are easily

computed from (2) and (3). The optimal instrument for � therefore depends on all para-

meters � = (�; �; ), for which we obtain a consistent �rst stage estimate using non-optimal

instruments. There is also an additional expectation term for CCP term, i.e. the predicted

next period market share of alternative 1, E [ln s1;t+1jzjt]. We obtain this from a linear re-

gression on several variables, similar to the prediction of the �rst stage of an IV regression,

as shown in Table A4.

To summarize, our �nal estimation procedure takes the following steps:

� Estimate a 2-step e¢ cient GMM model with instruments pMOD
j;t+1 ; p

MOD
1;t+1;p

GCC
j;t ; pGCC1;t+1 and

xj;t to obtain an initial consistent estimate of �; � and 
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� Compute the conditional expectations for the investment price, the electricity price
and the CCP term using the regression models

� Estimate the GMM model again, but now using the approximation of optimal instru-

ments, as given by (15), (16) and (18), after substituting (17) and based on the initial

consistent estimates of �; � and .

� Repeat the last two steps until convergence with the updated parameter estimates.21

Table A2: Estimation results for electricity price

Variables E
�
pELt jzjt

�
Log of oil price 0.1832***

(0.0178)

Constant 4.5992***

(0.0729)

Observations 44

Poisson regression model of exponential conditional mean

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

21In practice one extra iteration changes some results but afterwards the changes are limited. Therefore

we repeat the estimation only 5 times.
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Table A3: Estimation results for predicting PV investment cost

Variables E
�
pGROSSj;t jzjt

�
Log of PV module price x kW 0.4986***

(0.0633)

4kW 0.2018***

(0.0213)

6kW 0.3103***

(0.0310)

8kW 0.3999***

(0.0391)

10kW 0.4679***

(0.0454)

log of GCC bene�ts 0.1124*

(0.0582)

Constant 4.6310***

(0.3156)

Observations 220

Poisson regression model of exponential conditional mean

Standard errors in parentheses, clustered within time period

*** p<0.01, ** p<0.05, * p<0.1



Table A4: Estimation results for predicting log of CCP

Variables E [ln s1;t+1jzjt]

PV module price x 4kW in t+1 -0.0017***

(0.0006)

PV module price x 4kW in t+2 0.0017***

(0.0005)

GCC bene�ts of 4kW in t+1 0.1321***

(0.0166)

GCC bene�ts of 4kW in t+2 -0.0321*

(0.0171)

Oil price x 4kW in t+1 -0.0130

(0.0090)

Oil price x 4kW in t+2 0.0010

(0.0082)

Spring dummy in t+1 0.2065

(0.3006)

Summer dummy in t+1 0.0469

(0.3813)

Fall dummy in t+1 0.3919

(0.3399)

t+1 0.2624***

(0.0534)

Spring dummy in t+2 0.1404

(0.3013)

Summer dummy in t+2 0.4603

(0.4033)

Fall dummy in t+2 0.0299

(0.2675)

Constant -175.0745***

(32.2514)

Observations 44

OLS regression model of linear conditional mean

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1



A.3 Estimation of model with local market heterogeneity

Section 3.4 speci�ed the model with local market heterogeneity. Our estimation approach

for this model can be described in the following three steps.

Step 1. Maximum likelihood estimation including �xed e¤ects e�j;t
In this step we construct the likelihood function of observing the local market adoption data,

and we maximize this likelihood function with respect to the parameters, including a large

set of alternative/time �xed e¤ects e�j;t. We �rst make use of the Hotz-Miller CCP, sm;1;t+1,
to obtain an expression for vi;0;t that is parallel to that of (10) above22:

vi;0;t = � (vi;1;t+1 � ln sm;1;t+1) (20)

We then use the expressions for the conditional values vi;j;t and vi;0;t, as given by (13) and

(20), to write the choice probabilities (14) as:

sm;j;t =
exp(vi;j;t � vi;0;t)

1 +
PJ

j0=1 exp(vi;j0;t � vi;0;t)

=
exp(e�j;t + ewj;t�m + � ln sm;1;t+1)

1 +
PJ

j0=1 exp(
e�j0;t + ewj0;t�m + � ln sm;1;t+1) (21)

where we de�ne e�j;t � �j;t � ��1;t+1 and ewj;t � wj;t � �w1;t+1. We can write (21) more
compactly as a function of the parameters to be estimated, sm;j;t

�
�;e��, where e� is a vector

with the alternative/time �xed e¤ects e�j;t and � is a vector with the remaining parameters
(stacking the interaction e¤ects in � and the discount factor �).

The maximization problem of the log likelihood function is then

max
�;e� lnL(�;e�) =Xm;j;t qm;j;t ln sm;j;t(�;e�);

where qm;j;t is the observed number of adopters in local market m of alternative j at period

t. Note that this contains a potentially large number of parameters, because of the set of

�xed e¤ects e�j;t (J � T ).
Step 2. Instrumental variable regression of e�j;t
The second step is an instrumental variable regression of the estimated �xed e¤ects e�j;t �
�j;t � ��1;t+1 after substituting the expressions of �j;t and �1;t+1 based on (1). This gives the
regression e�j;t = (xj;t � �x1;t+1)  � � (pj;t � �p1;t+1) + e�j;t
22We follow Scott (2013) and use an inverse distance smoothed version of the local adoption rate of j = 1

in the next month. We also experimented with a kernel estimate, smoothing over observables and obtained

similar results.
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where e�j;t was already de�ned before for the aggregate model as e�j;t � �j;t � ��1;t+1. Hence,
this regression is very similar to the aggregate model. In the disaggregate model the depen-

dent variable consists of the estimated �xed e¤ects e�j;t from the �rst step, while in the aggre-
gate model the dependent variable, including the correction term, was ln sj;t=s0;t�� ln s1;t+1.
Price is given by (2), based on the estimate of � in the �rst step, and the instruments are

the same as the ones used before in the aggregate model.

While this two-step approach yields consistent estimates of all parameters, it involves

two issues. First, the discount factor � enters in both estimation steps, so that estimating �

is not e¢ cient. Second, the �xed e¤ects e�j;t that form the dependent variable in the second

step are estimates, so that the standard errors need to be corrected. We therefore proceed

to a third step that overcomes both problems.

Step 3. Simultaneous GMM
The third step uses the parameter estimates from the �rst two steps as starting values, and

then combines the moment conditions as implied by the �rst two steps in a simultaneous

GMM framework. The �rst set of moment conditions consists of the score vector, i.e. the

vector of the derivatives of log-likelihood function lnL(�;e�).23 The second set of moment
conditions comes from the orthogality conditions E

�
zj;te�j;t (�; �; )�, i.e. the instruments

interacted with the error term. The stacked vector of sample moment conditions is then

g(�;e�; �; �) =  @ lnL(�;e�)=@(�;e�)P
j;t zj;t

e�j;t (�; �; )
!

The score lnL(�; �)=@(�;e�) has an intuitive expression for the demographic parameters and
the �xed e¤ects:

@ lnL(�;e�)
@e�j;t =

X
m

Nm;t

�
qm;j;t
Nm;t

� sm;j;t(�;e�)�
@ lnL(�;e�)
@�h

=
X
t

X
m

Nm;t
X
j

�
qm;j;t
Nm;t

� sm;j;t(�;e�)�wm;j;tDh
m

where Dh
m is demographic characteristic h in the vector Dm and �h is a K � 1 vector for

demographic characteristic h (one of the columns in � ). These expressions show that the

scores serve as micro-moments that are added to the aggregate moments
P

j;t zj;t
e�j;t (�; �; ).

This is in the spirit of the static discrete choice literature, as in Petrin (2002) and Berry

et al. (2004), and applied to local market data in Nurski and Verboven (2016). More

23We leave out the derivative to the discount factor here as the macro-moments are our source of identi�-

cation for this parameter.
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speci�cally, the scores @ lnL(�;e�)=@e�j;t (for each j and t) are essentially conditions that the
observed country-level market shares should be equal to the predicted country-level market

shares. The scores @ lnL(�;e�)=@�h (for each demographic h) are moment conditions that the
observed sales-weighted demographic interactions should be equal the model�s predictions.

The GMM estimator minimizes g0Wg with respect to the parameters, where W is the

weighting matrix. To correct for the fact that within a local market observations are not

independent over time, we cluster the moments in the calculation of the covariance matrix.

We also cluster the macro moments within time periods.
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