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Abstract

In this paper I directly test the hypothesis that interactions between inventors
of different firms drive knowledge spillovers. I construct a network of publicly traded
companies where each link is a function of the relative proportion of two firms’ inventors
who have patent coauthors in both organizations. I use this measure to weigh the
impact of R&D performed by each firm on the productivity and innovation outcomes
of its neighbors. An empirical concern is that the resulting estimates may reflect
unobserved, simultaneous drivers of both R&D and firm performance. I address this
problem with an innovative IV strategy, motivated by a game-theoretic model of firm
interaction. I instrument the R&D choices of one firm’s neighbors with those of firms
that are sufficiently distant in the network. With the resulting spillover estimates, I
calculate that the marginal social return of R&D amounts to approximately 24% of
the marginal private return.
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Theories of knowledge spillovers have been central in economic analysis at least since
Marshall (1890) posited their role to explain the apparent productivity advantages for
firms to cluster near one another in manufacturing districts of 19th century England.
Since then knowledge spillovers have entered economic theories of industrial inno-
vation, geographic agglomeration, economic growth, international trade and more.
However, the exact mechanisms through which knowledge spills from one agent or
organization to another are still unclear. Conjectures about human interaction and
spatial proximity as drivers of information exchange are typically associated to meth-
ods of measuring spillovers that are unable to test their hypotheses directly, as they
are typically based on aggregate R&D metrics.

This paper contributes to the empirical literature on the quantitative assessment
of R&D spillovers by directly measuring the role of individual relationships in the
diffusion of industrially valuable knowledge. I estimate the effect of R&D performed
by different firms, that are linked through their scientists, on their reciprocal per-
formance and innovation rates. In particular, I use coauthorship of past patents in
order to identify inventors who are likely to maintain personal linkages across different
organizations over time. For each pair of firms, I measure the degree of interaction be-
tween the two R&D teams and the potential for information exchange by the relative
proportion of cross-connected coauthors. This metric changes over time, as scientists
move across firms or acquire new coauthors.

By combining firm-level data with patent data that identify individual inventors
over the course of their patenting history, I am able to construct a dynamic network of
knowledge exchange. This network includes the largest, most innovative and R&D in-
tensive U.S. firms, and it becomes tighter over time thanks to the increase in the total
number of connections. The R&D of connected firms, weighted by the intensity of the
links, is significantly and positively correlated with firm performance and innovation
rates as measured by patent counts. This contrasts with well-established measures
of spillover that rely, for instance, on technological similarities between firms (Jaffe,
1986, 1989). Within the network, these measures are not significantly and robustly
correlated with relevant firm-level outcomes.

It is arduous, however, to assign a causal interpretation to these findings. As in
the case of other types of studies on spillovers and externalities between economic
agents, these correlations may simply reflect the existence of common unobserved
confounders simultaneously driving R&D, innovation, and firm performance. For
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example, a sudden technological breakthrough in a specific technological niche where
few connected firms operate may facilitate at the same time follow-up discoveries as
well as cost savings. An additional hypothesis is that the R&D of similar, connected
firms is driven by parallel changes in their R&D costs, which are themselves correlated
with firm profitability. This corresponds to the classical case of industries at an earlier
stage of their life cycle, which are simultaneously characterized by rapid product
innovation and high costs. In both scenarios the unobservability of these confounders
would bias, in either direction, standard estimates of R&D spillovers. This problem
corresponds to the one of “correlated effects” per the classification by Manski (1993)
of identification problems in the estimation of spillover effects.

Thanks to the characteristics of the network that I observe, I am able to formulate
a novel empirical strategy that addresses the problem of common confounders. The
basic intuition is straightforward. Unobserved factors that correlate across a pair of
connected firms – call them i and j – may bias standard estimates of spillovers as
long as their R&D expenditures also reflect those factors. Suppose that a third firm
k, which is not connected to i, shares some of these unobservables with firm j but not
with i. Crucially, it is not required that j and k are themselves directly connected,
but only that k is “closer” to j than it is to i in the network space. If shared external
circumstances affect R&D investment, as hypothesized, R&D should be correlated
within firm pairs (i, j) and (j, k), but not within the pair (i, k). Hence the R&D
of firm k, while correlating with that of firm j, is orthogonal with respect to firm
i’s unobservables. I argue that this type of relationships within triads of nodes is
commonplace in networks, as evidenced by specific statistical regularities.

To formalize this intuition, I describe a game of R&D investment played in a
network of firms. R&D exerts reciprocal spillovers across linkages; in addition, firms
are hit by shocks that are exogenously correlated through the network. Consequently,
equilibrium R&D also co-varies across neighboring nodes, and the resulting correlation
is endogenously amplified by the strategic anticipation of other firms’ investment
choices. However, under reasonable assumptions that allow for flexible patterns of
cross-correlation in the shocks as well as for varying information structures of the
game, the model predicts the existence of a degree of separation at which the R&D of
different firms is independent. Since they are still correlated with the choices of direct
friends, the choices of firms that lie at that bound would serve as valid instruments.
Empirically, I find that that there is no significant cross-correlation in R&D choices
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at three degrees of separation. This motivates the use of instrumental variables based
upon the R&D of “indirect friends” of third degree as my best choice.

Without applying this strategy, I find substantial effects of connected firms’ R&D
on firm performance – expressed in terms of productivity and market value – as
well as on patent production. However, when instrumenting peers’ knowledge invest-
ment with the R&D choices of indirect friends of third degree, I obtain larger point
estimates of spillover effects, for both the productivity and the patent production
outcomes. That such difference is only apparent when applying the third-degree in-
strument in isolation is remarkably consistent with the proposed model. I interpret
these findings as evidence that R&D is indeed driven by common confounders across
connected firms. The negative bias of OLS estimates lends support to the idea that
such correlated factors are in large part related to R&D costs. In light of my results,
I estimate the marginal social return of R&D to be about 24% of the private return.

This paper builds on the traditional literature of industrial and innovation eco-
nomics about the determinants of productivity at the firm level, especially the private
and social returns of R&D.1 The quest for R&D spillovers in particular, initiated with
the original intuitions of Griliches (1964, 1979, 1992), has developed into its current
empirical framework with the cited contributions by Jaffe. Successive research has
experimented with metrics of spillovers, based for example on cross-industry transac-
tions or flows of patent citations, that are alternative to Jaffe’s concept of technological
proximity (for a review of these studies see e.g. Hall, Mairesse, and Mohnen (2010)).
Other authors have assessed more specific mechanisms of knowledge diffusion. For
example, Branstetter and Sakakibara (2002), as well as König, Liu, and Zenou (2016)2

study the effect of R&D joint ventures. Griffith, Harrison, and Van Reenen (2006)
instead examine the consequences of UK firms’ technological outsourcing in the US.

In recent work Bloom, Schankerman, and Van Reenen (2013) solved a longstanding
issue in the literature, by separating positive R&D spillovers (based on a measure of
technological proximity) from the negative business stealing effect induced by other
firms’ R&D. They postulate a microfoundation of knowledge spillovers based on the
frequency of personal or professional interactions between inventors, but they do not
explicitly test this mechanism in their empirical analysis. In this paper, I provide for

1For a general survey see Syverson (2011).
2König et al. (2016) also take a network-based approach to their analysis of joint ventures, which

bears similarities with the one in this paper. Their identification strategy is, however, different. In
particular, their identifying moment conditions might suffer from problems of correlated confounders.
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the first time a measure of cross-firms spillovers based on the observation of an actual
social network of inventors: specifically, the coauthorship network. This measure
aims at capturing all forms of individual interaction between inventors which result
in collaborative projects. While spillovers might occur even through less solid, harder
to observe types of interactions, the proposed measure has the advantage of generality.
In fact, collaborative cross-firm projects characterize spillover mechanisms previously
examined in the literature such as R&D joint ventures or technological outsourcing.

This work provides empirical evidence to support the hypothesis that spillovers
are caused by the exchange of ideas between individuals. Thus, it is related to the
research on the micro-level determinants of performance in the workplace. Moretti
(2004) argues that productivity is related to how well-educated the workforce is in
the environment where a plant is located, suggesting that knowledge spillovers have a
local scope.3 Mas and Moretti (2009) demonstrate how “peer effects” apply at work,
as coworkers intensify their efforts when they watch others doing increasingly so.
Serafinelli (2013) shows that firm productivity is related to positive flows of workers
with experience from companies at the top of the productivity distribution. In the
context of scientific production, which is especially relevant for this work, Azoulay,
Graff Zivin, and Wang (2010) evidence the negative impact of superstars’ deaths on
the publication rate of scientific collaborators.4

The empirical strategy that I propose, centered on the idea of using the R&D
of “sufficiently distant” firms to predict the R&D of direct neighbors, is itself a con-
tribution to the literature of spatial and network econometrics. While instrumental
variables of this kind are not novel as a concept (Bramoullé et al., 2009; De Giorgi
et al., 2010), both my objective and conceptual framework5 are different. In the cited

3Moretti (2011) lists knowledge spillovers as one of the micro-level determinants of agglomeration
economies. There, in fact, are several complementarities between the literature that documents and
looks for the causes of agglomeration economies, and the studies on R&D spillovers. Jaffe et al. (1993,
2000) as well as Thompson and Fox-Kean (2005) discuss whether the spatial concentration of patent
citations can be considered as evidence of localized knowledge spillovers. Bloom, Schankerman, and
Van Reenen (2013) attempt to distinguish a geographic component of spillovers by placing more
weight on R&D performed by other firms in the same state. Lychagin et al. (2010) do a similar
exercise by exploiting within-firm variation of their R&D activity at a finer geographic level.

4However, in a related study Waldinger (2011) does not find similarly convincing evidence fol-
lowing the expulsion of scientists from Nazi Germany.

5The model described in this paper is inspired by those in Calvó-Armengol et al. (2009), Conley
and Udry (2010), Kranton et al. (2014), Blume et al. (2015), while differing from all of them. Unlike
some of the papers cited above, this model does not give rise to an empirical reduced form equation
with a spatially autoregressive dependent variable (corresponding to Manski’s “endogenous effect”).
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papers, in fact, IVs are meant to solve Manski’s “reflection” problem, by extending
methods originally devised for spatially autoregressive models (Kelejian and Prucha,
1998) to the case of networks. Here instead, the aim of the proposed methodology is
to disentangle spillover effects from spatially distributed unobservables or “correlated
effects.”6 The latter are, according to some authors (Angrist, 2014), the main motive
for concern about studies on peer effects. To the best of my knowledge, this approach
is new also in the spatial econometrics literature. It can be viewed as a spatial exten-
sion of the GMM procedure for dynamic panels by Blundell and Bond (1998), when
the error term has finite serial memory (e.g. it is of the mobile average type).7

This paper is organized as follows. Section 1 illustrates the game-theoretic frame-
work that models R&D investment in a network, in the presence of spillovers. Section
2 describes the coauthorship-based measures of connections, and provides a descrip-
tion of the resulting dynamic network. Section 3 outlines the econometric framework
and discusses the empirical strategy of the paper. Section 4 presents the empirical
results of the analysis and their implications. Finally, Section 5 indulges in some con-
cluding remarks. A set of appendices accompanies this paper, to complement both
the theoretical and the empirical analyses.

1 Analytical Framework

In this section I outline the theoretical framework of this paper. The model I describe
explores the equilibrium relationship of firms’ choice of R&D investment when they
exert network externalities on each other and are also subject to simultaneous corre-

According to the classification of spatial models by Elhorst (2014), the resulting equation is instead
analogous to a Spatial Durbin Error Model (SDEM), as it includes both an analogue of Manski’s
“exogenous effect” and spatially correlated errors. The main feature of my model is that both the
above are interdependent, causing an endogeneity problem.

6The procedure described in Bramoullé et al. (2009) and implemented in De Giorgi et al. (2010)
has been conceived for cross-sectional data made of multiple, separate networks. If correlated effects
are identical within networks, taking fixed effects at the network level is sufficient to partial them
out – as it is claimed in some of the empirical applications based on their framework. If common
shocks are, instead, characterized by a more complex spatial dependence as a function of network
topology, their approach would result in inconsistent estimates even with a sample of networks.

7As it is widely known, similar GMM methods for dynamic panels suffer from two main weak-
nesses. First, the finite memory assumptions is often unrealistic, as the data evidence autoregressive
patterns in time. Second, these approaches show problems of the weak instruments type. However,
in this paper both issues are less concerning. In fact, spatial correlograms make the case for spatial-
MA type of processes in the network. In addition, the chosen instruments are sufficiently strong,
perhaps due to the fact that networks have a higher dimension than time series.
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lated shocks. The objective of the model is to formalize the intuition motivating the
identification strategy of the paper. In a discussion at the end of this section I relate
the main empirical predictions to stylized facts about social networks. The model is
static and network formation is not explicitly modeled. Furthermore, the micro-level
determinants of R&D spillovers are for now taken as given, to be introduced in the
next section. In the appendices I provide mathematical proofs and I discuss a stylized
dynamic version of the model, showing how the main results can be extended to it.

1.1 Model Setup

An economy consists of N firms, whose output depends on conventional inputs (e.g.
capital, labor) as well as on knowledge capital (Griliches, 1979). Knowledge is the
result of R&D activity that is performed by teams of researchers – be they professional
scientists, occasional inventors, academic collaborators of firms or other individuals
– who are linked together in a network of professional relationships. These networks
transcend the borders of the individual firms. Thanks to the formal and informal
exchange of information that happens in the network in the form of spillovers, one
firm’s knowledge depends not only on R&D that is performed in-house, but also on
R&D from other firms that are connected in the network.

The knowledge capital S̃i of firm i is a Cobb-Douglas function of its own R&D
investment, denoted as Si, and the R&D investment Sj of any other j-th firm:

S̃i = Sγi

(
N∏
j=1

S
gij
j

)δ

(1)

where the index gij = gji ∈ [0, 1) reflects the relative intensity of spillover effects
occurring between any two firms i and j,8 with gii = 0 for every firm i (a stan-
dard normalization). Parameters γ ∈ (0, 1) and δ ∈ (0, 1) represent, respectively,
the relative contribution of in-house R&D and of knowledge spillovers to one firm’s
knowledge capital. Notice that R&D is a strategic complement, consistenly with the
empirical framework of the paper. A model featuring R&D as a strategic substitute
would yield different empirical predictions about the sign of R&D cross-correlation in
the network, but would not invalidate the main results that support identification.9

8In line of principle, the model allows the intensity of spillovers to be asymmetric
9Whether R&D is in reality more of a strategic complement or a strategic substitute is a con-
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Knowledge capital S̃i enters as an additional input into the general production
function of firm i, which is also Cobb-Douglas:

Yi (Xi1, . . . , XiQ;S1, . . . , SN) = A

(
Q∏
q=1

X
βq
iq

)
Sγi

(
N∏
j=1

S
gij
j

)δ

eωi (2)

where Xiq for q = 1, . . . , Q is any conventional input (like capital or labor), βq ∈ (0, 1)

its associated elasticity parameter, and A ∈ R+ is total factor productivity. Moreover,
output is affected by a stochastic shock ωi ∈ R. This shock reflects any technological
factor that is specific of that firm and affects in either direction its productivity or
profitability. Examples may include circumstances like the temporal progression in
the learning curve, or production inputs whose quality and quantity is difficult to
observe, like say the effort and the effectiveness of the firm management. In more
abstract terms the shock ωi can also be thought as a reduced-form representation,
within a supply-side model, of demand-specific factors such as changes in the tastes
of consumers for different varieties of goods.

In order to introduce spatial dependence in the unobservables it is necessary to
develop a notion of distance between firms in the spillovers network. In particular,
define dij ∈ N as the minimum path length10 between firms i and j. Notice that
this notion is meaningful only for sufficiently sparse networks, that is for interaction
structures such that zero-valued connections (gij = 0) are sufficiently frequent across
pairs of firms. This concept allows me to formulate the following assumption.

Assumption 1. The unobserved shocks ωi present positive spatial correlation extend-
ing up to C degrees of distance. That is:

Cov (ωi, ωj)

≥ 0 if dij ≤ C

= 0 if dij > C

for any two firms i, j.

troversial matter: it is a notoriously hard dichotomy to test. It is usually thought to be both – a
complement and a substitute – to some degree. As Jaffe (1986) put it, this is a ultimately a question
on the assumed functional form, and standard econometric techniques are not the best means to
assess curvature parameters beyond first derivatives.

10Path length is the total number of intermediate connections that indirectly connect two nodes
in a network (a path). Two nodes can be linked via several paths of different length, but usually only
the shortest ones among them are of any interest. The minimum path length is popularly referred
to as the “degree of separation” between two nodes.
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Assumption 1 formalizes the notion that firms, which are sufficiently close in the
network defined by the spillover relationships, also share similar technological factors
and circumstances affecting their performance. A concrete, famous case is the ICT
and computer industry. Close firms operating in that sector have been enjoying for
decades parallel trends in the development of increasingly faster computers: the so-
called “Moore’s Law.” Another appropriate example is the pharmaceutical sector,
where firms developing new drugs enjoy common advantages based on the findings
of basic research. Assumption 1 also implies that firms that are “too distant” in the
network, for example those operating in very different technological areas, do not
share similar characteristics. Thus, their shocks ω are independent.

Firm i’s cost schedule for investing in R&D is also a function of a random variable,
$i ∈ R, that is spatially correlated in the network:

Ci (Si, $i) = e$iSi

that is, the cost borne by one firm for each additional effective unit of R&D Si in-
creases with larger values of $i. Cost factors are correlated in the network, denoting
for example common developments in the supply of labor endowed with specific tech-
nological skills, or in financing opportunities. This may also represent circumstances
such as radical discoveries that pave the way for successive, easier incremental in-
novations (which in practice increases the return of R&D). The restriction on the
statistical properties of the random variable $i are expressed as follows.

Assumption 2. The cost factors $i present positive spatial correlation extending up
to C degrees of distance. That is:

Cov ($i, $j)

≥ 0 if dij ≤ C

= 0 if dij > C

for any two firms i, j. Moreover, Cov (ωi, $i) ∈ R for any firm i = 1, . . . , N .

Assumption 2 formalizes the idea that the spatial cross-correlation of R&D costs
is bounded, in terms of network distances, similarly as the productivity shock ω

(that the bounding distance C is identical is a simplifying assumption of little conse-
quence). Notice that I am imposing no restriction on the joint probability distribution
of (ωi, $i); in particular, the covariance of the two shocks can be of either sign. The
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case for a positive covariance is intuitive: in high-tech industries, increased level of
profitability are associated with higher R&D costs. However, some specific situations
might be best described by a negative covariance. Moore’s Law in ICT, for example,
dictates that as processors become more powerful and computers are improved in
their quality, development costs are reduced.

By specifying a vector of linear cost parameters (ξ1, . . . , ξQ) ∈ RQ
++ for the Q

conventional inputs, the firm profit function (revenues minus costs) can be written as

πi (Xi1, . . . , XiQ;S1, . . . , SN) = A

(
Q∏
q=1

X
βq
iq

)
Sγi

(
N∏
j=1

S
gij
j

)δ

eωi −
Q∑
q=1

ξqXiq − e$iSi

(3)
for any firm i = 1, . . . , N . Notice that individual profits depend both on firm-specific
shocks ωi and $i, as well as on the R&D choices of firms that are connected in the
spillovers network. This in turn, makes firm R&D dependent, in equilibrium, on the
shocks of other firms. Thus, any notion of equilibrium should specify an information
structure of the game. Denote as Ωi the set of shocks ω and $ observed by firm i. I
make some fairly general assumptions about the structure of this set.

Assumption 3. Every firm always observes its own individual shocks: ωi, $i ∈ Ωi.
Moreover, there exists some integer L such that individual information sets do not
include the shocks of firms located at distances higher than L: (ωj, $j) /∈ Ωi if dij > L.

Assumption 3 states the obvious consideration that firms are aware of their own
circumstances (shocks ωi and $i). Moreover, it specifies that for sufficiently high
distances in network space, any two firms i and j that are that far away are ignorant of
their respective shocks. In other words, this assumption rules out the case of complete
information for networks of moderate diameter, which is arguably unrealistic. More
concretely this means that the management of, say, a biotech firm is unlikely to know
– or to take into account when making business decisions – the specific circumstances
affecting a firm specialized in mechanical engineering, and vice versa.

The timing of the game is the following.

1. Nature draws ω = (ω1, . . . , ωN) and $ = ($1, . . . , $N) from a common knowl-
edge joint p.d.f. F (ω,$). Every firm i observes its own information set Ωi.

2. Firms simultaneously make their R&D and conventional input choices.
3. Payoffs (profits) are paid out.
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1.2 Equilibrium Predictions

The solution of the game is identified as a Bayes-Nash equilibrium. Define an indi-
vidual strategy as a mapping from individual information sets onto valid choices of
R&D investment and conventional inputs: (Si,Xi) : Ωi → (Si;Xi1, . . . , XiQ) ∈ RQ+1

++

for every firm i = 1, . . . , N . Denote the vector of all other firms’ R&D strategies as
S−i = {(S1, . . . , SN) \Si} ∈ RN−1

++ . A Bayes-Nash equilibrium is a profile of strategies
(S∗,X∗) = [(S∗1,X

∗
1) , . . . , (S∗N ,X

∗
N)] of all firms, such that

E
[
πi
(
S∗i ,X

∗
i ; S∗−i

)∣∣Ωi

]
≥ E

[
πi
(
Si,Xi; S∗−i

)∣∣Ωi

]
∀ (Si,Xi) 6= (S∗i ,X

∗
i )

for every firm i = 1, . . . , N . The following result characterizes the equilibrium.

Proposition 1. Denote the set of spillover weights as G = {gij : i, j = 1, . . . , N}. If

θ ≡ δ

1− γ −
∑Q

q=1 βq
< min

1,

[
max
i

(
N∑
j=1

gij

)]−1


there exists a unique Bayes-Nash equilibrium strategy profile which can be expressed,
for i = 1, . . . , N , as

logS∗i =
logA+ log γ +

∑Q
q=1 βq (log βq − log ξq − log γ)

1− γ −
∑Q

q=1 βq
bi (G) + g∗i (Ωi,G) (4)

logX∗iq = logS∗i + log βq − log ξq − log γ +$i for q = 1, . . . , Q (5)

where bi (G) the Bonacich-Katz network centrality measure with attenuation factor θ
for i = 1, . . . , N , while g∗i (Ωi,G) is a firm-specific function of both its information set
Ωi and network topology. Function g∗i (Ωi,G) is spatially recursive and can be bounded
by an expression that is linear in the spillover weights:

g∗i (Ωi,G) =
1

1− γ −
∑Q

q=1 βq

{
ω̃i + logE

[
N∏
j=1

exp
(
gijδ · g∗j (Ωi,G)

)∣∣∣∣∣Ωi

]}

≤ 1

1− γ −
∑Q

q=1 βq

{
ω̃i + δ

N∑
j=1

gij logE
[
exp

(
g∗j (Ωi,G)

)∣∣Ωi

]}

where ω̃i ≡ ωi −
(

1−
∑Q

q=1 βq

)
$i for i = 1, . . . , N .
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This result is easily interpreted. First, consider that (5) is simply a set of constant
relative input shares conditions, which is typical of the maximization of Cobb-Douglas
functions. By contrast, equilibrium R&D given in (4) can be decomposed in two parts.
The first one represents the deterministic component, for firm i, of the marginal return
of R&D. It accounts for the complementarity of private R&D with both conventional
inputs and with the “certain” component of peers’ R&D, itself a function bi (G) of firm
i’s position in the network. The second part represents the best equilibrium prediction
that firm i can make, on the basis of private information, of how random shocks to
both productivity and R&D costs of all firms in the network (including itself) would
affect its own net marginal return of R&D. In equilibrium, in fact, all the shocks may
affect the R&D investment of peers, which is complementary to private R&D.

The Bayes-Nash equilibrium expressed in Proposition 1 is unique for values of the
spillover parameter δ that are sufficiently small relative to the overall spillover weights
of all other firms. This condition is necessary to rule out the existence of “explosive”
equilibria in which some firms invest infinite amounts of R&D. In theory, an explosive
equilibrium could be catalyzed by a single, very connected firm in the network. In
practice, explosive equilibria are not encountered in the real world, and the empirical
results of this paper are consistent with the necessary condition for uniqueness.

Before characterizing the main result about the spatial cross-correlation of R&D
choices, it is worth analyzing the following property of the equilibrium.

Corollary 1. The model may give rise to equilibria in which, for two connected firms
i and j (gij 6= 0), the following three relationships hold simultaneously in equilibrium.

Cov
(
logS∗i , logS∗j

)
> 0

Cov
(
ωi, logS∗j

)
< 0

Cov (ωj, logS∗i ) < 0

(6)

The apparently counterintuitive situation in which, in equilibrium, R&D is positively
correlated through the network – but the productivity shocks of some firms are nega-
tively correlated with the R&D of its connections – is actually allowed by the model.
It must be remarked that (6) may hold for some pair of connected firms but not for
others, depending on i. network topology, ii. the information structure of the game,
and iii. the distribution of shocks F (ω,$). In Appendix A I show that (6) holds
for one specific, exemplifying set of restrictions imposed on the model.

11



This scenario may arise if the spatial cross-correlation of the cost factor $ drives
that of R&D disproportionately more than the cross-correlation of productivity shocks
ω. As R&D costs affect R&D investment negatively, in such circumstances the covari-
ance between one firm’s (i) productivity residual and the R&D of some its connections
(j) is dominated by a negative component which is driven by the term Cov (ωi, $j).
This intuition can be related to a classical stylized fact in the analysis of industry
life cycles: higher development costs, as well as higher product prices, are associated
to those early stages of an industry where innovation and productivity growth are
most rapid (Gort and Klepper, 1982; Klepper, 1996). This discussion is important in
light of the empirical results of the paper, as it provides a rationale for OLS estimates
of spillovers being negatively biased. This fact cannot be accounted for by standard
supply-side models of production featuring spillovers and strategic complementarities,
short of introducing some spatial dependence across firm costs.

The next result motivates the empirical strategy of this paper.

Proposition 2. Suppose that Assumptions 1-3 hold. It follows that

Cov
(
ωi, logS∗j

)
= 0 if dij > C + L (7)

Cov
(
logS∗i , logS∗j

)
= 0 if dij > C + 2L (8)

that is, the unobserved shock of one firm and the equilibrium strategy of another are
independent as long as the two are distanced by a minimal path length higher than
C + L; similarly the equilibrium strategies of any two firms at distance higher than
C + 2L are also independent.

Proposition 2 places a bound, in terms of “degrees of separation,” on the equilibrium
correlation across R&D choices and unobserved shocks in the network. The intuition
is the following: even if in equilibrium firms endogenously internalize the shocks of
other organizations that are “sufficiently close” (up to distance L), and this in turn
amplifies the exogenous cross-correlation (up to distance C), if both mechanisms are
bounded also their combined effect is. In other words the shocks of other firms that
are “very distant” in the network, whose R&D investment is of little relevance, are
never internalized by individual firms. An implication of this result is that, for any
firm i, the R&D choices of firms that are “sufficiently distant” in the network can be
used as exogenous predictors of the R&D investment of its own direct links, which
are located at distance 1. Intuitively, the R&D of such “predicting” firms depends on
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some technological and cost factors also affecting the R&D of firm i’s connections,
but not the R&D of firm i itself. Given (7) and (8), appropriate “predicting” firms
are located at any distance between C + L+ 1 and C + 2L+ 1.

Firm i

Firm j

Firm k

Firm `

Graph 1: A Tetrad, or Two Semi-Overlapping Open Triads

An example of this is provided in Graph 1, which displays a network of four firms
(i, j, k, `): a tetrad. In fact, this graph is made of two open triads11 that partially
overlap on each other, as they share two nodes and an edge (the link between j and
k). Consider first the simplest situation in which C = 1 and L = 0. In this case, firms
only observe their private shocks, featuring spatial cross-correlation extending up to
immediate connections, but not beyond. Therefore, R&D is correlated in equilibrium
across firms that are reciprocally connected – but not otherwise, as it only reflects
private shocks. Consequently, under the point of view of firm i, the R&D of firm
k (S∗k) can serve as an “exogenous predictor” of firm j’s R&D (S∗j ), since the two
are correlated but the former is independent from firm i’s R&D (S∗i ). However, the
R&D of firm `, (S∗` ) is not a valid predictor, as it is uncorrelated with that of firm
j. Similarly, S∗i exogenously predicts S∗j under the point of view of firm k. The same
properties symmetrically apply to the “dashed” triad made of nodes (j, k, `).

Consider now some more complex cases. If C = 2 and L = 0 firms are still unable
to observe the shocks of others, but now the cross-correlation of R&D extends up
to two degrees of distance as it reflects the primitive cross-correlation of the shocks.
Hence, under the point of view of firm i, S∗` can act as a valid predictor of S∗j ;
symmetrically S∗i would predict S∗k for firm `. In the case where C = 0 and L = 1

the only mechanism driving R&D cross-correlation is the endogenous reflection of
11An open triad is a network, or a subsection of a network, that is made of three nodes – of which

two are not connected to one another, while being both connected to the third node. In Graph 1
the two semi-overlapping open triads are represented by a solid and a dashed line, respectively.

13



shocks, which can be observed between connected firms. Notice that, in this case, the
cross-correlation of R&D extends up to two degrees of distance. In fact, observe that
both S∗i and S∗k depend on (ωj, $j). Yet, S∗k is still a valid predictor of S∗j for firm
i, as it is uncorrelated with ωi – and vice versa. Notice how S∗` also correlates with
S∗j : they are both a function of (ωk, $k). Thus, firm `’s R&D is a valid predictor of
firm i’s spillovers. The same logic applies when inverting the order of nodes. Finally
consider the case in which C = 1 and L = 1. Observe how R&D is correlated across
the entire tetrad, but the R&D of firms distant at least three degrees of separation
are still valid predictors as per (7).

The result that follows is an immediate implication of Proposition 2.

Corollary 2. Under Assumptions 1-3, also the equilibrium conventional input choices
of one firm are uncorrelated with the equilibrium R&D of firms located at distance
higher than C + 2L.

Cov
(
logX∗iq, logS∗j

)
= 0 if dij > C + 2L, for q = 1, . . . , Q (9)

This result further supports the use of the R&D of firms that are distant enough
as an instrument for the R&D of direct connections. Specifically, it motivates their
exogeneity relative to other potentially endogenous control variables employed in the
empirical analysis, as long as such instruments are taken at the furthest valid distance
C + 2L + 1. The intuition is very simple: according the equilibrium conditions in
(5), R&D and conventional inputs reflect the same information a firm knows about
the state of the network. As the stochastic properties of both R&D and conventional
inputs are a function of the same information set, the same bound applies to both
relationships (8) and (9).

1.3 Discussion

I have characterized a general framework that can help identifying, in any network,
exogenous sources of variation in the characteristics of connected nodes. In particular,
Proposition 2 establishes a connection between the empirical cross-correlation of the
strategic spillovers variable and the appropriate level of distance at which to select the
“predictors” of one node’s links. However, the practical applicability of this framework
depends on network topology. Specifically, the network should be neither too tight
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nor too sparse, and display an appropriate number of “tetrads” like the one in Graph
1. As evidenced later, though, given the characteristics of the data at hand this does
not appear to be a relevant concern for the empirical analysis performed in this work.

The main results, in any case, are not trivial. The recent findings of stylized facts
about the so-called “three degrees of influence” in networks (Christakis and Fowler,
2013), an expression referring to the typical maximum extent of cross-correlation of
nodes’ characteristics,12 currently lack a unified explanation. Economists have only
recently started to consider the problem, and to investigate both the economic mecha-
nisms driving it and their empirical implications (Graham, 2014). However simple and
stylized, this model offers a possible framework to explain these stylized facts through
a combination of both interacting exogenous factors and endogenous influences. In
addition, a network approach incorporating spatially correlated heterogeneity can be
informative for the empirical analyses of peer effects. This set of studies, in fact, face
the challenge of how to appropriately account for the endogeneity problem induced
by common confounders (Angrist, 2014).

In Section 3 the core result from this analysis, informed by some descriptive evi-
dence about the empirical cross-correlation of R&D, is exploited to define an empirical
strategy based on Instrumental Variables which addresses the chief endogeneity con-
cern in this context: namely, the potential presence of common factors driving both
R&D choices and the outcomes of connected firms.

2 Networks and Data

This section is divided in three parts. In the first part, I describe in abstract terms
how I characterize the existence of spillover relationships between firms. In particular,
I focus on linkages between their R&D-performing teams, on the basis of observable
previous collaborations on patents. I formalize the metrics of connection that I em-
pirically measure. In the second part, I describe the resulting dynamic network of
R&D intensive firms selected from a specific panel of companies listed on the U.S.

12In their work, Christakis and Fowler conduct a systematic investigation of the cross-correlation
of adolescents’ health habits across linkages of friendship networks. They document descriptively
how most individual characteristics do not manifest any significant correlation across indirect friends
of third degree or higher, with some variables registering some small third-degree correlation. For the
most part, adolescent behavior displays “two degrees of influence,” like – in the completely different
context of this paper – firm investment in R&D.
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stock market. In the third part I provide some relevant descriptive statistics relative
to the variables employed in the empirical analysis, as well as estimates of the spatial
cross-correlation of R&D in the network which motivate the choice of the instruments.

2.1 The Measures of Connection

Assume that there are three R&D intensive firms whose scientists are related to each
others even beyond the borders of their respective organizations. Denote as Mi, Mj

and Mk the sets of inventors belonging to each firm, with M = Mi ∪Mj ∪Mk. I
define an existing coauthorship relationship between any two elements of M , be they
m and n, with the notation ptmn = 1. This indicates that two individuals, at time t,
share some professional collaboration on any past research project that has resulted
into a patent application listing both their names. Absent such a relationship, it is
ptmn = 0. One could visualize the resulting network as a graph where each elements
of M is a node, and nodes are linked by edges if p = 1.

Graph 2 displays the first part of a stylized example on such a coauthorship
network (hypothetically observed at some point t = 0). The inventors of each firm
(that is, subsets of M) are nodes of the network displayed with different colors: red
for i, blue for j, green for k. The coauthorship relationships p0

mn are visualized as an
edge connecting two nodes. The only existing cross-firm coauthorship relation is that
between an inventor of firm i and an inventor of firm k.

Firm i Firm j

Firm k

Graph 2: Inventors Network Example, t = 0

The central hypothesis of this paper is that firms learn about other firms’ R&D
activities thanks to the inventors who are connected to scientists in other firms, be-
cause of continuing professional relationships or more informal channels. A natural
implication of such an assumption is that the tighter is the connection between two
R&D teams, the stronger are the spillovers occurring between two organizations. For
this reason I define measures that quantitatively capture such a differential effect. A
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measure of connection cf(ij)t between, say, firm i and firm j at time t is a function f
of the fraction of inventors of either firm who are connected to inventors in the other
firm, relative to the total size of both R&D teams:

cf(ij)t = f

(
# inv.s of i connected to j at t+ # inv.s of j connected to i at t

# inv.s of i at t+ # inv.s of j at t

)
(10)

where f : [0, 1] → [0, 1], f (0) = 0 and f (1) = 1. For the three firms in the example
of Figure 2, cf(ij)0 = cf(jk)0 = 0, while cf(ik)0 = f (1/3).

The facts that cf(ij)t ∈ [0, 1], and that any measure of connection is symmetric
(cf(ij)t = cf(ji)t) bear important implications. The former means that an extra unit of
external R&D cannot be more valuable for a firm than internally performed R&D,
which is a reasonable hypothesis. The latter implicitly assumes that the spillover
relationship is symmetric between any two firms, regardless of the relative size of
their R&D departments.13 In addition, it must be stressed that a connection measure
essentially captures the relative number of personal professional relationships that
have been established in the past, in terms of patent coauthorships; it is silent about
the relative importance of a single linkage.14 In Appendix D I explore alternative
definitions of connections based on departures from these assumptions.

Connection measures between two firms can change over time. Their dynamics
are the result of conceptually different types of events that are in principle observable,
although I am not able to do so with the available data. Said events are: i. cross-firm
R&D collaborations, such as joint ventures, resulting say in collaborative patents; ii.
the movement of inventors between firms. Both situations are usually thought of as
drivers of knowledge transfer between firms, and they positively impact measures of
connection. In addition, iii. entry and exit of inventors from the network also affect
the calculated metrics. However, their net effect is ambiguous and depends on the
specific circumstances of the inventors in the process in question.15

13This is apparent from the example in Figure 2 where the two connected firms have different size.
This assumption can have advantages: for example, it conveniently handles measurement errors in
the assignment of individual inventors to firms. It may not be the most appropriate description of
reality, however. One possibility, for example, is that just few “insiders” may be sufficient to grasp
most of the secrets of one firm’s R&D activity.

14A departure from this assumption is to consider that connections between two inventors that
involve prolonged relationships over the years, relationships that result in many jointly filed patents,
can be more relevant than others. Similarly, connections involving superstar inventors who issue
many patents, of which some have been extremely well cited, can be of exceptional importance.

15New entrants increase the denominator of (10), but can potentially generate new cross-firm
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Graph 3 extends the previous example by the advancing of one time period to
t = 1, and examining the consequences of various changes in the underlying network of
coauthorship. New linkages between inventors, due to newly appearing joint patents,
are represented by dashed lines. In the example, some inventors of firm j have been
observed to patent jointly with researchers from firm k, including an entrant inventor
from that company. There is also a new entrant in firm i, but he is not connected to
anyone elsewhere. Instead, among firm i’s incumbents one inventor has now moved
to j, while the one who used to maintain the connection with firm k has exited the
network. As a result, cf(ij)1 = f (1/4), cf(jk)1 = f (1/2) and cf(ik)1 = 0.

Firm i Firm j

Firm k

Graph 3: Inventors Network Example, t = 1

In the applied analysis I employ connection measures based on the square root
function.

g(ij)t =

√
# inv.s of i connected to j at t+ # inv.s of j connected to i at t

# inv.s of i at t+ # inv.s of j at t
(11)

This choice responds to a precise economic assumption. The typical anecdotal narra-
tive on technological spillovers usually involves some solitary individual who transfers,
perhaps by mistake, much of the knowledge internally developed by one firm to some
of its partners or competitors. The very expression “spillovers” is verbally associated
in such anecdotes to the “leakage” of few accumulating “drops” of knowledge. By ap-
plying the square root function to the ratio of connected inventors, I attribute more
importance to the pairs of firms with relatively fewer connections. In the remainder
of this paper I use the expression “connection” to indicate the squared root metric.
In Appendix D I present the empirical results from applying alternative definitions
of connections; including ones based on the pure ratio of cross-connected inventors.

linkages, thus determining the tightening of connections. Similarly, the exit of scientists would
decrease the denominator of (10), as well as the numerator of it if the exiting inventors were playing
the role of connecting firms to each other.
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2.2 Firm-level Network

In the empirical analysis, I combine two different data sources. I construct the dy-
namic firm-level network on the basis of 707 firms from the unbalanced panel employed
by Bloom et al. (henceforth BSV). Their sample consists of mostly manufacturing,
R&D intensive firms listed in the U.S. stock market and belonging to the COMPU-
STAT database, that are observed in the time interval of 1976-2001. This panel is
representative of the bulk of private R&D performed in the US, which is concentrated
among the largest and most productive firms. The dataset assembled by BSV includes
information on accounting measures, various indicators of innovation performance, as
well as the Jaffe-type measures that they use in their paper to disentangle different
types of externalities.

I match the firm-level identifiers to the NBER patent data in order to obtain the
list of patents assigned to each firm in the time interval under analysis. Subsequently,
I match the official USPTO patent numbers to the Harvard Patent Network Dataverse
(HNPD), which is a dataset that allows to identify with great accuracy the individual
inventors signing each patent application. This is made possible by applying a specific
disambiguation algorithm based upon the information contained in patents registered
at the USPTO; specifically, some formulation of inventors’ names and their ZIP codes
of residence (Li et al., 2014). Ultimately, this results in the selection of 1,315,060
patents signed by 565,019 inventors.

To calculate the connection measures, I need to associate inventors to each other
as well as to firms. The first task is accomplished by looking at jointly signed patents.
Specifically, for two inventors m and n, I assign ptmn = 1 if at time t+ 1 the USPTO
has received at least one patent application signed at any time in the past by both
inventors. The implicit assumption is that the two inventors are involved in a profes-
sional relationship at least one year prior to the application.16 Similarly, in order to
assign inventors to firms one has to extrapolate facts on the basis of limited available
information. I use the sequence of patents signed by inventor m and assigned to firm
f in order to define a time interval in which one can reasonably presume that the
individual was crucial for the R&D activity of that organization. The details of the
assignment rule are provided in Appendix C.

16Given the lag structure of R&D outcomes (patents) it is likely that this is an overly restrictive
assumption. On the other hand, it is desirable to avoid assigning relationships that did not exist in
reality. The results are very robust to perturbations of this assignment rule.

19



I calculate the connection measure for each pair of firms and year. In total,
460 firms out of 707 display at least one positive connection with another firm in
any year from 1981 to 2001.17 The number of firms that are actually connected in
any year varies with time: some of the initially unconnected firms would eventually
develop bonds. Similarly, the firms that are already connected in 1981 may experience
variations in the number of their connections, possibly resulting in the loss of all of
them. Because of this, one never observes all the 460 firms of the dynamic network
in each cross section. Figure 1 shows how many connected firms appear in each year,
as well as the total number of yearly observed bilateral connections.

Figure 1: Connected Firms and Total Connections over time

Figure 1 displays a steady rise in the total number of connected firms between
1981 and 1998, to be followed by a drop from 1998 to 2001 because of losses of
singleton connections by smaller firms. However, the total number of linkages, and
thus the overall density of the network, remains quite stable during the final years
of the sample. Another way to appreciate this temporal evolution is to visualize the
actual network, in the form of graphs, as it looks like in different years. Selected
graphs (for the years 1985, 1990, 1995 and 2000) are reported in Appendix E.

17I calculate existing connections in 1981 thanks to information on patents with both USPTO
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Figure 2: Degree distribution (binary connections) over time

Figure 3: Distribution of the of connections (g(ij)t) over time

issue date and application year subsequent to 1975.
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Figure 2 reports the yearly degree distributions. Like in many networks, it is a
very asymmetric one and it tends to widen over time. The most connected firms in the
early eighties have less than 10 links, but several dozens of them around year 2000.
Similarly, the average number of connections increases from about 1.5 to about 5.
Each of these connection measures equals to 0.083 on average, with a 0.066 standard
deviation.18 The average hides another asymmetric distribution: this is displayed in
figure 3 and is quite stable over time. In order to interpret the empirical estimates,
one may also want to consider the total amount of spillovers that a firms receives
from others to which it is connected. A measure that combines the variability in
the degree distribution together with the variability in the strength of links is the
row sum of connections, which is defined as ḡit =

∑
j 6=i g(ij)t. Its yearly empirical

distributions are displayed in figure 4. The aggregate mean and standard deviation
of ḡit are respectively 0.44 and 0.18. Apparently, the increase in its spread over time
is due to the widening of the degree distribution.

Figure 4: Distribution of the Row-sum of connections (ḡ(it) =
∑

j 6=i g(ij)t) over time

In Figure 5 I report the temporal evolution of the Network Census, that is the
total count of both open and closed triads. The relative proportion between the two

18Recall that this refers to the squared-root connection measure as defined in (11). The average
for the corresponding linear measure is 0.012, with 0.028 standard deviation.
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types of triad is a valid measure of the overall network density. Over the time interval
1981-2001, one can count in total 160,365 open triads and 15,623 closed triads (which
are about 9.1% of the total). The number of both types of triads grows together with
the total number of connections. The network is neither “too dense” nor “too sparse;”
in fact, in light of the discussion at the end of Section 1 it displays a density that is
appropriate for the empirical strategy that I propose.

Figure 5: Network Census

2.3 Summary Statistics and Spatial Correlation

In Table 1 I provide some firm-level summary statistics. I divide the sample into five
groups: the firms that do not belong to the network, and four groups for those that do.
In particular, I calculate the overall sum of connections for each firm as ¯̄gi =

∑
t ḡit

and assign each firm to a group on the basis of its classification by quartile of ¯̄gi.
Quartile 1 contains the least connected firms in the network over the time interval;
quartile 4 contains the most connected ones.19 For each group, I provide the mean
and standard deviation of specific variables by pooling all the years in the sample.

19The four quartile-groups do not exactly contain the same number of observations because of
attrition in the unbalanced panel.

23



For this reason, in addition to real sales (Yi), other outcome measures (Tobin’s q,
citation-weighted patents Pi) and number of employees (Li), I also report the ratio
of Yi to several input or spillover measures. The last row, in particular, represents
the ratio of Yi on the measure of knowledge capital defined in (1) and employed in
the empirical analysis. Table 1 highlights the fact that the firms that belong to the
network – in particular the most connected among them – are larger, more R&D
intensive and more productive than the excluded ones.

Table 1: Summary Statistics, 1981-2001

No Quartile of
∑

t ḡit
Network 1 2 3 4

Yi: Sales (Millions 1996$) 530 1086 1402 2198 10736
(1206) (2396) (2509) (4530) (20440)

Vi/Wi: Tobin’s Q 1.812 1.882 2.521 2.726 3.420
(1.870) (1.757) (2.939) (3.259) (4.084)

Pi: Cit.-weighted patents 4.099 15.60 22.76 70.35 647.8
(12.45) (43.28) (44.74) (136.2) (1328.6)

Li: Employees (Thousands) 3.428 6.862 9.407 12.35 57.22
(6.560) (15.64) (16.90) (22.57) (98.06)

Yi/Li: Labor Productivity 138.6 138.9 163.8 165.5 207.7
(84.5) (109.9) (94.6) (122.2) (165.1)

Yi/Ki: Capital Productivity 7.156 5.670 5.618 5.421 4.781
(6.319) (3.561) (4.368) (3.777) (3.902)

Yi/R&Di 43.67 20.27 53.73 11.53 4.435
(144.3) (72.1) (494.5) (35.4) (3.936)

Yi/ Jaffe Measure (i) 56.5 109.7 142.2 213.9 986.2
(128.3) (242.2) (267.2) (434.5) (1819.9)

Yi/
∏

j R&D
g(ij)t
j 980.5 899.0 587.8 197.6

(2299.2) (1858.3) (1816.3) (1167.1)

No. of Observations 4363 1854 1819 1949 2028
Notes: The table is divided in five columns: one for firms in the BSV sample that are never part
of the network, and four for each quartile of ¯̄gi. All descriptive statistics are pooled over years.
R&Di denotes the R&D stock of firm i. Standard deviations are in parentheses.

In light of the empirical strategy adopted in the paper, an important set of de-
scriptive statistics that is worth examining is the empirical spatial cross-correlation
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of R&D between firms in the network. This is reported in Figure 6 in the form of the
Moran’s I statistic, which is calculated for both R&D flows and R&D stocks across
different degrees of separation (distances) in the network. Moran’s I statistic, a stan-
dard tool in spatial analysis, consistently estimates the spatial correlation of some
variable of interest for some given level of distance (Kelejian and Prucha, 2001). The
calculation is performed by pooling together all pairs of firms at the same level of
distance throughout all the years. Figure 6 illustrates a strong correlation for direct
connections (distance 1), a correlation of half strength for indirect links (distance 2)
and zero correlation for all further distances: this is a typical pattern encountered
in many other real-world networks (Christakis and Fowler, 2013). The correlation of
R&D stocks is mechanically weaker than the one of R&D flows, as it accounts for
past time periods when two firms were not connected.

Figure 6: Spatial Correlogram of R&D Measures, 1981-2001

According to the analytical framework of the paper, the spatial cross-correlation
of R&D reflects either the exogenous cross-correlation of firm-specific characteristics
(ωi, $i), or the endogenous strategic dependence between R&D choices, or both. In
light of Proposition 2, the evidence in Figure 6 is compatible either with a situation
where (C,L) = (0, 1) or one in which (C,L) = (2, 0) (this is analogous to the analysis
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of time series correlograms generated by MA-type of processes). In the former case,
the R&D of firms located at either distance 2 or at distance 3 are valid predictors of
direct connections’ R&D. In the latter, only indirect links of third degree can function
as appropriate predictors. Consequently, in the empirical analysis I experiment with
instruments constructed by aggregating the R&D stocks of indirect connections at
both degrees of distance. Instruments based on higher distances present no correlation
with the R&D of direct connections, as evidenced by Figure 6.

3 Econometric Model

In this section I outline the econometric methodology that I employ to estimate R&D
spillovers induced through personal connections. This section is divided in three parts.
In the first one, I introduce the workhorse model I use to evaluate the productivity
effects of connections’ R&D: an augmented production function. In the second part, I
characterize the Instrumental Variable strategy that I adopt to control for correlated
effects. In particular, I detail the construction of the instruments. In the third part
I describe the two models for the estimation spillovers on both the market value and
the innovation rate of firms.

3.1 Production Function

The workhorse empirical model of the empirical analysis is an augmented production
function. Specifically, it is the empirical counterpart of equation (2) adapted to panel
data:

logYit = αi +

Q∑
q=1

βq logXitq + γ logSit + δ
N∑
j=1

g(ij)t logSjt + τt + υit (12)

where Total Factor Productivity Ait is allowed to vary across firms and over time,
with logAit + ωit = αi + τt + υit being decomposed into a firm-invariant effect (αi), a
year effect (τt) and finally a residual error term (υit). Here Sjt denotes the R&D stock
of firm j at time t, and g(ij)t is the connection measure between firms i and j at time
t, with g(ii)t = 0 for all i and for all t. The R&D stock Sit is constructed, following
a customary approach in the literature, as the depreciated sum of past expenditures
on R&D up to year t − 1. To account for the known fact that the innovation and
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productivity effects of R&D materialize with a temporal lag, current expenditures in
R&D are excluded from the calculation of the yearly stock.

Parameter δ represents the overall strength of the R&D spillovers in the network.
It is interpreted as the elasticity of a connection-weighted neighbor’s R&D on one
firm’s productivity. It is useful for different kinds of thought experiments: for ex-
ample, a firm i connected to a neighbor j with connection gij = 0.4 receives a 0.4δ

percentage increase in productivity following a 1% increase in the R&D stock of firm
j. Similarly, a firm with row sum of connections ḡit = 4 receives a 4δ percentage
increase in productivity following a 1% rise in the research effort of all its neighbors.
By contrast, parameter γ measures the elasticity of firm productivity with respect to
changes in private (in-house) R&D stock.

In most specifications, I estimate the model using the same set of controls {Xitq}Qq=1

as in BSV. These include measures of the capital and labor inputs elaborated from
accounting data, as well as synthetic controls for industry-level sales and price indi-
cators. In addition, I include the main spillover variables employed in the study by
BSV. The first one of them corresponds to the classical “Jaffe” measure of spillovers,
which is based on the similarity in the technological classification of any two firms’ set
of patents. This is meant to capture the positive effect of knowledge spillovers. The
second measure accounts for the negative “business stealing” effect of competitors’
R&D in downstream product markets. It weighs R&D on the basis of the overlap
of two firms’ sales across industries.20 In order to mitigate concerns of endogeneity,
in their study BSV substitute several variables in {Xitq}Qq=1 – including conventional
inputs and measures of spillovers – with their first lags. I conform to their choices so
to facilitate the comparison and interpretation of the respective results.

In most regressions I additionally include a measure that accounts for the relative
intensity of R&D performed in the metropolitan areas where a firm’s inventors are
predominantly concentrated. This way, I attempt to control for the possibility that
cross-firm connections as defined in (11) simply capture their spatial proximity as
well as other parallel endogenous factors.21 I call this measure “Geospills;” Appendix

20These are respectively called “Spilltech” and “Spillsic” by BSV. In their analysis, only “Spilltech”
has a significant effect in the production function. The “Spillsic” measure has, though, a significant
effect on other outcome measures in the analysis by BSV. Because of its importance, the construction
of the Jaffe measure (“Spilltech”) is described in greater detail in Appendix C.

21I construct this measure in close analogy with how I construct the measure of connection, by
weighing R&D of other firms with appropriate pair-specific and time-varying metrics. For the sake
of simplicity, I call such metrics “measures of proximity”. They are based on the relative number of
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C provides additional details on its construction. In general, I simultaneously include
different measures of spillovers in the same estimation models. Hence, I am able to
more convincingly restrict the interpretation of the estimates of δ to the sole effect of
the R&D performed by firms that are linked through the coauthor-induced network.

3.2 Instrumental Variables

The estimation of δ in equation (12) suffers from two potential endogeneity problems.
The first one is the possible presence of common confounders that drive both the choice
of R&D and productivity for connected firms. If such confounders are not observed,
the OLS estimate of δ incorporates their effect on the outcome, to the degree that
they are correlated to R&D of connected firms. They correspond to the correlated
effects as per the analysis by Manski (1993) of spillovers in the classroom, and are
the empirical counterpart of the correlated introduced in the analytical framework.
The second problem is endogeneity of connections. I address them both.

Consider the case where the real population regression function reads as

log Yit = αi +

Q∑
q=1

βq logXitq + γ logSit + δ
N∑
j=1

g(ij)t logSjt + τt + ωit + εit (13)

with υit ≡ ωit + εit, E [ωit] = E [υit] = 0 and εit is a pure white nose error term. As
discussed in the analytical framework, if both E [ωitωjt] 6= 0 and E [ωit logSit] 6= 0

hold simultaneously, it follows that:

E [ωit logSjt] 6= 0

in light of the discussion of Corollary 1, the expression above can be either positive
or negative. Weighting by g(ij)t and summing over j results in:

E

[
ωit

N∑
j=1

g(ij)t logSjt

]
6= 0 (14)

an inequality that may go in either direction. In fact, (14) indicates both the sign
and the size of the bias in the OLS estimation of δ.

inventors who, for every pair of firms, are observed to be resident in the same set of metropolitan
areas, that are defined at the CBSA level.

28



The analytical framework suggests a strategy to address the problem of correlated
confounders: to predict the R&D of one firm’s direct connections with the R&D of
other firms that are “sufficiently” distant in the network. According to the theoretical
analysis, this is always possible as long as the spatial cross-correlation of R&D has
“finite memory.” Figure 6 evidences that this is indeed the case and that appropriate
instruments are based on the R&D of firms either located at both distances 2 or 3,
or just the latter. In the example given in Graph 1, the R&D of both firms k and `
could serve as an instrument for the R&D of firm j. Formally:

E
[
ωit logSkt| {logXitq}Qq=1 , logSit

]
= 0 (15)

Cov
[

logSkt logSjt| {logXitq}Qq=1 , logSit

]
6= 0 (16)

where (15) can be thought of as the component of a more general moment condition
and (16) motivates the power of the instrument. Since a firm generally has more than
one connection, and each of them corresponds with more than one indirect linkage,
in theory one can combine the entire resulting set of moments in several ways.22

Here I propose a straightforward way to aggregate the R&D stocks of all indirect
connections of given distance into a single instrument. I start with the simplest case of
“indirect connections” of second degree, which are indexed by k. Define the indicator
h̃i(jk)s = g(jk)sI

[
g(ik)s = 0

]
for s ≤ t: thus h̃i(jk)s selects the “friends of my friends who

are not my friends themselves.” The “indirect spillovers” instrument reads as∑
k 6=i

h(ik)s logSkt =
∑
j 6=i

g(ij)s

∑
k 6=i,j

h̃i(jk)s logSkt

=
∑
k 6=i,j

(∑
j 6=i

(
g(ij)sg(jk)s

)
I
[
g(ik)s = 0

])
logSkt

where the weights h(ik)s on the left hand side are implicitly defined by the expression
on the right hand side. It is a direct consequence of (15) that

E

[(∑
k 6=i

h(ik)s logSkt

)
ωit

∣∣∣∣∣ {logXitq}Qq=1 , logSit

]
= 0

22A possibility would be to aggregate all the appropriate moment conditions such as (15) in a
larger GMM problem, and analyze how the efficient weighting matrix varies as a function of network
topology. This is an intriguing topic for further research.
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holds, and that at the same time the instrument should retain some predictive power
for the endogenous regressor

∑N
j=1 g(ij)t logSjt as long as (16) is true. Furthermore,

Corollary 2 from the analytical framework ensures that the instrument is also uncor-
related with the set of estimated inputs, resulting in consistent estimates of δ.

I now describe how to aggregate the indirect connections located at distance three.
These can be referred with colorful terminology as “indirectly indirect connections:”
they are the nodes in the network, indexed by `, that are three degrees of separation
far, and that lack direct linkages with both direct “friends” and indirect connections
of second degree. In analogy with the distance two case, let q̃i(k`)s = h(k`)sI

[
g(i`)s = 0

]
and aggregate over `:∑

`6=i

q(i`)s logS`t =
∑
k 6=i

h(ik)s

∑
`6=i,j,k

q̃i(k`)s logS`t

=
∑
`6=i,j,k

∑
k 6=i,j

∑
j 6=i

(
g(ij)sg(jk)sg(k`)s

)
I
[
g(ik)s = 0

]
I
[
g(i`)s = 0

]
logS`t

where the weights q(i`)s, implicitly defined by the expression on the right-hand side,
represent the strength of all indirect connection paths between i and `. These weights
are equal to zero if any firm ` has a direct connection with firm i, or with any of the
first-degree direct or second-degree indirect connections of firm i.

While this strategy might address the problem of correlated confounders, another
endogeneity problem could still affect the estimates: connections themselves could be
correlated to firms’ unobserved factors. For example, it is likely that highly prolific,
well connected inventors are more inclined to move towards more productive firms.23

I integrate a proposed solution to the problem in the construction of the instruments
above, by exploiting time variation in the networks. In particular, the two instrumen-
tal variables actually employed in the estimation, for both “indirect” and “indirectly
indirect” connections, are defined for s = t − 1. This amounts to implicitly assume
that

E
[
ωit|

(
g(11)t−1, . . . , g(1N)t−1

)
, . . . ,

(
g(N1)t−1, . . . , g(NN)t−1

)]
= 0

that is, productivity shocks are orthogonal to the first lag of the network topology –
and thus to all possible linear combinations of connection weights. However, unob-
served factors are still allowed to correlate with changes in the network topology at

23In this case it is unclear whether the resulting bias would be positive, as moving inventors link
together both high- and low-productivity firms.
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time t. In the empirical analysis I only show results based on instruments defined at
s = 1, but I have also experimented with further lags of the network topology. They
result in diminished precision, while point estimates are not affected considerably.

Finally, it is important to consider that the cross-correlation across unobserved
shocks invalidates standard asymptotic properties of any GMM/2SLS estimator. As
a theory of heteroscedasticity-autocorrelation consistent (HAC) estimators in the case
of network dependence has not been developed yet, I adopt a transparent clustering
approach that is consistent across both linear and non-linear models.24 Specifically,
I follow Bester, Conley, and Hansen (2011), who argue that even in presence of weak
dependence between groups, a clustering covariance estimator (CCE) of the estimates’
variance would make for valid inferences (provided that some regularity conditions
hold and that small sample corrections are applied).25 This is particularly important
with large networks, because if the structure of cross-node dependence is unknown any
partition of a network into different clusters would result in some form of cross-cluster
dependence. Bester et al. advocate using as few and large clusters as possible.

I divide the network into “communities” or clusters by running the “Louvain algo-
rithm” (Blondel et al., 2008) on the “pooled” network that is obtained by summing the
same edges over the time series. The Louvain algorithm is a popular tool in network
analysis which is used to identify hierarchies of “communities” or clusters. At each
level of the hierarchy, connections are dense within groups and sparse between groups.
The algorithm can be fine-tuned by varying the “resolution parameter” ρ which selects
different levels of the hierarchy.26 In order to strike a balance between the the CCE
approach by Bester et al. and standard practices of clustering standard errors, I set
ρ = 0.6 so to obtain 20 clusters. Because of serial correlation, all observations of the
same firm in the panel enter the same cluster. Appendix E provides further details

24For spatial data, the standard HAC procedure is the one proposed by Conley (1999), originally
conceived for cross-sectional data distributed on a regular lattice defined by coordinates (e.g. a
set of locations on the map). However, networks are inherently multidimensional, and there exist
many competing notions “distance” in networks. Thus, an extension of Conley’s HAC procedure to
networks is not straightforward. In addition, in the context examined in this paper the data are likely
to display both spatial and serial correlation, which would result in very complicated Bartlett-like
HAC estimators. A clustering approach is well suited to simultaneously address both issues.

25In their simulations, Bester, Conley, and Hansen (2011) show that in both cases of time series and
spatial dependence, tests based on Bartlett-like HAC estimates of the variance tend to incorrectly
reject relevant null hypotheses considerably more often than tests based on their CCE approach.
This difference is particularly pronounced in the case of spatial dependence.

26A value of ρ = 1 defines a partition of few large communities; smaller values of ρ break down
these clusters and select groups by moving down the hierarchy.
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and a visualization of cluster assignment. Inferences are not substantially altered by
the definition of clusters or the choice of ρ – which determines their number.

3.3 Additional Outcomes

In empirical studies of R&D spillovers, it is customary to assess the effect of other
firms’ R&D not only on output or productivity, but also on other outcomes and in-
dicators of firm performance and innovation rate. In his seminal study, Jaffe (1986)
also measured the effect of spillovers on firms’ market value and patent output. BSV
follow in his legacy. Under their shared theoretical framework, especially under the
maintained hypothesis of R&D as a strategic complement, spillovers stimulate R&D
efforts and increase the number of inventions. The effects on productivity can be in-
direct (thanks to new or better patents/products) or direct (because of the immediate
applicability of spilled knowledge in the production process). This ultimately results
in better firm performance and increased market value.

I follow suit and measure the effect of the R&D performed by “connections” on
outcomes other than output or productivity, largely following the empirical specifica-
tions by BSV. I begin from a market value specification: I regress the Tobin’s q on a
model of this sort:

log

(
Vit
Wit

)
= α̃i +

Q̃∑
q=1

β̃qCitq + δ̃
N∑
j=1

g(ij)t logSjt + τ̃t + υ̃it (17)

where Vit is the market value of a firm measured at time t and Wit is the replacement
value of its assets. Notice here that the set of controls is different than in model (12).
In particular, {Citq}Q̃q=1 includes the Jaffe measure of spillovers as well as a polynomial
of sixth degree of the ratio Sit/Kit, to control for differences in R&D intensity.27

The estimation of spillovers effects on the innovation rate is based on a count
model for citation-weighted patents Pit:

Pit = exp

ᾰs +

Q̆∑
q=1

β̆qRitq + γ̆ logSit + δ̆

N∑
j=1

g(ij)t logSjt + τ̆t + ῠit

 (18)

27A polynomial of Sit/Kit is derived from a Taylor series approximation of the right-hand side
term log (1 + θSit/Kit), which is customary in the specification of Tobin’s q type of models. BSV
show that the empirical results are similar whether one uses a six-degree polynomial or non-linear
estimation methods instead.
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which, in order to account for values of Pit = 0, is typically estimated via maximum
likelihood28 (Hausman et al., 1984; Blundell et al., 1995). The set of controls {Ritq}Q̆q=1

includes a term for the lag the dependent variable (logPi(t−1)) as well as the Jaffe
measure. In order to control for endogeneity, I adapt my IV strategy by employing
a control function approach. Specifically, I take the residuals from first stage linear
regressions of the endogenous outcome on the excluded instruments and the other
controls, and I include them in the estimation of the non-linear model.

4 Empirical Results

In this section I present the empirical results of the paper; it is divided in five parts. In
the first part I present the baseline (OLS) results for the production function model.
In the second part, I address the endogeneity concerns of correlated confounders by
applying the proposed IV strategy. In the third part I present the results for the firm
value equation; in the fourth those for the patent count model. Finally, in the fifth
and last part I offer some additional considerations, in particular about the economic
relevance of the estimated effects.

4.1 Production Function, OLS

Table 2 displays the results from the estimation of equation (12). Across all estimates
I take both firm and year fixed effects; and I cluster the standard errors at by the
communities defined with the Louvain algorithm with resolution ρ = 0.6. Along with
the estimate of γ and δ I report those for Capital and Labor. One can interpret
the estimate of δ = 0.017 from column (1) in light of different thought experiments.
For example, the quantity δ̂g(ij)t represents the elasticity of output with respect to a
1% increase in the R&D stock of another firm with connection g(ij)t. In the case of
an average connection g(ij)t = 0.083, the implied elasticity is 0.0014. Hypothesizing
instead a 1% increase in the R&D stock of all of one firm’s neighbors, the implied effect
on firm i’s output is a δ̂ḡit% rise. For an average row-sum connection of ḡ(ij)t = 0.44,
this corresponds to a 0.0073% increase. The elasticity of privately undertaken R&D,
γ̂ = 0.044 appears in comparison to be one order of magnitude larger.

28To guarantee convergence of the estimation algorithm, it is convenient not to include firm-specific
fixed effects. I introduce four-digits industry fixed effects instead, that are indexed by s.
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Table 2: Production Function, Ordinary Least Squares, 1981-2001

(1) (2) (3) (4) (5)
Private R&D (γ) 0.0322 0.0282 0.0396 0.0384 0.0389

(0.0084) (0.0080) (0.0089) (0.0106) (0.0115)

Spillovers (δ) 0.0165 0.0140 0.0120 0.0133 0.0111
(0.0036) (0.0029) (0.0030) (0.0034) (0.0032)

Geospills 0.0003 0.0003 0.0003 0.0003
(0.0002) (0.0001) (0.0001) (0.0001)

Capital 0.1640 0.1625 0.1741 0.1712 0.1676
(0.0127) (0.0133) (0.0214) (0.0229) (0.0226)

Labor 0.6414 0.6465 0.6356 0.6352 0.6323
(0.0179) (0.0183) (0.0282) (0.0307) (0.0295)

Jaffe Tech. Proximity 0.2324 0.0837 0.1068 0.0693
(0.0843) (0.0770) (0.0902) (0.1015)

Fixed Effects YES YES YES YES YES
Only Network NO NO YES YES YES
No. of Communities
(Community × Year Effects) 0 0 0 10 20
No. of Observations 12009 12009 7336 7336 7336
Notes: The table reports OLS estimates of model (12). Columns 1 and 2 are estimated on the
entire original sample of 707 firms in the time interval 1981-2001. Columns 3, 4 and 5 restrict the
analysis to only those firms with a nonzero connection (g(ij)t = 0) in any year t; firms meeting
this requirement are included also in years when connections are absent. All the estimates include
firm and year fixed effects. Columns 4 and 5 include additional community-by-year fixed effects,
where communities are obtained via the Louvain algorithm with ρ = 0.8 (10 communities) in
column 4 and ρ = 0.6 (20 communities) in column 5. Standard errors are clustered by the 20
“communities” obtained via the Louvain algorithm with ρ = 0.6 (small sample corrections are
applied). All the observations of an individual firm in multiple years enter the same cluster.

Relative to column (1), in (2) I show the effect of controlling for the Jaffe measure
of knowledge spillovers based on technological proximity, as well as for the geographic
R&D intensity measure (“Geospills”). Their inclusion does not dramatically impact
the point estimate δ̂, which falls to 0.014 while remaining statistically significant. The
geographic control, on the other hand, seems to have very little economic significance.
In column (3) I restrict the sample only to those firms that enter the network at any
point in time, even absent any connection in a specific year. This is an attempt to
control for the possibility that the estimate δ̂ is driven by persistent productivity
differences between firms that belong to the network and those that do not. This ex-
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ercise has an interesting implication: while the estimate δ̂ is again not largely affected
(if decreases slightly to 0.012), the coefficient for the Jaffe measure of spillovers falls
sharply and becomes not statistically significant. Since firms that do not belong to
the network are the smallest and least R&D-intensive ones, this result implies that
the positive correlation between real sales and the Jaffe measure is largely driven by
small firms patenting in the most R&D-intensive technological fields.29

In columns (4) and (5) I also include an additional set of dummy variables, in a
first attempt to control for the fact that connected firms may be subjected to similar
shocks. Specifically, I absorb community-by-year effects, where communities are con-
structed by applying the Louvain algorithm with varying resolution parameters. In
particular, in column (4) I employ a network partition of 10 communities (ρ = 0.8);
while in column (5) the additional dummy variables are based on the same 20 com-
munities also used for clustering standard errors (ρ = 0.6). Increasing the number
of clusters does not result in a dramatic variation of the point estimate δ̂ (in column
(4), it actually increases). This suggests that the correlation between the connections-
induced measure of spillovers and one firm’s output is in fact driven by the variation
in the R&D stock of that firm’s linkages.

4.2 Production Function, IV

I now illustrate the empirical results from the application of the IV strategy that
addresses the problem of correlated confounders. I instrument the R&D stock of one
firm’s direct connections by aggregating the R&D of its indirect “friends” of second
and third degree. In light of the analytical framework and the spatial autocorrelation
of R&D in the network evidenced by Figure 6, both instruments could in principle
be valid. However, the further instrument – the one based on third degree indirect
connections – is the one more that is likely to be uncorrelated with both unobserved
factors and the other input variables of firm i.

In Table 3 I report the results of various first stage regressions associated with
model (12). All estimates are restricted to the subsample formed by those firms that

29This fact may also be interpreted as a censoring problem. COMPUSTAT only reports data
for public firms. Small firms that go public are usually successful firms, and those that “make it
into the news” are typically from fast developing high-tech sectors (and being in the news is itself
endogenous). If a correlation exists between the Jaffe measure and the probability that small firms
go public, this would be reflected in a positive bias in the estimate of the Jaffe measure when small
public firms are included in the estimation sample. This issue certainly deserves further attention.
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Table 3: Production Function, First Stage Estimates, 1981-2001

(1) (2) (3) (4) (5)
2-degree Instrument 1.0645 1.1283

(0.0354) (0.0457)

3-degree Instrument -0.5964 2.2044 2.0832 2.0310
(0.1709) (0.1456) (0.1609) (0.1649)

Private R&D 0.0797 0.0952 0.3789 0.3096 0.2794
(0.0488) (0.0476) (0.1293) (0.0989) (0.1053)

Capital 0.0974 0.1092 0.5275 0.5187 0.4374
(0.1098) (0.1023) (0.3038) (0.2977) (0.3125)

Labor -0.1342 -0.1096 -0.7098 -0.6416 -0.6279
(0.1309) (0.1236) (0.2644) (0.2656) (0.2854)

Jaffe Tech. Proximity 0.7567 0.7424 3.0520 3.1767 2.8117
(0.3489) (0.3300) (1.3446) (1.3204) (1.2022)

Fixed Effects YES YES YES YES YES
Only Network YES YES YES YES YES
No. of Communities
(Community × Year Effects) 0 0 0 10 20
F -statistic 1044 683 125 76 59
No. of Observations 7336 7336 7336 7336 7336
Notes: The table reports OLS regressions of the spillover variable

∑
j 6=i g(ij)t logSjt on appro-

priate instruments and all the controls included in the regressions from Table 2 (first stage re-
gressions). The sample is restricted to firms with a nonzero connection (g(ij)t = 0) in any year t.
Columns 1 and 2 include the “second degree” instrument on the right hand side, while columns
2 through 5 include the “third degree” instrument. All the estimates include firm and year fixed
effects. Columns 4 and 5 include additional community-by-year fixed effects, where communi-
ties are obtained via the Louvain algorithm with ρ = 0.8 (10 communities) in column 4 and
ρ = 0.6 (20 communities) in column 5. Standard errors are clustered by the 20 “communities”
obtained via the Louvain algorithm with ρ = 0.6 (small sample corrections are applied). All the
observations of an individual firm in multiple years enter the same cluster.

ever enter the network. I regress the connections-induced spillovers variable on the
aggregated log R&D stock of indirect connections of either second degree (column 1),
second and third degree (column 2), third degree only (column 3). The estimates from
columns (4) and (5) are analogous to those in column, but they additionally include
two different sets of community-by-year fixed effects (respectively based on 10 and 20
communities, in analogy with Table 2). I include all the controls from equation (12)
in all specifications. As expected, both instruments are strongly, positively correlated
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with the endogenous spillover variable.30 The F -statistic from all first stage estimates
is reassuringly strong: the lowest measured F -statistic – the one from column (5) –
equals 59, and it is associated to a t-Statistic of the third-degree instrument which
is larger than 12. Conventional inputs seem to have little residual predictive power
relative to the spillover variable, unlike private R&D and the Jaffe measure.

Table 4 shows the results from the 2SLS estimates which correspond, column-
by-column, to the first stage regressions reported in Table 3. I focus the discussion
on the estimate of parameter δ, since all other variables included in the model are
estimated similarly as in the OLS baseline. By instrumenting the spillover variable
with the R&D of indirect friends of second degree (column 1), δ is estimated around
0.0116, a figure substantially identical to the one obtained from OLS estimates. When
including both instruments (column 2) the result is similar: δ̂ = 0.0114.31 By only
instrumenting for the third-degree indirect connections instead (column 3), the result
is different: the point estimate of δ is substantially higher, hovering around 0.0155.
Interestingly, the inclusion of community-by-year effects results in even larger values:
δ̂ = 0.0192 with 10 communities (column 4) and δ̂ = 0.0172 with 20 communities
(column 5). All estimates of δ are statistically significant at the 5% level.32

These results are telling in two respects. First, they evidence a negative bias in
simple OLS estimates. In light of the discussion of Corollary 1, this can be due to the
circumstance whereby the prevalent factors driving the cross-correlation of R&D in
the network are related to R&D costs. This fact would generate a mechanical nega-
tive correlation between one firm’s productivity shock ωit and the spillovers variable.
Second, that a change in the point estimate of δ in only apparent when instrumenting
spillovers only with third-degree indirect connections suggests that the second-degree
instrument instrument might be itself correlated with ωit. Given Proposition 2, this
is consistent with the hypothesis that the spatial correlation of R&D is driven by ex-
ogenous factors: (C,L) = (2, 0) – as opposed to the endogenous reflection of shocks.

30When the two instruments are included together, the coefficient for the third-degree instrument
is negative and statistically different from zero. Nevertheless, in magnitude it is remarkably closer
to zero, as it should be expected from conditioning on the R&D of “second-degree” firms.

31The Hansen J overidentification test has a p-value of about 0.45, indicating that two instruments
effectively capture different sources of variation. This is consistent with the hypotheses on the
network structure of common dependence that have been outlined in Section 1.

32The three estimates of δ in columns (1), (2) and (4) are all significant at the 1% level. The p-value
for the estimate in column 3 is 2.2%, the one for the estimate in column 5 is 1.16%. As expected, the
standard errors are substantially larger – about double in magnitude – when instrumenting spillovers
only with the R&D of third-degree indirect connections.
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Table 4: Production Function, Two-Stages Least Squares, 1981-2001

(1) (2) (3) (4) (5)
Private R&D (γ) 0.0398 0.0399 0.0377 0.0358 0.0364

(0.0087) (0.0087) (0.0098) (0.0111) (0.0122)

Spillovers (δ) 0.0116 0.0114 0.0155 0.0192 0.0172
(0.0033) (0.0032) (0.0062) (0.0065) (0.0065)

Geospills 0.0003 0.0003 0.0002 0.0002 0.0002
(0.0002) (0.0001) (0.0002) (0.0002) (0.0002)

Capital 0.1744 0.1746 0.1716 0.1672 0.1641
(0.0214) (0.0214) (0.0210) (0.0228) (0.0222)

Labor 0.6353 0.6351 0.6382 0.6391 0.6362
(0.0282) (0.0283) (0.0281) (0.0307) (0.0293)

Jaffe Tech. Proximity 0.0852 0.0859 0.0708 0.0845 0.0482
(0.0800) (0.0796) (0.0888) (0.1028) (0.1142)

2nd degree IV YES YES NO NO NO
3rd degree IV NO YES YES YES YES
Hansen J -statistic 0.556
(p-value) (0.456)
Fixed Effects YES YES YES YES YES
Only Network YES YES YES YES YES
No. of Communities
(Community × Year Effects) 0 0 0 10 20
No. of Observations 7336 7336 7336 7336 7336
Notes: The table reports 2SLS estimates of model (12). The sample is restricted to firms with
a nonzero connection (g(ij)t = 0) in any year t. Models in columns 1 and 2 employ the second
degree instrument; models in columns 2 through 5 employ the third degree one. All the estimates
include firm and year fixed effects. Columns 4 and 5 include additional community-by-year fixed
effects, where communities are obtained via the Louvain algorithm with ρ = 0.8 (10 communities)
in column 4 and ρ = 0.6 (20 communities) in column 5. Standard errors are clustered by the
20 “communities” obtained via the Louvain algorithm with ρ = 0.6 (small sample corrections are
applied). All the observations of an individual firm in multiple years enter the same cluster.

4.3 Market Value

The results for the market value model (17) are displayed in table 5. In column
(1) and (2) I estimate the model via OLS, respectively on the whole sample and
on the network subsample. In columns (3), (4) and (5) I show results from 2SLS
estimates performed on the subsample, employing the 2nd degree instrument, both
instruments and just the 3rd degree instrument, respectively. The estimates for the
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spillover parameter lie in an interval around 0.03. Unlike the case of the production
function, whether OLS estimates are biased is less clear for the market value. In fact,
2SLS estimates that include the second degree instrument point to a higher value of
δ̃, while using only the third degree instrument yields an estimate that is closer to
the OLS baseline and not statistically significant (with p-value 11.5%).

Table 5: Market Value, 1981-2001

(1) (2) (3) (4) (5)
R&D Stock / Capital (t− 1) 0.3681 0.4407 0.4347 0.4344 0.4400

(0.2746) (0.3944) (0.3933) (0.3935) (0.3896)

Spillovers (δ̃) 0.0349 0.0268 0.0368 0.0372 0.0280
(0.0085) (0.0072) (0.0097) (0.0097) (0.0170)

Geospills -0.0001 0.0000 -0.0001 -0.0001 0.0000
(0.0005) (0.0004) (0.0005) (0.0005) (0.0005)

Jaffe Tech. Proximity 0.0720 -0.1638 -0.2065 -0.2083 -0.1687
(0.1541) (0.2373) (0.2245) (0.2244) (0.2353)

BSV Business Stealing -0.0218 0.1347 0.1324 0.1323 0.1344
(0.0641) (0.1054) (0.1059) (0.1059) (0.1050)

Industry Level Sales 0.1887 0.1886 0.1888 0.1888 0.1886
(0.0467) (0.0606) (0.0589) (0.0588) (0.0604)

Instrument(s) OLS OLS 2nd deg. Both 3rd deg.
Fixed Effects YES YES YES YES YES
Only Network NO YES YES YES YES
No. of Observations 11816 7226 7226 7226 7226
Notes: The table reports various estimates of model (17). Except for the the results in column
1, the sample is restricted to to firms with a nonzero connection (g(ij)t = 0) in any year t for all
other estimates. Columns 1 and 2 report OLS estimates, while columns 3, 4 and 5 report 2SLS
estimates using various combinations of exogenous instruments: the second degree instrument
(3), both the second and the third degree instruments (4), and only the third degree instrument
(5). All the estimates include firm and year fixed effects. Standard errors are clustered by the
20 “communities” obtained via the Louvain algorithm with ρ = 0.6 (small sample corrections are
applied). All the observations of an individual firm in multiple years enter the same cluster.

4.4 Patent Count

The results for the patent count model (18) are reported in table 6, which is organized
along the lines of table 5. Specifically, column (1) reports the results from the entire
sample; column (2) those restricted to the network subsample, while the results from

39



the control function approach, that are based on the usual sequence of instrument
combinations, are given in columns (3), (4) and (5). The coefficient for the spillover-
connections parameter is estimated in an interval around 0.03 in columns (1) through
(4). The estimates from column (5) however, obtained via a control function approach
that only exploits the third-degree instrument, register a much larger point estimate
for δ̆, this time equal to 0.0865. This is again interpreted as the elasticity of patent
output relative to an increase of all connections’ R&D, which is approximately equal
to 0.038 for a firm with average row-sum of connections. It is worth noticing how the
Jaffe measure loses again all its economic and statistical significance once the analysis
is restricted to only firms in the network.

Table 6: Patent Count, 1981-2001

(1) (2) (3) (4) (5)
Private R&D (γ̆) 0.0831 0.0793 0.0774 0.0803 0.0563

(0.0313) (0.0350) (0.0357) (0.0355) (0.0385)

Spillovers (δ̆) 0.0295 0.0267 0.0372 0.0310 0.0865
(0.0088) (0.0064) (0.0087) (0.0082) (0.0163)

Geospills 0.0008 0.0012 0.0011 0.0012 -0.0001
(0.0004) (0.0004) (0.0004) (0.0004) (0.0006)

Patents (t− 1) 0.3956 0.4164 0.4150 0.4172 0.4108
(0.0197) (0.0178) (0.0167) (0.0169) (0.0169)

Jaffe Tech. Proximity 0.3044 0.0309 0.0281 0.0282 0.0260
(0.0820) (0.0672) (0.0660) (0.0661) (0.0663)

Industry Dummies YES YES YES YES YES
Only Network NO YES YES YES YES
Control Function NO NO YES YES YES

2nd deg. Both 3rd deg.
No. of Observations 11444 6704 6704 6704 6704
Notes: The table reports maximum likelihood estimates of model (18). Except for the
results in column 1, the sample is restricted to firms with a nonzero connection (g(ij)t =
0) in any year t for all other estimates. Columns 3, 4 and 5 include additional regressors
corresponding to the predicted residuals of “control function” regressions. Specifically,∑

j 6=i g(ij)t logSjt is regressed on both the other controls Riq and: the second degree
instrument (column 3), both the second and the third degree instruments (column 4),
and only the third degree instrument (column 5). All the estimates include 4-digits
industry and year fixed effects. Standard errors are clustered by the 20 “communities”
obtained via the Louvain algorithm with ρ = 0.6 (small sample corrections are applied).
All the observations of an individual firm in multiple years enter the same cluster.

40



The economic interpretation of the results from column (5) is analogous to the
case of the production function estimates. The sizable increase in the point estimate
of δ̆ is due to the correction of the simultaneity problem induced by correlated fac-
tors driving both the spatial correlation of R&D and firms’ propensity to patent. If
these confounders are predominantly cost factors, in presence of complementarities
they would negatively correlate with the effort made by individual firms towards the
realization of new patents. An intriguing, alternative hypothesis is that simultaneous
increases in R&D spending correlate to worse innovation on the quality margin (recall
that the patent outcome measure weighs patents by citations). A typical narrative
about some industries, like the pharmaceutical sector, associates lower quality patents
to an increase in the total number of USPTO registered inventions.

4.5 Discussion

A way to quantify the economic relevance of the estimated spillover effects is to calcu-
late the average Marginal Private Returns (MPR) and Marginal Social Returns (MSR)
of R&D (see e.g. BSV). I define the MPR as the average increase in output relative
to an increase in the R&D stock of the individual firm (MPR = 1

N

∑N
i=1 dYi/dSi),

while the MSR is the average increase in output relative to the average increase in
the R&D stock of all the other firms (MPR = 1

N

∑N
i=1 dYi/dS). These are easily cal-

culated under the hypothesis of an homogeneous percentage increase in R&D by all
firms (dSi/Si = dS/S for all i). In this case, the average response of output dY /dS
can be derived from (12) and decomposed as follows.

1

N

N∑
i=1

dYi
dS

= γ̂
1

N

N∑
i=1

Yi
Si︸ ︷︷ ︸

=MPR

+ δ̂
1

N

N∑
i=1

N∑
j 6=i

gij
Yi
Si︸ ︷︷ ︸

=MSR

(19)

To evaluate the MPR and the MSR, I use the estimates for γ̂ and δ̂ from column
(5) of Table 4, as well as the values 1

N

∑N
i=1

Yi
Si

= 11.36 and 1
N

∑N
i=1

∑N
j 6=i gij

Yi
Si

= 5.66

calculated on the pooled panel. As a result, the MPR is approximately equal to
41.3% (= 11.36× 3.64%) and the MSR to about 9.7% (= 5.66× 1.72%):33 the latter

33Notice that these are the calculated returns from the R&D stock. To estimate the returns from
annual R&D expenditures, one should divide these figures by the steady-state flow/stock ratio. Using
the typical assumption of a 0.20 steady-state ratio, one gets an approximate 8.26% private return
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is approximately equal to 24% of the former. While not as large as the evaluations
from other studies, these are realistic and economically significant values. Notice that
these calculations do not take into account the “amplification effect” due to strategic
response and complementarities, something that should be taken into account when
evaluating, say, the effect of an R&D-stimulating policy.

The empirical strategy adopted in this paper seeks to solved the problem of com-
mon confounders. There are, however, some additional empirical concerns that re-
main only partially addressed. The first one is ultimately an issue of measurement
error. Ignore for the moment the problem of measuring the innovation effort and the
knowledge stock of connected firms with cumulated R&D expenditures, as well as the
additional difficulty that the connection metrics may not fully capture the degree of
interactions between R&D teams. Even in absence of these issues, there is a problem
of network sampling that ultimately depends on the inability to observe nodes and
links, even if their intensity were perfectly measurable (Chandrasekhar and Lewis,
2011). In the context of this paper, given the type of sample selection implied by
COMPUSTAT data (small and private firms are excluded), this would result in an
underestimation of the actual effect of connections. A proper assessment of this prob-
lem requires the application of proper sampling strategies to high quality firm-level
data that can be matched to patents: a non-trivial set of requirements.

The second problem is the endogeneity of connections. Specifically, factors that
affect firm-level outcomes might be correlated with the network topology or with its
changes over time. For instance – as I have briefly discussed in Section 3 – inventor
flows between firms might be correlated with the unobserved productivity shocks,
causing a bias of undetermined sign. A similar issue may also affect the estimates of
the market value and of the patent outcome equation. To deal with this problem, I
have already taken two measures. First, I have narrowed down the analysis to only
those firms that enter the network at any point in time. Second, I have constructed
both instrumental variables by taking first or further lags of the network structure, by
exploiting its dynamic properties. Both approaches do not greatly impact the point
estimates associated with the spillovers variable. However, these procedures might
not account for more complex patterns of serial and spatial dependence between the
network topology and the unobserved errors. The analysis of this problem is tightly
connected to theories of network formation, and it deserves a separate study.

and an approximate 1.94% social return from yearly R&D expenditures.
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5 Conclusion

In this paper I propose a new method of evaluating R&D spillovers. By aggregating
information on patent coauthorship relationships between individuals that work for
different organizations, I construct a network of firms that are reciprocally connected
through their R&D teams. I evaluate the dependence of firm productivity, market
value and innovation rate from the R&D performed by firms connected in the network,
weighted by the intensity of mutual links. Concerned by the possibility of common
confounders that simultaneously drive R&D choices and firm-level outcomes, I employ
an identification strategy based on the network topology. In particular, I instrument
the R&D choices of one firm’s direct connections with those of sufficiently distant
links. Under conditions specified by a formal model firms’ interaction, appropriately
constructed instrumental variables predict the intensity of spillovers received by one
firm, but are otherwise unrelated to its performance and innovation outcomes.

Estimates based on this definition of connections register sizeable spillovers of
connected firms’ R&D on the productivity, market value, and patent output measures.
These results, unlike those based on more traditional metrics of R&D spillovers, are
robust to different specifications, and to the restriction of the sample to the largest and
most R&D intensive firms. In striking conformity with the prediction of the analytical
model, the application of the identification strategy that I propose shows that when
instrumenting peers’ R&D with the R&D of sufficiently distant firms, point estimates
of spillover effects on both productivity and patent output increase substantially. This
suggests that common factors driving both R&D and firm outcomes might do so in
opposite directions. In particular, this finding may reflect the stylized fact that over
the industry life cycle faster innovation is typically associated with higher R&D costs.
I use the estimates of spillovers obtained from the proposed methodology in order to
evaluate the relative importance of the marginal social returns to R&D relative to
the private returns, finding that the former are about 24% of the latter.
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Appendix A Analytical Model: Proofs
Lemma 1. Suppose that given a mapping gij : I × I → [0, 1] with dim |I| = N ,
i, j = 1, . . . , N , and for 0 < δ < 1, it holds

0 ≤ δ

N∑
j=1

gij < 1

for every i = 1, . . . , N . Then, there always exists a vector pi = (pi1, . . . , piN) ≥ ι for
every i = 1, . . . , N such that

N∑
j=1

1

pij
= 1

and
gijpijδ ≤ 1

for every j = 1, . . . , N and every i = 1, . . . , N .

Proof. The proof is constructive. Consider first the case when 0 < gijδ < 1 for every
j = 1, . . . , N and every i = 1, . . . , N . For any i-th element of I construct the vector
p′i = (p′i1, . . . , p

′
iN) > ι whose elements are defined as

p′ij = (gijδ)
−1

for every j = 1, . . . , N . Inverting and summing over j one obtains

0 <
N∑
j=1

1

p′ij
= δ

N∑
j=1

gij < 1

hence, a vector pi with the desired properties can be obtained by appropriately de-
creasing any combination of the elements of p′i. Now consider the circumstance in
which for some i-th element of I, some values of the g mapping are equal to 0. In this
case, modify the rule defining p′i as

p′ij =

{
(gijδ)

−1 if 0 < gijδ < 1

Pij if gijδ = 0

where values Pij > 1 can always be chosen to be sufficiently large for

N∑
j=1

1

p′ij
≤ 1

to hold. Then adjust the values of p′i in order to obtain vector pi, as above.
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Proof of Proposition 1. The problem of the individual firm can be expressed as

max
(Si,Xi1,...,XiQ)

A
(

Q∏
q=1

X
βq
iq

)
Sγi E

( N∏
j=1

S
gij
j

)δ
∣∣∣∣∣∣Ωi

 eωi −
Q∑
q=1

ξqXiq − e$iSi


where the term in square brackets represents the uncertainty about the R&D invest-
ment choices of other firms. Firms respond in equilibrium to network externalities;
as these depend on correlated shocks all firms make use of their available information
in order to predict them accurately. Consider that the Q+ 1 First Order Conditions
relative to Si and (Xi1, . . . , XiQ) are sufficient to characterize a maximum, since the
problem is concave in all its choice variables. The FOCs are, respectively:

∂E [πi (·)|Ωi]

∂Si
= γAi

(
Q∏
q=1

X
βq
iq

)
Sγ−1
i E

( N∏
j=1

S
gij
j

)δ
∣∣∣∣∣∣Ωi

 eωi − e$i = 0 (A.1)

∂E [πi (·)|Ωi]

∂Xic

= βcAi

(
Q∏
q=1

X
βq
iq

)
X−1
ic S

γ
i E

( N∏
j=1

S
gij
j

)δ
∣∣∣∣∣∣Ωi

 eωi − ξc = 0 (A.2)

with (A.2) taken for c = 1, . . . , Q. Combining (A.1) with each of the Q conditions
expressed in (A.2), one gets

Xiq =
βq
γξq

e$iSi (A.3)

for q = 1, . . . , Q. These relationships state that the vector of equilibrium input choices
is uniquely determined for every firm given their optimal R&D decisions and $i, thus
motivating (5). Intuitively, R&D is a sufficient statistic of equilibrium externalities
(actually each of the Q+1 choice variables can be considered as such, but singling out
Si is more convenient). Therefore, in order to demonstrate existence and uniqueness
of the Bayes-Nash equilibrium under the conditions stated in the text, it is sufficient
to show the existence of a fixed point of the R&D equilibrium choices Si.

To this end, substitute the Q relationships in (A.3) into (A.1), obtaining:

Si =

E

( N∏
j=1

S
gij
j

)δ
∣∣∣∣∣∣Ωi

 eµ+ωi−(1−
∑Q

q=1 βq)$i

ϑ

(A.4)

where

µ ≡ logA+ log γ +

Q∑
q=1

βq (log βq − log ξq − log γ)

and ϑ ≡
(

1− γ −
∑Q

q=1 βq

)−1

> 1. Notice that (A.4) is a mapping from the space
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Ω of all information sets available to players onto the set of positive real numbers,
which I define as S∗i : Ω→ R++. Clearly, a fixed point of the vector-valued function
S∗ = (S∗1 , . . . , S

∗
N) is a Bayes-Nash equilibrium of the game. Notice that there is

also a one-to-one relationship between S∗ = (S∗1 , . . . , S
∗
N) and the associated function

log S∗ = (logS∗1 , . . . , logS∗N). It turns out that it is more convenient to show existence
and uniqueness of the equilibrium in its logarithmic form.

Denote the space spanned by log S∗ = (logS∗1 , . . . , logS∗N) as L, and endow it of
the max-norm ‖log S∗‖ = maxi‖logS∗i ‖∞. Define the operator T : L→ L as:

Ti (logS∗1 , . . . , logS∗N) = ϑ

µ+ logE

( N∏
j=1

S
∗gij
j

)δ
∣∣∣∣∣∣Ωi

+ ωi −

(
1−

K∑
k=1

βk

)
$i


for i = 1, . . . , N ; this is well-defined as there is a one-to-one relationship between S∗i
and its logarithm. The operator is based on the “manipulated” First Order Conditions
of the restricted game (A.4), hence it is consistent with expected utility maximization.
Now consider any vector pi satisfying the conditions expressed in Lemma 1:

logE

( N∏
j=1

S
∗gij
j

)δ
∣∣∣∣∣∣Ωi

 ≤ log
N∏
j=1

E
[∣∣∣S∗(gijδ)j

∣∣∣pij ∣∣∣Ωi

] 1
pij

=
N∑
j=1

1

pij
logE

[
S
∗(gijpijδ)
j

∣∣∣Ωi

]
≤

N∑
j=1

1

pij
logE

[
S∗j
∣∣Ωi

]gijpijδ
= δ

N∑
j=1

gij logE
[
S∗j
∣∣Ωi

]
where the first line is an application of Hölder’s inequality, the second exploits the fact
that function S∗j only takes positive values, and finally the third one is an application
of Jensen’s inequality. It is easy to show that the operator defined as

D (S∗i ) = δ
N∑
j=1

gij logE
[
S∗j
∣∣Ωi

]
− logE

( N∏
j=1

S
∗gij
j

)δ
∣∣∣∣∣∣Ωi

 ≥ 0

is monotone, hence for any two (log S∗, log Z∗) ∈ L2 it holds that∣∣∣∣∣∣logE

( N∏
j=1

S
∗gij
j

)δ
∣∣∣∣∣∣Ωi

− logE

( N∏
j=1

Z
∗gij
j

)δ
∣∣∣∣∣∣Ωi

∣∣∣∣∣∣ ≤
∣∣∣∣∣δ

N∑
j=1

gij log
E
[
S∗j
∣∣Ωi

]
E
[
Z∗j
∣∣Ωi

]∣∣∣∣∣
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implying that

‖T (log S∗ ), T ( log Z∗)‖ = max
i
|Ti (log S∗ )−Ti( log Z∗)|

≤ max
i

∣∣∣∣∣ϑδ
N∑
j=1

gij log
E
[
S∗j
∣∣Ωi

]
E
[
Z∗j
∣∣Ωi

]∣∣∣∣∣
≤ ϑδmax

i

(
N∑
j=1

gij

)
max
i
|logS∗i − logZ∗i |

=

∥∥∥∥∥ϑδmax
i

(
N∑
j=1

gij

)∥∥∥∥∥ ‖logS∗i − logZ∗i ‖

hence, T is a contraction with Lipschitz constant

ϑδmax
i

(
N∑
j=1

gij

)
=

δ

1− γ −
∑Q

q=1 βq
max
i

(
N∑
j=1

gij

)
< 1

which is smaller than 1 under the conditions stated in the text. In such a circumstance,
by the Contraction Mapping Theorem both log S∗ and S∗ have a fixed point, implying
that the game has a unique Bayes-Nash equilibrium.

It still needs to be shown that the equilibrium R&D S∗i can be expressed as in (4).
To this end, rewrite the latter equation as logS∗i = µϑbi + g∗i (Ωi,G) for some generic
bi > 0, and substitute it into (A.4) for all j 6= i, thus obtaining:

S∗i =

([
N∏
j=1

exp (µϑδgijbj)

]
E

[(
N∏
j=1

exp
(
gijδ · g∗j (Ωi,G)

))∣∣∣∣∣Ωi

]
exp (µ+ ω̃i)

)ϑ

taking logarithms and rearranging terms this becomes

logS∗i = µϑ

(
1 + δϑ

N∑
j=1

gijbj

)
+ g∗i (Ωi,G) (A.5)

it easy to see that this expression conforms to the definition of the contraction operator
T , and that g∗i (Ωi,G) has the form given in the text (to derive its bound, it is sufficient
to apply Lemma 1 and Hölder’s inequality). For (A.5) to be consistent also with (4),
it must be shown that

1 + θ
N∑
j=1

gijbj = bi = bi (G)

for every firm i = 1, . . . , N (recall that θ ≡ δϑ). Rewrite the first equality above in
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matrix form:
ι+ θGb = b

where G is the adjacency matrix with gij entries and b = (b1, . . . , bN)T. Since matrix
(I− θG) is invertible almost surely, a solution for b exists almost always and reads
as:

b = (I− θG)−1 ι

where:

(I− θG)−1 =
∞∑
`=1

θ`G`

notice that the series converges for θ < 1, as stated in the text. The solution is exactly
the vector of Bonacich-Katz centrality measures with attenuation parameter θ.

Proof of Corollary 1. Corollary 1 admits the possibility that the set of inequalities
(6) might hold for some pair of connected firms i and j under some specific restrictions
of the model; it does not state that these inequalities must hold for all pairs of firms
under all circumstances. Therefore, in order to “prove” this result it is sufficient to
show that (6) hold in a particular example. To this end, consider the case where F (·)
is a multivariate normal distribution such that

Corr (ωi, ωj) = Corr ($i, $j) = gij ∈ [0, 1)

for all pairs of firms (i, j), i 6= j, i, j = 1, . . . , N . Furthermore, suppose that firms only
observe their private shocks: Ωi = {ωi, $i} for i = 1, . . . , N . In this specific case it
particularly easy to see – although the result is more general – that equilibrium R&D
is a linear function of private shocks: g∗i (Ωi,G) = f ∗i + g∗i (ωi − λ$i) for f ∗i , g∗i > 0
and λ ≡ 1 −

∑Q
q=1 βq ∈ (0, 1). Now, denote V` ≡ Var (ω`) and ψ` ≡ Cov (ω`, $`) for

` = i, j, and assume further that

Var ($i) = ψ2
i Vi

Var ($j) = ψ2
jVj

Corr (ωi, $j) = gij

Corr (ωj, $i) = gij

where

Var


ωi
ωj
$i

$j

 =


Vi · · · · · · · · ·

gij
√
ViVj Vj · · · · · ·
ψi gijψi

√
ViVj ψ2

i Vi · · ·
gijψj

√
ViVj ψj gijψiψj

√
ViVj ψ2

jVj


is a positive semidefinite matrix for V` ≥ 1 and 0 ≤ gij ≤

√
1
2

(
1 + V −1

`

)
with ` = i, j
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(notice that these are always realistic values of gij given the descriptives in Table 2),
hence this is a legitimate characterization of the random vector (ωi, ωj, $i, $j). Under
all these hypotheses, the inequalities in (6) can be expressed after some calculation
as:

Cov
(
g∗i (ωj − λ$j) , g

∗
j (ωj − λ$j)

)
∝ (λψi − 1) (λψj − 1) > 0

Cov
(
ωi, g

∗
j (ωj − λ$j)

)
∝ 1− λψj < 0

Cov (ωj, g
∗
i (ωi − λ$i)) ∝ 1− λψi < 0

which hold simultaneously as long as ψi, ψj > λ−1. While this example is stylized,
it illustrates quite well that in order for (6) to hold both Var ($i) and Cov (ωi, $j)
must be sufficiently large relative to Var (ωi), and vice versa.

Proof of Proposition 2. The proof is constructive, and it is intuitive given basic
concepts of graph theory. For any pair of firms i and j such that dij = D > C + L,
take any of their shortest paths of length D. Order the intermediate connections
along the chosen path: ` = 0, . . . , D where (without loss of generality) i = 0 and
j = D. By Assumption 3 and the definition of path in a network, {ω`, $`} /∈ Ωj if
` < L. Thus, the shortest path connecting {ωi, $i} with any element Q ∈ Ωj has
length D − L. Since D − L > C, {ωi, $i} and all the elements of Ωj are orthogonal
by Assumptions 1-2, implying Cov

(
ωi, logS∗j

)
= 0 because of equation (4). If this

is true for the shortest path connecting i and j, so it is for any other path, thereby
establishing (7). By analogous reasoning, suppose that dij = D > C + 2L, and take
the shortest path between i and j as defined earlier. In addition to the considerations
above, {ω`, $`} /∈ Ωi if ` > L, hence the shortest path connecting any element P ∈ Ωi

with another element Q ∈ Ωj has length D − 2L > C. Consequently, firms i and j
are in equilibrium functions of mutually independent sets of random variables, which
implies (8) and completes the proof.

Proof of Corollary 2. Recall from the First Order Conditions that in equilibrium,
logX∗iq = logS∗i − log βq− log γ− log ξq +$i for q = 1, . . . , Q, which can be rewritten
as

logX∗iq = xi (G) + g∗i (Ωi;G)−$i

for some firm-specific function of the network topology x∗i (G). The stochastic prop-
erties of equilibrium inputs are driven by the term g∗i (Ωi;G) − $i; but since $i is
always listed in Ωi by Assumption 3, logX∗iq must be orthogonal to any combination
of random variables that is also orthogonal to logS∗i . Hence, an analysis similar to
the one made above would demonstrate that logX∗iq and logS∗j are independent for
all Q conventional inputs as long as dij = D > C + 2L, which proves (9).
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Appendix B Dynamic Model (Sketched)
In this appendix I sketch a two-period version of the model where firms accumulate
R&D stocks by making yearly investments in R&D (flows). The objective is to show
under what circumstances the main result of Proposition 2 also applies in the more
general case of a dynamic model. For simplicity, in what follows I omit conventional
inputs. I discuss two possible scenarios corresponding to different economic assump-
tions. In the first of the two scenarios, firms commit in advance to a future sequence
of R&D investment (flows). In the second scenario, firms are able to revise their R&D
investment choices in every period. I analyze the two scenarios in sequence.

Pre-commitment

Firms might have compelling reasons to commit to a long-term plan of R&D invest-
ment. One reason might be financial: say, for example, that venture capital support
might be conditional on long-term projects. The main reason is probably related to
the very nature of R&D activity: highly risky, characterized by large fixed costs and
requiring many years to yield (potentially high) rewards. Hence, it may be optimal
for firms to commit in advance to long-term plans.

Under commitment, the firm’s objective function reads as:

πi (Zi1, Zi2; . . . ) = AZγ
i1E

( N∏
j=1

Z
g(ij)1
j1

)δ
∣∣∣∣∣∣Ωi1

 eωi1

+ φA (ζZi1 + Zi2)γ E

( N∏
j=1

(ζZj1 + Zj2)g(ij)2

)δ

eωi2

∣∣∣∣∣∣Ωi1


− e$i1Zi1 − φE [e$i2|Ωi1]Zi2

where the first term represents revenue in t = 1, the second term is revenue in t = 2,
and the last two terms denote costs over the two periods. Here Zit ∈ R++ is the R&D
investment (flow) in period t, ζ ∈ [0, 1] is the depreciation parameter, while φ ∈ [0, 1]
is the discount factor. The R&D stock for t = 1 is identical to the flow: Si1 = Zi1.
For t = 2 instead, it is given by the current investment plus the past depreciated flow:
Si2 = ζZi1 + Zi2. Notice how connections weights are allowed to vary over time.

Suppose that the game rules are the same as in the one-period case: first nature
draws types, then firms observe their own information set, so to make simultaneous
choices of Zi1 and Zi2 for both periods. Now the Bayes-Nash equilibrium is technically
expressed as fixed point of (Z1,Z2) = (Z11, . . . , ZN1, Z21, . . . , ZN2). However, there is
clearly a one-to-one mapping between a fixed point of R&D flows and a fixed point
of both periods’ R&D stocks, which are a linear function of flows.

The First Order Conditions are sufficient for a maximum; with some manipulation
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they can be expressed in terms of R&D stocks as follows:

∂πi (Zi1, Zi2; . . . )

∂Zi1
= γASγ−1

i1 E

( N∏
j=1

S
g(ij)1
j1

)δ
∣∣∣∣∣∣Ωi1

 eωi1 + φζE [e$i2|Ωi1]− e$i1 = 0

∂πi (Zi1, Zi2; . . . )

∂Zi2
= φγASγ−1

i2 E

( N∏
j=1

S
g(ij)2
j2

)δ

eωi2

∣∣∣∣∣∣Ωi1

− φE [e$i2|Ωi1] = 0

therefore, the R&D stocks of both periods Si1 and Si2 is an implicit function of the
information set at time 1, Ωi1. Hence, the results from Proposition 2 (and thus of
Corollary 2, in the extension of the model that includes conventional inputs) apply
in this case as well, with reference to the values of C1 and L1 valid at t = 1. I omit
the proof that the equilibrium is unique under proper conditions as this is a tedious
extension of the proof from the one-period case.

Notice how the dynamics of the networks do not matter towards the determination
of the equilibrium’s stochastic properties: only the information set Ωi1 and the cross-
correlation of the shocks at the time when the decisions are taken affect the cross-
correlation of R&D stocks. This implies that if any new links are generated on t = 2,
thereby altering cross-firm distances in the network, the spatial correlation of R&D
stocks in period 2 would still reflect period 1 circumstances, regardless of any potential
serial dependence in the shocks (ωit, $it) over time.

Dynamic R&D Programming

The dynamic programming extension of the problem differs in that the decisions about
Zi2 are based on the information set available at time t = 2 and on the observation
of first period choices, which might reveal information about (ω2,$2). In this case,
the First Order Conditions read as:

∂πi (Zi1, Zi2; . . . )

∂Zi1
= γASγ−1

i1 E

( N∏
j=1

S
g(ij)1
j1

)δ
∣∣∣∣∣∣Ωi1

 eωi1 + φζE [e$i2|Ωi1]− e$i1 = 0

∂πi (Zi1, Zi2; . . . )

∂Zi2
= γASγ−1

i2 E

( N∏
j=1

S
g(ij)2
j2

)δ

eωi2

∣∣∣∣∣∣Ωi2;Z11, . . . , ZN1

− e$i2 = 0

to assess whether the results from Proposition 2 still hold, I distinguish two cases.

1. Past R&D flows do not reveal information about current shocks:

E

( N∏
j=1

S
g(ij)2
j2

)δ

eωi2

∣∣∣∣∣∣Ωi2;Z11, . . . , ZN1

 = E

( N∏
j=1

S
g(ij)2
j2

)δ

eωi2

∣∣∣∣∣∣Ωi2
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a circumstance that arises if shocks are uncorrelated across periods or firms do
not observe period 1 choices of other sufficiently distant firms. In this case the
results from Proposition 2 are still valid, provided that the network grows over
time and no connections are severed. The intuition is that in each period, the
game is similar to the static model analyzed in the text. The main difference is
that optimal R&D flows also incorporate the expected future marginal produc-
tivity of R&D, itself a function of the current information set. Hence, the logic
expressed by the proof of Proposition 2 still applies. However, a problem arises
if some connections are severed over time. If at time t a link is lost between
any two firms i and j (g(ij)s 6= 0, g(ij)t = 0 for s ≤ t) then the cross-correlation
between ωi and logSjt might be nonzero even if i and j are now located at
distance higher than Ct + Lt, due to the past connection (similarly if interme-
diate links between i and j are lost). This is a minor concern in the case of the
network in this work, as it tends to tighten and become denser over time.

2. Past R&D flows do reveal information about current shocks, as firms are able
to recover past shocks of all other firms in the network and use them to predict
current shocks (provided that shocks are serially correlated). This circumstance
would invalidate Proposition 2, because the model would be similar to a com-
plete information game in periods later than t = 1. However, this scenario is
not realistic given the evidence provided in Figure 6. In order to rationalize this
fact, I make four not mutually excludable hypotheses.

(a) The unobserved shocks are serially uncorrelated, which is unlikely.

(b) For the most part, firms pre-commit to R&D investment plans.

(c) Between periods, firms do not actually observe the choices of “sufficiently
distant” firms. A variation of this is that it is too costly for firms to gather
and use such “distant” information, as it does not have a first order impact
on their outcomes.

(d) The pattern of cross-firm R&D complementarities is more complex than in
the ultimately simplistic expression of “knowledge capital” from (1). Sup-
pose that the R&D stock Sit of a firm can be split into several “projects,”
and that some projects are complementary across connected firms while
others are not. In this circumstance, firms would not respond to the choices
of “sufficiently distant” firms – even if their shocks are known – because
these might not affect, in equilibrium, the relevant “projects” of connected
firms. This is an intriguing piece of intuition towards further development
of the theoretical framework presented in this work.

In either scenario, the model has a unique equilibrium, provided that the spillovers
parameter δ is sufficiently small. The proof is once again omitted.
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Appendix C Data and Connection Measures
In this appendix I provide details on the dataset construction, with emphasis on the
calculation of the connection measures.

C.1 Data

The main panel of firms has been reconstructed by Bloom et al. (2013) (BSV) by
selecting firms from COMPUSTAT with at least one entry in the “Segment” comple-
mentary dataset. The latter breaks down sales by line of business for specific firms.
The main variables employed in the estimation of the production function are con-
structed according to standard methodologies. In particular, monetary values are
deflated using appropriate price indices. The stock of R&D is calculated from flows
using the perpetual inventory method with a 15% depreciation parameter. I refer to
the online appendix from BSV for the details.

Firm-level identifiers are matched to patents as per the NBER patent dataset
developed until 2006; see Hall et al. (2001) for the details. All the observed patents for
each firm i in the entire time interval under analysis are broken down into 426 patent
classes defined by the USPTO. Following Jaffe, BSV calculate the TECH weights as
the uncentered correlation of two firms’ technological allocation of patents:

TECHij =

(
TiT

′
j

)
(TiT ′i )

1
2
(
TjT ′j

) 1
2

where Ti = (T1, . . . , T426) is the vector that collects the shares of patents of each firm
across the 426 patent classes. Notice that these weights are constant over time. The
Jaffe measure of technological proximity is constructed as the average of all other
firms’ R&D stock weighted by the TECH measures, Spilltechit =

∑
j TECHijSjt.

It enters logarithmically in the estimation of the Cobb-Douglas production function.
To facilitate comparisons, I employ the same variables in my estimates.

C.2 Measures of Connection

To calculate the measures of connection, I need information on i) the disambiguated
identity of all the actual inventors who signed all the patents attributed to the firms,
ii) their patent coauthorship relationships; iii) the time interval in which each inven-
tor is associated to a firm. I obtain information on i) and ii) thanks to the match of
the patent identifiers from the USPTO across the NBER and the HPND datasets. I
rely on the work performed by the authors of the HPND dataset for the quality of
their disambiguation algorithm, see Li et al. (2014) for details. However, I have no
direct information about iii). In order to associate individuals to firms, I use indirect
information extrapolated from the patent data.
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In particular, I can establish to which firm are assigned patents, that are signed by
specific individual inventors. By defining the time interval in which every individual
is observed to collaborate on patents for a specific firm, I can provide an approximate
time interval that defines their mutual association. Define p

im
as the first year when

inventor i is observed patenting (application year) for firm m. Similarly, pim is the
last year. The assignment rule between the inventor and the firm in year t is

f(mi)t =

{
1 if t ∈

[
p
im
− 1, pim + 1

]
0 otherwise

which is extended one year in the past relative to p
im

and one year in the future
relative to pim. This choice is based on the presumption that every collaboration
does not begin immediately the year the first patent is being applied for, and does
not terminate immediately after the last patent. Clearly, this may miss years in which
inventors, while not producing patents, are still part of an organization. This would be
relevant (and generate problems of measurement error) mostly if these idle inventors
were connected to individuals in other firms. Furthermore, it is also arguable that idle
inventors are not very active in the process of knowledge creation and exchange. Such
a restricted time window essentially captures the size of the R&D-performing team
of a firm, whether it is made of regular employees or, say, academic collaborators. It
is reassuring that the results are very robust to perturbations in this assignment rule
(such additional results are available upon request).

One can collect all the binary indicators f(mi)t in a matrix Ft which has N rows
(number of firms in the data) andMt columns (the number of inventors at time t). To
calculate the connection measures, one should first obtain the binary and symmetric
adjacency matrix Pt of coauthors at time t. It is a matrix of dimensionMt×Mt where
p(ij)t = p(ji)t = 1 if the two inventors i and j have at least one joint patent at t + 1.
Define B(·) as a boolean operator that applied to matrices, returns other matrices
whose entries are equal to 1 for positive corresponding entries in the argument and
0 otherwise. One can easily calculate the asymmetric N ×N matrix that counts the
reciprocal connections between inventors across firms at time t:

Kt = Ft · B (PtF′t) = B (FtPt) · F′t

and obtain the numerator of the expression within parentheses in (10) for every pair
of firms as k(ij)t + k(ji)t. Notice that the diagonal elements of Kt denote the total
number of inventors assigned to one firm in year t. Hence, the denominator of the
aforementioned argument of (10) can be obtained as k(ii)t + k(jj)t. Therefore, for any
appropriate function f (·) the measures of connections are calculated as follows.

cf(ij)t = cf(ji)t = f

(
k(ij)t + k(ji)t

k(ii)t + k(jj)t

)
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Finally, it is worth mentioning how I compute the matrix H that collects the
weights h(ik)t for the second-degree instrument (the case of the third-degree instrument
is analogous):

Ht = G2
t ◦ (1− I [I + Gt])

where the symbol ◦ denotes the Hadamard (pointwise) multiplication and the indi-
cator function I [·] is also taken pointwise on its matrix argument. To better see why,
consider that for i 6= k, h(ik)t =

∑
j 6=i
(
g(ij)tg(jk)t

)
I
[
g(ik)t = 0

]
. Therefore the expres-

sion for the instrument, that is the i-th entry of the column vector Htst (where st is
the vector of log R&D) reads as

∑
k 6=i

h(ik)tlogSkt =
∑
k 6=i

(∑
j 6=i

(
g(ij)tg(jk)t

)
I
[
g(ik)t = 0

])
logSkt

=
∑
j 6=i

g(ij)t

∑
k 6=i,j

g(jk)tI
[
g(ik)t = 0

]︸ ︷︷ ︸
=h̃i

(jk)t

logSkt

which corresponds to the definition given in the text, as expected.

C.3 Geographic Control and Measures of Proximity

An empirical concern of the analysis is that patent coauthorship relationships may
simply capture the fact that inventors live close to one another. Therefore, measures
of connection might reflect the fact that firms have their R&D labs in the most
innovative areas – something that might have a direct impact on innovation and
productivity. To clear this concern I calculate a measure of R&D spillovers that is
weighted against the relative spatial proximity of two R&D teams. These weights
are called measures of proximity and they are conceptually similar to the connection
measures. In lieu of a patent coauthorship relationship, however, two inventors are
identified as being “linked” if they are “neighbors” in spatial terms, that is they are
observed to patent from the same Core Based Statistical Area (CBSA) in a given
year. I obtain this information from patent data, that report the ZIP code of the
address of residence of each signing inventor. Proximity measures read as

b(ij)t =
(#inventors of firms i and j overlapping on the same CBSAs at t)

(# inv.s of firm i at t) + (# inv.s of firm j at t)

and they are calculated with a procedure that is analogous to the one of connection
measures. The actual control employed in the regressions is also analogous to the vari-
able of connection-induced spillovers, and it is defined as Geospillsit =

∑
j b(ij)tlogSjt.
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Appendix D Alternative Measures of Connection
In this appendix I discuss alternative connection measures galt(ij)t and the estimates ob-
tained from their application to model (12). I focus in particular on four alternatives.

1. Linear Connection. I use a pure linear connection measure c(ij)t (that is, in
(10) f (·) is an identity function). This measure does not give disproportionate
importance to few connected inventors that are part of two large R&D teams.

2. Second Degree Connections. I define “connected” inventors as not simply
those individuals who are patent-coauthors of someone in the other firm, but also
coauthors of coauthors of someone in the other firm (second-degree coauthors).
I take the square root of the corresponding measure, which I call g2dg

(ij)t. Relative
to the baseline, this alternative measure downplays those connected scientists
who do not develop many bonds within the firm they are assigned to (occasional
inventors).

3. Asymmetric “Receiving” Connections. I abandon the framework of di-
rected networks and I consider the possibility that spillover relationships are
asymmetric between firms. In particular, I suppose that the degree of a firm’s
access to the knowledge of another depends only by its own share of connected
inventors: asr(ij)t = k(ij)t/k(ii)t. In the estimation, however, I use its square
root gasr(ij)t =

√
asr(ij)t. This measure gives more importance to smaller, well

connected firms in the process of ideas exchange.

4. Asymmetric “Spilling” Connections. An alternative economic assumption
is that spillovers do not depend on active acquisition of knowledge by well-
connected firms, but rather by their passive access to naturally leaked informa-
tion. In this case it would be more advantageous to have access to as many
inventors as possible in the “spilling” firm. The connection measure is in this
case defined as gass(ij)t =

√
ass(ij)t with ass(ij)t = k(ji)t/k(jj)t. This measure gives

more relevance to firms that are well connected to larger ones.

For any of these measures galt(ij)t the spillover variable is constructed as
∑

j g
alt
(ij)tlogSjt.

Table A.1 shows the results from the estimation of model (12) using these alter-
native connection metrics. For each measure, both the OLS and the 2SLS estimates
are reported. All estimates are restricted to only the firms included in the network,
they include the full set of fixed effects (including community-by-year fixed effects on
20 communities), and the 2SLS estimates are based on the third degree instrument.
Point estimates vary in magnitude because of the rescaling implied by different mea-
sures. Noticeably, for the “Second Degree” and the “Asymmetric Spilling” measures,
2SLS estimates of δ are larger than OLS and significant at the 1% level. For the
“Linear” and the “Asymmetric Receiving” measures instead the 2SLS estimates are
smaller, and only in the Linear case is δ̂2SLS statistically significant (at the 10% level).
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Table A.1: Alternative Connection Measures, Production Function, 1981-2001

(Linear) (2nd Degree)
OLS 2SLS OLS 2SLS

Private R&D (γ) 0.0387 0.0396 0.0392 0.0360
(0.0120) (0.0117) (0.0114) (0.0123)

Spillovers (δ) 0.0805 0.0648 0.0041 0.0073
(0.0163) (0.0352) (0.0013) (0.0027)

Capital 0.1683 0.1694 0.1669 0.1616
(0.0225) (0.0223) (0.0229) (0.0224)

Labor 0.6304 0.6294 0.6343 0.6412
(0.0293) (0.0285) (0.0301) (0.0296)

Jaffe Tech. Proximity 0.0694 0.0768 0.0734 0.0474
(0.1000) (0.1064) (0.1021) (0.1133)

Fixed Effects YES YES YES YES
Only Network YES YES YES YES
Instrument NO 3rd deg. NO 3rd deg.
No. of Communities (× Year) 20 20 20 20
No. of Observations 7336 7336 7336 7336

(As. Receiving) (As. Spilling)
OLS 2SLS OLS 2SLS

Private R&D (γ) 0.0406 0.0424 0.0406 0.0379
(0.0120) (0.0132) (0.0120) (0.0119)

Spillovers (δ) 0.0087 0.0032 0.0058 0.0114
(0.0020) (0.0062) (0.0023) (0.0031)

Capital 0.1695 0.1722 0.1698 0.1658
(0.0221) (0.0223) (0.0224) (0.0222)

Labor 0.6287 0.6265 0.6308 0.6361
(0.0287) (0.0278) (0.0290) (0.0291)

Jaffe Tech. Proximity 0.0754 0.0955 0.0784 0.0505
(0.1042) (0.1187) (0.1034) (0.1115)

Fixed Effects YES YES YES YES
Only Network YES YES YES YES
Instrument NO 3rd deg. NO 3rd deg.
No. of Communities (× Year) 20 20 20 20
No. of Observations 7336 7336 7336 7336
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Table A.2: MPR and MSR: Comparative Prospect

Baseline Alternative Measures
Measure Linear 2nd Degree As. Spilling

Mean of the Row Sum ḡit 0.440 0.065 1.049 0.675
(Standard Deviation) (0.178) (0.084) (1.422) (1.127)

Marginal Private Return 41.3% 49.7% 45.2% 47.9%

Marginal Social Return 9.7% 9.8% 7.8% 2.5%

Table A.2 offers a comparative prospectus about the means and standard devia-
tions of the row sum of connections for the “linear,” “second degree” and “asymmetric
spilling” measures, contrasted with the baseline case. In addition, I report the MPRs
and MSRs calculated with the respective 2SLS estimates of γ̂ and δ̂ from Table A.1.
As expected, the calculated MPRs are similar across the four connection measures.
The MSRs, by contrast, are similar only across the baseline, the Linear and the Second
Degree measures. The MSR calculated from the Linear measure is actually slightly
larger than in the baseline case, but it is obtained from a much less precise estimate
of δ. By contrast, the MSR calculated for the Asymmetric Spilling measure is much
smaller in magnitude, essentially because larger values of gass(ij)t are by construction
associated with lower values of Sj as per (19).
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Appendix E Graphical Description of the Network
This appendix collects, in the next few pages, some visual representations of the
network in the form of graphs. For ease of comparison, all nodes (firms) are placed
in the same position and have the same size across all figures. Node size is a positive
function of the total strength of links that are summed over the years. In Figures from
E.1 to E.5 nodes are also distinguished by various shades of the same orange color;
in particular, darker colors indicate larger measures of network centrality associated
with a node. The names of selected firms are apposed to some of the largest, most
central nodes. A brief introduction or commentary for each of the following graphs
is given in the list below.

• Figure E.1 displays the network in 1985.

• Figure E.2 displays the network in 1990.

• Figure E.3 displays the network in 1995.

• Figure E.4 displays the network in 2000.

• Figure E.5 displays the “pooled” network, which results from aggregating all
edges (connections) over time for all nodes.

• Figure E.6 displays the communities obtained by applying the Louvain algo-
rithm on the “pooled” network with maximum (1) resolution. The top hierarchy
of communities is composed of six groups. The semiconductor/ICT, mechani-
cal, biotech/pharmaceutical and chemical industries are clearly identifiable as
separate communities; in addition there are two smaller, mixed groups whose
nodes are dispersed across the graph.

• Figure E.7 displays the communities obtained by applying the Louvain algo-
rithm with the ρ = 0.6 resolution. The resulting partition is the one used to
cluster standard errors in all all empirical estimates featured in this work.
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Figure E.1: The Network in 1985
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Figure E.2: The Network in 1990
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Figure E.3: The Network in 1995
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Figure E.4: The Network in 2000
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Figure E.5: The “Pooled” Network
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Figure E.6: Network Communities, Resolution ρ = 1
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Figure E.7: Network Communities, Resolution ρ = 0.6
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