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1 Introduction

An important feature of economic systems is that information is dispersed across market partic-

ipants and policymakers. Dispersed information implies that publicly observable policy actions

transfer information to market participants. An important example is the monetary policy

rate, which conveys information about the central bank’s view on macroeconomic developments.

Such an information transfer may strongly influence the transmission of monetary impulses and

the central bank’s ability to stabilize the economy. Consider the case in which a central bank

expects that an exogenous disturbance will raise inflation in the next few quarters. On the

one hand, as predicted by standard macroeconomic models, tightening monetary policy has the

effect of mitigating the inflationary effects of the shock. On the other hand, raising the policy

rate might also cause higher inflation if this action signals to unaware market participants that

an inflationary shock is about to hit the economy. While the first type of monetary transmission

has been intensively investigated in the economic literature, the signaling effects of monetary

policy have received far less attention.

This paper develops a dynamic stochastic general equilibrium (DSGE) model to study the

empirical relevance of the signaling effects of monetary policy and their implications for the

propagation of policy and non-policy disturbances. In the model, price-setting firms face nomi-

nal rigidities and dispersed information. Firms observe their own specific technology conveying

noisy private information about aggregate technology shocks that influence the future dynam-

ics of firms’nominal marginal costs. Furthermore, price setters observe a noisy private signal

about demand shocks and they observe the policy rate set by the central bank according to a

Taylor-type reaction function. The policy signal provides public information about the central

bank’s view on current inflation and the output gap to firms. We call this model the dispersed

information model (DIM).

The DIM features two channels of monetary transmission. The first channel emerges because

the central bank can affect the real interest rate because of both nominal rigidities, as in

standard New Keynesian models, and dispersed information. Changes in the real interest rate

induce households to adjust their consumption. The second channel arises because the policy

rate signals non-redundant information to price setters and hence influences their beliefs about

macroeconomic developments. We label this second channel the signaling channel of monetary

transmission. The signaling effects of monetary policy on the propagation of shocks critically

rely on how price setters interpret the change in the policy rate. Raising the policy rate can

be interpreted by price-setting firms in two ways. First, a monetary tightening might imply

that the central bank is responding to a contractionary monetary shock, leading the central

bank to deviate from its monetary rule. Second, a higher interest rate may also be interpreted

as the response of the central bank to inflationary non-policy shocks, which, in the model, are
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an adverse aggregate technology shock or a positive demand shock. If the first interpretation

prevails among price setters, tightening (easing) monetary policy curbs (raises) firms’inflation

expectations and hence inflation. If the second interpretation prevails, raising (cutting) the

policy rate induces firms to expect higher (lower) inflation, and hence, inflation tends to increase

(decrease).

The model is estimated through likelihood methods on a U.S. data set that includes the

Survey of Professional Forecasters (SPF) as a measure of price setters’inflation expectations.

The data range includes the 1970s, which were characterized by one of the most notorious

episodes of heightened inflation and inflation expectations in recent U.S. economic history. The

estimated model features a fairly sluggish response of inflation to monetary disturbances and,

at the same time, a very small amount of nominal rigidities. In fact, the likelihood seems to

favor dispersed information to explain the sluggish effects of monetary impulses. Furthermore,

the signaling channel is found to have non-negligible effects on the transmission of shocks. In

the estimated model, raising the policy rate signals to firms that the central bank is likely to

be responding to either a positive demand shock or a contractionary monetary shock. Firms,

however, do not critically change their expectations about the aggregate technology shock from

observing the policy rate as they hold fairly precise private information about this type of

shock. A number of important implications follow. First, the signaling channel magnifies the

real effects of monetary shocks. Second, inflation expectations respond positively to monetary

shocks. These two features are present because price setters interpret − to some extent − a
rise in the policy rate as the central bank’s response to a positive demand shock that pushes

up inflation expectations. Third, the inflationary effects of the signaling channel are negligible

after an aggregate technology shock. When the Federal Reserve raises the policy rate to counter

a negative technology shock, firms are induced to believe that the central bank may be reacting

to either a positive demand shock or a contractionary monetary shock. These two effects on

firms’inflation expectations are conflicting and turn out to cancel each other out, leading to

tiny signaling effects of monetary policy in the aftermath of a technology shock. Fourth, the

signaling effects of monetary policy bring about deflationary pressures in the aftermath of a

positive demand shock. When the Federal Reserve raises the interest rate in response to a

positive demand shock, firms attach some probability that a contractionary monetary shock

might have occurred. Expecting a contractionary monetary shock tends to lower inflation

expectations.

Signaling effects of monetary policy are found to be sizable in the 1970s and provide an

explanation for the Federal Reserve’s failure to lower inflation in that decade. Figure 1 shows

that inflation soared while the Federal Reserve tightened monetary policy from 1972 through

1974 and from 1977 through the appointment of Paul Volcker as Federal Reserve Chairman in

August of 1979. We introduce Bayesian counterfactuals to assess the signaling effects associated
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Figure 1: The inflation rate is obtained from the GDP deflator (GDPDEF ) computed by the U.S. Bureau of

Economic Analysis (BEA). The federal funds rate is the average of daily figures of the effective federal funds

rate (FEDFUNDS ) reported by the Federal Reserve Economic Data (FRED). The vertical axis measures units

of percentage points of annualized rates.

with these two disinflation policies. On the one hand, we find that the timid increases of

the federal funds rate substantially contributed to raising inflation expectations by signaling

expansionary monetary shocks to price setters. On the other hand, the increases of the policy

rate were too gradual to offset the rise in inflation expectations owing to the signaling effects of

the monetary tightening itself. In relation to this second finding, we find that a more aggressive

approach toward inflation stabilization would have offset these signaling effects and would have

prevented inflation from rising to two digits in the 1970s. The model also predicts that this

hawkish policy course would have led to a contraction of the quarter-to-quarter real gross

domestic product (GDP) growth of up to 1.2 percentage points in annualized terms.

Furthermore, we find that the signaling effects of monetary policy also account for the

sluggish adjustment of inflation during the robust monetary contraction conducted after the

appointment of Paul Volcker as Federal Reserve Chairman in August 1979 through the second

quarter of 1981. In that period, the increases in the policy rate were interpreted by price

setters as evidence that the monetary authority was responding to inflationary demand shocks.

Moreover, we find that the signaling effects of monetary policy had positively contributed to

the good macroeconomic performance of the U.S. economy from the 1980s through 2003.

It is important to emphasize that the signaling effects of monetary policy are not the only

possible channel through which the model could explain why both the rate of inflation and the
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federal funds rate swiftly rose in the 1970s and why price dynamics appear to respond sluggishly

to the robust monetary tightening conducted by the Federal Reserve under Chairman Paul

Volcker. For instance, the model could have explained these dynamics through a sequence of

adverse aggregate technology shocks, which are associated with tiny signaling effects because

firms have fairly accurate private information about these shocks.

Furthermore, the DIM is found to fit the data better than a model in which price setters have

perfect information (i.e., the perfect information model, or PIM). This finding validates the use

of the DIM to study the signaling effects of monetary policy, since the PIM is a prototypical

New Keynesian model that has been extensively used by scholars for conducting quantitative

analysis about monetary policy (e.g., Rotemberg andWoodford 1997; Clarida, Gali, and Gertler

2000; Lubik and Schorfheide 2004; and Coibion and Gorodnichenko 2011a). Quite interestingly,

if the two models were estimated using a narrower data set that does not include the SPF, we

could not have concluded that the DIM fits the data better than the PIM. This finding suggests

that the advantage of the DIM stems from its ability to fit the observed inflation expectations.

The fact that the DIM fits the SPF better than a perfect information model is not obvious.

In fact, Del Negro and Eusepi (2011) find that the imperfect information model by Erceg and

Levin (2003) is outperformed by a standard perfect information model in fitting the SPF.

This paper also makes a methodological contribution by providing an algorithm to solve

DSGE models in which agents find it optimal to forecast the forecasts of other agents. The

solution routine proposed in the paper turns out to be suffi ciently fast and reliable to allow

likelihood-based estimation. The proposed algorithm belongs to the general solution methods

developed by Nimark (2011). The proposed algorithm improves upon the one used in Nimark

(2008) as it does not require solving a system of nonlinear equations. Furthermore, the paper

shows how to quantify information flows conveyed by the policy signal to private agents in the

model.

The idea that the monetary authority sends public signals to an economy in which agents

have dispersed information was pioneered by Morris and Shin (2003a , 2003b). While tech-

nical hurdles have prevented empiricists to conduct a structural investigation of the signaling

effects of monetary policy so far, the theoretical literature has been flourishing quickly. The

space in this section is regrettably too small to do justice to all these theoretical contribu-

tions. Angeletos, Hellwig, and Pavan (2006) study the signaling effects of policy decisions in

a coordination game. Walsh (2010) shows that the (perceived or actual) signaling effects of

monetary policy alter the central bank’s decisions, resulting in a bias (i.e., an opacity bias)

that distorts the central bank’s optimal response to shocks. Unlike this paper, Walsh’s study is

based on a model that does not feature dispersed information. Baeriswyl and Cornand (2010)

study optimal monetary policy in a DSGE model in which the central bank can use its policy

instrument to disclose information about its assessment of the fundamentals. Price setters face
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two sources of information limitation: sticky information à la Mankiw and Reis (2002) and

dispersed information of a type that is very similar to that of this paper. That contribution

is mostly theoretical, whereas this paper carries out a full-fledged likelihood estimation of a

model in which monetary policy has signaling effects. Hachem and Wu (2012) develop a model

in which firms update their heterogeneous inflation expectations through social dynamics to

study the effects of central bank communication.

The model studied in this paper is built on Nimark (2008). A particularly useful feature of

Nimark’s model is that the supply side of the model economy can be analytically worked out

and characterized by an equation that nests the standard New Keynesian Phillips curve. The

model studied in this paper shares this feature. Nonetheless, in Nimark (2008) the signaling

channel does not arise because assumptions on the Taylor-rule specification imply that the

policy rate conveys only redundant information to price setters.

This paper is also related to a quickly growing empirical literature that uses the SPF to

study the response of public expectations to monetary policy decisions. Del Negro and Eusepi

(2011) perform an econometric evaluation of the extent to which the inflation expectations

generated by DSGE models are in line with the observed inflation expectations. There are two

main differences between that paper and this one. First, in our settings, price setters have

heterogeneous and dispersed higher-order expectations as they observe private signals. Second,

this paper fits the model to a data set that includes the 1970s, whereas Del Negro and Eusepi

(2011) use a data set starting from the early 1980s. Coibion and Gorodnichenko (2012b) find

that the Federal Reserve raises the policy rate more gradually if the private sector’s inflation

expectations are lower than the Federal Reserve’s forecasts of inflation. This empirical evidence

can be rationalized in a model in which monetary policy has signaling effects and the central

bank acts strategically to stabilize public inflation expectations. Coibion and Gorodnichenko

(2012a) use the SPF to document robust evidence in favor of models with informational rigidi-

ties.

This paper also belongs to a quite thin literature that carries out likelihood-based analyses

on models with dispersed information. Nimark (2012) estimates an island model built on

Lorenzoni (2009) and augmented with man-bites-dog signals, which are signals that are more

likely to be observed when unusual events occur. Máckowiak, Moench, and Wiederholt (2009)

use a dynamic factor model to estimate impulse responses of sectorial price indexes to aggregate

shocks and to sector-specific shocks for a number of models, including a rational inattention

model. Melosi (Forthcoming) conducts an econometric analysis of a stylized DSGE model with

dispersed information à la Woodford (2002).

Bianchi and Melosi (2012) develop a DSGE model that features waves of agents’pessimism

about how aggressively the central bank will react to future changes in inflation to study

the welfare implications of monetary policy communication. Gorodnichenko (2008) introduces
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a model in which firms make state-dependent decisions on both pricing and acquisition of

information and shows that this model delivers delayed response of inflation to monetary shocks.

Trabandt (2007) analyzes the empirical properties of a state-of-the-art sticky-information DSGE

model à la Mankiw and Reis (2002) and compares them with those of a state-of-the-art DSGE

model with sticky prices à la Calvo.

Finally, Hetzel (1998) and Romer and Romer (2013) analyze historical documentation, in-

cluding minutes of the Federal Open Market Committee (FOMC) meetings and Federal Reserve

Chairmen’speeches, showing that the Federal Reserve adopted a gradualistic approach to dis-

inflate the U.S. economy in the 1970s.

The paper is organized as follows. Section 2 describes the dispersed information model, in

which monetary policy has signaling effects, as well as a model in which firms have complete in-

formation. The latter model will be used as a benchmark to evaluate the empirical performance

of the dispersed information model. In Section 3, we perform some numerical experiments to

show the macroeconomic propagation of monetary disturbances through the signaling channel.

Section 4 deals with the empirical analysis of the paper. In Section 5, we conclude.

2 Models

Section 2.1 introduces the model with dispersed information and signaling effects of monetary

policy. In Section 2.2, we present the time protocol of the model. Section 2.3 presents the

problem of households. Section 2.4 presents firms’price-setting problem. In Section 2.5, the

central bank’s behavior and government’s behavior are modeled. Section 2.6 deals with the log-

linearization and the solution of the dispersed information model. Finally, Section 2.7 presents

the perfect information model, which will turn out to be useful for evaluating the empirical

significance of the dispersed information model.

2.1 The Dispersed Information Model (DIM)

The economy is populated by a continuum (0, 1) of households, a continuum (0, 1) of monopo-

listically competitive firms, a central bank (or monetary authority), and a government (or fiscal

authority). A Calvo lottery establishes which firms are allowed to reoptimize their prices in any

given period t (Calvo 1983). Households consume the goods produced by firms, demand gov-

ernment bonds, pay taxes to or receive transfers from the fiscal authority, and supply labor to

the firms in a perfectly competitive labor market. Firms sell differentiated goods to households.

The fiscal authority has to finance maturing government bonds. The fiscal authority can issue

new government bonds and can either collect lump-sum taxes from households or pay transfers

to households. The central bank sets the nominal interest rate at which the government’s bonds
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pay out their return.

Aggregate and idiosyncratic shocks hit the model economy. The aggregate shocks are a

technology shock, a monetary policy shock, and a demand shock. All of these shocks are

orthogonal to each other at all leads and lags. Idiosyncratic shocks include a firm-specific

technology shock and the outcome of the Calvo lottery for price optimization.

2.2 The Time Protocol

Any period t is divided into three stages. All actions that are taken in any given stage are

simultaneous. At stage 0, shocks are realized and the central bank sets the interest rate for

the current period t. At stage 1, firms update their information set by observing (i) their

idiosyncratic technology, (ii) a private signal about the demand shocks, and (iii) the interest

rate set by the central bank. Given these observations, firms set their prices at stage 1. At

stage 2, households learn about the realization of all the shocks in the economy and therefore

become perfectly informed. Households then decide their consumption, Ct; their demand for

(one-period) nominal government bonds, Bt; and their labor supply, Nt. At this stage, firms

hire labor and produce so as to deliver the demanded quantity at the price they have set at

stage 1. The fiscal authority issues bonds and collects taxes from households or pays transfers

to households. The markets for goods, labor, and bonds clear.

2.3 Households

Households have perfect information, and hence, we can use the representative household to

solve their problem at stage 2 of every period t:

max
Ct+s,Bt+s,Nt+s

Et
∞∑
s=0

βt+sgt+s [lnCt+s − χnNt+s] ,

where β is the deterministic discount factor and gt denotes a preference shifter that scales

up or down the period utility function. The logarithm of the preference shifter follows an

autoregressive (AR) process: ln gt = ρg ln gt−1+σgεg,t with Gaussian shocks εg,t v N (0, 1). We

refer to gt as demand conditions and to the innovation εg,t as demand shock. Disutility from

labor linearly enters the period utility function. Note that χn is a parameter that affects the

marginal disutility of labor.

The flow budget constraint of the representative household in period t reads as

PtCt +Bt = WtNt +Rt−1Bt−1 + Πt − Tt, (1)

where Pt is the price level of the composite good consumed by households and Wt is the (com-
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petitive) nominal wage rate, Rt stands for the nominal (gross) interest rate, Πt is the (equally

shared) dividends paid out by the firms, and Tt stands for the lump-sum transfers/taxes. Com-

posite consumption in period t is given by the Dixit-Stiglitz aggregator Ct =
(∫ 1

0
C

ν−1
ν

j,t dj
) ν
ν−1
,

where Cj,t is consumption of the good produced by firm j in period t and ν is the elasticity of

substitution between consumption goods.

At stage 2 of every period t, the representative household chooses its consumption of the

good produced by firm j, labor supply, and bond holdings subject to the sequence of the flow

budget constraints and a no-Ponzi-scheme condition. The representative household takes as

given the nominal interest rate, the nominal wage rate, nominal aggregate profits, nominal

lump-sum transfers/taxes, and the prices of all consumption goods. It can be shown that the

demand for the good produced by firm j is:

Cj,t =

(
Pj,t
Pt

)−ν
Ct, (2)

where the price level of the composite good is defined as Pt =
(∫

(Pj,t)
1−ν di

) 1
1−ν .

2.4 Firms’Price-Setting Problem

Firms are endowed with a linear technology Yj,t = Aj,tNj,t, where Yj,t is the output produced

by the firm j at time t, Nj,t is the amount of labor employed by firm j at time t, and Aj,t is the

firm-specific level of technology that can be decomposed into a level of aggregate technology

(At) and a white-noise firm-specific component (εaj,t). More specifically,

lnAj,t = lnAt + σ̃aε
a
j,t, (3)

where εaj,t
iidv N (0, 1) and At = γtat with deterministic trend γ > 1 and at is the detrended level

of aggregate technology that evolves according to the AR process ln at = ρa ln at−1+σaεa,t with

Gaussian shocks εa,t
iidv N (0, 1).

Following Calvo (1983), we assume that a fraction θ of firms are not allowed to reoptimize

their prices at stage 1 of any period. Those firms that are not allowed to reoptimize are assumed

to index their prices to the steady-state inflation rate. Furthermore, we assume that firms have

limited knowledge about the history of shocks that have hit the economy. More specifically,

it is assumed that firms’information set includes the history of firm-specific technology lnAj,t

and the history of a private signal gj,t on the demand conditions gt, which evolves according to

the following process:

ln gj,t = ln gt + σ̃gε
g
j,t, (4)

where εgj,t
iidv N (0, 1). This signal is meant to capture the fact that arguably firms are used to
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carrying out market analyses to gather information about demand conditions gt before setting

their price. Moreover, firms observe the history of the nominal interest rate Rt set by the central

bank, and the history of the price set by the firm. To sum up, the information set Ij,t of firm
j at time t is given by

Ij,t ≡ {lnAj,τ , ln gj,τ , Rτ , Pj,τ : τ ≤ t} , (5)

Firms receive the signals in Ij,t at stage 1 when they are called to set their price. Firms are
assumed to know the model transition equations and their structural parameters. Furthermore,

note that observing the history of their own price {Pj,τ : τ ≤ t} conveys only redundant infor-
mation to firms because their price is either adjusted to the steady-state inflation rate, which

is known by firms, or a function of the history of the signals that have been already observed

in the past. Thus, this signal does not play any role in the formation of firms’expectations

and will be called the redundant signal. Henceforth, when we refer to signals, we mean only

the non-redundant signals (namely, lnAj,t, ln gj,t, and Rt). Finally, we assume that firms have

received an infinitely long sequence of signals at any time t. This assumption substantially sim-

plifies the task of solving the model by ensuring that the Kalman gain matrix is time invariant

and is the same across firms.

Let us denote the (gross) steady-state inflation rate as π∗, the nominal marginal costs for

firm j as MCj,t = Wt/Aj,t, the time t value of one unit of the composite consumption good in

period t+ s to the representative household as Ξt|t+s, and the expectation operator conditional

on firm j’s information set Ij,t as Ej,t. At stage 1 of every period t, an arbitrary firm j that is

allowed to reoptimize its price Pj,t solves

max
Pj,t

Ej,t

[ ∞∑
s=0

(βθ)s Ξt|t+s (πs∗Pj,t −MCj,t+s)Yj,t+s

]
,

subject to Yj,t = Cj,t (i.e., firms commit themselves to satisfying any demanded quantity that

will arise at stage 2), to the firm j’s specific demand in equation (2), and to the linear production

function. When solving the price-setting problem at stage 1, firms have to form expectations

about the evolution of their nominal marginal costs, which will be realized in the next stage of

the period (i.e., stage 2), using their information set Ij,t. At stage 2, firms produce and deliver
the quantity the representative household demands for their specific goods at the prices they

set in the previous stage 1. It is important to recall that at stage 2, firms do not receive any

further information or any additional signals to what they have already observed at stage 1.

Since firms find it optimal to set their prices in response to changes in their nominal marginal

costs, they raise their prices, ceteris paribus, when they expect the price level to increase, that

is, when they expect that the other price setters, on average, are raising their prices. Such a

coordination motive in price setting and the availability of private information make it optimal
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for price setters to forecast the forecasts of other price setters (Townsend 1983a, 1983b). This

feature of the price-setting problem raises technical challenges, which will be tackled in Section

2.6, when we solve the dispersed information model.

2.5 The Monetary and Fiscal Authorities

There is a monetary authority and a fiscal authority. The monetary authority sets the nominal

interest rate according to the reaction function:

Rt = (r∗π∗)

(
πt
π∗

)φπ ( Yt
Y ∗t

)φy
ηr,t, (6)

where r∗ is the steady-state real interest rate, πt is the (gross) inflation rate, and Y ∗t is potential

output, which is the output level that would be realized if prices were perfectly flexible (i.e., θ =

0) and firms were perfectly informed. Note that ηr,t is a random variable that affects the nominal

interest rate in period t and is driven by the following process: ln ηr,t = ρr ln ηr,t−1+σrεr,t, with

Gaussian shocks εr,t
iidv N (0, 1).1 We will refer to the exogenous variable ηr,t as the central

bank’s deviation from the monetary rule and to the innovation εr,t as a monetary policy shock.

The deviation from the monetary rule ηr,t is intended to capture any exogenous deviation

from the monetary policy, including the central bank’s errors in estimating the current rate of

inflation and the current output gap or the central bank’s willingness to smooth the dynamics

of the policy rate Rt.

The flow budget constraint of the fiscal authority in period t reads as Rt−1Bt−1 − Bt = Tt.

The fiscal authority has to finance maturing government bonds. The fiscal authority can collect

lump-sum taxes or issue new government bonds. Since there is neither capital accumulation

nor government consumption, the resource constraint implies Yt = Ct.

2.6 Log-linearization and Model Solution

First, we solve the firms’and households’problems, described in Sections 2.3 and 2.4, and

obtain the consumption Euler equation and the price-setting equation. Second, we detrend the

non-stationary variables before log-linearizing the model equations around their value at the

nonstochastic steady-state equilibrium. Let us define the detrended real output as yt ≡ Yt/γ
t.

We denote the log-deviation of an arbitrary (stationary) variable xt from its steady-state value

as x̂t. As in Nimark (2008), we obtain the imperfect-common-knowledge Phillips curve that

1Endowing the firms with a private signal about the deviations from the monetary rule would be an alternative
specification of the information set Ij,t. However, the noise variance of this additional private signal turns out
not to be identified in our estimation. Therefore, we decide to not adopt that specification of the information
set.
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reads as2

π̂t = (1− θ) (1− βθ)
∞∑
k=1

(1− θ)k−1 m̂c(k)t|t + βθ
∞∑
k=1

(1− θ)k−1 π̂(k)t+1|t, (7)

where π̂(k)t+1|t denotes the average k-th order expectations about the next period’s inflation rate,

π̂t+1, that is, π̂
(k)
t+1|t ≡

∫
Ej,t . . .

∫
Ej,t︸ ︷︷ ︸

k

π̂t+1dj...dj, any integer k > 1. In addition, m̂c(k)t|t denotes

the average k-th order expectations about the real aggregate marginal costs m̂ct ≡
∫
m̂cj,tdj,

which evolve according to the equation m̂c(k)t|t = ŷ
(k)
t|t − â

(k−1)
t|t , any integer k > 1. Average higher-

order expectations (HOE) enter the specification of the Phillips curve because price setters find

it optimal to forecast the forecasts of other price setters, as pointed out in Section 2.4.

The log-linearized Euler equation is standard and reads as follows:

ĝt − ŷt = Etĝt+1 − Etŷt+1 − Etπ̂t+1 + R̂t, (8)

where Et (·) denotes the expectation operator conditional on the complete information set,
which includes the history of the three aggregate shocks. The central bank’s reaction function

(6) can be written as the following:

R̂t = φππ̂t + φy (ŷt − ŷ∗t ) + η̂r,t. (9)

The demand conditions evolve according to ĝt = ρgĝt−1 + σgεg,t. The process for aggregate

technology becomes ât = ρaât−1+σaεa,t. The process leading the central bank’s deviation from

the monetary rule becomes η̂r,t = ρrη̂r,t−1 +σrεr,t. We detrend and then log-linearize the signal

equation concerning the level of aggregate technology (3) and obtain

âj,t = ât + σ̃aε
a
j,t. (10)

The signal equation concerning the demand conditions (4) is written as

ĝj,t = ĝt + σ̃gε
g
j,t. (11)

The signal about monetary policy is given by equation (9).

When firms solve their price-setting problem, they have to form expectations about the

dynamics of their nominal marginal costs MCj,t by using their information set Ij,t. To this
end, firms solve a signal extraction problem using the log-linearized model equations, which are

listed earlier, and the signal equations (9), (10), and (11).3

2See Appendix A for a detailed derivation of the Philips curve.
3In the context of the log-linear model, observing Rt, as indicated in the information set (5), or R̂t, as

11



A detailed description of how we solve the model is provided in Appendix B. The proposed

solution algorithm improves upon the one used in Nimark (2008) as our approach does not

require solving a system of nonlinear equations.4 When the model is solved, the law of motion

of the endogenous variables st ≡
[
ŷt, π̂t, R̂t

]′
reads as follows:

st = v0X
(0:k)
t|t , (12)

where X(0:k)
t|t ≡

[
â
(s)
t|t , η̂

(s)
r,t|t, ĝ

(s)
t|t : 0 ≤ s ≤ k

]′
is the vector of the average HOE about the exoge-

nous state variables (i.e., ât, η̂, and ĝt). The average s-th order expectations about the level of

aggregate technology, â(s)t|t , are defined as the integral of firms’expectations about the average

(s− 1)-th order expectations across firms. In symbols, â(s)t|t =
∫
Ej,t

(
â
(s−1)
t|t

)
dj for 1 ≤ s ≤ k,

where conventionally â(0)t|t = ât. Analogously, the average HOE about the central bank’s devia-

tion from the monetary rule and demand conditions are given by η̂(s)r,t|t =
∫ (s−1)
r,t|t η̂dj for 1 ≤ s ≤ k

and ĝ(s)t|t =
∫
ĝ
(s−1)
t|t dj for 1 ≤ s ≤ k, respectively. Note that we truncate the infinite hierarchy of

average higher-order expectations, considering only orders smaller than or equal to the positive

integer k. Henceforth, we set k = 20. The vector of average HOE is assumed to follow a Vector

AutoRegressive (VAR) model of order one5

X
(0:k)
t|t = MX

(0:k)
t−1|t−1 +Nεt. (13)

The parameter set of the log-linearized dispersed information model is given by the vector

ΘDIM =
[
θ, φπ, φy, β, ρa, ρg, ρr, σa, σ̃a, σg, σ̃g, σr, γ

]′
.

specified in the signal equation (9), does not change the price-setting decisions in that firms are assumed to
know the model and, hence, the nonstochastic steady-state, including the nominal interest rate arising at the
deterministic steady-state π∗r∗.

4Nimark (2009) introduces a method to improve the effi ciency of these types of solution methods for dispersed
information models in which agents (e.g., firms) use lagged endogenous variables to form their beliefs. An
alternative solution algorithm based on rewriting the equilibrium dynamics partly as a moving-average process
and setting the lag with which the state is revealed to be a very large number is analyzed by Hellwig (2002)
and Hellwig and Vankateswaran (2009).

5As is standard in the literature (e.g., Woodford 2002), we focus on equilibria where the higher-order ex-
pectations about the exogenous state variables follow a VAR model of order one. To solve the model we also
assume common knowledge of rationality. See Nimark (2008, Assumption 1, p. 373) for a formal formulation of
the assumption of common knowledge of rationality. Rondina and Walker (2012) study a new class of rational
expectations equilibria in dynamic economies with dispersed information and signal extraction from endogenous
variables.
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2.7 The Perfect Information Model (PIM)

If the noise variance of the private exogenous signals (σ̃a and σ̃g) is equal to zero, higher-order

uncertainty would fade away (i.e., X(k)
t|t = Xt, for any integer k) and the linearized model would

boil down to a prototypical (perfect information) three-equation New Keynesian DSGE model

(e.g., Rotemberg and Woodford 1997; Lubik and Schorfheide 2004; and Rabanal and Rubio-

Ramírez 2005). More specifically, the imperfect-common-knowledge Phillips curve (7) would

become π̂t = κpcm̂ct + βEtπ̂t+1, where κpc ≡ (1− θ) (1− θβ) /θ and the real marginal costs

m̂ct = ŷt − ât. The Euler equation and the Taylor rule would be the same as in the dispersed
information model. In the perfect information model, the monetary shock propagates by af-

fecting the intertemporal allocation of consumption. The real effects of money solely emerge

as a result of price stickiness as opposed to the sluggish adjustments of firms’expectations in

the dispersed information model. We call this prototypical New Keynesian DSGE model the

perfect information model (PIM). The parameter set of the log-linearized PIM is given by the

vector

ΘPIM =
[
θ, φπ, φy, β, ρa, ρg, ρr, σa, σg, σr, γ

]′
.

3 The Signaling Channel of Monetary Transmission

A salient feature of the dispersed information model is that the policy rate Rt transfers infor-

mation about the output gap and inflation to price setters. We call this transfer of information

the signaling channel of monetary transmission. Price setters use the policy rate as a signal

that helps them to track non-policy shocks (namely, technology shocks εa,t and demand shocks

εg,t) and, at the same time, to infer shocks to central bank’s exogenous deviations from the

monetary rule (i.e., monetary policy shocks εr,t).

This section is organized as follows. In Section 3.1, we define a set of measures to quantify

the amount of information conveyed by the signals observed by firms. Measuring information

flows will simplify the task of interpreting the macroeconomic implications of the signaling

channel later on. In Section 3.2, we introduce a set of tools that will help us characterize the

role of the signaling channel in the transmission of monetary disturbances. In Section 3.3, we

present and analyze three numerical examples that shed light on how the signaling channel

influences the transmission of monetary impulses to inflation and inflation expectations.

3.1 Measuring Information Flows from the Signaling Channel

Following a standard practice in information theory (Cover and Thomas 1991), we use an

entropy-based measure to assess how much information is provided by the signals firms observe

in every period. The entropy measures the uncertainty about a random variable. For instance,

13



the entropy associated with the level of aggregate technology ât, which is normally distributed

with (unconditional) covariance matrix var (ât), is defined as H (ât) ≡ 0.5 log2 [2πe · var (ât)].

We quantify the information flow conveyed by the signals as the reduction of uncertainty

(i.e., entropy) at time t due to observing the signals in the information set Ij,t.6 For instance,
the information flow about aggregate technology conveyed by the signals in the information

set Ij,t can be computed as H (ât; Ij,t) = H (ât) − H (ât|Ij,t), where the conditional entropy
H (ât|Ij,t) ≡ 0.5 log2 [2πe · var (ât|Ij,t)] and var (ât|Ij,t) denotes the variance of aggregate tech-
nology conditional on firms having observed the signals in their information set Ij,t.7 Note that
having assumed that firms have received an infinitely long sequence of signals at any time t

implies that the conditional covariance matrix var (ât|Ij,t) is time invariant and is the same
across firms at any time. Hence, information flows do not vary over time or across firms and

we can omit indexing the information flow H with j and t.
Analogously, define the entropy conditional on firms having observed only their private

signals as H (ât|Ij,t�Rt) = 0.5 log2 [2πe · var (ât|Ij,t�Rt)], where var (ât|Ij,t�Rt) denotes the

conditional variance of aggregate technology conditional on the history of private signals. We

can hence measure the information flow that firms receive about aggregate technology from

observing solely the private signals as H (ât; Ij,t�Rt) ≡ H (ât)−H (ât|Ij,t�Rt). Let us define

the entropy of aggregate technology conditional on firms having observed only the history of

the policy signal as H
(
ât|R̂t

)
≡ 0.5 log2

[
2πe · var

(
ât|R̂t

)]
, where var

(
ât|R̂t

)
denotes the

variance of aggregate technology conditional on firms having observed only the history of the

policy signal Rt. We measure the information flow about aggregate technology only conveyed

by the policy signal R̂t as H
(
ât; R̂

t
)
≡ H (ât)−H

(
ât|R̂t

)
.

We compute the fraction of private information about the aggregate technology ât as the

ratio of the private information flow to the information flow from all the signals in the informa-

tion set Ij,t; that is, ϑa ≡ H (ât; Ij,t�Rt) /H (ât; Ij,t). It should be noted that ϑa ∈ [0, 1]. If ϑa
is close to zero, then most of the information about aggregate technology stems from the policy

signal. On the contrary, if ϑa is close to unity, then most of the information about aggregate

technology stems from the private signal âj,t.8 Analogously, we can define the fraction of private

information about the demand conditions ĝt as ϑg ≡ H (ĝt; Ij,t�Rt) /H (ĝt; Ij,t).
Another useful statistic for assessing the macroeconomic effects of the signaling channel is

the fraction of information about the non-policy exogenous state variables (i.e., the level of

aggregate technology ât and the demand conditions ĝt) conveyed by the policy signal. For

6This approach is extensively followed by the literature of rational inattention pioneered by Sims (2003) and
followed by Máckowiak and Wiederholt (2009 and 2010), Paciello and Wiederholt (Forthcoming), and Matejka
(2011).

7The units of the measure H (ât) are bits of information. The conditional variance can be pinned down by
applying the Kalman-filter recursion, as shown in Appendix C.

8Note that the other private signal (i.e., ĝj,t) does not convey any information about the level of aggregate
technology because of the assumed orthogonality of structural shocks at all leads and lags.
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instance, the fraction of information about the level of aggregate technology is computed as

follows:

Φa ≡
H
(
ât; R̂

t
)

H
(
ât; R̂t

)
+H

(
η̂r,t; R̂

t
)

+H
(
ĝt; R̂t

) . (14)

The numerator quantifies the information flow about the level of aggregate technology ât con-

veyed by the public signal. The denominator quantifies the information flow about the three

exogenous state variables (i.e., ât, η̂r,t, and ĝt) conveyed by the policy signal. This ratio Φa

assumes values between zero and one.

In summary, the ratio ϑa measures the accuracy of the private signal âj,t about the level of

aggregate technology ât relative to that of the policy signal. The ratio Φa evaluates the accuracy

of the public signal relative to the three exogenous state variables (i.e., ât, η̂r,t, and ĝt). Anal-

ogously, we can define the fraction of information about the deviation from the monetary rule

conveyed by the policy signal Φm and the fraction of information about the demand conditions

conveyed by the policy signal Φg. Note that Φa + Φm + Φg = 1.

Let us consider the following example. When the ratio ϑa is close to one, firms mostly rely

on private information to learn about the aggregate technology. When ϑa is close to zero and

Φa is suffi ciently larger than zero, the quality of private information is rather poor relative to

that of public information, and hence, firms mostly rely on the policy signal to learn about the

level of aggregate technology. In this case, as we shall show in the next section, firms tend to

interpret any changes in the policy rate as a response of the central bank to aggregate technology

shocks, and so the inflationary effects of the signaling channel will be important. By the same

token, the inflationary effects of the signaling channel depend on the relative precision of private

information regarding the demand conditions relative to public information, as captured by the

ratios ϑg and Φg.

3.2 A Useful Decomposition

In this section, we analyze the signaling effects of monetary policy on the propagation of struc-

tural shocks (i.e., technology shocks, monetary policy shocks, and demand shocks) in the dis-

persed information model. It is illustrative to use equation (12) to decompose the effects of the

average HOE about the three exogenous state variables (i.e., ât, η̂r,t, and ĝt) on inflation; doing

so leads us to the following:

∂πt+h
∂εi,t

= va ·
∂Xa

t+h

∂εi,t
+ vm ·

∂Xm
t+h

∂εi,t
+ vg ·

∂Xg
t+h

∂εi,t
, (15)

where i ∈ {a, r, g} is the subscript that determines the shock of interest (i.e., technology,
monetary, or demand shock) and the row vectors va,vm, and vg are subvectors of the second row
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of the matrix v0 in equation (12). Additionally, Xa
t+h is the column vector of (average) h-step-

ahead HOE about the level of aggregate technology ât; that is, Xa
t+h ≡

[
â
(s)
t+h|t : 0 ≤ s ≤ k

]
.9

Note that the vector Xa
t+h also includes the average zero-order expectations a

(0)
t+h|t, which are

conventionally equal to the actual aggregate technology; that is, â(0)t+h|t = ât+h, for any t and

h. Analogously, Xm
t+h ≡

[
η̂
(s)
r,t+h|t : 0 ≤ s ≤ k

]
and Xg

t+h ≡
[
ĝ
(s)
t+h|t : 0 ≤ s ≤ k

]
are the column

vectors of (average) h-step-ahead HOE about the deviation from the monetary rule and the

demand conditions, respectively.

It is important to emphasize that the signaling channel would be inactive if firms never

observed the policy rate in the dispersed information model; that is, Rt /∈ Ij,t. Note that
if the signaling channel were inactive, the impulse response vectors

∂Xa
t+h

∂εr,t
and

∂Xg
t+h

∂εr,t
would

be equal to zero vectors at any time t and horizon h. This means that the average higher-

order expectations about aggregate technology and demand conditions would not respond to

monetary shocks because the policy rate is not observed and the private signals (i.e., âj,t and ĝj,t)

are orthogonal to monetary shocks. Furthermore, average HOE about central bank’s deviations

from the monetary rule Xm
t+h would not respond to non-policy shocks (i.e., εa,t and εg,t) at any

time t and horizon h if the signaling channel were inactive. In summary, when the signaling

channel is inactive, the following zero restrictions hold:
∂Xj

t+h

∂εi,t
= 0(k+1)×1 for all i, j ∈ {a, r, g}2

and i 6= j. However, if the signaling channel is active, these zero restrictions do not necessarily

apply because the policy signal is endogenous and conveys information about all the aggregate

shocks that hit the economy. In other words, the policy signal is a source of confusion about

the nature of shocks that have hit the economy. For instance, an increase in the policy rate can

be interpreted by firms as the central bank’s response to a contractionary monetary shock, an

adverse technology shock, or a positive demand shock.

The decomposition in equation (15) provides us with a powerful tool to interpret the sig-

naling effects of monetary policy on the propagation of structural shocks. To shed light on

the signaling effects of monetary policy on inflation expectations, we work out a decompo-

sition for the average inflation expectations of the form (15), using the fact that the law of

motion for the average first-order expectations about the endogenous variables st reads as

s
(1)
t+h|t = v0M

hX
(1:k+1)
t|t .10

3.3 Some Numerical Examples

Endowed with these tools, we conduct a simple numerical experiment, in which we set the

Calvo parameter θ = 0.65, the autoregressive parameters ρa = 0.85 and ρr = 0.65, and the

9Conventionally, the average zero-order expectation about a random variable is equal to the variable itself;
that is, â(0)t+h|t = ât+h, for any h.
10For a formal proof of this result, see Appendix D, Proposition 2.
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variances σa = 0.7 and σr = 0.5. The central bank’s response to inflation is determined

by φπ = 1.5. For the sake of simplicity, we shut down the demand shocks (i.e., σg = 0)

and the policy response to output gap (i.e., φy = 0). Let us first consider the propagation of a

contractionary monetary policy shock when the signal noise σ̃a is set to be equal to the standard

deviation of the aggregate technology shock, σa (i.e., the signal-to-noise ratio σa/σ̃a = 1). In

this numerical case, firms receive 92 percent of their overall information about the aggregate

technology from the private signal (i.e., ϑa = 0.92), suggesting that firms mostly rely on private

information to learn about the non-policy shock. Firms will use the policy signal to mainly

learn about monetary policy shocks. The bottom graphs of Figure 2 report the response of the

average higher-order expectations about aggregate technology ∂Xa
t+h/∂εr,t (bottom left graph)

and about the deviation from the monetary rule ∂Xm
t+h/∂εr,t (bottom right graph) from the

first order up to the third order for h periods after the monetary shock.11 Note that the average

HOE about the deviation from the monetary rule are very close to the true value η̂r,t+h, which

is denoted by the red circles, showing that firms can rather easily figure out that the observed

rise in the policy rate is due to a contractionary monetary policy shock.

The top left graph of Figure 2 shows that the response of inflation to the contractionary

monetary shock is negative. The vertical bars in the top left graph are related to the decompo-

sition (15) and isolate the effects of the change in the average HOE about aggregate technology

on inflation h periods after the shock, v′a∂X
a
t+h/∂εr,t, from those about the deviation from the

monetary rule, v′m ·∂Xm
t+h/∂εr,t. If the signaling channel were inactive (i.e., firms never observe

the policy rate), the gray bars would have zero length. It can be observed that the inflationary

effects of HOE about aggregate technology (i.e., the gray vertical bars) are positive. This hap-

pens because the observed rise in the policy rate misleads firms, inducing them to believe − to
some extent − that the central bank has raised the policy rate in response to a negative tech-
nology shock, as confirmed by the response of the average HOE about aggregate technology in

the bottom left plot of Figure 2. However, note that these effects are very small quantitatively

because firms acquire most of the information about aggregate technology from their private

signals (ϑa = 0.92).

Let us now turn our attention to the case in which (i) firms have imprecise private in-

formation (i.e., the signal-to-noise ratio σa/σ̃a = 0.05) and (ii) the central bank’s estimates

about inflation and output gap are more accurate than those in the previous example (i.e.,

σr = 0.1). The following two features emerge. First, now firms acquire less private information

about aggregate technology compared with the previous example, as ϑa = 0.02 < 0.92. Such a

tiny ratio ϑa implies that firms have to almost entirely rely on the policy signal to learn about

aggregate technology. Second, most of the information that firms receive from the policy signal

is now about aggregate technology, since Φa = 0.84. That the signaling channel conveys a lot

11Note that because we shut down the demand shock, ∂Xg
t+h/∂εr,t = 0(k+1)×1.
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Figure 2: Impulse response functions to a one-standard deviation contractionary monetary shock: the case of
σa/σ̃a = 1 and σr = 0.5. HOE means higher-order expectations. Top plots: Response of inflation (left) and
four-quarter ahead inflation expectations (right). The gray (white) bars denote the effects of average higher-

order expectations about the deviation from the monetary rule η̂r,t (about the level of aggregate technology ât)
on inflation or inflation expectations. Bottom plots: Response of average expectations about level of aggregate

technology ât (left) and about the central bank’s deviation from the monetary rule η̂r,t (right). The red line
with circles marks the true value of the level of aggregate technology ât (left) or the deviation from the monetary
rule η̂r,t (right). The horizontal axis in all graphs measures the number of quarters after the shock. The vertical
axis in the top graphs represents units of percentage points of annualized rates.

of information about the non-policy shocks is confirmed by the bottom graphs of Figure 3. The

response of the average HOE about the deviation from the monetary rule are quite far from

the truth (i.e., the red line with circles), suggesting that these average HOE respond weakly

to the observed rise in the policy rate due to the monetary shock. Conversely, the average

HOE about aggregate technology respond more strongly to the monetary shocks, suggesting

that firms mainly interpret the monetary tightening as the response of the central bank to an

inflationary technology shock.

This is exactly the situation in which the inflationary effects of the signaling channel are very

strong. The top graphs of Figure 3 show the effects of the signaling channel on inflation and

inflation expectations as captured by the gray vertical bars. Signaling effects are so strong that

inflation and inflation expectations actually rise in response to a contractionary monetary shock.

Positive responses of the inflation rate to monetary shocks have been empirically documented

in the VAR literature (Sims 1992) and dubbed by Eichenbaum (1992) as a price puzzle. Having

inflation respond positively to monetary shocks is not puzzling in this model with the signaling

effects of monetary policy, as rises (cuts) in the policy rate signal to price setters the occurrence
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Figure 3: Impulse response functions to a one-standard deviation contractionary monetary shock: the case of
σa/σ̃a = 0.05 and σr = 0.1. HOE means higher-order expectations.

of inflationary (deflationary) non-policy shocks.

We now focus on the case in which firms’private information is still quite imprecise (i.e.,

σa/σ̃a = 0.05), but the variance of the monetary shock is σr = 0.5 and hence bigger than that

of the previous example. As in the previous case, firms do not rely on the private signal to

learn about aggregate technology because this signal provides less information than the policy

signal (ϑa = 0.17). Nevertheless, unlike the previous case but similar to the first case, the

policy signal is relatively less informative about aggregate technology than about the deviation

from the monetary rule (Φa = 0.07), since the central bank is less precise in estimating current

inflation and output gap. Figure 4 shows that in this numerical example, the signaling channel

has a quite weak inflationary effect and the price puzzle disappears, similar to the first numerical

example depicted in Figure 2.

To sum up, we note that the inflationary consequences of the signaling channel are strong

when the following two conditions hold jointly: (i) firms’private information is noisier than

public information, which is conveyed by the policy rate, and (ii) the policy rate is more

informative about non-policy shocks than about monetary policy shocks.

4 Empirical Analysis

This section contains the quantitative analysis of the model. Section 4.1 presents the data

set and the state-space model for the econometrician. In Section 4.2, we discuss the prior
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Figure 4: Impulse response functions to a one-standard deviation contractionary monetary shock: the case of
σa/σ̃a = 0.05 and σr = 0.5. HOE means higher-order expectations.

and posterior distribution for the model parameters. In Section 4.3, we study the propagation

of unanticipated monetary disturbances with particular emphasis on the functioning of the

signaling channel. In Section 4.4, we deal with how the signaling channel affects the propagation

of non-policy disturbances, such as the technology shock and the demand shock. In Section

4.5, we evaluate the signaling effects of monetary policy on the observed dynamics of GDP, the

rate of inflation, and inflation expectations. In Section 4.6, we formally assess the empirical

performance of the DIM relative to that of the PIM introduced in Section 2.7.

4.1 The State-Space Model for the Econometrician

The data set includes five observable variables: the U.S. real GDP growth rate, U.S. inflation

rate (from the GDP deflator), the federal funds rate, one-quarter-ahead inflation expectations,

and four-quarters-ahead inflation expectations. The data are quarterly and range from 1970:Q3

through 2007:Q4. Data on inflation expectations are obtained from the Survey of Professional

Forecasters (SPF). The measurement equations are:

ln

(
GDPt

POP≥16t

)
− ln

(
GDPt−1

POP≥16t−1

)
= ln γ + ŷt − ŷt−1,

ln

(
PGDPt
PGDPt−1

)
= lnπ∗ + π̂t,
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FEDRATEt = lnR∗ + R̂t,

ln

(
PGDP3t
PGDP2t

)
= lnπ∗ + π̂

(1)
t+1|t + σm1ε

m1
t ,

ln

(
PGDP6t
PGDP5t

)
= lnπ∗ + π̂

(1)
t+4|t + σm2ε

m2
t ,

where GDPt is the real gross domestic product computed by the U.S. Bureau of Economic

Analysis (BEA) (haver analytics’mnemonic: GDPC96 ); POP≥16t is the civilian non-institutional

population aged 16 years old and over as computed by the U.S. Bureau of Labor Statistics

(BLS) (haver analytics’mnemonic: LNS10000000 ); PGDPt is the GDP deflator computed by

the BEA (haver analytics’mnemonic: GDPDEF ); FEDRATE is the average of daily figures

of the effective federal funds rate (haver mnemonic: FEDFUNDS) reported by the Federal

Reserve Economic Data (FRED) database managed by the Federal Reserve Bank of St. Louis;

and PGDP2t, PGDP3t, PGDP5t, and PGDP6t are the SPF’s mnemonics for the median

forecasts about the current, one-quarter-ahead, three-quarters-ahead, and four-quarters-ahead

GDP price indexes, respectively. We relate these statistics with the first moment of the distrib-

ution of firms’expectations implied by the model. To avoid stochastic singularity, we introduce

two independently and identically distributed (i.i.d.) Gaussian measurement errors εm1
t and

εm2
t .

4.2 Bayesian Estimation

At the deterministic steady state, the discount factor β depends on the linear trend of real out-

put γ and the steady-state real interest rate R∗/π∗. Hence, we fix the value for this parameter

so that the steady-state nominal interest rate R∗, the inflation rate π∗, and the growth rate γ

match their respective sample means. The prior and posterior statistics for the model parame-

ters are reported in Table 1. The prior distribution for the Calvo parameter θ is chosen so as to

put probability mass to values that are consistent with studies on price setting at micro levels

(Bils and Klenow 2004; Klenow and Kryvtsov 2008; Nakamura and Steinsson 2008; Klenow and

Malin 2010). The priors for the autoregressive parameters ρa, ρr, and ρg are broad enough to

accommodate a wide range of persistence degrees for the three exogenous processes. The prior

for the monetary policy parameters is set to be fairly tight because the inflation parameter φπ
seems to be only weakly identified in the perfect information model.12 The volatility of the

monetary policy shock (σr) and that of the demand shock (σg) are informally taken according

to the rule proposed by Del Negro and Schorfheide (2008) that the overall variance of GDP

12The posterior statistics for the DIM parameters reported in Table 1 and all the results in the subsequent
sections would be substantially unchanged if one estimates the models using a broader prior for the policy
parameters φπ and φy.
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DIM - Posterior PIM - Posterior Prior
Name Mean 5% 95% Mean 5% 95% Type Mean Std.
θ 0.2613 0.2450 0.2801 0.5796 0.5468 0.6114 B 0.50 0.30
φπ 1.0629 1.0451 1.0820 1.3234 1.2324 1.4200 G 1.50 0.10
φy 0.3416 0.3212 0.3607 0.4356 0.1918 0.6560 G 0.25 0.10
ρr 0.8613 0.8520 0.8713 0.4690 0.4163 0.5224 B 0.50 0.20
ρa 0.9932 0.9911 0.9963 0.9751 0.9667 0.9832 B 0.50 0.20
ρg 0.8505 0.8408 0.8597 0.8192 0.7949 0.8435 B 0.50 0.20

100σa 0.7569 0.6440 0.8516 0.9961 0.8973 1.0957 IG 0.80 1.50
100σ̃a 1.6048 1.3517 1.8332 − − − U 50.00 28.87
100σg 2.7843 2.6976 2.8610 0.8169 0.6908 0.9421 IG 0.80 1.50
100σ̃g 34.277 30.789 38.068 − − − U 50.00 28.87
100σr 0.6372 0.6267 0.6429 0.6832 0.5717 0.7947 IG 0.80 1.50
100σm1 0.1291 0.1145 0.1452 0.1753 0.1585 0.1923 IG 0.10 0.08
100σm2 0.1222 0.1087 0.1381 0.1727 0.1565 0.1892 IG 0.10 0.08
100ln γ 0.4889 0.3786 0.5927 0.3302 0.3030 0.3556 N 0.62 0.10
100lnπ∗ 0.8327 0.7181 0.9514 0.7374 0.6124 0.8655 N 0.65 0.10

Table 1: Prior and Posterior Statistics for the parameters of the dispersed information model (DIM) and the
perfect information model (PIM)

growth rate, inflation, and policy rate is roughly close to that observed in the presample, which

ranges from 1960:Q1 through 1970:Q2. The variance of the idiosyncratic technology (σ̃a) and

that of the private signal concerning the demand conditions (σ̃g) are crucial for the macroeco-

nomic implications of the signaling channel, as shown in Section 3.3. To avoid conjecturing a

priori that the signaling channel strongly influences firms’beliefs about non-policy shocks, we

set a loose uniform prior over these parameters. It can be shown that the signaling channel

implied by the prior has quantitatively weak inflationary effects.13 The implied 95 percent prior

credible set for the fraction of public information about the three exogenous state variables (i.e.,

Φa, Φm, and Φg) spans the spectrum of admissible values (0, 1). Finally, the prior mean for the

measurement errors (i.e., σm1, σm2) is set so as to match the variance of inflation expectations

reported in the Livingston Survey.

We combine a prior distribution for the parameter set of the two models (i.e., the DIM

and the PIM) with their likelihood function and conduct Bayesian inference. As explained in

Fernández-Villaverde and Rubio-Ramírez (2004) and An and Schorfheide (2007), a closed-form

expression for the posterior distribution is not available, but we can approximate the moments of

the posterior distributions via the Metropolis-Hastings algorithm. We obtain 250,000 posterior

draws for the dispersed information model and 1,000,000 draws for the perfect information

model. The posterior statistics for the parameters of the perfect information model are fairly

standard. As far as the DIM is concerned, the posterior mean for the Calvo parameter θ

13See Appendix E.
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implies very flexible price contracts, whose implied duration is roughly four months. This

finding suggests that the likelihood favors sources of persistence that are unrelated to sticky

prices. Similar to Melosi (Forthcoming), the DIM relies on the sluggish adjustment of the

higher-order expectations to fit the high serial correlation of the macro data.

The posterior mean for the inflation coeffi cient of the Taylor rule (φπ) is substantially smaller

than its prior mean. The posterior mean for the variance of the monetary shock (σr) is slightly

smaller than what is conjectured in the prior. As discussed in Section 3, a small variance of

monetary shocks makes the policy signal R̂t more informative about non-policy shocks (i.e.,

demand and aggregate technology shocks) and, hence, tends to strengthen the inflationary

effects of the signaling channel.

The posterior mean for the variance of the firm-specific technology shock σ̃a implies that

the posterior mean of the signal-to-noise ratio σa/σ̃a is 0.47. The posterior mean for the

signal-to-noise ratio σg/σ̃g is extremely small, suggesting that firms’ private information is

less accurate about demand shocks than about aggregate technology shocks. These estimates

suggest that, ceteris paribus, firms will rely more on the policy signal to learn about demand

shocks than to learn about aggregate technology shocks. This intuition is confirmed by looking

at the statistics introduced in Section 3.1. The posterior distribution implies that the policy

signal is mainly informative about aggregate technology, as roughly (Φa =)80 percent of the

public information flow is about aggregate technology. Nevertheless, firms almost entirely learn

about the aggregate technology from their private signal (i.e., the level of their idiosyncratic

technology): the 95-percent posterior credible set for the fraction of private information about

the aggregate technology ϑa ranges from 0.9972 to 0.9983. These numbers suggest that the

accuracy of private information about the level of aggregate technology is much higher than

that of public information. Conversely, firms have to rely on the policy signal R̂t to learn

about the demand conditions ĝt, since the private signal conveys only ϑg = 0.10 of the overall

information firms gathered about this exogenous state variable. It is important to notice that

the remaining (1− Φa =) 20 percent of information conveyed by the policy signal is equally split

between information about the deviation from the monetary rule η̂r,t and demand conditions

ĝt, as the posterior means for Φm and Φg are roughly equal to 10 percent. As we shall see, this

feature will make it hard for firms to tell whether the observed changes in the policy rate are

due to monetary shocks or demand shocks.

To sum up, we find that firms receive most of their information about aggregate technology

from their private signal but have to rely on the policy signal to learn about monetary shocks

and demand shocks. The policy rate is found to be equally informative about these two types

of shocks. In such an environment, the inflationary effects of the signaling channel are expected

to be important, since firms will tend to interpret changes in the policy rate as the central

bank’s responses to demand shocks. We will analyze the implication of this feature in the next
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Impulse Response Functions to a Contractionary Monetary Shock
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Figure 5: Impulse response function of the observable variables to a monetary shock that raises the interest
rate by 25 bps. The solid line denotes posterior means computed for every 500 posterior draws. The horizontal

axis in all graphs measures the number of quarters after the shock. The vertical axis in all graphs reports units

of percentage points of annualized rates.

two sections.

4.3 Propagation of Monetary Shocks

Figure 5 shows the impulse response functions (and their 95 percent posterior credible sets in

gray) of the real GDP growth rate, the inflation rate, the federal funds rate, one-quarter-ahead

inflation expectations, and four-quarters-ahead inflation expectations to a monetary shock that

raises the interest rate by 25 basis points. Two features of these impulse response functions

have to be emphasized. First, inflation expectations respond positively to a monetary policy

shock. Second, inflation and inflation expectations seem to react fairly sluggishly, even though

the estimated average duration of the price contract is only four months.

To shed light on the origins of such a high price rigidity, we plot the vertical bars in the

top left graphs of Figure 6 that capture the decomposition (15) and measure the inflationary

effects of the change in the average higher-order expectations (HOE) about aggregate technology

v′a∂X
a
t+h/∂εr,t (the gray bars), the deviation from the monetary rule v

′
m ·∂Xm

t+h/∂εr,t (the white

bars), and demand conditions v′g ·∂X
g
t+h/∂εr,t (the black bars) for h periods after the monetary

shock. The sum of the three vertical bars in the top graphs delivers the response of inflation and

inflation expectations (i.e., the solid lines in the upper graphs). We observe a large effect of the

average HOE about the demand conditions (i.e., the black bars), which can be interpreted as a
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The Signaling Effects on the Propagation of Monetary Shocks
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Figure 6: Impulse response functions of inflation, inflation expectations, and average higher-order expectations
(HOE) to a monetary shock that raises the interest rate by 25 bps. Parameter values are set equal to the posterior

mean. Top graphs: The solid blue line is the response of inflation (left graph), one-quarter-ahead inflation

expectations (middle graph), and four-quarters-ahead inflation expectations (right graph) and its decomposition

to the effects of average HOE about the level of aggregate technology ât, the deviation from the monetary

rule η̂r,t, and the demand conditions ĝt (i.e., the vertical bars). Bottom graphs: Response of the true level

of aggregate technology (left graph), the deviation from the monetary rule (middle graph), and the demand

conditions (right graph) and the associated average HOE up to the third order. The vertical axis in the top

graphs reports units of percentage points of annualized rates. The vertical axis in the bottom graphs reports the

percent deviations from the value of the corresponding variable at the deterministic steady-state equilibrium.

situation in which price setters believe that the federal funds rate has been raised in response

to a positive demand shock (see the lower right graph). Such an interpretation gives rise to

inflationary pressures (captured by the black bars), which dampen the deflationary consequences

(mainly captured by the white bars) associated with the contractionary monetary shock.

The three bottom graphs of Figure 6 report the response of the average HOE about the

three exogenous state variables. The average HOE about aggregate technology fall right after

the shock and then go back to zero rather quickly. Average HOE about the demand conditions

rise substantially and remain misaligned with the truth for quite a long time (see the lower right

graph). The average HOE about the deviation from the monetary rule are quite far from the

truth and remain so for a long period of time (see the lower middle graph). These responses of

the average HOE about the three exogenous state variables confirm that firms mostly interpret

the rise in the interest rate as the central bank’s response to an inflationary demand shock.

This triggers persistently high black bars in the top graphs, delivering a fairly high degree of

price rigidity.

To understand why firms interpret the rise in the policy rate as the central bank’s response
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Impulse Response Functions to a Positive Technology Shock
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Figure 7: Impulse response function of the observable variables to a one-standard-deviation positive technology
shock. The solid line denotes posterior means computed for every 500 posterior draws. The horizontal axis

in all graphs measures the number of quarters after the shock. The vertical axis in all graphs reports units of

percentage points of annualized rates.

to a demand shock, recall from Section 4.2 that firms receive poor private information about

the demand conditions (ϑg = 0.10) and hence have to rely on the policy signal. The policy

signal is equally informative about the demand conditions and the deviation from the monetary

rule with the ratio Φg and Φm being roughly equal.

The fact that firms interpret a change in the policy rate as a signal that the central bank is

responding to a demand shock also affects the response of inflation expectations to monetary

shocks. The upper middle and right graphs show that inflation expectations react weakly to

monetary shocks. They initially respond positively because of very strong inflationary effects

of the HOE about the demand conditions. They turn negative later as the inflationary effects

of the average HOE about the demand conditions and the aggregate technology decay faster

than those associated with the average HOE about the deviation from the monetary rule.

Finally, note that the effects of the HOE about aggregate technology (i.e., the gray bars in

the upper left graph) are deflationary − albeit quantitatively fairly small − as the gray vertical
bars in the top left graph lie in negative territory. This is a general-equilibrium result that is

due to the sharp contraction of the average HOE about real marginal costs in response to the

monetary shock. Since this is a general-equilibrium effect, it is hard to find one exact cause.

However, the substantial price rigidity due to the presence of the signaling channel plays some

role in exacerbating the negative elasticity of the average HOE about real marginal costs to
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The Signaling Effects on the Propagation of Technology Shocks
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Figure 8: Impulse response functions of inflation, inflation expectations, and average higher-order expectations
(HOE) to a positive aggregate technology shock. Parameter values are set equal to the posterior mean. Top

graphs: The solid blue line is the response of inflation (left graph), one-quarter-ahead inflation expectations

(middle graph), and four-quarters-ahead inflation expectations (right graph) and its decomposition to the effects

of average HOE about the level of aggregate technology ât, the deviation from the monetary rule η̂r,t, and the
demand conditions ĝt (i.e., the vertical bars). Bottom graphs: Response of the true level of aggregate technology
(left graph), the deviation from the monetary rule (middle graph), and the demand conditions (right graph)

and the associated average HOE up to the third order. The vertical axis in the top graphs reports units of

percentage points of annualized rates. The vertical axis in the bottom graphs reports the percent deviations

from the value of the corresponding variable at the deterministic steady-state equilibrium.

monetary shocks (i.e.,
∂ŷ

(l)
t|t

∂â
(0:k)
t|t

∂â
(0:k)
t|t

∂εr,t
< 0, for any order 0 ≤ l ≤ k).

In summary, the signaling channel turns out to enhance price rigidity and, consequently,

the real effects of monetary disturbances. Furthermore, the signaling effects of monetary policy

cause inflation expectations to respond positively to monetary shocks. The reason for these

two results is that in the aftermath of a monetary shock firms tend to attach a non-negligible

probability that the central bank has adjusted the policy rate to react to a demand shock.

4.4 Propagation of Non-policy Shocks

Figure 7 shows the response of the real GDP growth rate, the inflation rate, the federal funds

interest rate, one-quarter-ahead inflation expectations, and four-quarters-ahead inflation expec-

tations to a one-standard-deviation positive aggregate technology shock. Since the aggregate

technology shock is almost unit root, the response of variables exhibits a high degree of persis-

tence. In the aftermath of a positive aggregate technology shock, the GDP growth rate becomes

positive, while both inflation and inflation expectations fall.
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Impulse Response Functions to a Positive Demand Shock
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Figure 9: Impulse response function of the observable variables to a one-standard-deviation positive demand
shock. The solid line denotes posterior means computed for every 500 posterior draws. The horizontal axis

in all graphs measures the number of quarters after the shock. The vertical axis in all graphs reports units of

percentage points of annualized rates.

Figure 8 graphs the decomposition of the response of inflation and inflation expectations

to a positive aggregate technology shock (upper graphs) and the responses of average HOE

about the three exogenous state variables ât, η̂r,t, and ĝt (lower graphs). A drop in the policy

rate owing to a positive technology shock induces firms to believe that the central bank is

responding to either an expansionary monetary shock or a negative demand shock. If firms are

persuaded that an expansionary monetary shock has occurred, then the confusion generated

by the signaling channel would limit the response of inflation to the technology shock. This

effect is captured by the white bars lying in positive territory in the top graphs. However, if

monetary easing leads firms to believe that a negative demand shock has hit the economy, the

opposite effect on inflation would prevail. Firms’inflation expectations would further decrease,

and inflation would go further down. This effect is captured by the black bars lying in negative

territory in the top graphs.

One feature of Figure 8 deserves to be emphasized. Most importantly, the top left graph

shows that the response of average expectations about the deviation from the monetary rule

(i.e., the white bars) and that about the demand conditions (i.e., the black bars) contribute

to the adjustment of inflation by similar amounts in every quarter after the technology shock.

Thus, there are two conflicting signaling effects of monetary policy on inflation and inflation

expectations in the aftermath of a technology shock. These two effects turn out to cancel each

other out. This result squares with the previous finding that the signaling channel provides
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The Signaling Effects on the Propagation of Demand Shocks
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Figure 10: Impulse response functions of inflation, inflation expectations, and average higher-order expecta-
tions (HOE) to a positive demand shock. Parameter values are set equal to the posterior mean. Top graphs:

The solid blue line is the response of inflation (left graph), one-quarter-ahead inflation expectations (middle

graph), and four-quarters-ahead inflation expectations (right graph) and its decomposition to the effects of aver-

age HOE about the level of aggregate technology ât, the deviation from the monetary rule η̂r,t, and the demand
conditions ĝt (i.e., the vertical bars). Bottom graphs: Response of the true level of aggregate technology (left

graph), the deviation from the monetary rule (middle graph), and the demand conditions (right graph) and the

associated average HOE up to the third order. The vertical axis in the top graphs reports units of percentage

points of annualized rates. The vertical axis in the bottom graphs reports the percent deviations from the value

of the corresponding variable at the deterministic steady-state equilibrium.

firms with virtually the same amount of information about the deviation from the monetary

rule (Φm) and the demand conditions (Φg), as noticed in Section 4.2. Importantly, this result

also implies that the signaling effects of monetary policy on price dynamics are negligible in the

aftermath of an aggregate technology shock.14

The propagation of a one-standard-deviation positive demand shock is described in Figure

9. It is important to emphasize that inflation responds negatively to demand shocks, while the

GDP growth rate responds positively. Inflation expectations initially respond positively, but

their response turns negative a few quarters after the shock. Note that the central bank raises

its policy rate in the aftermath of a positive demand shock.

As reported in Figure 10, the signaling channel critically affects the propagation of demand

shocks, causing inflation to respond negatively to these shocks. There are two signaling effects

14It should also be noted that the middle and right lower graphs of Figure 8 show that six quarters after
the shock, firms change their minds about the deviation from the monetary rule and the demand conditions.
While firms initially expect the response of these state variables to be negative, later they expect it to become
positive. This leads to a reversion of the effects of the HOE about these state variables on inflation and inflation
expectations in the top graphs. Signaling effects of monetary policy are still negligible at this longer horizon.
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of monetary policy in the aftermath of a demand shock. First, the signaling effects may induce

firms to believe that a contractionary monetary shock has prompted the central bank to raise

the policy rate (see the white bars). Second, the signaling effects may also induce firms to

believe that a negative technology shock might be the reason behind the observed rise in the

federal funds rate (see the gray bars). Both effects push inflation down,15 countering the rise in

inflation due to the occurrence of a positive demand shock (see the black bars lying in positive

territory in the upper graphs of Figure 10). Note also that while the second effect (captured

by the gray bars in the top graphs) has quantitatively a fairly small impact on inflation and

inflation expectations, the first effect (captured by the white bars) appears to substantially

contribute to pushing inflation and inflation expectations down. This result is explained by the

fact that private information about demand shocks is fairly inaccurate, whereas price setters

receive quite precise information about aggregate technology shocks. Therefore, price setters

mostly rely on the information conveyed by the policy rate to learn about demand shocks.

In summary, the signaling effects of monetary policy on the rate of inflation and inflation

expectations are found to be negligible in the aftermath of a technology shock. Furthermore,

the signaling effects of monetary policy are deflationary (inflationary) in the aftermath of a

positive (negative) demand shock because the resulting increase (cut) in the policy rate signals

−to some extent− to price setters that a contractionary (expansionary) monetary shock has
occurred.

4.5 Bayesian Evaluation of the Signaling Channel

In this section, we use the DIM to empirically assess the signaling effects of monetary policy

on GDP, inflation, and inflation expectations. To this end, we run a Bayesian counterfactual

experiment using an algorithm that can be described as follows. In Step 1, for every posterior

draw of the DIM parameters, we obtain the model’s predicted series for the three structural

shocks (aggregate technology shock εa,t, monetary shock εr,t, and the demand shock, εg,t) using

the two-sided Kalman filter. In Step 2, these filtered series of shocks are used to simulate

real output, the rate of inflation, one-quarter-ahead inflation expectations, and four-quarters-

ahead inflation expectations from the following two models: (i) the DIM and (ii) the DIM in

which monetary policy has no signaling effects. The latter model is obtained from the DIM

by assuming that the history of the policy rate does not belong to firms’information set (i.e.,

Rt /∈ Ij,t, for all periods t and firms j). As discussed in Section 3.2, this assumption implies
that the signaling channel is inactive, and hence, firms form their expectations by using only

their private information (i.e., the history of the signals âj,t and ĝj,t). In Step 3, we compute

15The deflationary effects associated with expecting an adverse technology shocks are due to general-
equilibrium effects, which are discussed in Section 4.3.
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Figure 11: Signaling effects of monetary policy on gross domestic product (GDP), inflation, and inflation
expectations. The solid black line is obtained by subtracting the across-posterior-draws mean of the series

obtained by simulating the dispersed information model (DIM) without the signaling channel from that of the

series obtained by simulating the DIM in which monetary policy has signaling effects. The two-sided filtered

shocks of the estimated DIM are used to simulate the models. The vertical axis in all graphs measures units of

percentage points of annualized rates.

the mean of the simulated series across posterior draws for the two models.

The solid line in Figure 11 marks the signaling effects of monetary policy on GDP (upper

left graph), inflation (upper right graph), one-quarter-ahead inflation expectations (lower left

graph), and four-quarters-ahead inflation expectations (lower right graph), taken by subtracting

the mean of the simulated series of the DIM without signaling effects from the corresponding

mean of the simulated series of the DIM with signaling effects. Let us focus first on the signaling

effects of monetary policy on the rate of inflation (i.e., the upper right graph) and inflation

expectations (i.e., the lower graphs). The solid line of these graphs lies in positive territory

throughout the 1970s, suggesting that the signaling effects of monetary policy contributed to

raising inflation and inflation expectations in that decade. In particular, the signaling effects

on inflation were very strong when the Federal Reserve raised the policy rate to disinflate

the economy during the 1970s and early 1980s. As shown in Figure 1, the first attempt at

disinflating the U.S. economy in the 1970s was carried out by the Federal Reserve by gradually

raising the federal funds rate from 1972 through 1974.16 The second attempt is captured by the

gradual increases of the policy rate from 1977 through the second quarter of the 1979, when

16See Hetzel (1998) and Rotemberg (2013) for an analysis of the historical reasons that led the Federal Reserve
to adopt a gradualistic approach to disinflate the U.S. economy under Chairman Arthur Burns.
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Figure 12: Comparison of the inflation rate simulated from the estimated dispersed information model (DIM)

(solid black line) with those simulated from the DIM in which the signaling channel is shut down (red dashed

line). Model simulation is based on two-sided filtered shocks from the estimated DIM. The black line with circles

denotes actual data. The vertical axis in all graphs measures units of percentage points of annualized rates.

gradualism was abandoned coincidentally with the appointment of Paul Volcker as Federal

Reserve Chairman. The third attempt was the robust monetary tightening carried out by the

Federal Reserve under Chairman Paul Volcker from the third quarter of 1979 through 1982.

Figure 12 reports the simulated series of inflation from the DIM with signaling effects and

the counterfactual DIM in which the signaling channel is shut down. It can be observed that

if the signaling channel were inactive (i.e., if the imperfectly informed firms did not observe

the policy rate), inflation would have been substantially lower throughout the 1970s. Figure

12 illustrates that the first and second attempts at disinflating the U.S. economy in the 1970s

failed because of the strong signaling effects of monetary policy.

It is important to emphasize that the signaling effects associated with these two attempts

at reducing inflation were inflationary because the 1970s were mainly characterized by adverse

demand conditions (i.e., the filtered series for ĝt < 0). Recall from Section 4.4 that the signaling

effects of monetary policy are inflationary in the aftermath of a negative demand shock because

the policy rate signals −to some extent− to price setters that an expansionary monetary shock
has occurred.17 As a result, firms started expecting higher inflation, which, as we shall show,

17The white vertical bars lying in negative territory in the upper left graph of Figure 10 provide a visual
perception of the deflationary consequences of the signaling channel in the aftermath of a positive demand
shock.
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the monetary tightening was too timid to subdue.18

Figure 1 shows that the period from the third quarter of 1979 through 1982 (when the

third attempt at disinflating the U.S. economy beginning in the 1970s was actually carried out)

was characterized by a robust monetary tightening and by an inflation rate that adjusted very

sluggishly. The upper right graph of Figure 11 shows that the signaling effects of this aggressive

monetary contraction played a role in making the adjustment of inflation sluggish in the late

1970s and early 1980s. The signaling effects of the Volcker’s monetary contraction initially

contributed to raise the rate of inflation because the associated sequence of contractionary

monetary shocks partially induced firms to believe that the central bank was raising the policy

rate to respond to an inflationary demand shock. As shown in Section 4.3, the signaling effects

associated with contractionary monetary shocks are captured by the vertical black bars in the

upper left graph of Figure 6. In summary, the sequence of contractionary monetary shocks

caused the signaling channel to delay the adjustment of the inflation rate in the late 1970s

and early 1980s because the resulting monetary contractions ended up signaling inflationary

demand shocks to price setters.

It is worthwhile to point out that the signaling effects of monetary policy are not the only

possible channel through which the model could explain why both inflation and the federal

funds rate rapidly rose in the 1970s and why price dynamics appear to respond sluggishly to the

robust monetary tightening conducted by the Federal Reserve under Volcker. For instance, these

patterns could be explained through a sequence of adverse aggregate technology shocks. Recall

from Section 4.4 that these shocks would have given rise to tiny signaling effects of monetary

policy because firms hold fairly precise private information about aggregate technology and

hence do not rely on the policy signal to learn about these shocks. If the likelihood estimation

had favored this story, then we would have found that the signaling effects of monetary policy

played a small role in explaining the two-digit inflation rate of the 1970s and the sluggish

adjustment of inflation to the disinflation policies of the late 1970s and the early 1980s.

Would a more hawkish monetary policy have subdued inflation throughout the 1970s by

offsetting the signaling effects of monetary policy on the price dynamics? We find that the

answer to this question is positive. We reach this conclusion by considering a counterfactual

18Despite the rising federal funds rate from 1972:Q1 through 1979:Q2, U.S. monetary policy was more expan-
sionary than what its Taylor-type reaction function would predict (i.e., the smoothed estimates for η̂r,t < 0).
Recall from Section 4.3 that the signaling effects of monetary policy are deflationary in the aftermath of an
expansionary monetary shock. See the black vertical bars in the upper left graph of Figure 6 for the case of
a contractionary monetary shock. Nonetheless, judging from the upper right graph of Figure 11, we note that
these deflationary pressures are dominated by the inflationary consequences of the signaling effects associated
with the adverse demand shocks. Furthemore, the (filtered) level of aggregate technology ât was negative in the
1970s. While this fact certainly contributed to keeping the inflation rate high during that decade, it is unlikely
to have triggered significant signaling effects on inflation and inflation expectations. The reason is that the
signaling effects do not significantly alter the transmission of aggregate technology shocks, as shown in Section
4.4.
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Figure 13: The upper graph reports the evolution of inflation simulated (i) from the DIM using the filtered

series of shocks (Estimated DIM) and (ii) from the counterfactual DIM in which the central bank is assumed to

be more hawkish (i.e., the historical sequence of η̂r,t is set to be higher than the filtered one) from 1972 through
1981 (Hawkish Mon. Pol.), as well as the evolution of the actual inflation (data). The lower left graph depicts

the impact of the hawkish policy on the annualized real GDP growth in percentage points over the sample

period. The lower right graph reports the difference between the filtered ηr,t and its more hawkish counterpart.
All simulated series are median across posterior draws for the DIM parameters.

DIM in which the Federal Reserve sets its policy rate more hawkishly from 1972 through 1981

than what the estimated DIM predicts. This is obtained by simulating the DIM using larger

deviations (η̂r,t) of the policy rate from the monetary rule than the ones we filtered using the

estimated DIM.19 The upper graph of Figure 13 shows that this hawkish monetary policy would

have prevented the Great Inflation of the 1970s from arising. The lower right graph shows how

much higher the Federal Reserve should have set the policy rate (above the level required by

the rule) to offset the signaling effects of monetary policy on inflation and hence to subdue the

run-up in inflation during the 1970s. Note that the lower left graph of Figure 13 suggests that

this more hawkish policy would have contracted the quarter-to-quarter real GDP growth rate

19An alternative counterfactual experiment would have been to set a higher value for the policy parameter of
inflation stabilization φπ. This more systematic disinflation policy effectively limits the inflationary implications
of the signaling channel. The reason is as follows. While firms still fear that a change in the policy rate may
correspond to an inflationary non-policy shock, they are also confident that the central bank will be able to shelter
the economy from the inflationary consequences of such a shock. It can be shown that rasing the systematic
response of the policy rate to inflation also works to subdue inflation throughout the 1970s. However, this
approach is more controversial than the one considered in the main text because changing the policy parameter
requires assuming that agents suddenly learn and fully believe that the Federal Reserve has become more
hawkish.
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by up to 1.2 percentage points in annualized terms.

In summary, these results suggest that the signaling effects associated with the first two

disinflation attempts of the 1970s contributed to raising inflation because the Federal Reserve

tightened monetary policy too gradually. On the one hand, the timid increases of the federal

funds rate substantially contributed to raising inflation expectations by signaling expansionary

monetary shocks to price setters. On the other hand, the increases of the policy rate were too

gradual (i.e., η̂r,t was too low) to offset the rise in inflation expectations owing to the signaling

effects of the monetary tightening itself. Therefore, the signaling effects associated with the

Federal Reserve’s gradualism of the 1970s paved the way to one of the most notorious period

of high inflation in the postwar U.S. history. While Volcker’s tightening was more aggressive,

it was also not enough to fully offset the signaling effects, which, in fact ended up delaying the

adjustment of the inflation rate.20

From 1981 through the end of the 1980s disinflation was achieved because of the hawkish

policy conducted by the Federal Reserve (i.e., η̂r,t > 0) and the positive aggregate technology

conditions (i.e., ât > 0), as well as positive demand conditions (i.e., ĝt > 0),21. These muted

conditions ended the Great Inflation that had characterized the previous decade. Positive

demand conditions also led to a deflationary contribution of the signaling channel, as shown

in Figure 11, because the resulting response of the policy rate strengthened firms’beliefs that

contractionary monetary shocks had occurred. See the white vertical bars lying in negative

territory in the upper left graph of Figure 10.

Furthermore, the upper left graph of Figure 11 shows that the signaling effects of monetary

policy contributed to the slowdown in economic activity observed in the 1970s. This is mostly

due to a number of negative demand shocks that occurred in the 1970s. Furthermore, the

signaling effects of monetary policy seem to have contributed to exacerbating the recession at

the beginning of the 1980s with a contribution to growth that reached -6 percentage points in

1981:Q1 in annualized terms. Signaling effects of monetary policy have been mostly stimulative

from the disinflation period through 2003. The stimulus due to these signaling effects reached

up to 50 basis points in some quarters.

4.6 Empirical Fit of the DIM

In this section, we evaluate the ability of the DIM to fit the data relative to the PIM. Since the

PIM is a prototypical New Keynesian DSGE model that has been extensively used for monetary

policy analysis (e.g., Rotemberg and Woodford 1997; Clarida, Gali, and Gertler 2000; Lubik

and Schorfheide 2004; and Coibion and Gorodnichenko 2011a), the goal of this exercise is to

20Investigating why the Federal Reserve did not adopt a more hawkish disinflation policy is clearly beyond
the scope of this paper. A potential reason is provided by Chari, Christiano and Eichenbaum (1998).
21Recall from Section 4.4 that positive demand shocks are disinflationary as shown in Figure 9.
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validate the DIM as a viable modeling framework with which study U.S. monetary policy.

In Bayesian econometrics, non-nested model comparison is based on computing the posterior

probability of the two candidate models. The marginal likelihood is the appropriate density

for updating researcher’s prior probabilities over a set of models. Furthermore, Fernández-

Villaverde and Rubio-Ramírez (2004) show that the marginal likelihood allows the researcher

to select the best model to approximate the true probability distribution of the data-generating

process under the Kullback-Leibler distance. Since the marginal likelihood penalizes for the

number of model parameters (An and Schorfheide 2007), it can be applied to gauge the relative

fit of models that feature different numbers of parameters, including the DIM and the PIM.

Denote the data set used for estimation and presented in Section 4.1 as Y . The marginal like-

lihood associated with the DIM is defined as P (Y |MDIM) =
∫
L (Y |ΘDIM) p (ΘDIM) dΘDIM ,

where L (Y |ΘDIM) denotes the likelihood function derived from the model and p (ΘDIM) is the

prior density, whose moments are reported in Table 1.

A Bayesian test of the null hypothesis that the DIM is at odds with the data can be

performed by comparing the marginal likelihood associated with the DIM (MDIM) and the

PIM (MPIM). Under a 0-1 loss function, the test rejects the null if the DIM has a larger

posterior probability than the PIM (Schorfheide 2000). The posterior probability of modelMs,

where s ∈ {DIM,PIM}, is given by:

πT,Ms =
π0,Ms · P (Y |Ms)∑

s∈{DIM,PIM} π0,Ms · P (Y |Ms)
, (16)

where π0,Ms stands for the prior probability of the modelMs. Also, note that P (Y |Ms) is the

marginal likelihood associated with the model Ms. If the prior probabilities are equal across

models (i.e., π0,MDIM
= π0,MPIM

= 0.50), then the model with the highest marginal likelihood

is the one that attains the largest posterior probability.

The column labeled Full Data Set in Table 2 shows that the DIM attains the largest marginal

likelihood, and hence, adopting equal prior probabilities across models leads us to reject the

null. Note that the posterior probability in favor of the DIM is larger than that in favor of the

PIM unless the prior probability in favor of the former (i.e., π0,MDIM
) is as small as 9.75E − 8.

Such a low prior probability suggests that only if one has extremely strong a priori information

against the DIM, one can favor the PIM over the DIM.

This finding validates the use of the DIM to study the signaling effects of monetary policy,

since the PIM is a prototypical New Keynesian model that has been extensively used by scholars

to study the effects of monetary policy (e.g., Rotemberg and Woodford 1997; Clarida, Gali,

and Gertler 2000; and Lubik and Schorfheide 2004).

We check if there is any specific observable variable that the DIM fits particularly better

than the PIM. To this end, we estimate the two models using a narrower data set that does
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Log-Marginal Likelihood
Full Data Set Excluding SPF

DIM PIM DIM PIM

-212.4445 -228.5888 -306.4532 -304.87466

Table 2: The table reports the log-marginal likelihood for the dispersed information model (DIM) and the
perfect information model (PIM) based on the full data set described in Section 4.1 (Full Data Set) and on
a narrower data set that does not include the Survey of Professional Forecasters (Excluding SPF). We use
Geweke’s harmonic mean estimator (Geweke 1999) to estimate the marginal likelihood for the two competing
models.

not include the SPF as a measure of inflation expectations.22 The log-marginal likelihood for

the two competing models estimated using the narrower data set is reported in Table 2 under

the column labeled Excluding SPF. It can be observed that now the two models fit the data

similarly well, with the PIM having actually a little edge over the DIM. Therefore, the observed

inflation expectations seem to play an important role in selecting the DIM as the best-fitting

model. If we had estimated the two models using the data set that does not include the SPF,

we could not have concluded that the DIM fits the data better than the PIM. This suggests

that the DIM is better than the PIM at fitting the observed inflation expectations.

That an imperfect information model, such as the DIM, fits the SPF better than a perfect

information model, such as the PIM, is by no means obvious. In fact, Del Negro and Eusepi

(2011) find that the imperfect information model by Erceg and Levin (2003) is outperformed

by a perfect information model in fitting the SPF.

5 Concluding Remarks

This paper studies a DSGE model in which information is dispersed across price setters and

in which the interest rate that is set by the central bank has signaling effects. In this model,

monetary impulses propagate through two channels: (i) the channel based on the central bank’s

ability to affect the real interest rate due to price stickiness and dispersed information and (ii)

the signaling channel. The latter arises because changing the policy rate conveys information

about the central bank’s assessment of inflation and the output gap to price setters. This paper

fits the model to a data set that includes the Survey of Professional Forecasters (SPF) as a

measure of price setters’inflation expectations. We perform a formal econometric evaluation of

the model with signaling effects of monetary policy. While the likelihood selects a very short

average duration for price contracts, the signaling channel causes the real effects of monetary

22The posterior statistics of this estimation based on a narrower data set are reported in Appendix F.
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shocks to be very sizable and persistent. Furthermore, this channel generates deflationary

pressure in the aftermath of positive demand shocks, while it does not substantially alter the

transmission of technology shocks.

An important lesson we learn from this paper is that signaling effects of monetary policy

were sizable in the 1970s and provide an explanation for the Federal Reserve’s failure to lower

inflation in that decade. The gradual disinflation policies carried out by the Federal Reserve

ended up signaling higher inflation to firms, leading the central bank to lose control over inflation

and inflation expectations. We show that a more aggressive monetary tightening would have

offset these signaling effects of monetary policy on price dynamics, allowing the Federal Reserve

to prevent the inflation rate from rising to two-digit levels in the 1970s. Furthermore, we argue

that signaling effects substantially contributed to explaining the sluggish response of inflation

to the robust monetary contraction carried out by the Federal Reserve under Chairman Paul

Volcker in the first years of his tenure. From 1983 on, the signaling effects of monetary policy

seem to have contributed to keeping inflation low and to stimulating economic activity.

We make a number of assumptions to keep the model suffi ciently tractable to allow for

likelihood analysis. First, households are perfectly informed. Relaxing this assumption could

affect the inflationary consequences of the signaling channel. For instance, if a monetary shock

is partly perceived as a negative productivity shock, there will be at least two additional effects:

(i) households will lower their expectations about the next period’s real rate of interest and

hence increase consumption and (ii) households will expect to be less productive in the future

and therefore consume less. Note that a change in consumption will affect marginal costs in

the model, and hence, depending on which effect dominates, the signaling effects on inflation

could be either stronger or weaker than what we obtain in the current setup. Second, another

convenient shortcut is the assumption that firms use the linearized version of the true model

to solve their signal extraction problem. This assumption allows us to use the convenient

characterization of the law of motion of the average expectations provided by the Kalman

filter. Third, we assume no capital accumulation. Studying a dispersed information model

with capital accumulation would be a fascinating extension of the current setup, since this is

a standard feature of state-of-the-art DSGE models (e.g., Christiano, Eichenbaum, and Evans

2005 and Smets and Wouters 2007).

In the dispersed information model, the central bank’s sole avenue of communications with

firms is by setting the policy rate. While this assumption is not too strong for a study that

mainly focuses on the signaling effects of U.S. monetary policy in the 1970s and in the 1980s,

this hypothesis has to be relaxed to extend the analysis to the most recent period, in which

central bank’s announcements play a central role in monetary policy making.

Our analysis also provides support for the signaling effects of monetary policy as a potential

explanation for the run-up of inflation in the 1970s. A formal econometric evaluation of whether
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this theory is more empirically plausible than the alternative theories23 is beyond the scope of

this paper whose main focus is to construct a modeling framework in which signaling effects can

be empirically evaluated and to provide an explanation for why the U.S. disinflation policies

were unsuccessful throughout the 1970s.

Changes in the Federal Reserve’s attitude toward inflation stabilization have been docu-

mented by Davig and Leeper (2007), Justiniano and Primiceri (2008), Fernández-Villaverde,

Guerrón-Quintana and Rubio-Ramírez (2010) and Bianchi (Forthcoming). One can show that

the signaling effects on inflation are lower if the central bank reacts more aggressively to infla-

tion deviations from the target. Future research should empirically evaluate whether structural

changes in central bank’s behaviors have affected the signaling effects of monetary policy on

the macroeconomy. However, estimating a dispersed information model featuring parameter

instability in the form of either time-varying parameters or Markov-switching parameters is

computationally unmanageable at this stage.

23For instance, some of the most popular theories for why inflation rose in the 1970s are (i) the bad luck view
(e.g., Cogley and Sargent 2005; Sims and Zha 2006; Primiceri 2005; and Liu, Waggoner, and Zha 2011), (ii)
the lack of commitment view (e.g., Chari, Christiano, and Eichenbaum 1998 and Christiano and Gust 2000),
(iii) the policy mistakes view (e.g., Sargent 2001; Clarida, Gali, and Gertler 2000; Lubik and Schorfheide 2004;
Primiceri 2006; and Coibion and Gorodnichenko 2011a), and (iv) fiscal and monetary interactions view (e.g.,
Sargent, Williams, and Zha 2006; Bianchi and Ilut 2012; and Bianchi and Melosi, forthcoming).
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Appendices

The Appendices are organized as follows. In Appendix A, we derive of the imperfect-common-

knowledge Phillips curve (7). Appendix B details an algorithm to solve the dispersed informa-

tion model. In Appendix C, we characterize the transition equations for the average higher-order

expectations about the exogenous state variables − that is, equation (13). In Appendix D, we
characterize the laws of motion for the three endogenous state variables (i.e., inflation π̂t, real

output ŷt and the interest rate R̂t). In Appendix E, we discuss the impulse response function of

inflation and inflation expectations implied the prior for the model parameters. This is to verify

that the main findings of the paper do not stem from our prior choice, but are actually driven

by the data. Appendix F reports the posterior statistics for the parameters of the dispersed

information model and the perfect information model estimated to a narrower data set that

does not include the SPF as a measure of firms’inflation expectations.

A The Imperfect-Common-Knowledge Phillips Curve

The log-linear approximation of the labor supply can be shown to be given by ĉt = ŵt. Recalling

that the resource constraint implies that ŷt = ĉt, we can then rewrite the labor supply as follows:

ŷt = ŵt. (17)

Log-linearizing the equation for the real marginal costs yields

m̂cj,t = ŵt − ât − εaj,t.

Recall that (lnAj,t − ln γ · t) ∈ Ij,t and write

Ej,tm̂cj,t = Ej,tŵj,t−ât − εaj,t︸ ︷︷ ︸
lnAj,t−ln γ·t

,

where Ej,t is expectations conditioned on firm j’s information set at time t (Ij,t) defined in (5).
Using equation (17) for replacing ŵt yields

Ej,tm̂cj,t = Ej,tŷt − ât − εaj,t.

By integrating across firms, we obtain the average expectations on marginal costs:

m̂c
(1)
t|t = ŷ

(1)
t|t − ât.

46



The linearized price index can be written as∫
p̂∗j,tdj =

θ

1− θ π̂t.

Recall that we defined p̂∗j,t = lnP ∗j,t− lnPt and π̂t = lnPt− lnPt−1− lnπ∗. After some algebraic

manipulation, we write

lnPt = θ (lnPt−1 + ln π∗) + (1− θ)
∫ (

lnP ∗j,t
)
dj. (18)

The price-setting problem leads to the following first-order conditions:

E

[ ∞∑
s=0

(βθ)s
Ξj,t+s

Pt+s

[
(1− ν) πs∗ + ν

MCj,t+s
P ∗j,t

]
Yj,t+s|Ij,t

]
= 0.

We define the stationary variables:

yt =
Yt
γt
, ct =

Ct
γt

; p∗j,t =
P ∗j,t
Pt
, yj,t =

Yj,t
γt
,

wt =
Wt

γtPt
, at =

At
γt
, Rt =

Rt

R∗
, mcj,t =

MCj,t
Pt

,

ξj,t = γtΞj,t.

And then we write

E

{
ξj,t

[
1− ν + ν

mcj,t
p∗j,t

]
yj,t +

∞∑
s=1

(βθ)s ξj,t+s

[
(1− ν) πs∗ + ν

mcj,t+s
p∗j,t

(Πs
τ=1πt+τ )

]
yj,t+s|Ij,t

}
= 0.

(19)

First realize that the square brackets are equal to zero at the steady state, and hence, we

do not care about the terms outside them. We can write

E

[[
1− ν + νmcj,∗e

m̂cj,t−p̂∗j,t
]

+
∞∑
s=1

(βθ)s
[
(1− ν) πs∗ + νmcj,∗e

m̂cj,t+s−p̂∗j,t+
∑s
τ=1 π̂t+τ

]
|Ij,t

]
= 0.

Taking the derivatives yields

E

[
m̂cj,t − p̂∗j,t +

∞∑
s=1

(βθ)s
[(

m̂cj,t+s − p̂∗j,t +

s∑
τ=1

π̂t+τ

)]
|Ij,t

]
= 0.

We can take the term p̂j,t out of the sum operator in the second term and gather the common
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term to obtain

E

[
m̂cj,t −

1

1− βθ p̂
∗
j,t +

∞∑
s=1

(βθ)s
(
m̂cj,t+s +

s∑
τ=1

π̂t+τ

)
|Ij,t

]
= 0.

Recall that p̂∗j,t ≡ lnP ∗j,t− lnPt and cannot be taken out of the expectation operator. We write

lnP ∗j,t = (1− βθ)E
[
m̂cj,t +

1

1− βθ lnPt +

∞∑
s=1

(βθ)s
(
m̂cj,t+s +

s∑
τ=1

π̂t+τ

)
|Ij,t

]
. (20)

Rolling this equation one step ahead yields

lnP ∗j,t+1 = (1− βθ)E
[
m̂cj,t+1 +

1

1− βθ lnPt+1 +

∞∑
s=1

(βθ)s
(
m̂cj,t+s+1 +

s∑
τ=1

π̂t+τ+1

)
|Ij,t+1

]
.

Taking firm j’s conditional expectation at time t on both sides and applying the law of iterated

expectations, we obtain the following:

E
(
lnP ∗j,t+1|Ij,t

)
= (1− βθ)E

[
m̂cj,t+1 +

1

1− βθ lnPt+1 +
∞∑
s=1

(βθ)s
(
m̂cj,t+s+1 +

s∑
τ=1

π̂t+τ+1

)
|Ij,t

]
.

We can take m̂cj,t+1 inside the sum operator and write

E
(
lnP ∗j,t+1|Ij,t

)
= (1− βθ)E

[
1

1− βθ lnPt+1 +
1

βθ

∞∑
s=1

(βθ)s m̂cj,t+s +
∞∑
s=1

(βθ)s
s∑

τ=1

π̂t+τ+1|Ij,t

]
.

Therefore,

∞∑
s=1

(βθ)s E [m̂cj,t+s|Ij,t] =
βθ

1− βθ
[
E
(
lnP ∗j,t+1|Ij,t

)
− E (lnPt+1|Ij,t)

]
−βθ

∞∑
s=1

(βθ)s
s∑

τ=1

E [π̂t+τ+1|Ij,t] .

(21)

Hence, the equation (20) can be rewritten as:

lnP ∗j,t = (1− βθ)
{
E [m̂cj,t|Ij,t] +

1

1− βθE [lnPt|Ij,t] +

∞∑
s=1

(βθ)s E [m̂cj,t+s|Ij,t]
}

+ (1− βθ)
∞∑
s=1

(βθ)s
s∑

τ=1

E [π̂t+τ |Ij,t] .
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By substituting the result in equation (21), we obtain

lnP ∗j,t = (1− βθ)
[
E [m̂cj,t|Ij,t] +

1

1− βθE [lnPt|Ij,t]
]

+βθ
[
E
(
lnP ∗j,t+1|Ij,t

)
− E (lnPt+1|Ij,t)

]
− (1− βθ)

∞∑
s=1

(βθ)s+1
s∑

τ=1

E [π̂t+τ+1|Ij,t]

+ (1− βθ)
∞∑
s=1

(βθ)s
s∑

τ=1

E [π̂t+τ |Ij,t] .

We consider the last term and write

(1− βθ)
∞∑
s=1

(βθ)s
s∑

τ=1

E [π̂t+τ |Ij,t] = (1− βθ) βθE [π̂t+1|Ij,t] + (1− βθ)
∞∑
s=2

(βθ)s
s∑

τ=1

E [π̂t+τ |Ij,t]

= (1− βθ) βθE [π̂t+1|Ij,t] +

+ (1− βθ)
∞∑
s=1

(βθ)s+1
(

s∑
τ=1

[(E [π̂t+τ+1|Ij,t])] + E [π̂t+1|Ij,t]
)
.

It then follows that

(1− βθ)
∞∑
s=1

(βθ)s
s∑

τ=1

E [π̂t+τ |Ij,t] = (1− βθ) βθE [π̂t+1|Ij,t]

+ (1− βθ)
∞∑
s=1

(βθ)s+1
s∑

τ=1

E [π̂t+τ+1|Ij,t]

+ (1− βθ)
( ∞∑
s=1

(βθ)s+1
)
E [π̂t+1|Ij,t] .

Because
(∑∞

s=1 (βθ)s+1
)

= (βθ)2

1−βθ , then after simplifying, we can write that

(1− βθ)
∞∑
s=1

(βθ)s
s∑

τ=1

E [π̂t+τ |Ij,t] = βθE [π̂t+1|Ij,t]

+ (1− βθ)
∞∑
s=1

(βθ)s+1
s∑

τ=1

E [π̂t+τ+1|Ij,t] .

We substitute this result into the original equation to get the following expression:

lnP ∗j,t = (1− βθ)E [m̂cj,t|Ij,t] + E [lnPt|Ij,t]
+βθ

[
E
(
lnP ∗j,t+1|Ij,t

)
+ E [π̂t+1|Ij,t]− E (lnPt+1|Ij,t)

]
. (22)
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Note that by definition π̂t+1 ≡ lnPt+1 − lnPt − lnπ∗. Hence, we can write

lnP ∗j,t = (1− βθ) · E [m̂cj,t|Ij,t] + (1− βθ)E [lnPt|Ij,t]
+βθ · E

(
lnP ∗j,t+1|Ij,t

)
− βθ ln π∗. (23)

We denote firm j′s average k-th order expectation about an arbitrary variable x̂t as

E(k) (x̂t|Ij,t) ≡
∫
E
(∫

E
(
. . .

(∫
E (x̂t|Ij,t) dj

)
. . . |Ij,t

)
dj|Ij,t

)
dj,

where expectations and integration across firms are taken k times.

Let us denote the average reset price as lnP ∗t =
∫

lnP ∗j,tdj. Note that we can rewrite equation

(18) as follows

lnPt = θ (lnPt−1 + ln π∗) + (1− θ) lnP ∗t . (24)

Furthermore, we can integrate equation (23) across firms to obtain an equation for the average

reset price:

lnP ∗t = (1− βθ) · m̂c(1)t|t + (1− βθ) lnP
(1)
t|t

+βθ lnP
∗(1)
t+1|t − βθ ln π∗, (25)

where x(1)t|t denotes the average first-order expectations about an arbitrary variable xt of the

model (e.g., the real marginal costs).

Let us plug equation (25) into equation (24) as follows:

lnPt = θ lnPt−1 + (θ − (1− θ) βθ) lnπ∗ (26)

+ (1− θ)
[
(1− βθ) · m̂c(1)t|t + (1− βθ) lnP

(1)
t|t + βθ lnP

∗(1)
t+1|t

]
.

From the fact that lnPt = π̂t + lnPt−1 + lnπ∗ and from the price index (18) we get the
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following:24

lnP ∗t+1 =
π̂t+1
1− θ + lnPt + ln π∗.

Furthermore, the following fact is easy to establish:

lnPt+1 = π̂t+1 + lnPt + ln π∗.

Applying these three results to equation (26) yields

π̂t + lnPt−1 + ln π∗ = θ lnPt−1 + (θ − (1− θ) βθ) lnπ∗ (27)

+ (1− θ)
[

(1− βθ) · m̂c(1)t|t + (1− βθ) lnP
(1)
t|t + βθ

(
π̂
(1)
t+1|t

1− θ + lnP
(1)
t|t + ln π∗

)]
.

And after simplifying, we get the following:

π̂t = (1− θ) (1− βθ) · m̂c(1)t|t + (1− θ) π̂(1)t|t + βθ
(
π̂
(1)
t+1|t

)
. (28)

By repeatedly taking firm j’s expectation and average the resulting equation across firms, we

get

π̂
(k)
t|t = (1− θ) (1− βθ) · m̂c(k+1)t|t + (1− θ) π̂(k+1)t|t + βθ

(
π̂
(k+1)
t+1|t

)
.

Repeatedly substituting these equations for k ≥ 1 back to equation (28) yields the imperfect-

common-knowledge Phillips curve:

π̂t = (1− θ) (1− βθ)
∞∑
k=1

(1− θ)k−1 m̂c(k)t|t + βθ
∞∑
k=1

(1− θ)k−1 π̂(k)t+1|t.

B Solving the Dispersed Information Model

We solve the model assuming common knowledge of rationality (Nimark 2008) and focusing

on equilibria where the higher-order expectations about the exogenous state variables; that is,
24This last result comes from observing that

lnPt = θ (lnPt−1 + lnπ∗) + (1− θ) lnP ∗t .

By using the fact that lnPt = π̂t + lnPt−1 + lnπ∗:

π̂t + lnPt−1 + lnπ∗ = θ (lnPt−1 + lnπ∗) + (1− θ) lnP ∗t .

Rolling one period forward, we get

π̂t+1 = (θ − 1) (lnPt + lnπ∗) + (1− θ) lnP ∗t+1.

And finally, by rearranging, we get the result in the text.
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X
(0:k)
t|t ≡

[
â
(s)
t|t , η̂

(s)
r,t|t, ĝ

(s)
t|t : 0 ≤ s ≤ k

]′
, follow the VAR(1) process in equation (13). Note that

we truncate the order of the average expectations at k <∞. Furthermore, we guess the matrix
v0 that determines the dynamics of the endogenous variables st ≡

[
ŷt, π̂t, R̂t

]
in equation (12).

As shown in Appendix D, the structural equations of the model can be written in the following

linear form:

Γ0st = Γ1Etst+1 + Γ2X
(0:k)
t|t , (29)

where Et denotes the expectation operator conditional on a complete information set (i.e., an
information set that includes the history of all structural shocks).

For a given parameter set ΘDIM , take the following steps:

Step 0 Set i = 1 and guess the matricesM(i), N(i), and v(i)0 .

Step 1 Set M = M(i) and N = N(i) and solve the model given by equation (13) and equation

(29) through a standard linear rational expectations model solver (e.g., Blanchard and

Kahn 1980; Sims 2002). The solver delivers the matrix v(i+1)0 , such that st = v
(i+1)
0 X

(0:k)
t|t .

As we will show in Appendix D, the matrices Γ0, Γ1, and Γ2 in equation (29) are functions

of the model parameter ΘDIM as well as the guessed matricesM(i) and v(i)0 .

Step 2 Given the law of motion (13) for X(0:k)
t|t , in which we set M = M(i) and N = N(i), equa-

tion (10) for the signal concerning the aggregate technology, equation (11) for the signal

concerning the demand conditions, and the equation

R̂t =
[

0 0 1
]
v
(i+1)
0 X

(0:k)
t|t ,

for the endogenous policy signal R̂t ∈ st solve the firms’signal extraction problem through
the Kalman filter and determine the matricesM(i+1) and N(i+1). Appendix C provides a

detailed explanation of how we characterize these matrices.

Step 3 If
∥∥M(i) −M(i+1)

∥∥ < εm,
∥∥N(i) −N(i+1)

∥∥ < εn, and
∥∥∥v(i)0 − v(i+1)0

∥∥∥ < εv for any εm > 0,

εn > 0, and εv > 0 and small, stop or else set i=i+1 and go to Step 1.

Given equation (13) and equation st = v
(i)
0 X

(0:k)
t|t obtained in step 1, the law of motion of

the model variables is as follows:[
X
(0:k)
t|t

st

]
=

[
M(i+1) 0

v
(i+1)
0 M(i+1) 0

][
X
(0:k)
t−1|t−1

st−1

]
+

[
N(i+1)

v
(i+1)
0 N(i+1)

]
εt. (30)
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C Transition Equation of High-Order Expectations

In this section, we show how to derive the law of motion of the average higher-order expectations

of the exogenous state variables (i.e., ât, η̂r,t, ĝt,) for given parameter values and the matrix of

coeffi cients v0. We focus on equilibria where the HOE evolve according to

X
(0:k)
t|t = MX

(0:k)
t−1|t−1 +Nεt, (31)

where εt ≡
[
εa,t ηr,t εg,t

]′
. DenoteXt ≡ X

(0:k)
t|t , for notational convenience. Firms’reduced-

form state-space model can be concisely cast as follows:

Xt = MXt−1 +Nεt, (32)

Zt = DXt +Qej,t, (33)

where

D =
[
d′1 d′2

(
1T3 v0

)′ ]′
,

with d′1 =
[
1,01×3(k+1)−1

]
, d′2 = [01×2, 1,01×3k], 1T3 = [0, 0, 1], and ej,t =

[
εaj,t, ε

g
j,t

]′
and

Q =

 σ̃a 0

0 σ̃g

0 0

 .
Solving the firms’ signal extraction problem requires applying the Kalman filter. The

Kalman equation pins down firm j’s first-order expectations about the model’s state variables

Xt|t (j) and the associated conditional covariance matrix Pt|t:

Xt|t (j) = Xt|t−1 (j) +Pt|t−1D
′F−1t|t−1

[
Zt − Zt|t−1 (j)

]
, (34)

Pt|t = Pt|t−1 −Pt|t−1D
′F−1t|t−1DP

′
t|t−1, (35)

where

Pt|t−1 = MPt−1|t−1M
′ +NN′, (36)

and the matrix Ft|t−1 ≡ E [ZtZ
′
t|Zt−1], which can be shown to be

Ft|t−1 = DPt|t−1D
′ +QQ′. (37)
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Therefore, combining equation (35) with equation (36) yields

Pt+1|t = M
[
Pt|t−1 −Pt|t−1D

′F−1t|t−1DP
′
t|t−1

]
M′ +NN′. (38)

Denote the Kalman-gain matrix as Kt≡ Pt|t−1D
′F−1t|t−1. Write the law of motion of firm j’s

first-order beliefs about Xt as

Xt|t (j) = Xt|t−1 (j) +Kt

[
DXt +Qej,t −DXt|t−1 (j)

]
,

where we have combined equations (34) and (33). By recalling that Xt|t−1 (j) = MXt−1|t−1 (j),

we obtain

Xt|t (j) = (M−KDM)Xt−1|t−1 (j) +K [DM ·Xt−1 +DN · εt +Qej,t] . (39)

The vector Xt|t (j) contains firm j’s first-order expectations about the model’s state variables.

Integrating across firms yields the law of motion of the average expectation about X(1)
t|t :

X
(1)
t|t = (M−KDM)X

(1)
t−1|t−1 +K [DM ·Xt−1 +DN · εt] .

Note that X(0:∞)
t|t =

[
Xt, X

(1:∞)
t|t

]′
and that

Xt =

 ρa 0 0 0

0 ρr 0 0

0 0 ρg 0


︸ ︷︷ ︸

R1

X
(0:k)
t−1|t−1 +

 σa 0 0

0 σr 0

0 0 σg


︸ ︷︷ ︸

R2

· εt.

So by using the assumption of common knowledge in rationality, we can fully characterize the

matricesM and N:

M =

[
R1

0

]
+

[
03×3 03×3k

03k×3 (M−KDM) |(1:3k,1:3k)

]
+

[
0

K (DM) |(1:3k,1:3(k+1))

]
, (40)

N =

[
R2

0

]
+

[
0

KDN|(1:3k,1:3)

]
, (41)

where ·|(n1:n2,m1:m2) denotes the submatrix obtained by taking the elements lying between the

n1-th row and the n2-th row and between the m1-th column and the m2-th column. Note that

K in equation (40) and equation (41) denotes the steady-state Kalman gain matrix, which is

obtained by iterating the equations (36) and (38) until convergence.
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D The Laws of Motion for the Endogenous State Vari-

ables

In this section we introduce some useful results and characterize the law of motion (29) for the

endogenous state variables, which are inflation π̂t, real output ŷt, and the (nominal) interest

rate R̂t.

D.1 Preliminaries

The assumption of common knowledge in rationality ensures that agents use the actual law of

motion of higher-order expectations to forecast the dynamics of the higher-order expectations.

The following propositions turn out to be useful for what follows:

Proposition 1 s(s)t|t = v0X
(s:k+s)
t|t for any 0 ≤ s ≤ k.

Proof. We conjectured that st = v0X
(0:k)
t|t . Then common knowledge in rationality implies

that s(s)t|t = v0X
(s:k+s)
t|t .

Since we truncate beliefs after the k-th order, we define the matrix T(s) as follows:

T(s) ≡
[
03(k−s+1)×3s I3(k−s+1)

03s×3s 03s×(k+1−s)3

]
,

and we approximate the law of motion for s(s)t|t as s
(s)
t|t = v0T

(s)X
(0:k)
t|t for any 0 ≤ s ≤ k.

Proposition 2 The following holds true: s(s)t+h|t = v0M
hX

(s:k+1)
t|t for any 0 ≤ s ≤ k.

Proof. We conjectured that st+h = v0X
(0:k)
t+h|h+1. Given equation (13), it follows that st+h =

v0

(
MhX

(0:k)
t|t +Nεt+1

)
. Common knowledge in rationality implies that repeatedly taking

firms’expectations and then averaging across firms leads to an expression for the law of motion

of the average higher-order expectations: s(s)t+h|t = v0M
hX

(s:k+1)
t|t for any s.

Since we truncate beliefs after the k-th order, we can approximate the law of motion for the

average higher-order expectations as s(s)t+h|t = v0M
hT(s)X

(0:k)
t|t for any 0 ≤ s ≤ k.

D.2 The Laws of Motion of the Endogenous State Variables

The laws of motion of the three endogenous state variables, which are inflation π̂t, real output

ŷt, and the (nominal) interest rate R̂t, are given by the Euler equation (8), the Phillips curve

(7), and the Taylor Rule (9). We want to write this system of linear equations as

Γ0st = Γ1Etst+1 + Γ2X
(0:k)
t|t , (42)
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where st ≡
[
π̂t, ŷt, R̂t

]′
. It is obvious how to write equations (8) and (9) in the form (42).

However, how to write the Phillips curve (7) in the form (42) requires a bit of work. First, note

that given Propositions 1−2 and the equation m̂c(k)t|t = ŷ
(k)
t|t − â

(k−1)
t|t , the imperfect-common-

knowledge Phillips curve (7) can be rewritten as follows:

a0X
(0:k)
t|t = (1− θ) (1− βθ)

k−1∑
s=0

(1− θ)s 1T2
[
v0T

(s+1)X
(0:k)
t|t

]
+

− (1− θ) (1− βθ)
k−1∑
s=0

(1− θ)s
[
γ(s)′a X

(0:k)
t|t

]
+βθ

k−1∑
s=0

(1− θ)s 1T1
[
v0MT

(s+1)X
(0:k)
t|t

]
,

where 1T1 = [1, 0, 0], 1T2 = [0, 1, 0], and γ(s)a =
[
01×3s, (1, 0, 0) ,01×3(k−s)

]′
. The following restric-

tions upon vectors of coeffi cients a0 and a1 can be derived from the rewritten Phillips curve:

π̂t =

[
(1− θ) (1− βθ)

[
νm1 −

(
k−1∑
s=0

(1− θ)s γ(s)′a

)]
+ βθνm2

]
X
(0:k)
t|t , (43)

where we define:

m1 ≡


1T2 v0T

(1)

(1− θ)
[
1T2 v0T

(2)
]

...

(1− θ)k
[
1T2 v0T

(k)
]

 , m2 ≡


1T1 v0MT

(1)

(1− θ)
[
1T1 v0MT

(2)
]

...

(1− θ)k
[
1T1 v0MT

(k)
]

 ,
ν ≡ 11×k.

E Signaling Effects Implied by the Prior

The aim of this section is to assess the extent to which the likelihood favors the idea that

signaling effects associated with monetary policymaking are important. In other words, we

want to rule out the possibility that this finding totally follows from the choice of the prior.

Figure 14 reports the response of inflation (top left graph), inflation expectations (top middle

and right graphs), and the average HOE about the three exogenous state variables (bottom

graphs) to a monetary shock that raises the policy rate by 25 basis points when the DIM

parameters are set to equal the prior means reported in Table 1. The vertical bars in the upper

graphs are related to the decomposition (15) and isolate the inflationary effects of the change in
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Figure 14: Impulse response functions of inflation, inflation expectations, and average higher-order expecta-
tions (HOE) to a monetary shock that raises the interest rate by 25 bps. Parameter values are set equal to the

prior mean. Top graphs: The solid blue line is the response of inflation (left graph), one-quarter-ahead inflation

expectations (middle graph), and four-quarters-ahead inflation expectations (right graph) and its decomposi-

tion to the effects of average HOE about the level of aggregate technology ât, the deviation from the monetary

rule η̂r,t, and the demand conditions ĝt (i.e., the vertical bars). Bottom graphs: Response of the true level

of aggregate technology (left graph), the deviation from the monetary rule (middle graph), and the demand

conditions (right graph) and the associated average HOE up to the third order. The vertical axis in the top

graphs reports units of percentage points of annualized rates. The vertical axis in the bottom graphs reports the

percent deviations from the value of the corresponding variable at the deterministic steady state equilibrium.

the average higher-order expectations (HOE) about technology v′a∂X
a
t+h/∂εr,t (the gray bars),

those about the deviation from the monetary rule v′m · ∂Xm
t+h/∂εr,t (the white bars), and those

about the demand conditions v′g · ∂X
g
t+h/∂εr,t (the black bars) for h periods after the monetary

shock.

Note that the sum of the gray vertical bars and the black vertical bars captures the effect of

the signaling channel on inflation and inflation expectations. In Figure 14, these effects appear

to be fairly small, especially for the response of inflation that is almost entirely explained by

the shock and the average HOE about the deviation from the monetary rule on inflation (i.e.,

the white bars). More importantly, comparing Figure 14 with Figure 6, which is based on using

the posterior mean to calibrate the DIM parameters, reveals that the Bayesian updating boosts

the inflationary effects of the average HOE about the demand conditions (i.e., the black bars).

Recall that high black bars imply that firms mostly interpret a rise in the policy rate as the

central bank’s response to a positive demand shock. As shown before, this result gives rise to

important inflationary effects of the signaling channel in the estimated model. Such signaling

effects of monetary policy dampen the response of inflation to monetary shocks and hence boost
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the real effects of monetary disturbances. The comparison of Figure 14 with Figure 6 reveals

that high and persistent real effects of monetary shocks are not originated by the prior and

actually appear to be mainly driven by the likelihood through the Bayesian updating.

F DIM and PIM Estimated with a Narrower Data Set

DIM - Posterior PIM - Posterior Prior
Name Mean 5% 95% Mean 5% 95% Type Mean Std.
θ 0.3387 0.2615 0.4508 0.5297 0.4687 0.5907 B 0.50 0.30
φπ 1.0289 1.0001 1.1261 1.6471 1.4820 1.7939 G 1.50 0.10
φy 0.1951 0.1199 0.2648 0.2710 0.0973 0.4377 G 0.25 0.10
ρr 0.6643 0.6211 0.7149 0.4765 0.4111 0.5446 B 0.50 0.20
ρa 0.9138 0.8491 0.9680 0.9927 0.9868 0.9991 B 0.50 0.20
ρg 0.7291 0.6814 0.7737 0.9116 0.8697 0.9538 B 0.50 0.20

100σa 0.3652 0.2169 0.6590 0.9808 0.8738 1.0837 IG 0.80 1.50
100σ̃a 0.2035 0.0010 1.4803 − − − U 50.00 28.87
100σg 1.5582 1.4281 1.7191 1.4953 0.9122 2.0525 IG 0.80 1.50
100σ̃g 35.3479 34.8243 35.8393 − − − U 50.00 28.87
100σr 0.4797 0.4372 0.5464 0.6858 0.5884 0.7841 IG 0.80 1.50
100ln γ 0.5087 0.3906 0.6214 0.4098 0.3308 0.4880 N 0.62 0.10
100lnπ∗ 0.7131 0.5994 0.8868 0.7847 0.6511 0.9127 N 0.65 0.10

Table 3: Posterior statistics for the parameters of the dispersed information model (DIM)
and the perfect information model (PIM) using a data set that does not include inflation
expectations from the Survey of Professional Forecasters

Table 3 reports the posterior statistics for the DIM and the PIM parameters when the two

models are estimated using a narrower data set that does not include the SPF as a measure of

price setters’inflation expectations. For the estimation, the same prior as the one detailed in

Table 1 is adopted.
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