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Abstract

I study the implications of recursive utility for the design of optimal fiscal policy. I find

that the standard policy prescriptions of the dynamic Ramsey literature are dramatically

altered. Labor tax volatility is optimal and can be quantitatively substantial. Furthermore,

labor taxes are countercyclical, display persistence independent of the stochastic properties

of exogenous shocks and increase on average over time. At the intertemporal margin, there

is a novel incentive for introducing distortions that can lead to an ex-ante capital subsidy.

Ignoring the distinction between smoothing over time and smoothing over states is not an

innocuous assumption for optimal policy.
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1 Introduction

This paper studies the implications of the recursive preferences of Epstein and Zin (1989) and

Weil (1990) for normative fiscal policy. I consider standard dynamic Ramsey setups with complete

markets and a representative household. Lump-sum taxes are not available. Linear taxes are used

in order to finance exogenous stochastic government expenditures. Distortionary taxes give rise to

an optimal policy problem, where a benevolent planner chooses taxes and debt under commitment

in order to maximize the utility of the representative household.

Time and risk play a central role in optimal fiscal policy. The policymaker has to decide

whether to tax in the current period or postpone taxation by issuing debt, and how to respond to

shocks that affect the government budget constraint. These two dimensions of the policy problem

are encoded in asset prices, which are central to the policymaker since they inform him about the

desirability of debt and therefore the extent to which he should resort to distortionary taxation.

As is well known from Epstein and Zin (1989) and Weil (1990), standard time-additive expected

utility, by forcing the coefficient of atemporal risk aversion to be equal to the inverse of the

coefficient of intertemporal elasticity of substitution, fails to make a distinction between smoothing

over time and smoothing over states. This feature, besides being theoretically unappealing, may

also result in an artificially low market price of risk, a fact that has popularized the use of recursive

preferences in the macro-finance literature.1 However, the implications of the distinction between

time and risk for the analysis of optimal policy are not known. This is the task of the current

paper.

Consider first an economy without capital and complete markets as in Lucas and Stokey (1983).

The basic lessons of dynamic Ramsey taxation in the time-additive expected utility economy are

two. First, the labor tax should be constant if period utility features constant elasticities. Even

when elasticities are not constant, the volatility of the labor tax is small. These are the classic tax-

smoothing results. Second, whenever the labor tax varies, it inherits the stochastic properties of

the exogenous shocks. Thus, optimal labor taxes do not constitute a distinct source of persistence

in the economy.

These classic results are overturned in the same economy with recursive preferences. Tax

volatility is optimal even when period elasticities are constant and can be quantitatively substantial.

Moreover, labor taxes persist independently of the stochastic properties of the exogenous shocks.

In order to understand the mechanism behind this result, consider a fiscal shock that hits the

government budget constraint. The policy prescription in the time-additive economy is to insure

against this shock by issuing state-contingent debt. The planner issues ex-ante a high amount of

debt contingent on low government expenditures that will be paid back by running a surplus and a

low amount of debt contingent on high government expenditures, in order to be able to run deficit.

In both cases, the optimal amount of state-contingent debt is such that the tax distortion stays

1See for example Tallarini (2000), Bansal and Yaron (2004) and Hansen et al. (2008).
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constant. Hence, state-contingent debt acts as a shock absorber.

Consider now the same situation with recursive preferences. The distinguishing feature of

recursive utility is that the “long-run,” as captured by future utilities, matters, i.e. the entire

intertemporal profile of consumption and leisure is taken into account in the pricing of state-

contingent claims. Typical parameterizations imply that the household is averse to volatility in

future utility. From an optimal taxation perspective, the household’s utility is reduced when

the government is issuing debt, and this reduction is priced. Hence, equilibrium prices of state-

contingent claims become debt-elastic. Since they provide one unit of consumption under adverse

utility conditions, claims on states of the world at which the planner issues high debt command a

high equilibrium price, and therefore, a low state-contingent return. In contrast, claims on states

of the world at which the planner issues less debt command a high-state contingent return. So

there is a negative covariance between debt and state-contingent returns with recursive utility that

is absent in the time-additive case. As a result, instead of keeping the tax rate constant, the

planner issues more debt (since it is cheaper) and increases taxes for low shocks and buys more

assets (that have higher return) and taxes less for high shocks.

Hence, in comparison to a time-additive economy, the planner is essentially “over-insuring”

against fiscal shocks and runs larger surpluses and deficits in order to use the novel valuation

effects that emerge with recursive utility. Taxes decrease for high shocks and increase for low

shocks, which leads to a negative correlation of taxes with government expenditures and therefore

countercyclicality of the tax rate.

In a dynamic setup with recursive utility a tax rate at a future period affects the entire sequence

of state-contingent claims up to that period due to the forward-looking nature of asset prices. As a

result, the planner does not choose future tax rates independently from the past. Optimal tax rates

exhibit persistence independent of the stochastic properties of exogenous shocks. Furthermore, the

planner finds it optimal to delay taxes for the future, so there is a back-loading of distortions.

These theoretical results have also important quantitative implications. In a series of numerical

exercises with a utility function that delivers perfect tax-smoothing in the time-additive economy I

show the following: First, the government’s fiscal hedging takes the form of high debt positions for

low government expenditures and low debt positions for high government expenditures. These fiscal

insurance efforts result into changes in tax rates that are negatively correlated with government

expenditures and strongly countercyclical. Second, the government’s “over-insurance” can be quite

large. Third, the autocorrelation of the tax rate is very high, even when shocks are identically

and independently distributed. Fourth, the mean and the standard deviation of the tax rate are

increasing over time, so there is on average a back-loading of tax distortions and a “fanning-out”

of the distribution of the tax rate. Depending on the time horizon, the volatility of the tax rate

can be substantial. A similar pattern of a positive drift and an increasing volatility over time arises

for the debt-to-output ratio. Finally, in the very long-run, the stationary distributions of the tax

rate and the debt-to-output ratio exhibit a high mean and substantial volatility.
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Consider now an economy with capital and time-additive expected utility as in Chari et al.

(1994) and Zhu (1992). These authors have shown that the basic insights about labor tax-

smoothing and inherited persistence from exogenous shocks of Lucas and Stokey (1983) hold also

in an economy with capital. Furthermore, they show that the ex-ante tax rate on capital income

is zero for a particular constant elasticity case and essentially zero quantitatively otherwise.

I show how the analysis of the allocation of distortions with recursive utility extends in this

economy with capital and derive further implications for capital taxes. Essentially the same mech-

anism about a non-constant and persistent allocation of distortions that I highlighted before in

economy without capital holds also in an economy with capital. The relevant variable that cap-

tures the incentives of the planner is wealth instead of just debt. The planner uses the negative

covariance of wealth with state-contingent returns that emerges with recursive utility and allo-

cates more distortions on high-wealth states and less distortions on low-wealth states, with similar

implications for labor taxes as in the economy without capital.

Furthermore, I show how this mechanism makes the ex-ante capital tax non-zero, even for the

constant elasticity case. The ex-ante capital tax represents a weighted average of state-contingent

intertemporal distortions. In an economy with recursive utility, low-wealth states command a lower

labor tax and essentially a state-contingent capital subsidy whereas high-wealth states a higher

labor tax and a state-contingent capital tax. I show that when the government hedges fiscal shocks

by taking a low wealth position when government spending is high and a high wealth position when

government spending is low, the state-contingent intertemporal subsidies are weighted more than

state-contingent intertemporal taxes, leading to an ex-ante capital subsidy.

In conclusion, when the attitude towards time is different than the attitude towards risk, the

classic tax-smoothing results of the dynamic Ramsey literature do not hold. It is important to

note that this is not an outcome of any kind of frictions. Instead, it is a natural implication of

the way the planner is using state-contingent returns in order to minimize welfare distortions.

Policy prescriptions favor tax volatility, persistence and a postponing of taxes for the future, with

important quantitative repercussions.

Related literature. The main reference on optimal taxation with time-additive expected utility

for an economy without capital is Lucas and Stokey (1983). The respective references for an

economy with capital are Chari et al. (1994) and Zhu (1992). The models I examine reduce to

the models analyzed in these studies, if I equate the risk aversion parameter to the inverse of the

intertemporal elasticity of substitution parameter. Furthermore, the economy with capital reduces

to the deterministic economy of Chamley (1986), if I shut off uncertainty.2

Other related studies include Farhi and Werning (2008), who analyze the implications of re-

2It is worth noting that Chamley demonstrated the generality of the zero capital tax result at the deterministic
steady state by using the preferences of Koopmans (1960). See Chari and Kehoe (1999) for a comprehensive survey
of optimal fiscal policy.
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cursive preferences for private information setups and Karantounias (2013), who analyzes optimal

taxation in an economy without capital, in a setup where the household entertains fears of mis-

specification but the fiscal authority does not.3

I follow a recursive formulation along the lines of Kydland and Prescott (1980) by keeping track

of debt in marginal utility units (or wealth in marginal utility units in an economy with capital),

a state variable that is redundant in the time-additive expected utility case. This formulation

succinctly summarizes the effects of recursive preferences in terms of the shadow cost of debt.

There are similarities in spirit with the analysis of risk-sharing under recursive preferences, as in

Anderson (2005), which leads to time-varying Pareto weights.

Another relevant line of research is the analysis of optimal taxation with time-additive expected

utility and restricted asset markets as in Aiyagari et al. (2002), Farhi (2010), Sleet and Yeltekin

(2006) or time-additive expected utility and private information as Sleet (2004). In studies like

Aiyagari et al. (2002), the lack of insurance markets also causes the planner to allocate distortions

in a time-varying and persistent way. However, the lack of markets implies that the planner tries

to decrease taxes when when government spending is small and increase taxes when government

spending is high. Instead, the opposite happens in the current paper.4 More generally, with

incomplete markets as in Aiyagari et al. (2002), the planner would like to allocate distortions in a

constant way across states and dates but he cannot, whereas with complete markets and recursive

preferences he could in principle follow a constant distortion policy, but does not find it optimal

to do so.

The paper is organized as follows. Section 2 uses a simple static setup to highlight the novel

mean-volatility trade-off that shows up with recursive utility. Section 3 lays out the economy

and section 4 sets up the Ramsey problem, its recursive formulation and derives the associated

optimality conditions. The entire action with recursive utility is captured by the excess burden

of distortionary taxation, a multiplier that reflects how distortions are allocated across states and

dates. The excess burden of taxation is constant with time-additive expected utility, whereas with

recursive utility it exhibits a martingale-like behavior. Section 5 is devoted to its analysis. The

implications for labor taxes are derived in section 6. Detailed numerical illustrations are provided

in section 7. Section 8 extends the analysis in an economy with capital and derives implications

for the ex-ante capital tax. Finally, section 9 concludes and an Appendix follows.

3Of interest is also the work of Gottardi et al. (2014), who study optimal taxation in incomplete market setups
with human capital accumulation and recursive preferences.

4Furthermore, with incomplete markets as in Aiyagari et al. (2002), it is typically optimal to front-load distortions
in order to create a buffer stock of assets, furnishing a tax rate with a negative drift. In contrast, in the current
analysis the tax rate exhibits a positive drift, in order to take advantage of cheaper state-contingent debt.

4



2 A mean-volatility trade-off

The non-optimality of a constant tax rate that arises with recursive utility can be sharply seen

using a perturbation argument in a very simple static setup. Consider an economy without capital

and government expenditures that take two values, g1 < g2, with probability πi, i = 1, 2. There are

two state-contingent claims that are traded before the realization of uncertainty at prices qi, with

the normalization
∑

i qi = 1. These claims provide one unit of consumption at state gi and zero

otherwise. The household consumes c and works h hours. The resource constraint in the economy

is ci + gi = hi, i = 1, 2. Let the household have risk-sensitive preferences with parameter σ < 0,

σ−1 ln
∑
i

πi exp(σU(ci, hi))

where U = c− 1
2
h2. The household is averse to volatility in utility, in contrast to the expected

utility household (σ = 0), that would be indifferent towards it. Equilibrium labor and consumption

are hi = 1 − τi and ci = 1 − τi − gi respectively, where τi is the tax rate on labor income. The

equilibrium utility of the household as function of the tax rate at shock g is u(τ, g) = 1
2
(1−τ 2)−g.

Equilibrium government debt, paid back by surpluses, is b(τ, g) = τ(1 − τ) − g. The aversion of

the household to utility volatility is reflected in equilibrium prices. In particular, prices are equal

to the utility-adjusted probabilities qi = πimi, where mi ≡ exp(σu(τi, gi))/
∑

i πi exp(σu(τi, gi)),

a change of measure. Due to aversion to utility volatility, marginal rates of substitution, and

therefore equilibrium prices, are increased when utility is low. In contrast to the expected utility

case, where equilibrium prices would be πi, government policy can affect prices. A high tax rate,

by reducing utility, increases the price of a state-contingent claim.

The household’s ex-ante equilibrium utility in terms of τi is

V (τ1, τ2) ≡ σ−1 ln
∑
i

πi exp(σu(τi, gi)). (1)

The equilibrium government budget constraint delivers the implementability constraint,

IC(τ1, τ2) ≡ π1 exp(σu(τ1, g1))b(τ1, g1) + π2 exp(σu(τ2, g2))b(τ2, g2) = 0. (2)

The problem of the Ramsey planner is to choose τi in order to maximize (1) subject to (2).

It is easy to see that a constant tax rate is optimal in the expected utility case. Assume now

that we consider the same policy prescription as in the expected utility case and set a constant

tax rate τi = τ̄ , i = 1, 2. The tax τ̄ has to satisfy IC(τ̄ , τ̄) = 0, i.e. it has to finance the present

value of government expenditures. Let b̄i ≡ b(τ̄ , gi) denote the debt position of the government at
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a constant tax rate. Tax revenues are constant and the government is issuing debt that is paid

back by running a surplus for the low shock, b̄1 > 0, whereas it runs a deficit that is financed by

government assets, b̄2 < 0, for the high shock. Let also m̄i and ūi denote the respective change of

measure and equilibrium utility evaluated at the constant tax rate policy.

Consider now a small perturbation of the tax rate in the direction (d1, d2), τi = τ̄ + εdi, i =

1, 2, ε > 0 and let W (ε) ≡ V (τ̄+εd1, τ̄+εd2) denote the respective welfare. Feasible directions have

to satisfy IC1(τ̄ , τ̄)d1 + IC2(τ̄ , τ̄)d2 = 0, with partial derivatives ICi(τ̄ , τ̄) = πi exp(σūi)[−στ̄ b̄i +

1 − 2τ̄ ] > 0, i = 1, 2.5 The first term in ICi denotes the marginal appreciation in the value of

debt due to the effect of taxes on equilibrium prices times the debt position b̄i, −στ̄ b̄i, whereas the

second term the marginal tax revenue, 1− 2τ̄ . The change in welfare for a small perturbation is

W ′(0) = V1(τ̄ , τ̄)d1 + V2(τ̄ , τ̄)d2 = −τ̄ [π1m̄1d1 + π2m̄2d2],

which for feasible directions becomes

W ′(0) = −στ̄ 2π1m̄1
b̄1 − b̄2

−στ̄ b̄2 + 1− 2τ̄
d1 > 0,

for d1 > 0, since b̄1 > b̄2. Therefore, an increase in tax rate at the low shock, which is accompanied

by a decrease in tax rate at the high shock (d2 < 0), increases welfare in comparison to a constant

tax policy. The government would like to run a larger surplus at the low shock and a larger

deficit at the high shock. Another way to state the same result is that the marginal rate of

substitution V1/V2 is smaller than the absolute value of the slope of the implementability constraint

IC1/IC2 at the constant tax rate policy, since the welfare change can be written as W ′(0) =

V2

(
V1/V2 − IC1/IC2

)
d1. Thus, the reduction in the tax rate at the high shock that becomes

possible by an increase in the tax rate at the low shock is larger than the corresponding reduction

in the tax rate that would keep welfare the same. As a result, welfare increases.

The improvement in welfare is coming from the effect of the tax rate on equilibrium prices. A

higher tax at the low shock and a lower tax at the high shock increases the price of the Arrow

claim at the lower shock and decreases the price at the high shock. This is welfare improving

since at the low shock the government is issuing debt b̄1 > 0, so its value increases, whereas at the

high shock the government buys assets b̄2 < 0, so they become cheaper. Thus, a non-constant tax

policy τ1 > τ̄ > τ2 decreases the state-contingent return on debt and increases the state-contingent

return on assets, allowing welfare to increase.

Therefore, tax volatility can be welfare-improving with recursive utility. This may seem sur-

5It is assumed that σ is small enough in absolute value so that −στ̄ b̄2 + 1− 2τ̄ > 0. Furthermore, τ̄ < 1/2, i.e.
the constant tax is at the increasing part of the Laffer curve.
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prising since with the risk-sensitive preferences used above, the household is actually more averse

to fluctuations in utility than the expected utility household. However, the increase in tax volatil-

ity is accompanied by a reduction in the mean tax rate. In particular, let Emτ denote the

“risk-sensitive” mean tax rate, Emτ ≡ τ̄ + ε[π1m1d1 + π2m2d2], with a marginal change equal

to dEmτ
dε
|ε=0 = π1m̄1d1 + π2m̄2d2. The risk-sensitive mean tax rate is the welfare-relevant ob-

ject, since changes in welfare change are negatively related to changes in the mean tax rate,

W ′(0) = −τ̄ dEmτ
dε
|ε=0. So an increase in welfare corresponds to a decrease in the mean tax rate. In

other words, the decreased mean tax rate has a positive first-order effect on welfare which domi-

nates the negative second-order effect of the increased tax volatility, delivering a trade-off between

mean and volatility of the tax rate that is absent with expected utility.

Although this simple static setup has a special structure due to quasi-linear utility (which

essentially allows the use of the more intuitive “dual” approach), it conveys several messages

that will be valid in the rest of the paper. In particular, tax distortions will be captured by a

multiplier on the implementability constraint, the excess burden of taxation, which in contrast

to the expected utility case, will not be constant anymore. Instead, the planner was to allocate

more distortions on events where he has relatively high debt in marginal utility units (and not

just debt as in the quasi-linear setup), exactly because this way debt becomes cheaper. If debt

in marginal utility units is negatively correlated with government expenditure shocks, then tax

distortions become negatively correlated with government spending as in the simple setup. The

aversion to utility volatility will correspond to a recursive utility criterion where risk aversion is

larger than the inverse of intertemporal rate of substitution, or in other words, a preference for

early resolution of uncertainty, which is the typical ingredient necessary for matching asset-pricing

facts. Finally, the entire intertemporal profile of future consumption and leisure matters in a fully

dynamic setup, a fact which delivers further implications for the persistence, volatility and the

back-loading of distortions.

3 Economy without capital

I start the analysis of the optimal allocation of distortions with recursive utility in an economy

without capital as in Lucas and Stokey (1983). In a later section, I show how the analysis extends

to an economy with capital as in Chari et al. (1994) and Zhu (1992) and derive the implications

for capital taxation.

Time is discrete and the horizon is infinite. There is uncertainty in the economy stemming

from exogenous government expenditure shocks g. Shocks take values in a finite or countable set.

Let gt = (g0, g1, ..., gt) denote the partial history of shocks till time t and let πt(g
t) denote the

probability of this history. The initial shock is assumed to be given, so that π0(g0) = 1.

The economy is populated by a representative household that is endowed with one unit of time

and consumes ct(g
t), works ht(g

t), pays linear labor income taxes with rate τt(g
t) and trades in
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complete asset markets. Leisure of the household is lt(g
t) = 1− ht(gt). The notation denotes that

the relevant variables are measurable functions of the history gt. Labor markets are competitive,

which leads to an equilibrium wage of unity, wt(g
t) = 1. The resource constraint in the economy

reads

ct(g
t) + gt = ht(g

t),∀t, gt. (3)

3.1 Preferences

The representative household derives utility from random sequences of consumption {c} ≡ {ct(gt)}t≥0,gt

and leisure {l} ≡ {lt(gt)}t≥0,gt . The household ranks consumption and leisure plans following a

recursive utility criterion of Kreps and Porteus (1978). In particular, let Vt denote the household’s

utility at time t. Vt follows the recursion

Vt = W (u(ct, 1− ht), µt(Vt+1)). (4)

The household derives utility from a composite good that consists of consumption and leisure,

u(ct, 1− ht), and from the certainty equivalent of continuation utility µt ≡ φ−1(Etφ(Vt+1)), where

Et denotes the conditional expectation operator given information at t with respect to the measure

π, and φ(.) is an increasing and concave function that is capturing atemporal risk aversion. The

time preference of the household between the composite good today and the certainty equivalent

of continuation utility is captured by the time aggregator W (.).

I focus my analysis on the isoelastic preferences of Epstein and Zin (1989) and Weil (1990)

(EZW henceforth), and use a constant elasticity of substitution time aggregator and a power

utility certainty equivalent. In particular, EZW preferences take the form

Vt = [(1− β)u(ct, 1− ht)1−ρ + β(EtV
1−γ
t+1 )

1−ρ
1−γ ]

1
1−ρ , (5)

where u is assumed to be positive. The parameter 1/ρ captures the intertemporal elasticity

of substitution between the composite good and the certainty equivalent of continuation utility,

whereas the parameter γ represents risk aversion with respect to atemporal gambles in continu-

ation values. These preferences reduce to standard time-additive expected utility when ρ = γ.

Furthermore, the separation of risk aversion and intertemporal elasticity of substitution inherently

imposes a preference for early (ρ < γ) or late (ρ > γ) resolution of uncertainty, whereas with ex-

pected utility (ρ = γ) there is indifference to the temporal resolution of uncertainty. Throughout

the paper I assume preference for early resolution of uncertainty (ρ < γ), which is the typical

parameterization necessary in order to match asset-pricing facts.6

6See Epstein and Zin (1989) and Weil (1990) for detailed discussions of how risk aversion, intertemporal elasticity
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It is useful for later purposes to bear in mind the monotonic transformation vt ≡ V 1−ρ
t −1

(1−β)(1−ρ)
,

which will be called the ρ-transformation.7 The utility recursion (5) becomes in this case

vt = Ut + β

[
Et[1 + (1− β)(1− ρ)vt+1]

1−γ
1−ρ

] 1−ρ
1−γ − 1

(1− β)(1− ρ)
, (6)

where U(ct, 1 − ht) ≡ u1−ρt −1

1−ρ , with respective derivatives Ui = u−ρui, i = c, l. I refer to U as

period utility and to Ui, i = c, l as (period) marginal utility of consumption and leisure. This

transformation provides a useful interpretation of ρ < γ as a situation where the household is

averse to volatility in continuation utilities.8

Of particular interest is the case when the intertemporal elasticity of substitution becomes

unity, ρ = 1. Then (5) becomes Vt = u1−β
t µβt , and applying the ρ-transformation for ρ = 1,

vt = lnVt
1−β , we get the recursion

vt = lnut +
β

(1− β)(1− γ)
lnEt exp

[
(1− β)(1− γ)vt+1

]
, (7)

which for γ > 1 has the interpretation of a risk-sensitive recursion with risk-sensitivity param-

eter σ ≡ (1− β)(1− γ).9

It will be useful to define

mt+1 ≡
V 1−γ
t+1

EtV
1−γ
t+1

, t ≥ 0, (8)

with m0 ≡ 1. For ρ = 1, the corresponding definition is mt+1 = exp[(1−β)(1−γ)vt+1]
Et exp[(1−β)(1−γ)vt+1]

. Note that

mt+1 is positive since Vt+1 is positive, and that Etmt+1 = 1. So mt+1 can be interpreted as a change

of measure of the conditional probability density πt+1(gt+1|gt), or, in other words, a conditional

of substitution and preference for early or late resolution of uncertainty are intertwined.
7 Applying the respective γ-transformation f(V ) ≡ V 1−γ−1

(1−β)(1−γ) on (5) delivers the representation used in Weil

(1990).

8Define the monotonic function H(x) ≡
[(

1 + (1 − β)(1 − ρ)x
) 1−γ

1−ρ − 1
]
/[(1 − β)(1 − γ)]. Recursion (6) can be

written as vt = Ut + βH−1(EtH(vt+1)). H(x) is concave for ρ < γ. Thus, ρ < γ denotes aversion to volatility in
vt+1.

9More generally, in the case of risk-sensitive preferences, the period utility function is not restricted to be
logarithmic and the recursion takes the form vt = Ut + β

σ lnEt exp(σvt+1), σ < 0. There is an intimate link
between the risk-sensitive recursion and the multiplier preferences of Hansen and Sargent (2001) that capture the
decision maker’s fear of misspecification of the probability model π. See Strzalecki (2011) and Strzalecki (2013) for
a decision-theoretic treatment of the multiplier preferences and an analysis of the relationship between ambiguity
aversion and temporal resolution of uncertainty respectively.
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likelihood ratio. Similarly, define the product of the conditional likelihood ratios as

Mt(g
t) ≡

t∏
i=1

mi(g
i), (9)

with the normalization M0 ≡ 1. This object has the interpretation of an unconditional likelihood

ratio and is a martingale with respect to measure π. I refer to πt ·Mt as the continuation-value

adjusted measure.

3.2 Competitive equilibrium

Household’s problem. The representative household is choosing {ct(gt), ht(gt), bt+1(gt+1)}t≥0,gt

to maximize V0({c}, {h}) subject to

ct(g
t) +

∑
gt+1

pt(gt+1, g
t)bt+1(gt+1) ≤ (1− τt(gt))ht(gt) + bt(g

t),

the non-negativity constraint for consumption ct(g
t) ≥ 0 and the feasibility constraint for labor

ht(g
t) ∈ [0, 1], where initial debt b0 is given. The variable bt+1(gt+1) stands for the holdings at

history gt of an Arrow claim that delivers one unit of consumption next period if the state is gt+1

and zero units otherwise. This security trades at price pt(gt+1, g
t) in units of the history-contingent

consumption ct(g
t).

The household is also facing a no-Ponzi-game condition that takes the form

lim
t→∞

∑
gt+1

qt+1(gt+1)bt+1(gt+1) ≥ 0 (10)

where qt(g
t) ≡

∏t−1
i=0 pi(gi+1, g

i), with the normalization q0 ≡ 1. In other words, qt stands for the

price of an Arrow-Debreu contract at t = 0.

Government. The government taxes labor income and issues state-contingent debt in order to

finance the exogenous government expenditures. The dynamic budget constraint of the government

takes the form

bt(g
t) + gt = τt(g

t)ht(g
t) +

∑
gt+1

pt(gt+1, g
t)bt+1(gt+1),

When bt > 0, the government borrows from the household and when bt < 0, the government lends

to the household.

Definition 1. A competitive equilibrium with taxes is a stochastic process for prices {p}, an
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allocation {c, h, b} and a government policy {g, τ, b} such that: 1) Given prices {p} and taxes {τ},
the allocation {c, h, b} solves the households’s problem. 2)Prices are such so that markets clear,

i.e. the resource constraint (3) holds.

3.3 Household’s optimality conditions

The labor supply decision of the household is governed by

Ul(g
t)

Uc(gt)
= 1− τt(gt), (11)

which equates the marginal rate of substitution between consumption and leisure with the

after-tax wage. The first-order condition with respect to an Arrow security equates its price to the

household’s intertemporal marginal rate of substitution,10

pt(gt+1, g
t) = βπt+1(gt+1|gt)

(
Vt+1(gt+1)

µt(Vt+1)

)ρ−γ
Uc(g

t+1)

Uc(gt)
(12)

= βπt+1(gt+1|gt)mt+1(gt+1)
ρ−γ
1−γ

Uc(g
t+1)

Uc(gt)
,

where the second line uses the definition of the conditional likelihood ratio (8).11 The transver-

sality condition is

lim
t→∞

∑
gt+1

βt+1πt+1(gt+1)Mt+1(gt+1)
ρ−γ
1−γUc(g

t+1)bt+1(gt+1) = 0. (13)

The stochastic discount factor St+1 with EZW utility is

St+1 ≡ β

(
Vt+1

µt

)ρ−γ
Uc,t+1

Uct
= βm

ρ−γ
1−γ
t+1

Uc,t+1

Uct
. (14)

The disentanglement of risk aversion and intertemporal elasticity of substitution (ρ 6= γ) in-

troduces continuation values, scaled by their certainty equivalent µt, into the stochastic discount

factor. As a result, besides caring for the short-run (Uc,t+1/Uct), the household cares also for the

“long-run”, in the sense that the entire sequence of future consumption and leisure will directly

affect its intertemporal marginal rate of substitution today.12

10The derivative of the utility index with respect to ct+i can be calculated recursively from the relationship

∂Vt
∂ct+i

= ∂Vt
∂µt

∂µt
∂Vt+1

∂Vt+1

∂ct+i
, i ≥ 1. Similarly for labor. Therefore, we have ∂V0

∂ct
= (1 − β)V ρ0 β

tπtM
ρ−γ
1−γ
t Uct and ∂V0

∂ht
=

−(1− β)V ρ0 β
tπtM

ρ−γ
1−γ
t Ult. For the ρ-transformation we have ∂v0

∂ct
= βtπtM

ρ−γ
1−γ
t Uct and ∂v0

∂ht
= −βtπtM

ρ−γ
1−γ
t Ult.

11 The change of measure Mt allows also a concise expression for the price of an Arrow-Debreu contract at t = 0,

qt(g
t) = βtπt(g

t)Mt(g
t)
ρ−γ
1−γ Uc(g

t)
Uc(g0) .

12 Bansal and Yaron (2004) and Hansen et al. (2008) have explored ways of making the intertemporal profile of
consumption quantitatively important in order to increase the market price of risk.
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4 Ramsey problem

I formulate the Ramsey problem under commitment. The problem of the planner is to choose at

period zero the competitive equilibrium that maximizes the utility of the representative household.

I follow the primal approach of Lucas and Stokey (1983) and eliminate taxes and equilibrium prices

from the competitive equilibrium conditions. As a result, the problem of the planner reduces to

a problem of choosing allocations that satisfy the resource constraint (3) and implementability

constraints, i.e. constraints that allow the optimal allocation to be implemented as a competitive

equilibrium.

4.1 Implementability constraints

Use (11) and (12) to eliminate labor taxes and equilibrium prices from the household’s dynamic

budget constraint and multiply by the marginal utility of consumption to get

Uctbt = Ωt + βEtm
ρ−γ
1−γ
t+1 Uc,t+1bt+1, (15)

where

Ωt ≡ Uctct − Ultht. (16)

The variable Ωt stands for consumption net of after-tax labor income in marginal utility of con-

sumption units. In equilibrium it is also equal to the primary surplus in marginal utility units.

Note that Ωt is a function of consumption and labor only, Ωt = Ω(ct, ht). We can summarize this

discussion in terms of a proposition:

Proposition 1. The Ramsey planner faces the following implementability constraints:

Uctbt = Ωt + βEtm
ρ−γ
1−γ
t+1 Uc,t+1bt+1, t ≥ 0

where ct ≥ 0, ht ∈ [0, 1] and (b0, g0) given. Furthermore, the transversality condition (13)

has to be satisfied. The conditional likelihood ratios mt+1, t ≥ 0, defined in (8), are endogenously

determined by continuation values that follow the recursion (5).

Complete markets allow the collapse of the household’s dynamic budget constraint to a unique

intertemporal budget constraint. However, maintaining the dynamic budget constraint of the

household is convenient for a recursive formulation.

Definition 2. The Ramsey problem is to maximize at t = 0 the utility of the representative

household subject to the implementability constraints of proposition 1 and the resource constraint

(3).

12



4.2 Recursive formulation

I follow the methodology of Kydland and Prescott (1980) and break the Ramsey problem in two

subproblems: the problem from period one onward and the initial period problem. For that

purpose, let zt denote debt in marginal utility units, zt ≡ Uctbt, and rewrite the dynamic imple-

mentability constraint (15) as

zt = Ωt + βEtm
ρ−γ
1−γ
t+1 zt+1, t ≥ 1. (17)

It will be useful for later purposes to define ωt ≡ Etm
ρ−γ
1−γ
t+1 zt+1. The variable ωt appears in

the right-hand side of the dynamic implementability constraint and is instrumental in the in-

terpretation of the Ramsey plan. Up to a proper scaling with current marginal utility and the

subjective discount factor β, it can be thought of as the market value of the government portfolio

of state-contingent debt, since ωt = Uct
β
EtSt+1bt+1.

I represent the commitment problem from period one onward recursively by keeping track of

the exogenous shock gt and debt in marginal utility units zt, that captures the commitment of the

planner to his past promises. Note that debt in marginal utility units is a forward-looking variable

that it not inherited from the past. This creates the need to specify Z(g), the space where z lives.

The set Z(g) represents the values of debt in marginal utility units that can be generated from an

implementable allocation when the initial shock is g and is defined in the Appendix. Let V (z1, g1)

denote the value function of the planner’s problem from period one onward, where z1 ∈ Z(g1) and

assume that shocks follow a Markov process with transition probabilities π(g′|g).

Bellman equation. The functional equation that determines the value function V (.) takes the

form

V (z, g) = max
c,h,z′

g′

[
(1− β)u(c, 1− h)1−ρ + β

[∑
g′

π(g′|g)V (z′g′ , g
′)1−γ] 1−ρ

1−γ
] 1

1−ρ

subject to

z = Ω(c, h) + β
∑
g′

π(g′|g)
V (z′g′ , g

′)ρ−γ[∑
g′ π(g′|g)V (z′g′ , g

′)1−γ
] ρ−γ

1−γ
z′g′ (18)

c+ g = h (19)

c ≥ 0, h ∈ [0, 1] (20)

z′g′ ∈ Z(g′). (21)

The notation z′g′ captures the fact that the planner is choosing state-contingent debt in marginal
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utility units next period at shock g′.

The nature of the Ramsey problem is fundamentally changed because, in contrast to the case

of time-additive utility, the value function shows up in the dynamic implementability constraint

and in particular in the determination of the market value of debt ω. This is due to the fact

that continuation values, i.e. the entire profile of future consumption and leisure, determine the

stochastic discount factor as we saw earlier. Hence, there is an essential non-linearity in z in the

constraint.

Initial period problem. The initial value of the forward-looking variable z1 that was taken

as given in the formulation of the planner’s problem from period one onward is chosen optimally

in order to maximize the utility of the household at t = 0. In this sense, the variable z is a

pseudo-state variable, i.e. a jump variable that is treated as a state variable in order to capture

the commitment of the planner to the optimal plan devised at the initial period. Furthermore,

the problem at the initial period is different from period one onward due to the presence of the

initial debt b0. As a result, the overall value of the Ramsey problem and the initial period policy

functions (c0, h0, z1) depend on (b0, g0).

4.3 Optimality conditions

It turns out that is easier to derive the optimality conditions of the problem by using the ρ-

transformation of the value function, v(z, g) ≡ V (z,g)1−ρ−1
(1−β)(1−ρ)

. The transformed Bellman equation is

stated in the Appendix.

Let Φ and λ be the multipliers on the dynamic implementability constraint and the resource

constraint respectively of the transformed problem and let m′g′ denote the conditional likelihood

ratio, which obviously depends on the value function. Note that at the optimal solution the

multipliers will be functions of the state, Φ = Φ(z, g) and λ = λ(z, g). The first-order necessary

conditions for an interior solution at points of differentiability of the value function are

c : Uc + ΦΩc = λ (22)

h : −Ul + ΦΩh = −λ (23)

z′g′ : vz(z
′
g′ , g

′) + Φ
[
1 + (1− β)(ρ− γ)vz(z

′
g′ , g

′)η′g′
]

= 0, (24)

where

η′g′ ≡ V ′ρ−1
g′ z′g′ − µρ−1ω. (25)
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The variables Ωi, i = c, h stand for the partial derivatives of Ω with respect to consumption

and labor. I call η′g′ the government’s relative debt position in marginal utility units and analyze

it in detail later. Recall that ω stands for the market value of debt, ω =
∑

g′ π(g′|g)m
′ ρ−γ
1−γ
g′ z′g′ , and

µ for the certainty equivalent, whereas V ′g′ is shorthand for V (z′g′ , g
′).13

The envelope condition takes the form vz(z, g) = −Φ. Note that Φ ≥ 0, so vz(z, g) ≤ 0.14 The

multiplier Φ is strictly positive if the first-best cannot be achieved, i.e. if (z, g) are not such that

the first-best allocation can be supported. The initial period optimality conditions that determine

(c0, h0) and the optimal value of z1 are stated in the Appendix.

5 Excess burden of distortionary taxation

The entire action with recursive utility is coming from Φ, a multiplier which reflects the shadow

cost of the constraints that the competitive equilibrium imposes in the second-best world. In

particular, as the envelope condition shows, Φ captures the cost of an additional unit of debt

in marginal utility units. It is a cost, because increases in debt have to be accompanied by an

increase in distortionary taxation. In a first-best world with lump-sum taxes available, Φ would

be zero. I refer to it as the excess burden of distortionary taxation since it essentially summarizes

tax distortions.

5.1 Price effect of continuation value

It order to understand how optimal policy is altered with recursive preferences, it is crucial to

understand how continuation values affect the stochastic discount factor, in other words how the

“long-run” alters equilibrium pricing. Two mechanisms are at play. Consider the derivative of the

stochastic discount factor (14) with respect to Vt+1,

∂St+1

∂Vt+1

= (ρ− γ)β
Uc,t+1

Uct
m

ρ−γ
1−γ
t+1 V

−1
t+1[1− πt+1(gt+1|gt)mt+1].

The sign of the derivative of St+1 is negative for ρ < γ, (πt+1(gt+1|gt)mt+1 < 1 according to the

change of measure). An increase in continuation value leads to a decrease in the stochastic discount

factor when the desire to smooth over states is stronger than the desire to smooth over dates,

so when there is aversion to volatility in continuation utility and agents prefer early resolution of

uncertainty. Therefore, the equilibrium price of the Arrow security decreases. To state it differently,

13In definition (25) I use the non-transformed value function V (which is equal to [1 + (1− β)(1− ρ)v]
1

1−ρ ) as a
matter of convenience, since it allows a more compact exposition of the first-order conditions.

14I am implicitly assuming that the government has access to lump-sum transfers, so that the dynamic imple-
mentability constraint takes the form zt ≤ Ωt + βωt.
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an agent who would have high utility at gt+1 would require a higher return in order to hold a claim

to one unit of consumption at this state of the world.

Note though that states next period are interconnected through the certainty equivalent µt,

which depends positively on continuation values (∂µt/∂Vt+1 = πt+1(gt+1|gt)(Vt+1/µt)
−γ > 0).

Therefore, an increase in continuation value at state ḡt+1 6= gt+1 will affect the stochastic dis-

count factor through the certainty equivalent and therefore the price of an Arrow security at state

gt+1. To see that, let V̄t+1 ≡ Vt+1(ḡt+1, g
t) and compute the derivative of the stochastic discount

factor with respect to V̄t+1 to get

∂St+1

∂V̄t+1

= (γ − ρ)β
Uc,t+1

Uct
m

ρ−γ
1−γ
t+1 V̄

−1
t+1πt+1(ḡt+1|gt)m̄t+1,

where m̄t+1 corresponds to the likelihood ratio at ḡt+1. Thus, an increase in continuation value at

states other than gt+1 is increasing the price of an Arrow security at gt+1.

5.2 Debt appreciation and allocation of distortions

Continuation values are negatively related to debt in marginal utility units at the Ramsey problem,

vz < 0. Therefore, given our previous discussion, there is a negative relationship between the return

of an Arrow claim and debt in marginal utility units. Hence, increases in debt in marginal utility

units become less costly. This relationship is absent for time-additive expected utility.

The negative relationship between debt and returns affects the optimal choice of state-contingent

debt and the allocation of distortions over states and dates. In particular, consider the first-order

condition with respect to z′g′ (24) and rewrite it as follows:

−vz(z′g′ , g′)︸ ︷︷ ︸
MC of increasing z′

g′

= Φ ·
[

1︸︷︷︸
EU term

+ (1− β)(ρ− γ)vz(z
′
g′ , g

′)η′g′︸ ︷︷ ︸
EZW term: price effect of z′

g′ (+/-)

]
. (26)

The left-hand side of (26) denotes the marginal utility cost of increasing z′g′ . More debt at

g′ reduces utility because it is associated with more taxes in the future. The right-hand side of

(26) denotes the utility benefit of the marginal revenue of the government from debt issuance. It

is proportional to the change in the market value of the government portfolio ∂ω/∂z′g′ , times its

welfare importance, Φ.15 The first-term in the right-hand side denotes the conventional marginal

benefit of increased debt in marginal utility units when its price is out of the control of the

planner. Issuing more debt for next period increases the revenues of the government and relaxes

15It is useful to think of the planner as minimizing the welfare cost of debt subject to achieving a particular revenue

from debt issuance: minz′
g′
C subject to ω ≥ ω̄, where C ≡ −

[∑
g′ π(g′|g)

(
1 + (1− β)(1− ρ)v(z′g′ , g

′)
) 1−γ

1−ρ
] 1−ρ

1−γ /(1−
β)(1− ρ). The first-order condition of this problem is the same as (26) for the proper value of the multiplier Φ.
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the government budget constraint. This allows less taxation at the current period. This is the only

marginal benefit relevant in the time-additive expected utility world of Lucas and Stokey (1983)

where ρ = γ. In that case, the optimality condition reduces to

−vz(z′g′ , g′) = Φ,

which – by using the envelope condition – implies that Φ′g′ = Φ for all values of the state

(z, g). Thus, in the case of time-additive expected utility, the planner would optimally make the

excess burden of distortionary taxation constant. This is the formal result that hides behind the

tax-smoothing intuition: the policymaker should spread welfare distortions among states and dates

in a constant way. Furthermore, this is also the source of Lucas and Stokey’s celebrated history-

independence result, since optimal allocations and tax rates can be written solely as functions of

the exogenous shocks and the constant Φ.16

In contrast to time-additive expected utility, the price of debt becomes debt-elastic with re-

cursive utility. Increases in debt increase its price, which is reflected in the second term at the

right-hand side of (26), (ρ − γ)vz > 0. The marginal revenue effects of the appreciation of the

value of debt at g′ depend on the relative debt position η′g′ , which has the following property:

Lemma 1. (Innovation property) ∑
g′

π(g′|g)m′g′η
′
g′ = 0

Proof. See Appendix.

Therefore, η′g′ can take both positive and negative values. A positive (negative) η′g′ can be

rewritten as z′g′ > (<)m
′ 1−ρ
1−γ
g′ ω, and therefore, corresponds to a debt position that is above (below)

a multiple of the market value of the debt portfolio. When ρ = 1, we have the simplification

η′g′ = z′g′ − ω, where ω =
∑

g′ π(g′|g)m′g′z
′
g′ , so η′g′ captures the state-contingent debt position in

marginal utility units relative to the value of the debt portfolio.17

It is natural to expect that the appreciation of debt leads to a higher marginal revenue of the

government when the government sells debt (z′g′ > 0) and a lower one when the government buys

assets (z′g′ < 0). However, due to the state non-separabilities that we analyzed in section 5.1, an

16The excess burden of taxation is also constant in a deterministic economy (η′g′ ≡ 0,∀g). Thus, as far as Φ
is concerned, there is no essential difference in the allocation of distortions between a deterministic world and a
stochastic but time-additive world.

17Note that we could see the zero conditional mean property of lemma 1 by rewriting η′g′ as η′g′ = V ′ρ−1
g′ z′g′ −∑

g′ π(g′|g)m′g′V
′ρ−1
g′ z′g′ , so η′g′ could be interpreted as the conditional innovation of V ′ρ−1

g′ z′g′ under πt ·Mt.
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increase in debt at g′, by reducing the certainty equivalent, reduces equilibrium prices at all other

states of the world ḡ′ 6= g′. The marginal revenue effect of the depreciation of the value of debt

at all other states of the world is captured by the market value of the government portfolio, ω.

This is the reason why the net revenue effect of debt is determined by the relative debt position

η′g′ and not just by z′g′ . Another way to think about the marginal revenue is in terms of elasticities

of equilibrium prices with respect to debt. The EZW term in (26) captures the own elasticity of

the price of debt in marginal utility units at g′ and the cross elasticities of all other equilibrium

prices at ḡ′ 6= g′ with respect to z′g′ .

The elasticity of equilibrium prices with respect to debt modifies the optimal allocation of

distortions over states and dates in a non-trivial way. It is convenient to collect terms and use the

envelope condition in order to rewrite (26) in terms of the inverse of Φ (assuming that Φ is not

zero) as18

1

Φ′g′
=

1

Φ
+ (1− β)(ρ− γ)η′g′ , (27)

or in sequence notation,

1

Φt+1

=
1

Φt

+ (1− β)(ρ− γ)ηt+1, t ≥ 0, (28)

where ηt+1 = V ρ−1
t+1 zt+1 − µρ−1

t ωt. Consider a state g′ where debt in marginal utility units is

relatively large so that η′g′ > 0 and a state g̃′ where debt in marginal utility units is relatively small

so that η′g̃′ < 0. Then (26) or, equivalently, (27) imply that Φ′g′ > Φ > Φ′g̃′ . The reason is simple.

The marginal revenue of the government is larger at g′ than the marginal revenue at g̃′. As a result,

a planner that minimizes welfare costs allocates more distortions at g′ and less distortions at g̃′,

Φ′g′ > Φ′g̃′ . In other words, relatively large debt positions become less costly, and relatively low

debt positions more profitable, prompting the planner to increase distortions at high-debt states

(η > 0) and decrease distortions at low-debt states (η < 0). Over time, we see that for η′g′ > 0,

the excess burden of taxation increases with respect to the current one, Φ′g′ > Φ, so the planner is

postponing distortions for next period, whereas for η′g̃′ < 0 it decreases, Φ′g̃′ < Φ, so the planner is

allocating more distortions on the current period.19 It is worth summarizing the results about the

excess burden of taxation in a proposition.20

18Otherwise, write the optimality condition in sequence notation as Φt+1 = Φt/
[
1 + (1−β)(ρ− γ)ηt+1Φt

]
. Thus,

if Φt = 0, then Φt+i = 0, i ≥ 0, so the first-best is an absorbing state.
19The non-constant allocation of distortions has also implications for the size of the debt position zt over time.

It is tempting to deduce that the planner is not only allocating more distortions on a high-debt state next period
(ηt+1 > 0), but also takes a larger debt position next period than the current one. Formally, the deduction would be
Φt+1 = −vz(zt+1, g) > Φt = −vz(zt, g)⇒ zt+1 > zt. This is a statement about the concavity of the value function
at g. This statement cannot be made in general due to the non-convexities of the Ramsey problem, but it turns
out to be numerically true. See for further details section 7.

20The direction of the results is reversed when there is preference for late resolution of uncertainty (ρ > γ), which
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Proposition 2. In a time-additive expected utility world the excess burden of taxation is constant

across states and dates. In contrast, in a recursive utility world, the planner allocates more distor-

tions on high-debt states (η > 0) and less distortions on low-debt states (η < 0). Tax distortions

increase or decrease over time depending on the realization of a high- or low-debt state respectively.

Note that the mechanism behind this allocation of distortions is essentially the same as in the

special setup of section 2. In section 2 it was possible to write continuation utilities in terms of the

tax rate, making prices tax-elastic. In a general dynamic setup this role is played by z. Distortions,

that were captured by the tax rate in the static setup, are reflected in the excess burden of taxation.

Furthermore, the designation of the states that require higher or less distortions is determined by

debt in marginal utility units and not just debt.21

Fiscal hedging. Proposition 2 is instructing us that the crucial element for the allocation of

distortions with recursive utility is the relative debt position in marginal utility units ηt+1. Besides

that, it is silent on how debt in marginal utility units, i.e. the present discounted value of future

surpluses (in marginal utility units), is associated with fiscal shocks. To answer this question,

we have to understand the fiscal hedging of the government, i.e. the way the government is using

state-contingent debt in order to insure against fiscal shocks. We typically expect that the planner

insures against government expenditure shocks by taking small debt positions (or assets) when

government expenditures are high (which allows running subsequently a deficit), and issuing debt

for low expenditure shocks, that is paid back by surpluses. This type of fiscal insurance leads to

state contingent-debt that is typically negatively correlated with government expenditures.22 If

this negative correlation with fiscal shocks carries over to state-contingent debt in marginal utility

units, then proposition 2 implies that distortions will increase for low government expenditures

shocks and decrease for high government expenditure shocks. In that case, the change in the

excess burden of taxation is negatively correlated with government expenditures. We will analyze

in detail a utility function in the numerical illustrations section that delivers this result.

Recursive versus sequential formulation. Readers accustomed to optimal taxation prob-

lems with complete markets may wonder how the excess burden of taxation can be time-varying

when there is a unique intertemporal budget constraint. In the Appendix I employ a sequential

formulation of the problem and show the mapping between the optimality conditions of the two

formulations in order to make clear where this result is coming from. In short, the time-varying Φt

implies a love of volatility in future utility, a case which doesn’t seem to be empirically relevant (at least from
an asset-pricing perspective). In this case, increases in continuation values lead to increases in the prices of state-
contingent claims and therefore to a reduction of state-contingent returns. Hence, there is a positive relationship
of debt and state-contingent returns. As a result, relatively large debt positions become more costly with recursive
utility, motivating the planner to allocate less distortions on high-debt states and more distortions on low-debt
states, so Φ′g′ < Φ < Φ′g̃′ when η′g′ > 0 and η′g̃′ < 0.

21The relative debt position η was not relevant in the static setup because ω was zero.
22This was exactly the case in section 2.
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in the recursive formulation reflects the shadow value of additional “implementability” constraints

in the sequential formulation of the problem that arise even in a complete markets setup.23 The

benefit of the recursive formulation of the commitment problem, besides illuminating obviously

that z is the relevant state variable, is the succinct summary of the effects of continuation values

in terms of a varying cost of debt. This allows a clean comparison with the time-additive expected

utility case. There are obvious similarities in spirit with the optimal risk-sharing literature with

recursive preferences, which expresses risk-sharing arrangements in terms of time-varying Pareto

weights.24,25

5.3 Dynamics of the excess burden of taxation

The relative debt position ηt captures the incentives of the planner to increase or decrease dis-

tortions, given the excess burden of taxation of the previous period and therefore becomes the

determinant of the conditional time-variation of Φt. The law of motion (28) shows that the inverse

of the excess burden of taxation at t depends on the sum of all past positions ηi, i = 1, ..., t, a

property which is explained by the fact that all past prices of state-contingent claims change with a

change in continuation values at time t. This is due to the forward-looking nature of continuation

utilities, i.e. the household at t− i is taking into account the entire future stream of consumption

and leisure when it prices Arrow claims. Thus, the excess burden of taxation and therefore the

allocation depend on the past. Furthermore, we have:

Proposition 3. (Martingale characterization and back-loading of distortions)

The inverse of Φt is a martingale with respect to the continuation-value adjusted measure πt ·Mt,

and therefore, Φt is a submartingale with respect to πt ·Mt.

Proof. Take conditional expectation in (28) to get

Etmt+1
1

Φt+1

=
1

Φt

Etmt+1 + (1− β)(ρ− γ)Etmt+1ηt+1 =
1

Φt

,

since Etmt+1 = 1 and Etmt+1ηt+1 = 0 by lemma 1. Thus 1/Φt is a martingale with respect to

πt ·Mt. Furthermore, since the function f(x) = 1/x is convex for x > 0, an application of the

23These constraints describe utility recursions and the law of motion of M
ρ−γ
1−γ
t . In the case of the multiplier pref-

erences of Hansen and Sargent (2001), it is natural to think of the utility recursions as implementability constraints
since they correspond to optimality conditions of the malevolent alter-ego of the household, that minimizes the
household’s utility subject to a penalty. See Karantounias (2013). This minimization procedure would also emerge
naturally if we expressed recursive utility as the variational utility of Geoffard (1996).

24See for example Anderson (2005) and references therein.
25 Note also that recursive utility adds z as a state variable to the optimal taxation problem, whereas z can be

ignored in the time-additive case. The reason is that z is necessary for the determination of the Ramsey plan only
though its shadow cost, Φ. When the excess burden of taxation is constant, the return function of the second-best
problem can be augmented in such a way, so that z becomes redundant as a state variable. See Lucas and Stokey
(1983) or Zhu (1992) and Chari et al. (1994).
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conditional version of Jensen’s inequality leads to Etmt+1
1

xt+1
≥ 1

Etmt+1xt+1
. Set now xt = 1/Φt and

use the martingale result to finally get Etmt+1Φt+1 ≥ Φt.

The martingale result about the inverse of the excess burden of taxation can be interpreted

loosely as an indication of persistence. For example, if there is an absorbing state, then ηt+1

becomes identically zero after the absorbing state is reached, and therefore Φt stays permanently

at the level that it reaches when the absorbing state is hit.

More generally, the asymptotic behavior of distortions is an open issue. The fact that 1/Φt

is a martingale with respect to the continuation-value adjusted measure implies that Mt/Φt is a

martingale with respect to the physical measure π, since Et(Mt+1/Φt+1) = MtEtmt+1(1/Φt+1) =

Mt/Φt, and therefore the non-negative ratio Mt/Φt converges almost surely to a finite random

variable by the martingale convergence theorem.26 However, we cannot make a general claim

about almost sure convergence of 1/Φt, unless we restrict the analysis to the case of an absorbing

state. In particular, since Mt is by construction a non-negative martingale with respect to π, it

converges to the non-negative random variable M∞ almost surely. If M∞ > 0, then we can infer

that 1/Φt converges almost surely. However, the martingale Mt typically converges to zero, so we

cannot make this claim.27,28

The submartingale result of proposition 3 shows that the planner wants on “average” to

back-load distortions, in the sense that distortions exhibit a positive drift with respect to the

continuation-value adjusted measure. However, it is not clear if there is back-loading of distortions

with respect to the physical measure. In particular, note that Covt(mt+1,Φt+1) = Etmt+1Φt+1 −
EtΦt+1 (since Etmt+1 = 1). Use the submartingale result Etmt+1Φt+1 ≥ Φt to get

EtΦt+1 ≥ Φt − Covt(mt+1,Φt+1).

26Whenever I use almost surely, I refer to the physical measure π.
27The same issue shows up in the analysis of optimal taxation with incomplete markets and time-additive expected

utility of Aiyagari et al. (2002). They find that when debt and asset limits do not bind, the excess burden of taxation
(and not the inverse of the excess burden of taxation as in the current analysis) is a martingale with respect to
the risk-adjusted measure, so actual convergence of the excess burden of taxation hinges on the convergence of the
risk-adjusted measure to a positive random variable. In the special case of quasi-linear utility, they are able to
eliminate the presence of the risk-adjusted measure and actually show convergence of Φt to zero, i.e. the Ramsey
allocation converges to the first-best allocation. This type of simplification is not possible in the recursive utility
case.

28Using the same logic as Aiyagari et al. (2002) did for the risk-adjusted measure, it is easy to show that if
M∞(ω̃) > 0 for a sample path ω̃, then the increment has to converge to unity, mt(ω̃) → 1, so V 1−γ

t (ω̃) →
Et−1V

1−γ
t (ω̃). The logic is simple: lnMt(ω̃) =

∑t
i=1 lnmi(ω̃) → lnM∞(ω̃) > −∞ and therefore lnmt(ω̃) → 0.

Thus, we can infer that if Prob(ω̃|mt(ω̃) → 1) = 0, then M∞ = 0 almost surely (otherwise mt → 1 on a set of
positive measure). Actually, this result can be strengthened to the following statement: if it is not the case that
mt → 1 almost surely, then M∞ = 0 almost surely. The proof of this is coming from the work of Ian Martin who
generalized the Kakutani theorem on multiplicative martingales. See Martin (2012, Theorem 1). As a result, as
long as there is some positive probability that there is variation in continuation values at the limit so that mt+1 9 1,
we run into the case of M∞ = 0.
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The sign of the conditional covariance of the excess burden of taxation with the increment to

the continuation-value adjusted measure mt+1 depends on the fiscal hedging of the government,

which determines how distortions are allocated across shocks. To see that, consider without loss

of generality the ρ = 1 < γ case (or more generally risk-sensitive preferences). Conditional on Φt,

we saw earlier that debt in marginal utility units that is negatively correlated with government

expenditure shocks, leads to a respective negative correlation of Φt+1 with fiscal shocks. But

high government expenditure shocks, since they provide low utility, are associated with a higher

conditional probability mass and therefore a higher mt+1 = exp[(1 − β)(1 − γ)vt+1]/Et exp[(1 −
β)(1− γ)vt+1], due to the household’s aversion to utility volatility. Therefore, we may expect the

conditional covariance of mt+1 with Φt+1 to be negative. In that case, we have a back-loading

of distortions with respect to the physical measure, EtΦt+1 ≥ Φt. We will further explore the

persistence, the drift and the convergence properties of distortions in the numerical illustrations

section.

6 Optimal labor income taxation

The excess burden of taxation is the relevant statistic for the allocation of distortions over states

and dates. In order to see its exact relationship with the labor tax, eliminate λ and combine the

first-order conditions with respect to consumption and labor (22)-(23) to get the optimal wedge in

labor supply

Ul
Uc
·

1− ΦΩh
Ul

1 + ΦΩc
Uc

= 1. (29)

Expressing the terms Ωc/Uc and Ωh/Ul in terms of elasticities delivers

Ωc

Uc
= 1− εcc − εch (30)

Ωh

Ul
= −1− εhh − εhc, (31)

where εcc ≡ −Uccc/Uc > 0 and εch ≡ Uclh/Uc, i.e. the own and cross elasticity of the period

marginal utility of consumption, and εhh ≡ −Ullh/Ul > 0 and εhc ≡ Ulcc/Ul, the own and cross

elasticity of the period marginal disutility of labor.29 As a result, we get the following formula for

the optimal labor tax,

29The elasticities of the marginal utility of consumption are multiplied with minus unity.
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Proposition 4. (Labor tax) The optimal labor tax is

τt = Φt
εcc,t + εch,t + εhh,t + εhc,t

1 + Φt

(
1 + εhh,t + εhc,t

) , t ≥ 1.

Proof. Use the labor supply condition Ul/Uc = 1− τ in order to express (29) in terms of the labor

tax as τ = −Φ(Ωc/Uc + Ωh/Ul)/(1 − ΦΩh/Ul). Use now the elasticity formulas (30) and (31) to

get the result.30,31

The formula in proposition 4 expresses the optimal labor tax in terms of the excess burden of

taxation Φt and in terms of elasticities of the period marginal utility of consumption and disutility

of labor. The excess burden of taxation is capturing how the planner wants to allocate distortions

over states and dates, whereas period elasticities capture incentives for taxation within states.

When Ucl ≥ 0, the cross elasticities become non-negative (εch, εhc ≥ 0) and, as a result, the

labor tax is positive. More importantly, in the case of constant elasticities, the formula shows that

the labor tax varies monotonically with the excess burden of taxation.32

In the time-additive case the excess burden of taxation is constant, so there is variation in the

tax rate only as long as there is variation in the period elasticities. If these elasticities are constant,

then the optimal tax rate is constant and optimal policy prescribes perfect tax-smoothing.

In contrast, with recursive utility, even in the constant elasticity case, the labor tax varies

monotonically with the non-constant excess burden of taxation, a stochastic process that follows

the law of motion (28). The prescription is to increase taxes at high-debt states and decrease taxes

at low-debt states.

6.1 Power utility in consumption and constant Frisch elasticity

Up to now, I have not taken a stance on the composite good u. Consider the composite good

30The optimal labor tax at t = 0 is different due the presence of initial debt,

τ0 = Φ0
εcc + εch + εhh + εhc − (εcc + εhc)c

−1
0 b0

1 + Φ0

(
1 + εhh + εhc − εhcc−1

0 b0
) .

The respective elasticities are evaluated at the initial allocation (c0, h0).
31The labor tax formula holds also for the deterministic and stochastic time-additive case for any period utility

U that satisfies the standard monotonicity and concavity assumptions, i.e. without being restricted to U = (u1−ρ−
1)/(1 − ρ), u > 0. It also holds for the risk-sensitive preferences with parameter σ < 0 and any standard U , i.e.
without being confined to treat the risk-sensitive preferences as a subcase of EZW utility for ρ = 1. With risk-
sensitive preferences, conditional likelihood ratios read mt+1 = exp(σvt+1)/Et exp(σvt+1) and the law of motion of
Φt remains the same by replacing (1−β)(ρ−γ) with σ in (28), with a relative debt position ηt+1 = zt+1−Etmt+1zt+1.

32We have ∂τ
∂Φ = εcc+εch+εhh+εhc[

1+Φ(1+εhh+εhc)]2
> 0, as long as the numerator is positive. Ucl ≥ 0 is sufficient for that.

23



u(c, 1− h) =

[
c1−ρ − (1− ρ)ah

h1+φh

1 + φh

] 1
1−ρ

(32)

that delivers a period utility function U = c1−ρ−1
1−ρ − ah

h1+φh
1+φh

with a Frisch elasticity 1/φh and

elasticities εcc = ρ, εhh = φh, εch = εhc = 0.33 I am particularly interested in this utility function

because it is an example of the constant elasticity class, which delivers constant tax rates for the

time-additive case. The labor tax formula in proposition 4 specializes to

τt =
Φt(ρ+ φh)

1 + Φt(1 + φh)
, t ≥ 1, (33)

The formula shows that the crucial parameter for the elasticities channel is ρ (and not the risk

aversion parameter γ), whereas both ρ and γ affect the Ramsey outcome through Φt. Furthermore,

we have:

Proposition 5. (Labor tax with constant Frisch elasticity)

1. The labor tax follows the law of motion

1

τt+1

=
1

τt
+

(1− β)(ρ− γ)

ρ+ φh
ηt+1, t ≥ 1. (34)

2. (Allocation of distortions) Let ρ < γ. Then

• if ηt+1 > 0, then τt+1 > τt (because Φt+1 increases)

• if ηt+1 < 0, then τt+1 < τt (because Φt+1 decreases)

3. (Martingale Characterization) The inverse of the labor tax 1/τt is a martingale with respect

to the measure πt ·Mt and therefore, τt is a submartingale with respect to πt ·Mt. Furthermore,

Etτt+1 ≥ τt − Covt(mt+1, τt+1),

so if Covt(mt+1, τt+1) < 0, then τt is a submartingale with respect to the physical measure,

Etτt+1 ≥ τt.

Proof. Taking inverses in (33) delivers

1

τt
=

1 + φh
ρ+ φh

+
1

ρ+ φh

1

Φt

.

33It is assumed that parameters are such so that c1−ρ−(1−ρ)ah
h1+φh

1+φh
> 0, so that u > 0 is well defined. For ρ = 1,

the utility recursion becomes Vt = exp
[
(1− β)

(
ln c− ah h

1+φh

1+φh

)
+ β lnµt

]
. If we want to drop the non-negativity

restriction, we can just consider risk-sensitive preferences with the particular period utility U .
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Note that 1/τt is an affine function of 1/Φt. Use the law of motion of Φt in (28) to write the law

of motion of the labor tax as in (34). Notice the close resemblance of the law of motion of the

labor tax (34) to the law of motion of the excess burden of distortionary taxation (28), a fact that

leads to similar conclusions about the allocation of distortions and martingale-like properties as in

proposition 3 and the discussion thereafter.

In the constant elasticity case, the labor tax becomes a monotonic function of the excess

burden of taxation, making exact the interpretation of the excess burden of taxation as a measure

of distortions. The law of motion of the tax rate (34) is essentially the same as the law of motion

of Φt. The entire analysis in section 5 about the allocation of distortions across states and dates

and the discussion about fiscal hedging incentives, martingale and back-loading properties that

was conducted in terms of the excess burden of taxation can be recast in terms of the tax rate and

will not be repeated.

7 Numerical illustrations

The evolution of the excess burden and therefore the analytic formulas for taxes presented in earlier

sections hinge on the sign and the size of the relative debt positions ηt+1, i.e. on the government’s

fiscal insurance. Debt in marginal utility units is obviously an endogenous object and requires a

numerical analysis to determine its correlation with exogenous shocks. In this section I provide

various numerical exercices in order to highlight properties of the optimal plan.

A summary of the results is as follows. First, the government is insuring against fiscal shocks

with relatively low debt positions in marginal utility units for adverse shocks and relatively high

debt positions in marginal utility units for favorable shocks. With this type of fiscal hedging, the

change in tax rates is strongly negatively correlated with government expenditures, with correlation

of the order of −0.99. As a result, the change in tax rates is strongly countercyclical, with a

correlation of −0.9762. Second, the debt positions of the government are in absolute value larger

than in the expected utility case, a property that I call “over-insurance”. Third, the martingale

property of the inverse of the excess burden of taxation translates to highly persistent tax rates.

The autocorrelation of the tax rate is of the order of 0.99, even when the shocks are i.i.d. Fourth,

the tax rate has a positive drift with respect to the physical measure. The mean and the standard

deviation of the tax rate are increasing over time, so there is on average a back-loading of tax

distortions and a “fanning-out” of the distribution. Depending on the time horizon, the volatility

of the tax rate can be substantial. A similar pattern arises for the debt-to-output ratio. Finally, in

the very long-run, the stationary distributions of the tax rate and the debt-to-output ratio exhibit

a high mean and substantial volatility.
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7.1 Calibration

I use the utility function of proposition 5 that delivers the perfect tax-smoothing result for time-

additive expected utility and the martingale-like result for recursive utility. In particular, let ρ = 1

and consider the utility recursion

vt = ln ct − ah
h1+φh
t

1 + φh
+

β

(1− β)(1− γ)
lnEt exp

(
(1− β)(1− γ)vt+1

)
, (35)

where γ > 1. The endowment of time is normalized to unity. I assume an annual frequency

and unitary Frisch elasticity and set (β, φh) = (0.96, 1). The atemporal risk aversion is γ = 10.34

I assume that shocks are i.i.d. in order to focus on the persistence generated endogenously by

optimal policy. Expenditures shocks take two values, gL = 0.072 and gH = 0.088, with probability

π = 0.5. These values correspond to 18% and 22% of average first-best output respectively. So

the standard deviation of the share of government spending in average first-best output is small

and equals 2%. The labor disutility parameter ah is set so that the household works 40% of its

available time if we are the first-best and government expenditures take their average value. Initial

debt is zero and the initial realization of the government expenditure shock is low, g0 = gL.

Recursive preferences introduce several complications to the calculation of the optimal plan,

making the numerical analysis non-trivial. At first, the presence of the value function in the

constraint makes convergence of iterative procedures difficult. Moreover, the state space where

z lives is endogenous. Furthermore, the problem is non-convex, which requires caution with the

use of first-order conditions.35 In addition, a precise calculation of the slope of the value function

is necessary, since it determines the excess burden of taxation. Finally, standard perturbation

methods are not helpful even for small shocks, because the excess burden of taxation becomes to

first-order a random walk, introducing explosiveness to the solution. In the Appendix I provide

details of the numerical method that was used.
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Figure 1: The left panel depicts the difference z′L − z′H . The right panel compares the position in the recursive
utility case with the respective position in the expected utility case. For both graphs the current expenditure shock
is low. A similar picture emerges when the current shock is high.

7.2 Expected utility plan

The expected utility case of γ = 1 corresponds to the environment of Lucas and Stokey (1983).

The Ramsey plan is history-independent and, as we saw earlier, the tax rate is constant for the

particular utility function. The planner issues zero debt for the case of low shocks, bL = 0, and

insures against a high government expenditure shock by buying assets, bH < 0. More specifically,

whenever there is a low shock, the planner, who has no debt to pay to the agent since bL = 0, runs

a surplus τhL−gL > 0 and uses the surplus to buy assets for the contingency of a high government

expenditure shock. The amount of assets is equal to bH = (τhH − gH)/(1− βπ). When the shock

is high, the planner uses the interest income on these assets to finance the deficit τhH − gH < 0.36

34The range of the risk-aversion parameter varies wildly in studies that try to match asset-pricing facts. For
example, Tallarini (2000) uses a risk aversion parameter above 50 in order to generate a high market price of risk,
whereas Bansal and Yaron (2004) use low values of risk aversion in environments with long-run risks and stochastic
volatility. Note that the plausibility of the size of atemporal risk aversion cannot be judged independently from the
stochastic processes that drive uncertainty in the economy, since they jointly bear implications for the premium for
early resolution of uncertainty. See Epstein et al. (2013) for a thoughtful evaluation of calibration practices in the
asset-pricing literature from this angle.

35This is not surprising since this is typically the case in Ramsey problems. However, there is an additional layer
of non-convexity that is coming from the non-linearity of the market value of government debt in z. Actually, for
the particular utility function, the traditional non-convexity associated with the surplus in marginal utility units Ω
is absent and the non-convexities emerge only with recursive utility.

36Note that if the initial shock was high, g0 = gH , we would have bH = 0 and bL > 0. The planner insures against
adverse shocks by running a deficit when government expenditures are high, that are financed by debt contingent
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Figure 2: Sample paths for the alternating sequence of low and high shocks.

7.3 Fiscal hedging and over-insurance

Turning to the recursive utility case, the left panel in figure 1 plots the difference between the

policy function for debt in marginal utility units next period when the shock is low, z′L, and the

policy function when the shock is high, z′H , as functions of current debt in marginal utility units.

From the figure we see that z′L > z′H for each point of the state space, so the government hedges

fiscal shocks by issuing more debt in marginal utility units for the low shock and less debt for the

high shock. As a result, the relative debt positions are η′H = z′H − ω < 0 and η′L = z′L − ω > 0,

so the planner is allocating more distortions on the low shocks and less distortions on the high

shocks, Φ′L > Φ′H and τ ′L > τ ′H . Moreover, the right panel in figure 1 plots the difference in the

policy functions in the recursive utility and the expected utility case, z′i − zEU
i , for i = L,H, for

each value of current debt in marginal utility units. As seen from the graph, in the recursive utility

case the planner is issuing more debt in marginal utility units than he would in the time-additive

economy for the low shock and less debt that in the time-additive economy for the high shock. So

there is a sense of “over-insurance.”37 Not only does the planner allocate more distortions on low

shocks due to to the appreciation of the value of debt, but also issues more debt at these states

in order to take advantage of the valuation effect. The opposite holds for high shocks. Thus, the

on a low expenditure shock. When shocks are low, the planner runs a surplus to pay back the issued debt.
37A virtually identical graph would emerge if we compared the optimal policy functions z′i with the positions that

would be induced if the planner followed a sub-optimal policy of a constant Φ, i.e. if the planner ignored optimal
policy prescriptions and just followed a constant-tax policy in the spirit of section 2.
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Figure 3: Random sample paths of the tax rate and the corresponding debt-to-output ratio.

positions become larger in absolute value than in the time-additive economy.

7.4 An instructive sample path

In order to understand the dynamics of the solution, consider at t = 1 a sample path of 10 low

shocks, followed by a sequence of shocks that alternates between 15 high and 15 low shocks. Figure

2 plots the respective sample paths for the tax rate, consumption, the debt position in marginal

utility units z, and the surplus and debt as shares of output in the expected and recursive utility

case.

The planner is issuing every period claims to consumption for next period for the contingency

of a low and high shock. As we saw earlier, he always takes a relatively larger position z when

shocks are low and a lower position when shocks are high. Consequently, at each period that the

shock remains low, the change in the tax rate is positive and the tax rate is increasing over time

till the first switch. The debt position in marginal utility units is also increasing over time till the

first switch, which translates to an increasing debt-to-output ratio.38 When the shock switches to

the high value the opposite pattern emerges. The government, which allocates less distortions on

high shocks, starts reducing the tax rate over time. Note that the tax rate does not jump down

38The increase in the debt position in marginal utility units over time is an outcome of the numerical finding that
the value functions are concave in z for each shock, and therefore the absolute value of the slope, Φt, is increasing
in z.
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Figure 4: Ensemble moments.

but is slowly reduced from the highest level that it assumed at the last period when the shock

was low, which is an indication of its persistence. Debt in marginal utility units drops when the

shock becomes high and then starts to decrease slowly reflecting the decrease of the tax rate. The

opposite pattern emerges again when we switch to the low shock. Remember that in the expected

utility case the tax rate would stay constant and that debt in marginal utility units would just

assume a zero value for the low shocks and a negative value (so it would stand for government

assets) for the high shocks.39

7.5 Volatility and back-loading of distortions

Figure 3 plots some realizations of the tax rate and the corresponding debt-to-output ratios. Note

the persistence in the tax rate and its volatility. To understand better the properties of the Ramsey

plan, I simulate 10, 000 sample paths that are 2, 000 periods long. Figure 4 depicts the ensemble

moments of interest of the tax rate and the debt-to-output ratio and table 1 reports their particular

values. In the expected utility case the tax rate is 22.3% with zero standard deviation. The table

depicts that there is a positive drift in the tax rate, which is to be expected given the discussion

after proposition 3 about the role of fiscal hedging and its effect on back-loading of distortions.

39Even if I used a period utility function that would imply a fluctuating tax rate in the expected utility case (for
a example a utility function with time-varying Frisch elasticity), the tax rate would not change over time unless
there was a switch in the shocks. This is due to the history-independence property.

30



Table 1: Ensemble moments.

Expected utility Recursive utility
t=200 t=500 t=1000 t=1500 t=2000

Tax rate in %

Mean 22.30 22.38 22.47 22.62 22.76 22.93

Standard deviation 0 0.43 0.69 0.99 1.25 1.48

95th percentile 23.12 23.68 24.34 24.96 25.54

5th percentile 21.66 21.4 21.08 20.88 20.73

Debt-to-output ratio in %

Mean -1.91 -0.57 1.57 4.72 7.75 11.37

Standard deviation 1.91 9.68 15.37 21.83 27.44 32.40

95th percentile 15.17 27.51 42.32 55.98 68.39

5th percentile -16.51 -22.21 -29.05 -33.45 -36.78

The table reports ensemble moments for the time-additive case of Lucas and Stokey (γ = 1) and the recursive
utility case (γ = 10). In the expected utility case, the debt-output ratio takes the values 0 and −3.8139%
for the low and high shock respectively.

Table 2: Statistics of tax rate sample paths.

Recursive utility
short samples long samples

Autocorrelation 0.9791 0.9980

Correlation of ∆τ with g -0.9999 -0.9984

Correlation of ∆τ with output -0.9977 -0.9762

Correlation of τ with g -0.1098 -0.0346

Correlation of τ with output -0.1793 -0.2418

The table reports median sample statistics across 10000 sample paths of the tax rate. For the time-additive
case the respective moments are not well defined since the tax rate is constant. For the recursive utility case
the median sample statistics are calculated for short samples (the first 200 periods) and long samples (2000
periods).

The mean tax rate increases over time from 22.38% at t = 200 to 22.93% at t = 2000. The increase

in the mean is slow. However, the volatility of the tax rate is large and increasing over time. The

standard deviation of the tax rate rises from 0.43 percentage points at t = 200 to 1.48 percentage

points at t = 2000. So the distribution of the tax rate is “fanning-out” over time.40 Another

40Although section 7 is meant only for illustrative purposes, it is worth noting that the standard deviation figures
are quite large in comparison to the ones obtained in quantitative studies in time-additive economies with fluctuating
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way to see the fanning-out is to consider the 5th and 95th percentile of the tax rate, which are

decreasing and increasing respectively over time. For example, at t = 2000 they become 20.73%

and 25.54% respectively.

The positive drift and the “fanning-out” of the distribution of the tax rate is mirrored in the

debt-to-output ratio, as is clear from the lower panels in figure 4. The debt-to-output ratio has a

mean of −1.91% and a standard deviation of 1.91 percentage points in the expected utility case.

The mean of the debt-to-output ratio is −0.57% at t = 200 and rises to 11.37% at t = 2000.

The standard deviation rises from 9.68 percentage points at t = 200 to 32.4 percentage points at

t = 2000. The 5th and 95th percentile of the distribution of the debt-to-output ratio at t = 2000

are −36.78% and 68.39% respectively.

7.6 Persistence and countercyclicality

The martingale property of the inverse of the excess burden of taxation in proposition 3 and the

inverse of the tax rate in proposition 5 translates quantitatively to a very high persistence of the

tax rate, despite the fact that government expenditure shocks are i.i.d., which contrasts to the

standard history-independence result of Lucas and Stokey (1983). Table 2 reports the median

autocorrelation for short and long sample paths. The persistence in the tax rate is of the order

of 0.998. The negative correlation of debt in marginal utility units with government expenditures,

i.e. the fiscal hedging we highlighted earlier, leads to a strong negative correlation of the change

in tax rates with government expenditure shocks. The correlation is −0.9984 for long samples.

Increases in government expenditures increase output and therefore the change in tax rates is

countercyclical with correlation equal to −0.9762. Note that the theory predicts that changes

in tax rates are affected by the debt position, whereas the level of the tax rate depends on the

cumulative debt positions of the government. As a result, the correlation of the level of the tax

rate with government expenditures or output is small (−0.0346 and −0.2418 respectively).

7.7 Higher risk aversion or more volatile shocks

Changes in tax rates depend on the deviation from expected utility (so the deviation of γ from

unity in this illustration) and on the size of the debt positions that the government is taking, as

is clearly seen from proposition 5. It is natural to conjecture that larger risk aversion or higher

risk in the economy in the sense of more volatile government expenditures that need to be insured

against, will lead to higher effects on the tax rate. Table 3 reports the ensemble moments for two

experiments of interest. At the upper part of the table risk aversion is increased to γ = 11, keeping

the rest of the calibration the same. At the lower part, the standard deviation of the shocks

is increased, keeping the mean value of the shocks and the rest of the parameters the same. In

tax rates. For example, Chari et al. (1994) use preferences that feature time-varying Frisch elasticity and show that
the standard deviation of the tax rate typically ranges from 5 to 15 basis points across different calibrations.
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Table 3: Higher risk aversion or higher shock variance.

Expected utility Recursive utility
t=200 t=500 t=1000 t=1500 t=2000

Higher risk aversion

Tax rate in %

Mean 22.30 22.39 22.49 22.65 22.80 22.99

Standard deviation 0 0.50 0.80 1.15 1.46 1.74

95th percentile 23.25 23.90 24.66 25.39 26.1

5th percentile 21.57 21.26 20.89 20.65 20.48

Debt-to-output ratio in %

Mean -1.907 -0.44 1.92 5.36 8.69 12.74

Standard deviation 1.907 11.12 17.76 25.31 32.02 38.13

95th percentile 17.80 31.82 49.82 66.02 80.61

5th percentile -18.48 -25.12 -33.14 -38.32 -42.22

Higher shock variance

Tax rate in %

Mean 22.29 22.46 22.67 23.00 23.35 23.76

Standard deviation 0 0.65 1.07 1.58 2.07 2.55

95th percentile 23.61 24.56 25.80 27.09 28.41

5th percentile 21.40 21.05 20.67 20.44 20.29

Debt-to-output ratio in %

Mean -2.83 0.05 4.65 11.92 19.44 28.26

Standard deviation 2.83 14.69 23.73 34.75 45.47 55.81

95th percentile 24.33 45.58 73.14 101.54 129.68

5th percentile -23.57 -30.89 -39.31 -44.17 -47.51

Ensemble moments for the case of higher risk aversion (γ = 11) or the case of shocks with a standard
deviation that corresponds to 3% of average first-best output. In order to avoid sample uncertainty, I use
the same realizations of shocks as in table 1.

particular, I set gL = 0.068 and gH = 0.092 which correspond now to 17% and 23% of average first-

best output, so the standard deviation of the share of government spending in average first-best

output is 3%.

In both cases the increase over time of the mean and the standard deviation of the tax rate

and the debt-to-output ratio are larger than for the baseline calibration. For the higher risk

aversion case the mean tax rate is 22.39% at t = 200 and 22.99% at t = 2000, which is larger but

pretty similar to the case of γ = 10, at least for the time horizons considered. The effects on the
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standard deviation of the tax rate are more noticeable. At t = 200 the standard deviation is 0.5

percentage points and rises to 1.74 percentage points at t = 2000. Similarly, the effects on the

standard deviation of the debt-to-output ratio are larger as well. The standard deviation is 11.12

percentage points at t = 200 and becomes 38.13 percentage points at t = 2000. Turning to the case

of more volatile shocks, the mean tax rate is 22.46% at t = 200 and rises to 23.76% at t = 2000.

The changes in the standard deviation of the tax rate are large, reflecting the higher variance of the

shocks. The standard deviation of the tax rate increases from 0.65 percentage points at t = 200

to 2.55 percentage points at t = 2000. The debt-to-output ratio has a mean of −2.83% and a

standard deviation of 2.83 percentage points in the expected utility case. With recursive utility,

the mean debt-to-output ratio is 28.26% and the standard deviation 55.81 percentage points at

t = 2000. The range of the debt-to-output ratio is pretty large at t = 2000, with a 5th and 95th

percentile that are −47.51 and 129.68 percentage points respectively.

To conclude, the martingale-like behavior of the tax rate translates quantitatively to a tax rate

that behaves approximately as a random walk with drift, with a distribution that is fanning-out

over time. The debt-to-output ratio follows the same behavior. The conditional volatility of the

tax rate is small but the unconditional volatility is large due to high persistence. Higher deviations

from expected utility or more volatile shocks make these effects more pronounced.

7.8 The very long-run

The analysis has focused on a horizon up to 2, 000 periods. It is of interest to see what happens in

the long-run and explore the convergence properties (if any) of the excess burden of taxation and

the tax rate.

Proposition 6. Consider the utility function (35) and the i.i.d. shock specification. If the excess

burden of taxation does converge, then it has to converge to zero.

Proof. See Appendix.

The intuition behind this result is simple. If the excess burden converged to a positive number

(or random variable) the government would have to equalize asymptotically its state-contingent

positions in marginal utility units across shocks. For the particular utility function this cannot be

the case because for any constant Φ, debt in marginal utility units is always higher for low shocks,

making the government vary distortions across shocks. As a result, the only candidate convergence

point is the first-best case of no distortions, Φ = 0. The first-best is an absorbing state, and the

government uses its interest income on assets to finance government expenditures.

However, as we stressed earlier in the analysis after proposition 3, convergence is not guaranteed.

And according to the numerical results, the tax rate displays a positive and not a negative drift.

This finding contrasts also with the analysis of Aiyagari et al. (2002) in incomplete markets setups,
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Figure 5: First 250,000 periods of the long simulation.

who show that for some special cases, we have convergence to the first-best.41

In previous sections I have analyzed properties of the optimal plan by focusing on an interior

solution of the Ramsey problem, treating the upper bounds of the state space Z(g) as non-binding.

At high values of the state variable z though, the planner may find himself wanting to increase the

position for the low shock, but being constrained to do so, due to the upper bound.42 In that case,

the martingale result on the inverse of the excess burden of taxation (and the tax rate) breaks

down.43

The parts of the state space where the upper bound binds are visited in the very long-run due

to the positive drift in the tax rate and the corresponding drift in debt in marginal utility units

(which is mirrored in the drift of the debt-to-output ratio). I run a very long simulation to explore

the asymptotic properties of the optimal plan. Figure 5 plots the tax rate and the corresponding

debt-to-output ratio for the first 250, 000 periods. Whenever the solution is interior, the tax rate

and the debt-to-output ratio exhibit on average an upward drift. The drift breaks down whenever

41Note though that the likelihood ratio Mt does indeed converge to zero, confirming numerically the difficulty in
establishing convergence results with respect to the physical measure.

42This is the reason why the difference z′L − z′H in the left panel of figure 1 starts decreasing for high values of
the current state.

43The optimality condition with respect to z when we take account of the upper bound of the state space is
Φt+1(1 + (1 − β)(1 − γ)ηt+1Φt) ≤ Φt. If 1 + (1 − β)(1 − γ)ηt+1Φt > 0, we get 1

Φt+1
≥ 1

Φt
+ (1 − β)(1 − γ)ηt+1,

which implies that 1/Φt is a submartingale with respect to πt ·Mt. Note that we cannot infer anymore that Φt is
a submartingale with respect to πt ·Mt.
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Table 4: Moments from the stationary distribution.

Tax rate in % Debt-to-output ratio in %

Mean 30.36 171.31

Standard deviation 4.75 100.67

Autocorrelation 0.9994 0.9928

The simulation is 2 million periods long. In order to avoid the effect of initial conditions, I drop the first
50000 observations in the moment calculation.

the upper bound of the state space is hit.44

The possibility of a binding upper bound of the state space makes essentially the distribution

of the tax rate stationary in the long-run. I allow the simulation to run for two million periods in

order to make sure that I calculate moments from the stationary distribution. Table 4 displays the

respective moments of the stationary distribution of the tax rate and the debt-to-output ratio. The

mean tax rate is 30.36% with a standard deviation of 4.75 percentage points and an autocorrelation

of 0.9994. The debt-to-output ratio is on average 171.31% with a standard deviation of 100.67

percentage points and a very high autocorrelation as well. In conclusion, the tax rate and the

debt-to-output ratio exhibit a large mean and volatility in the long-run.45

8 Extensions in an economy with capital

Consider now an economy with capital as in Zhu (1992) and Chari et al. (1994) and recursive

preferences. To fix ideas, let s capture uncertainty about government expenditure shocks or tech-

nology shocks, with the probability of a partial history denoted by πt(s
t). The resource constraint

in an economy with capital reads

ct(s
t) + kt+1(st)− (1− δ)kt(st−1) + gt(s

t) = F (st, kt(s
t−1), ht(s

t)), (36)

where δ denotes the depreciation rate, kt+1(st) capital measurable with respect to st and F a

constant returns to scale production function. The representative household accumulates capital

that can be rented at rental rate rt(s
t), and pays capital income taxes with rate τKt (st). The

44So the upper bound of the state space for the low shock acts as a reflecting barrier. Another interpretation of
proposition 6 is that there cannot exist an upper bound (common across the state spaces) that acts as an absorbing
barrier. If it did exist, then there would exist a positive candidate point for convergence.

45The upper bounds of the state space correspond to a debt-to-output ratio of 593.53% and 554.56% for the low
and high shock respectively. The lower bounds were set to the values of assets that would support the first-best
allocation. These correspond to an asset-to-output ratio of −510.06% and −492.23% for the low and high shock
respectively. See the Appendix for further details.
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household’s budget constraint reads

ct(s
t) + kt+1(st) +

∑
st+1

pt(st+1, s
t)bt+1(st+1) ≤ (1− τt(st))wt(st)ht(st) +RK

t (st)kt(s
t−1) + bt(s

t),

where RK
t (st) ≡ (1− τKt (st))rt(s

t) + 1− δ, the after-tax gross return on capital.

I provide the details of the competitive equilibrium and the analysis of the Ramsey problem

in the Appendix and summarize here the main results. In short, the completeness of the markets

allows the recasting of the household’s budget constraint in terms of wealth, Wt ≡ bt + RK
t kt,

making therefore wealth in marginal utility units a state variable for the optimal taxation problem.

In particular, let wealth in marginal utility units be defined as zt ≡ UctWt. With this definition

of zt, the dynamic implementability constraint in an economy with capital is the same as in (17).

Therefore, (z, k, s) become the relevant state variables for a recursive representation of the Ramsey

problem. The excess burden of taxation Φ captures now the shadow cost of an additional unit of

wealth in marginal utility units, Φ = −vz(z, k, s), where v(z, k, s) denotes the value function. The

excess burden is not constant anymore as it would be in the expected utility case. In particular,

we have:

Proposition 7. The law of motion of Φt in an economy with capital remains (28), with an ηt

that denotes the relative wealth position in marginal utility units. The planner allocates more

distortions on high-wealth states (η > 0) and less distortions on low-wealth states (η < 0). Lemma

1 and propositions 3, 4 and 5 go through, so the same conclusions are drawn for the dynamics of

the excess burden and the labor tax as in an economy without capital.

Proposition 7 generalizes the results about the excess burden of taxation and the labor tax that

we found earlier in an economy without capital. In order to interpret the allocation of distortions,

recall that in an economy without capital the planner was allocating more distortions on events

where his debt positions were relatively high in order to take advantage of the negative covari-

ance between debt in marginal utility units and the return on state-contingent debt. Essentially

the same mechanism is at play in an economy where there is an additional saving instrument as

capital. Due to the completeness of the markets, the relevant hedging instrument of the planner

is state-contingent wealth in marginal utility units (instead of just state-contingent debt), which

exhibits a negative covariance with returns due to the pricing effect of continuation values. As a

result, the planner allocates more distortions on events where wealth in marginal utility units is

relatively high and less distortions on events where it is relatively low.
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8.1 Capital taxation

The variation in the allocation of distortions is coming from the effect of zt on the market value

of the wealth portfolio, ωt = Etm
ρ−γ
1−γ
t+1 zt+1, through the effect of the long-run on equilibrium asset

prices. Considering the optimal choice of capital, it is clear that capital has also a novel effect on

ωt, since it affects the future utility of the household, and therefore, the pricing of state-contingent

wealth. This effect alters the incentives for taxation at the intertemporal margin. In particular,

the optimality condition with respect to capital in sequence notation can be written as (details in

the Appendix),

EtS
?
t+1(1− δ + FK,t+1) = 1, where S?t+1 ≡ βm

ρ−γ
1−γ
t+1

λt+1/Φt+1

λt/Φt

, (37)

where λt stands for the multiplier on the resource constraint (36) in the recursive formulation

of the second-best problem.

I will call S?t+1 the planner’s stochastic discount factor. The variable S?t+1 captures how the

planner discounts the pre-tax gross return on capital at the second-best allocation. S?t+1 contrasts

to the market stochastic discount factor St+1 ≡ βm
ρ−γ
1−γ
t+1 Uc,t+1/Uc,t, which prices after-tax returns,

EtSt+1R
K
t+1 = 1. In a first-best world with lump-sum taxes available, we identically have S?t+1 ≡

St+1. The planner’s discount factor S?t+1 though can differ from St+1 in the second-best world, and

is useful in summarizing the optimal wedge at the intertemporal margin in the form of the ex-ante

tax rate on capital income.

In particular, as is well known from Zhu (1992) and Chari et al. (1994), there is a multiplicity

of state-contingent debt and capital tax policies that can implement the second-best allocation as

a competitive equilibrium. However, it is well known that we can uniquely determine the ex-ante

tax rate on capital income τ̄Kt+1(st), which is restricted to be non-state contingent and is defined as

τ̄Kt+1 ≡
EtSt+1(1− δ + FK,t+1)− 1

EtSt+1FK,t+1

.

Using (37), we can express the ex-ante capital tax as

τ̄Kt+1 =
Et
[
St+1 − S?t+1

]
(1− δ + FK,t+1)

EtSt+1FK,t+1

. (38)

Thus, there is a positive (negative) tax rate on capital income if the numerator of (38) is positive

(negative). Another way to think about the sign of the numerator is in terms of the size of the

(non-centered) covariances of the planner’s and the market stochastic discount factors with the

pre-tax capital return 1−δ+FK,t+1. A (non-centered) covariance of the market stochastic discount

factor with the pre-tax return on capital that is larger (smaller) than the respective non-centered
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covariance of the planner’s stochastic discount factor with the pre-tax return, leads to a positive

(negative) ex-ante tax rate τ̄Kt+1 > 0 (τ̄Kt+1 < 0).

The difference in the two discount factors St+1 − S?t+1 can be expressed in terms of differences

in the inverse of the excess burden of taxation and differences in the own and cross elasticity of the

marginal utility of consumption, which leads to the following proposition about capital taxation.46

Proposition 8. (Capital taxation criterion) The ex-ante tax rate on capital income τ̄Kt+1, t ≥ 1 is

positive (negative) iff

Etζt+1

[( 1

Φt

− 1

Φt+1

)
︸ ︷︷ ︸
change in 1/Φt

+
(
εcc,t+1 + εch,t+1 − εcc,t − εch,t

)︸ ︷︷ ︸
change in period elasticities

]
> (<) 0,

with weights ζt+1 ≡ St+1(1 − δ + FK,t+1)/EtSt+1(1 − δ + FK,t+1). If εcc + εch is constant, then

the only reason for taxing the intertemporal margin comes from variation in the excess burden of

taxation Φt.

Proof. The first-order condition with respect to consumption for t ≥ 1 is Uct + ΦtΩct = λt. Thus,

1/Φt+Ωct/Uct = λt/(ΦtUct) > 0. Write the planner’s discount factor as S?t+1 = St+1
λt+1/(Φt+1Uc,t+1)

λt/(ΦtUct)
=

St+1
1/Φt+1+Ωc,t+1/Uc,t+1

1/Φt+Ωct/Uct
, t ≥ 1. Use (30) to express the difference in the two discount factors as

St+1 − S?t+1

St+1

=

1
Φt
− 1

Φt+1
+ εcc,t+1 + εch,t+1 − εcc,t − εch,t

1
Φt

+ 1− εcc,t − εch,t
, t ≥ 1. (39)

The denominator is positive. Use the expression for the difference in the stochastic discount factors

in the numerator of (38), simplify and normalize the weights so that they integrate to unity to get

the criterion for capital taxation.

The fact that only the ex-ante tax rate is uniquely determined leads to a capital taxation

criterion that depends on the weighted average of the change in the elasticity of the marginal

utility of consumption (the expected utility part) and the change in the excess burden of taxation

(the novel recursive utility part), with weights ζt+1 that are proportional to the product of the

stochastic discount factor and the pre-tax gross return on capital.

Time-additive economy. Assume that we are in either in a deterministic economy or in a

stochastic but time-additive economy with ρ = γ. In both cases Φt is constant and the capital tax-

ation criterion depends only on the change in period elasticities. For the deterministic case, capital

income is taxed (subsidized) if the sum of the own and cross elasticity is increasing (decreasing).

46As it was the case with the labor tax in footnote 31, the capital tax criterion applies also for the deterministic,
stochastic time-additive and risk-sensitive case for any standard U .
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A necessary and sufficient condition for a zero capital tax at every period from period two onward

is a sum of elasticities of the period marginal utility of consumption that is constant, which implies

that S?t+1 = St+1. If the period utility function is such so that the elasticities are not constant

for each period, then there is zero tax on capital income at the deterministic steady state, where

the constancy of the consumption-labor allocation delivers constant elasticities. This delivers the

zero-tax result of Chamley (1986) and Judd (1985). In the stochastic case of Chari et al. (1994)

and Zhu (1992), the ex-ante tax is positive or negative, if the weighted average of the change in

elasticities is positive (negative). The capital tax criterion is not as sharp as in the deterministic

case, since only the ex-ante tax rate is uniquely determined by the second-best allocation. As a

result, this notion of an “average” tax weighs the intertemporal distortions across states. Note

that variation in the sum of period elasticities is a necessary condition for an intertemporal wedge,

since a constant sum of period elasticities implies S?t+1 = St+1.47

Recursive utility, ρ < γ. For the case of recursive utility, the full version of the formula in

proposition 8 applies. The change in both the sum of elasticities and the excess burden of taxation

determines the intertemporal wedge. Consider the case of constant period elasticities, which would

deliver a zero ex-ante capital tax in the case when the distinction between time and risk is absent.

For an example in this class, consider the composite good

u(c, 1− h) =
[
c1−ρ − (1− ρ)v(h)

] 1
1−ρ , v′, v′′ > 0, (40)

that delivers a period utility U = (u1−ρ − 1)/(1 − ρ), that is separable between consumption

and leisure and isoelastic in consumption.48 Chari et al. (1994) and Zhu (1992) have demonstrated

that these preferences deliver a zero ex-ante capital tax from period two onward. This is easily

interpreted in terms of proposition 8, since εcc = ρ and εch = 0.

With recursive preferences though, even in the constant elasticity case, there is a novel source

of taxation coming from the willingness of the planner to take advantage of the pricing effects of

state-contingent wealth positions. Using the law of motion of the excess burden of taxation (28)

to substitute ηt+1 for the change in 1/Φt, the criterion for ρ < γ becomes

τ̄Kt+1 > (<) 0 iff Etζt+1ηt+1 > (<) 0.

Recall that the level of the excess burden of taxation captures distortions at the intratemporal

margin. Proposition 8 shows that the change in the excess burden of taxation determines the sign

47It is not a sufficient condition in the stochastic case, since the weighted average can still in principle deliver a
zero tax.

48The same comments as in footnote 33 apply. The constant Frisch elasticity case is obviously a member of this
class.
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of distortions at the intertemporal margin. States where there are positive relative wealth positions

(ηt+1 > 0), with a correspondingly beneficial appreciation of the value of wealth, make the planner

increase the excess burden of taxation, Φt+1 > Φt. This delivers a planner’s discount factor that

is smaller than the market discount factor, S?t+1 < St+1, as can be seen from (39). Intuitively, we

can think of an increase in Φt (which implies an increased labor tax) as an incentive to introduce

a positive state-contingent intertemporal wedge. To state it differently, a positive state-contingent

wedge, by reducing the utility of the household, increases the value of wealth and therefore, the

marginal revenue of the government when ηt+1 > 0. In contrast, at states where there are negative

relative wealth positions (ηt+1 < 0), we have Φt+1 < Φt and therefore a decreased labor tax and an

incentive for a negative state-contingent intertemporal wedge. The sign of the non-state contingent

ex-ante capital tax is determined by the weighted average of the relative wealth positions, i.e. by the

relative importance of positive versus negative state-contingent intertemporal distortions, which

are captured by the respective fiscal hedging of the government, ηt+1.

8.2 Ex-ante subsidy

To gain more insight about the sign of ex-ante tax rate we have to understand the behavior of

the weights ζt+1, i.e. how the stochastic discount factor and the marginal product of capital vary

with shocks. Consider the separable preferences in (40) and let ρ = 1 < γ. Remember that

with these preferences the stochastic discount factor becomes St+1 = βmt+1(ct+1/ct)
−1, where

mt+1 = exp[(1− β)(1− γ)vt+1]/Et exp[(1− β)(1− γ)vt+1]. The capital tax criterion simplifies to

τ̄Kt+1 > (<) 0 iff Etmt+1c
−1
t+1

(
1− δ + FK,t+1)ηt+1 > (<) 0.

Equivalently, the criterion can be expressed in terms of the sign of a conditional covariance

(with respect to the continuation-value adjusted measure, indicated by the superscript M),

τ̄Kt+1 > (<) 0 iff CovMt
(
c−1
t+1 · (1− δ + FK,t+1), ηt+1

)
> (<) 0,

by using the fact that the average relative wealth position is zero by lemma 1, Etmt+1ηt+1 = 0.

In order to understand the sign of the covariance, assume that the only shocks in the economy

are government expenditure shocks and that they take two values, high and low. We expect that

the household will consume less at the high shock than at the low shock, and therefore marginal

utility will be higher at the high shock. Furthermore, we expect that the household will work

more at the high shock in order to compensate for the negative wealth effect that government

expenditures impose, reducing the capital-labor ratio and increasing therefore the marginal prod-

uct of capital. As a result, the product of marginal utility and the gross return on capital will
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Figure 6: Paths of the excess burden of taxation and the labor tax for the high-shock and low-shock history.

be higher at the high shock than at the low shock. If, as in our example in an economy without

capital, the government hedges expenditure shocks by taking a low wealth position in marginal

utility units for the high shock and a high wealth position for the low shock, then the relative

position η will be negative for high shocks and positive for low shocks. Given the assumed be-

havior of the weights and the fiscal hedging of the government, the capital tax criterion will be

putting more weight on the negative positions than in the positive positions, leading therefore to

Etmt+1c
−1
t+1

(
1 − δ + FK,t+1)ηt+1 < Etmt+1ηt+1 = 0, or, in other words, to a negative covariance of

the relative wealth positions and the product of marginal utility and capital gross returns.49 Thus,

due to the high marginal utility and capital returns at adverse fiscal shocks, the state-contingent

negative wedge (“capital subsidy”) at the high shock is weighted more than the state-contingent

positive wedge (“capital tax”) at the low shock, leading to an ex-ante subsidy on capital income.50

The capital subsidy result relies on the negative correlation of wealth in marginal utility units

49To see that clearly, let gH > gL and let subscripts denote if we are at the high or low shock. For ease of
exposition I suppress the time subscripts. By assumption we have cH < cL, FK,H > FK,L, ηH < 0 and ηL > 0.

Therefore, c−1
H (1− δ+FK,H) > c−1

L (1− δ+FK,L). The covariance is CovM = c−1
L (1− δ+FK,L)πLmLηL + c−1

H (1−
δ + FK,H)πHmHηH . But c−1

H (1 − δ + FK,H)πHmHηH < c−1
L (1 − δ + FK,L)πHmHηH since ηH < 0. Therefore,

CovM < c−1
L (1 − δ + FK,L)

[
πLmLηL + πHmHηH

]
= 0, since the relative wealth positions integrate to zero with

respect to the continuation-value adjusted measure.
50Assume risk-sensitive preferences with parameter σ < 0 and the same isoelastic period utility as in (40). Then,

it is straightforward to see that the ex-ante subsidy result holds also for ρ 6= 1 under the same assumptions for the
weights and fiscal hedging.
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Figure 7: Left panels depict the labor, consumption and capital paths for the expected utility case (γ = 1) for the
high- and low-shock history. Right panels depict the respective paths for recursive utility (γ = 10), which converge
to two different steady states depending on the realization of the shock at t = 2.

with government expenditure shocks. To see if this type of fiscal hedging is valid, consider an

economy with the utility function (35) that was used for the numerical illustrations, and a simplified

stochastic structure – deterministic except for one period.51

The preference parameters are calibrated as in our computations in the economy without cap-

ital. The rest of the calibration and the solution method are in the Appendix. Let government

expenditures take two values gL < gH . Assume that government expenditures are low with cer-

tainty except for t = 2. At t = 2 we have g2 = gH with probability π and g2 = gL with probability

1 − π. I use superscripts for the endogenous variables in order to denote if we are at the high-

shock history (g2 = gH) or at the low-shock history (g2 = gL). For example, cit, i = H,L, denotes

consumption at period t ≥ 2 when the shock at t = 1 is high or low respectively.

The deterministic setup after the second period serves as an example of a case where the excess

burden of taxation stays permanently at the values it assumes at t = 2. In particular, since there

is no uncertainty before and after t = 2, we have Φ1 = Φ0 and Φi
t = Φi

2, i = H,L, t ≥ 2. Turning to

51This stochastic setup is in the spirit of example 5 of Lucas and Stokey (1983) and is sufficiently rich for the
purposes of displaying the fiscal hedging of the government and the implications for labor and capital taxes. A
quantitative examination in a fully stochastic setup is a highly non-trivial task, due to the presence of the value
functions in the constraint and the endogenous state spaces (for each value of the shocks) that determine where
pairs of (z, k) live, and is beyond the scope of the current paper.
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the issue of fiscal hedging, we find that the planner is taking a larger wealth position in marginal

utility units at the low shock, zH2 < zL2 . As a result, he transfers distortions permanently towards

the low-shock history and away from the high-shock history, so ΦH
2 < ΦL

2 . The left panel in figure

6 plots the respective paths for the excess burden of taxation and the right panel the labor tax

dynamics, which obey proposition 5. Recall that this utility function implies a constant labor

tax for t ≥ 1 in the time-additive case. With recursive utility, despite the fact that government

expenditures revert to a low value with certainty after t = 2, the labor tax becomes permanently

low when there is an adverse shock at t = 2 and permanently high when there is favorable shock

at t = 2.

Turning to the capital tax, in the time-additive economy there is a zero ex-ante capital tax at

t = 2 and a zero capital tax for t ≥ 3.52 For the recursive utility case, the capital tax will be zero

for t ≥ 3 since the economy becomes deterministic and the utility function belongs to the constant

elasticity class. For t = 2, the ex-ante tax rate will not be zero and its sign depends on the fiscal

hedging of the government, as discussed in detail earlier. Figure 7 plots the time paths for labor,

consumption and capital for the two histories. Consumption (labor) at t = 2 is lower (higher) when

the expenditure shock is high, putting therefore a larger weight on the state-contingent “subsidy”.

As a result, we have an ex-ante subsidy, that takes the value of −0.5536% in this illustration. In

addition, it is worth noting that, since the change in the labor tax is permanent, we have two

different steady states depending on what value government expenditures took at t = 2. For the

high-shock history, which is associated with a lower labor tax, the steady state entails higher labor,

consumption and capital, whereas for the low-shock history, which is associated with a higher labor

tax, the steady state involves lower labor, consumption and capital.

9 Concluding remarks

Dynamic optimal taxation entails the notions of time and risk. The analysis in this paper shows

that when the attitudes towards these two notions are distinct, the tax-smoothing prescriptions

of the dynamic Ramsey literature in frictionless environments are not valid. Labor tax volatility

is optimal and can be quantitatively substantial. Furthermore, labor taxes are strongly counter-

cyclical, display persistence independent of the stochastic properties of the exogenous shocks, and

exhibit an upward drift over time. This pattern of labor taxes is reflected in debt-to-output ratios,

52The presence of initial wealth (which would be absent if we had zero initial debt, full depreciation and an initial
tax rate on capital income of 100%) alters the taxation incentives for labor income at t = 0 and capital income at
t = 1. In particular, the planner has an incentive to increase initial consumption in order to reduce initial wealth in
marginal utility units. By subsidizing initial labor income and taxing capital income at t = 1, he is able to achieve
that. The labor subsidies at the initial period are τ0 = −17.69% for the time-additive case and τ0 = −17.76% for
the recursive utility case. Following Chari et al. (1994), I do not impose an upper bound on capital taxes. At t = 1
they take the values τK1 = 365.31% and τK1 = 365.74% for the time-additive and recursive utility case respectively.
The desire to disentangle the effect of the initial conditions from the effect of uncertainty is the reason why I let
the shock materialize at t = 2.
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which exhibit an increasing mean and volatility over time. At the intertemporal margin, there is

a novel incentive to tax capital income, that can lead to ex-ante capital subsidies.

All these results are in stark contrast with the standard Ramsey prescriptions, and indicate that

blurring the attitude towards risk with the attitude towards time is not an innocuous assumption

for optimal fiscal policy. The results are rooted in the way state-contingent returns are formed

with recursive utility. Equilibrium asset prices become debt-elastic, a fact that leads to a negative

covariance between debt and returns. As a result, the policymaker tries to increase the volatility

of debt and returns in order to minimize the cost of distortionary taxation. Cheaper debt or more

profitable assets makes the introduction of tax volatility and the running of larger surpluses and

deficits less costly from a welfare perspective.

I have focused on risk and time in otherwise standard economies of the dynamic Ramsey tra-

dition. An analysis beyond the representative agent framework as in Werning (2007) or Bassetto

(1999), or an exploration of different timing protocols like lack of commitment, are worthy direc-

tions for future research.
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A Further details of the Ramsey problem

A.1 State space

At first, define

A(g1) ≡
{

(z1, V1)|∃{ct, ht}t≥1, {zt+1, Vt+1}t≥1,with ct ≥ 0, ht ∈ [0, 1]

such that:

zt = Ω(ct, ht) + βEtm
ρ−γ
1−γ
t+1 zt+1, t ≥ 1

Vt =
[
(1− β)u(ct, 1− ht)1−ρ + βµt(Vt+1)1−ρ] 1

1−ρ , t ≥ 1

ct + gt = ht, t ≥ 1

where mt+1 defined as in (8)

and the transversality condition holds, lim
t→∞

E1β
t

(
Mt+1

M1

) ρ−γ
1−γ

zt+1 = 0.
}

The set A(g1) stands for the set of values of z and V at t = 1 that can be generated by an

implementable allocation when the shock is g1. From A(g) we get the state space as Z(g) ≡
{z|∃(z, V ) ∈ A(g)}.

A.2 Initial period problem

The problem at t = 0 is

V̄0(b0, g0) ≡ max
c0,h0,z1,g1

[
(1− β)u(c0, 1− h0)1−ρ + β

[∑
g1

π1(g1|g0)V (z1,g1 , g1)1−γ] 1−ρ
1−γ
] 1

1−ρ

subject to

Uc0b0 = Ω(c0, h0) + β
∑
g1

π1(g1|g0)
V (z1,g1 , g1)ρ−γ[∑

g1
π1(g1|g0)V (z1,g1 , g1)1−γ

] ρ−γ
1−γ

z1,g1

c0 + g0 = h0 (A.1)

c0 ≥ 0, h0 ∈ [0, 1], (A.2)

z1,g1 ∈ Z(g1) (A.3)

where (b0, g0) given. The notation z1,g1 denotes the value of the state variable z1 at g1. The overall

value of the Ramsey problem V̄ (.) depends on the initial conditions (b0, g0), which is why I use a

different notation for the initial value function.
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A.3 Transformed Bellman equation

Given the ρ-transformation of the value function, v(z, g) ≡ V (z,g)1−ρ−1
(1−β)(1−ρ)

, the Bellman equation takes

the form

v(z, g) = max
c,h,z′

g′
U(c, 1− h) + β

[∑
g′ π(g′|g)

(
1 + (1− β)(1− ρ)v(z′g′ , g

′)
) 1−γ

1−ρ
] 1−ρ

1−γ
− 1

(1− β)(1− ρ)

subject to the transformed implementability constraint

z = Ω(c, h) + β
∑
g′

π(g′|g)
[1 + (1− β)(1− ρ)v(z′g′ , g

′)]
ρ−γ
1−ρ[∑

g′ π(g′|g)[1 + (1− β)(1− ρ)v(z′g′ , g
′)]

1−γ
1−ρ
] ρ−γ

1−γ
z′g′

and to (19)-(21). The market value of the household’s debt takes the form ω =
∑

g′ π(g′|g)m
′ ρ−γ
1−γ
g′ z′g′ ,

where m′g′ stands for the conditional likelihood ratio,

m′g′ ≡
V (z′g′ , g

′)1−γ∑
g′ π(g′|g)V (z′g′ , g

′)1−γ =

[
1 + (1− β)(1− ρ)v(z′g′ , g

′)
] 1−γ

1−ρ∑
g′ π(g′|g)

[
1 + (1− β)(1− ρ)v(z′g′ , g

′)
] 1−γ

1−ρ
.

A.4 Proof of lemma 1

Proof. Use the definition of η in (25) to get

∑
g′

π(g′|g)m′g′η
′
g′ =

∑
g′

π(g′|g)m′g′V
′ρ−1
g′ z′g′ − µρ−1

∑
g′

π(g′|g)m′g′︸ ︷︷ ︸
=1

∑
g′

π(g′|g)m
′ ρ−γ
1−γ
g′ z′g′

= µρ−1
[∑
g′

π(g′|g)m′g′
( V ′g′

µ︸︷︷︸
=m
′ 1
1−γ
g′

)ρ−1

z′g′ − ω
]

= µρ−1
[∑
g′

π(g′|g)m
′ ρ−γ
1−γ
g′ z′g′ − ω

]
= µρ−1[ω − ω] = 0.

B Computational details

State space. At first note that using the optimal wedge equation (29) and the resource constraint

(3) we can express the optimal consumption-labor allocation as functions of the shock g and Φ,

c(g,Φ) and h(g,Φ). Let U?(g,Φ) ≡ U(c(g,Φ), 1− h(g,Φ)) and Ω?(g,Φ) ≡ Ω(c(g,Φ), h(g,Φ)). U?
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stands for the period utility at g when the excess burden of taxation is Φ and Ω? the respective

government surplus in marginal utility units. For the utility function used we have Ω? = 1 −
ahh(g,Φ)1+φh .

I create values of z that can be generated by a competitive equilibrium. In particular, I use

values that can be generated by a constant-Φ policy, which corresponds for the utility function in

hand to a constant tax policy. Fix Φ to a particular value. Given a constant value of Φ we get a

history-independent allocation which allows us to solve easily for the the utility recursion v?(g,Φ) =

U?(g,Φ) + β
(1−β)(1−γ)

ln
∑

g′ π(g′|g) exp((1 − β)(1 − γ)v?(g′,Φ)). For each given Φ we get also the

induced conditional likelihood ratio m(g′|g) = exp((1 − β)(1 − γ)v?(g′,Φ))/
∑

g′ π(g′|g) exp((1 −
β)(1− γ)v?(g′,Φ)).

The induced debt positions z for a given Φ are

z = (I − βΠ̃)−1Ω?,

where boldface variables denote column vectors and Π̃ ≡ Π ◦M, where Π the transition matrix

of the shocks and M the matrix of m(g′|g). The symbol ◦ denotes element by element (or else

Hadamard) multiplication.

Thus, for each value of Φ we get a value of z for the low and high shock respectively and the

corresponding utility of this policy. By construction, the constructed values of z can be generated

by the competitive equilibrium and are a “nice” subset of the true state space. I vary Φ in the

set [0, Φ̄]. The zero value of Φ corresponds to the first-best allocation, so the induced z′s are the

level of government assets that would finance government expenditures without having to resort

to distortionary taxation. I use Φ̄ = 0.5. This choice is ad-hoc and corresponds to a tax rate of

50%. Let Zi the state space for the low and high shock, i = L,H. For the lower and upper bounds

of Zi I use the minimum and maximum value of the debt position at i generated by a Φ in [0, Φ̄]

(which just correspond to Φ = 0 and Φ = Φ̄, because the implied z’s are an increasing function of

Φ). This delivers ZL = [−6.2355, 7.8819] and ZH = [−6.2911, 7.8391]. The implied debt-to-output

ratios are reported in the text.

Initial estimate of the value function. For each Φ I can associate the induced z to an induced

v?, which provides an initial guess for the value function, v0(z, gi), z ∈ Zi. At first, I form a grid

of points for Zi, i = L,H and perform value function iteration with grid search. There may

be convergence issues because updating the value function in the constraint destroys contraction

properties. To avoid that I have two loops:

• Inner Loop: Given the value function in the constraint, iterate on the Bellman equation till

convergence (I use also policy function iteration to increase speed).
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• Outer Loop: Update the value function in the constraint and repeat the inner loop.

The procedure is stopped when the value function in the constraint is approximately equal

to the value function in the Bellman equation. The inner loop entails standard value function

iteration and is convergent. There is no guarantee of convergence of the double loop. In the outer

loop I use damping in order to improve convergence properties.

Final estimate of the value function. I used grid search in order to avoid non-convexities

issues and the possibility of a local optimum. This procedure provides a first estimate of the

value functions. For improved precision, I use the output of the two-loop procedure as an initial

guess and fit the value functions at the two shocks with cubic splines. I use 167 breakpoints and

500 points for each Zi and apply regression. More grid points are allocated at the upper half of

each state space in order to capture better the curvature of the value functions. A continuous

optimization routine is used, with initial guesses the policy functions that came from the grid

search.

C Proof of proposition 6

Proof. Assume that the excess burden of taxation converges along a sample path to the value Φ

(which may depend on the sample path). Recall that Ω?(g,Φ) = 1− ahh(g,Φ)1+φh (see Appendix

B). Use the implicit function theorem in the two-equation system (29) and (3) to get ∂h/∂g =

h/(h + φhc) > 0 and ∂c/∂g = −φhc/(h + φhc) < 0. Thus, ∂Ω?/∂g = −ah(1 + φh)h
φh∂h/∂g < 0.

Therefore, the surplus in marginal utility units is always larger for the smaller shock for any value

of the excess burden of taxation. As a result, debt in marginal utility units is always higher for

the lower shock, since for a constant Φ we have z(g,Φ) = Ω?(g,Φ) + β
1−β

∑
g′ π(g′)m(g′)Ω?(g′,Φ)

(m(g′) stand for the conditional likelihood ratio induced by the constant Φ. It does not depend on

the current g due to the i.i.d. assumption). But then for any Φ > 0 the planner will always shift

distortions towards low shocks, since Φ′g′ = Φ/(1 + (1− β)(1− γ)η′g′Φ), contradicting the premise

of a constant Φ. Only in the event of a zero η′g′ for any shock, i.e. only if there exists a Φ > 0

such that debt in marginal utility units was equal across shocks, would it be possible to have a

constant Φ. This cannot be the case, as proved earlier. The only option of having a constant Φ

would be to have Φ = 0, which implies that the second-best allocation converges to the first-best.

In that case, the first-best is an absorbing state, and the government is using the interest income

on the accumulated assets to finance government expenditures for each contingency. Note that the

i.i.d. assumption in the proposition was used only to guarantee that debt in marginal utility units

varies across shocks as Ω? does. Persistent shocks could also be allowed as long as the implied z’s

do vary across shocks.
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D Economy with capital

D.1 Competitive equilibrium

A price-taking firm operates the constant returns to scale technology. The firms rents capital

and labor services and maximizes profits. Factor markets are competitive and therefore profit

maximization leads to wt = FH(st) and rt = FK(st).

The first-order condition with respect to an Arrow security is the same as in (12). The labor

supply condition and the Euler equation for capital are respectively

Ul(s
t)

Uc(st)
= (1− τt(st))wt(st) (D.1)

1 = β
∑
st+1

πt+1(st+1|st)
(
Vt+1(st+1)

µt(Vt+1)

)ρ−γ
Uc(s

t+1)

Uc(st)
RK
t+1(st+1). (D.2)

The Euler equation for capital together with (12), delivers the no-arbitrage condition∑
st+1

pt(st+1, s
t)RK

t+1(st+1) = 1. (D.3)

Furthermore, at the optimum we have two transversality conditions with respect to capital and

Arrow securities

lim
t→∞

∑
st

βtπt(s
t)Mt(s

t)
ρ−γ
1−γUc(s

t)kt+1(st) = 0 (D.4)

lim
t→∞

∑
st+1

βt+1πt+1(st+1)Mt+1(st+1)
ρ−γ
1−γUc(s

t+1)bt+1(st+1) = 0. (D.5)

D.2 Ramsey problem

Define the household’s wealth as Wt(s
t) ≡ bt(s

t) + RK
t (st)kt(s

t−1). We can recast the household’s

budget constraint in terms of wealth. In particular, note that

∑
st+1

pt(st+1, s
t)Wt+1(st+1) =

∑
st+1

pt(st+1, s
t)[bt+1(st+1) +RK

t+1(st+1)kt+1(st)]

=
∑
st+1

pt(st+1, s
t)bt+1(st+1) + kt+1(st),

by using the no-arbitrage condition (D.3). Therefore, the household’s dynamic budget constraint

becomes
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ct(s
t) +

∑
st+1

pt(st+1, s
t)Wt+1(st+1) = (1− τt(st))wt(st)ht(st) +Wt(s

t).

Use now (11) and (12) to eliminate labor taxes and equilibrium prices, and multiply with the

marginal utility of consumption to get

UctWt = Ωt + βEtm
ρ−γ
1−γ
t+1 Uc,t+1Wt+1, (D.6)

where Ω as in (16). Define now zt ≡ UctWt and get the same dynamic implementability

constraint as in (17). The implementability constraint at t = 0 reads

Uc0W0 = Ω0 + βE0m
ρ−γ
1−γ
1 Uc,1W1,

where W0 ≡
[
(1− τK0 )FK(s0, k0, h0) + 1− δ

]
k0 + b0, and (k0, b0, τ

K
0 , s0) given.

D.3 Transformed Bellman equation with capital

As in the economy without capital, use the ρ-transformation of the value function, v(z, k, s) ≡
V (z,k,s)1−ρ−1

(1−β)(1−ρ)
. The Bellman equation takes the form

v(z, k, s) = max
c,h,k′,z′

s′
U(c, 1− h) + β

[∑
s′ π(s′|s)

(
1 + (1− β)(1− ρ)v(z′s′ , k

′, s′)
) 1−γ

1−ρ
] 1−ρ

1−γ
− 1

(1− β)(1− ρ)

z = Ω(c, h) + β
∑
s′

π(s′|s) [1 + (1− β)(1− ρ)v(z′s′ , k
′, s′)]

ρ−γ
1−ρ[∑

s′ π(s′|s)[1 + (1− β)(1− ρ)v(z′s′ , k
′, s′)]

1−γ
1−ρ
] ρ−γ

1−γ
z′s′ (D.7)

c+ k′ − (1− δ)k + gs = F (s, k, h) (D.8)

c, k′ ≥ 0, h ∈ [0, 1] (D.9)

The values (z′s′ , k
′) have to belong to the proper state space, i.e. it has to be possible that they

can be generated by a competitive equilibrium with taxes when the shock is s.
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D.4 First-order necessary conditions

c : Uc + ΦΩc = λ (D.10)

h : −Ul + ΦΩh = −λFH (D.11)

k′ : λ = β
∑
s′

π(s′|s)m
′ ρ−γ
1−γ
s′ vk(z

′
s′ , k

′, s′)[1 + (1− β)(ρ− γ)η′s′Φ] (D.12)

z′s′ : vz(z
′
s′ , k

′, s′) + Φ
[
1 + (1− β)(ρ− γ)vz(z

′
s′ , k

′, s′)η′s′
]

= 0. (D.13)

The relative wealth position η′s′ is defined as in (25) (with a value function V that also depends on

capital now), so lemma 1 goes through also in the economy with capital. The envelope conditions

are

vz(z, k, s) = −Φ (D.14)

vk(z, k, s) = λ(1− δ + FK). (D.15)

The envelope condition (D.14) together with (D.13) delivers the same law of motion of Φt as

in (28), leading to the same results as in proposition 3 and the discussion thereafter. Use the fact

that Ul/Uc = (1− τ)FH and express the optimal wedge in labor supply in terms of the labor tax to

get the same results for the labor tax as in propositions 4 and 5. Turn into sequence notation, use

the law of motion of Φt (28) to replace 1 + (1− β)(ρ− γ)ηt+1Φt in (D.12) with the ratio Φt/Φt+1

and the envelope condition (D.15) to eliminate vk to finally get (37).

D.5 Initial period optimality conditions

The problem at t = 0 is

V̄0(b0, k0, s0, τ
K
0 ) ≡ max

c0,h0,k1,z1,s1

[
(1− β)u(c0, 1− h0)1−ρ + β

[∑
s1

π1(s1|s0)V (z1,s1 , k1, s1)1−γ] 1−ρ
1−γ
] 1

1−ρ

subject to

Uc0
[(

(1− τK0 )FK(s0, k0, h0) + 1− δ
)
k0 + b0

]
= Ω(c0, h0)

+β
∑
s1

π1(s1|s0)
V (z1,s1 , k1, s1)ρ−γ[∑

s1
π1(s1|s0)V (z1,s1 , k1, s1)1−γ

] ρ−γ
1−γ

z1,s1 (D.16)

c0 + k1 − (1− δ)k0 + g0 = F (s0, k0, h0) (D.17)

c0, k1 ≥ 0, h0 ∈ [0, 1], (D.18)
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where (b0, k0, s0, τ
K
0 ) given. Use the ρ-transformation of the time zero problem and let Φ0 and λ0

denote the multipliers on the initial period implementability constraint and the resource constraint

respectively. The initial period optimality conditions are:

c0 : Uc0 + Φ0

[
Ωc0 − Ucc,0W0

]
= λ0 (D.19)

h0 : −Ul0 + Φ0

[
Ωh0 + Ucl,0W0 − Uc0(1− τK0 )FKH,0k0

]
= −λ0FH0 (D.20)

k1 : λ0 = β
∑
s1

π(s1|s0)m
ρ−γ
1−γ
1,s1

vk(z1,s1 , k1, s1)
[
1 + (1− β)(ρ− γ)η1,s1Φ0

]
(D.21)

z1,s1 : vz(z1,s1 , k1, s1)

+Φ0

[
1 + (1− β)(ρ− γ)vz(z1,s1 , k1, s1)η1,s1

]
= 0, (D.22)

where W0 =
[
(1 − τK0 )FK(s0, k0, h0) + (1 − δ)

]
k0 + b0, the household’s initial wealth and η1,s1

defined as in (25). The initial period first-order conditions for an economy without capital for the

variables (c0, h0, z1,s1), are (D.19), (D.20) and (D.22) with W0 = b0, FH0 = 1, FKH ≡ 0.

E Details about the illustration with capital

The production function is F = kαh1−α. The parameters for the illustration are (β, γ, φh, α, δ, τ
K
0 , b0) =

(0.96, 10, 1, 1/3, 0.08, 0.3, 0) with a total endowment of time normalized to unity. The parameter

ah is set so that the household works 0.4 of its time at the first-best steady state. The size of gL is

set so that the share of government expenditures in the first-best steady state output is 0.22. The

high shock is gH = 2 · gL and π = 0.5. The economy features a low shock for each period except

for t = 2, which is the reason why I use a relatively large gH .

For the utility function of the example we have Ω(c, h) = 1 − ahh
1+φh and τt = τ(Φt) =

Φt(1 + φh)/(1 + Φt(1 + φh)) (see proposition 5), which holds only for t ≥ 1 due to the presence of

initial wealth W0. The procedure to solve the problem involves a double loop for the determination

of Φi
2, i = H,L and Φ0.

• Inner loop: Fix Φ0 and make a guess for (ΦH
2 ,Φ

L
2 ). Given these two values of the excess

burden of taxation, the problem from period t = 3 onward for both histories behaves as a

deterministic Ramsey taxation problem, but with different Φ’s depending on the high- or

low-shock history. In order to solve it, modify the return function as Chari et al. (1994) do,

by defining Ū(c, 1 − h; Φ) ≡ U(c, 1 − h) + ΦΩ(c, h). For the high-shock history, for t ≥ 3

solve the Bellman equation,

vCCK(k) = max
c,h,k′

Ū(c, 1− h; ΦH
2 ) + βvCCK(k′)
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subject to c + k′ − (1 − δ)k + gL = kαh1−α, with the return function Ū(c, 1 − h; ΦH
2 ) =

ln c− ah h
1+φh

1+φh
+ ΦH

2 (1− ahh1+φh). For the low-shock history, for t ≥ 2, solve the same Bell-

man equation but with the return function Ū(c, 1− h; ΦL
2 ).

To determine the wealth positions zi2 and the respective innovations that allow the update

of the guesses for Φi
2, proceed as follows: Fix kH3 and consider the respective Euler equation:

1

cH2
= β

1

cH3

[
1− δ + α

(kH3
hH3

)α−1]
Given kH3 and the policy functions we found from solving the Bellman equation, the right-

hand side is known, determining therefore cH2 . Furthermore, use the intratemporal wedge

condition for g2 = gH to get hH2 =
[

(1−τH2 )(1−α)

ahc
H
2

] 1
α+φh k

α
α+φh
2 , where τH2 = τ(ΦH

2 ). Plug the

expression for labor in the resource constraint at g2 = gH , cH2 + kH3 − (1 − δ)k2 + gH =

kα2 (hH2 )1−α to get one equation in the unknown k2 and use a non-linear solver to determine

it. Furthermore, use the policy functions for t ≥ 3 to determine vH3 and zH3 . Utilities are

calculated with the original period utility function (and not with the modified Ū). Finally,

use (cH2 , h
H
2 ) to get vH2 = U(cH2 , 1 − hH2 ) + βvH3 and zH2 = Ω(cH2 , h

H
2 ) + βzH3 . Use now the

policy functions for the low-shock history to determine vL2 and zL2 at k2. Having the utility

values and the wealth positions at t = 2 allows us to calculate the induced likelihood ratios

mi
2, i = H,L, the market value of the wealth portfolio ω1 = πmH

2 z
H
2 + (1 − π)mL

2 z
L
2 and

therefore the relative wealth positions ηi2 = zi2 − ω1, i = H,L, given the guess for Φi
2. Use

the innovations ηi2 to update the guess for Φi
2, Φi

2 = Φ0

1+(1−β)(1−γ)ηi2Φ0
, i = H,L and iterate till

convergence.

• Outer loop: After we reach convergence for Φi
2, calculate the rest of the allocation for t = 0, 1

given the initial Φ0. In particular, the Euler equation for k2 is

1

c1Φ0

= βπmH
2

1

cH2 ΦH
2

[
1− δ + α

(
k2

hH2

)α−1 ]
+ β(1− π)mL

2

1

cL2 ΦL
2

[1− δ + α

(
k2

hL2

)α−1 ]
.

The right-hand side is known, which delivers c1. Express now labor at t = 1 as h1 =[
(1−τ1)(1−α)

ahc1

] 1
α+φh k

α
α+φh
1 , τ1 = τ(Φ0) and use this expression to solve for k1 from the resource

constraint. Calculate furthermore z1 = Ω(c1, h1)+βω1. The initial period requires a different

treatment due to the presence of initial wealth W0 = b0 +
[
(1− τK0 )α(k0/h0)α−1 + 1− δ

]
k0.

Use the Euler equation for capital to get the initial value of the multiplier λ0, λ0 = β
c1

[1 −
δ + α(k1/h1)α−1]. Then use the first-order conditions for (c0, h0), (D.19)-(D.20) and the

resource constraint at t = 0 to get a system in three unknowns (c0, h0, k0) to be solved with
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a non-linear solver. Update Φ0 by calculating the residual in the initial budget constraint,

I ≡ Ω(c0, h0) + βz1 − 1
c0
W0. If I > (<)0 decrease (increase) Φ0 and go back to the inner

loop to redetermine Φi
2, i = H,L given the new Φ0. Stop when the initial budget constraint

holds, I = 0.

The solution method for the outer loop is based on a fixed value kH3 , which delivers in the

end an initial value of capital k0. I experimented with kH3 so that the endogenous initial capital

corresponds to 0.9 of the first-best steady state capital. .

There is plethora of methods for solving the Bellman equation. I use the envelope condition

method of Maliar and Maliar (2013). I approximate the value function with a 5th degree polynomial

in capital and I use 100 grid points. Furthermore, since the steady-state capital depends on Φi
2,

I re-adjust the bounds of the state space for each calculation of the value function in order to

focus on the relevant part of the state space. For the high-shock history, I set the lower bound

as K = 0.95 · min(kH3 , k
H
ss) and the upper bound K̄ = 1.05 · max(kH3 , k

H
ss). In the same vain, for

the low-shock history, I set K = 0.95 · min(k2, k
L
ss) and K̄ = 1.05 · max(k2, k

L
ss). The variables

kiss, i = H,L denote the respective steady states.

F Sequential formulation

I provide here the sequential formulation of the Ramsey problem. I consider an economy with

capital. The specialization of the analysis to an economy without capital is obvious. Let Xt ≡
M

ρ−γ
1−γ
t , X0 ≡ 1. Let v refer to the ρ-transformation of the utility criterion. The Ramsey problem is

max v0({c}, {h})

subject to

∞∑
t=0

βt
∑
st

πt(s
t)Xt(s

t)Ω(ct(s
t), ht(s

t)) = Uc0W0 (F.1)

ct(s
t) + kt+1(st)− (1− δ)kt(st−1) + gt(s

t) = F (st, kt(s
t−1), ht(s

t)) (F.2)

Xt+1(st+1) = mt+1(st+1)
ρ−γ
1−γXt(s

t), X0 ≡ 1 (F.3)

vt(s
t) = U(ct(s

t), 1− ht(st))

+β

[∑
st+1

πt+1(st+1|st)
[
1 + (1− β)(1− ρ)vt+1(st+1)

] 1−γ
1−ρ
] 1−ρ

1−γ − 1

(1− β)(1− ρ)
, t ≥ 1 (F.4)
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where W0 ≡ RK
0 k0 + b0, (b0, k0, s0, τ

K
0 ) given, and mt+1 =

[
1+(1−β)(1−ρ)vt+1

] 1−γ
1−ρ

Et

[
1+(1−β)(1−ρ)vt+1

] 1−γ
1−ρ

.

Assign multipliers Φ̄, βtπtλt, β
tπtνt and βtπtξt on (F.1), (F.2), (F.3) and (F.4) respectively.

The derivatives of the utility function are ∂v0
∂ct

= βtπtXtUct and ∂v0
∂ht

= −βtπtXtUlt. The first-order

necessary conditions are

ct, t ≥ 1 : Xt(s
t)Uc(s

t) + Φ̄Xt(s
t)Ωc(s

t) + ξt(s
t)Uc(s

t) = λt(s
t) (F.5)

ht, t ≥ 1 : −Xt(s
t)Ul(s

t) + Φ̄Xt(s
t)Ωh(s

t)− ξt(st)Ul(st) = −λt(st)FH(st) (F.6)

kt+1(st), t ≥ 0 : λt(s
t) = β

∑
st+1

πt+1(st+1|st)λt+1(st+1)[1− δ + FK(st+1)] (F.7)

Xt(s
t), t ≥ 1 : νt(s

t) = Φ̄Ωt(s
t) + β

∑
st+1

πt+1(st+1|st)mt+1(st+1)
ρ−γ
1−γ νt+1(st+1) (F.8)

vt(s
t), t ≥ 1 : ξt(s

t) = (1− β)(ρ− γ)Xt(s
t)φt(s

t) +mt(s
t)
ρ−γ
1−γ ξt−1(st−1), (F.9)

where

φt(s
t) ≡ Vt(s

t)ρ−1νt(s
t)− µt(st)ρ−1

∑
st

πt(st|st−1)mt(s
t)
ρ−γ
1−γ νt(s

t),

and ξ0 ≡ 0. The optimality conditions with respect to the initial consumption-labor allocation are

(D.19) and (D.20).

I will show now the mapping between the sequential formulation and the recursive formulation

and in particular the relationship between the time-varying Φt and ξt. Solve at first (F.8) forward

to get

νt = Φ̄Et

∞∑
i=0

βi
Xt+i

Xt

Ωt+i

and therefore νt = Φ̄UctWt = Φ̄zt, i.e. νt – the shadow value to the planner of an increase in

Xt– is equal to wealth (in marginal utility terms) times the cost of taxation Φ̄. Thus, φt –the

“innovation” in the multiplier νt– is equal to a multiple of ηt, φt = Φ̄ηt. Furthermore, define the

scaled multiplier ξ̃t ≡ ξt/Xt, ξ̃0 ≡ 0 and note that it follows the law of motion
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ξ̃t = (1− β)(ρ− γ)φt + ξ̃t−1

= (1− β)(ρ− γ)
t∑
i=1

φi = (1− β)(ρ− γ)
t∑
i=1

ηiΦ̄

Turn now to the multiplier in the text which, when solved backwards, delivers Φt = Φ0/(1+(1−
β)(ρ− γ)

∑t
i=1 ηiΦ0), where Φ0 is the multiplier on the initial period implementability constraint.

Thus, by setting Φ0 = Φ̄ we have

Φt =
Φ̄

1 + ξ̃t
, (F.10)

or, in terms of the non-scaled ξt, Φt = Φ̄Xt/(Xt + ξt). Therefore, the time-varying excess

burden of taxation captures the shadow value of continuation utilities that determine intertemporal

marginal rates of substitution. Consider now the multipliers λt in the sequential formulation and

their relationship to their counterparts in the recursive formulation. (F.5) can be written as

Uct + Φ̄Xt
Xt+ξt

Ωct = λt
Xt+ξt

. Given (D.10) and (F.10), we get that λt = (Xt + ξt)λ
R
t , where λRt stands

for the multipliers of the recursive formulation. Thus,

λt+1

λt
=

Xt+1 + ξt+1

Xt + ξt

λRt+1

λRt
=
Xt+1

Xt

Φ̄Xt
Xt+ξt

Φ̄Xt+1

Xt+1+ξt+1

λRt+1

λRt

= m
ρ−γ
1−γ
t+1

λRt+1

λRt

Φt

Φt+1

.

Thus, (F.7) delivers the same optimality condition with respect to capital as (37).
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