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I. Basic Framework



Objective

Develop a new framework and methodology to analyze the time
series of cross-sectional distributions such as

I individual earnings

I household income and expenditures

I NYSE stock returns

I global temperatures

or the time series of intra-period distributions such as

I stock returns

I exchange rate returns



Distributions of Individual Earnings



Distributions of Household Income



Distributions of Household Expenditures



Distributions of NYSE Stock Returns



Global Temperature Distributions



Intra-Month Distributions of S&P 500 Returns



Intra-Month Distributions of GBP/USD Ex Returns



Technical Background



Hilbert-Valued Random Variables

Let
w : Ω→ H

where H is a Hilbert space.

Hilbert-valued random variables include

I Real random variables: H = R
I Vector-valued random variables: H = RN

I Function-valued random variables: H = L2(R)

as special cases.



Mean and Variance Operator

The mean Ew of a random variable in H is defined as a vector in
H satisfying

〈v,Ew〉 = E〈v, w〉

for all v ∈ H, which exists if E‖w‖ <∞.

For w such that Ew = 0, the variance E(w ⊗ w) of w is given by
an operator for which

E〈u,w〉〈w, v〉 = 〈u,E(w ⊗ w)v〉

for all u, v ∈ H, which exists if E‖w‖2 <∞.

I For a finite dimensional w, w ⊗ w reduces to ww′, and
E(w ⊗ w) reduces to Eww′.

I For an operator A with its adjoint A∗, we may easily deduce
that E(Aw ⊗Aw) = A

[
E(w ⊗ w)

]
A∗.



Model for Functional Data

For each time t = 1, 2, . . ., suppose there is a distribution
represented by a probability density ft, whose value at ordinate
x ∈ R is denoted by ft(x).

Denote by
wt = ft − Eft

a demeaned density function and treat wt as functional data taking
values in Hilbert space H.

We define H to be the set of functions on a compact subset K of
R that have vanishing integrals and are square integrable, i.e.,

H =

{
v

∣∣∣∣∫
K
v(x)dx = 0,

∫
K
v2(x)dx <∞

}
with inner product 〈u, v〉 =

∫
K u(x)v(x)dx for u, v ∈ H.



Moment and Coordinate Process

For a random variable w taking values in H, we define its
v-moment as

〈v, w〉,

which reduces to the usual k-th moment if we choose v = ιk with
ιk(x) = xk normalized properly so that ιk ∈ H.

Since H is separable, we may write (wt) as

wt =

∞∑
i=1

〈vi, wt〉vi

for each t, where (vi) is an orthonormal basis of H. In this
context, we call

〈vi, wt〉

the i-th coordinate process.



Coordinate Time Series

In general, time series properties of coordinate processes are
different on different coordinates.

I (wt) is stationary if
(
〈v, wt〉

)
is stationary for all v ∈ H.

Mean reversion in all directions. Deviates from mean only
temporarily, and randomly fluctuates around the mean in all
directions.

I (wt) has a unit root in the direction of v if
(
〈v, wt〉

)
is a unit

root process. Persistent, and non mean reverting due to the
presence a stochastic trend with no mean reversion in the
direction of v.

I (wt) is explosive in the direction of v if
(
〈v, wt〉

)
has an

explosive root. No mean reversion in the direction of v.

We provide a mathematical framework to more explicitly identify
and analyze the unit root and cointegration directions in the
function space of state densities.



II. Distributional Autoregression



FAR(1) Model

FAR(1) model can be represented as

wt = Awt−1 + εt

=

∞∑
i=1

λi(ui ⊗ vi)(wt−1) + εt

=

∞∑
i=1

λi〈vi, wt−1〉ui + εt,

and we call

I vi’s progressive features

I ui’s regressive features

respectively.



Estimation

Though (ft) are not directly observable, we may consistently
estimate them from cross-sectional or intra-period observations. If
the size N of cross-sectional or intra-period observations is large
enough relative to the time span T , the use of estimated densities
will not affect our analysis asymptotically.

We let
P = E(wt ⊗ wt−1) and Q = E(wt ⊗ wt),

which are estimated respectively by

P̂ =
1

T

T∑
t=1

(wt ⊗ wt−1) and Q̂ =
1

T

T∑
t=1

(wt ⊗ wt)

from the sample (wt) of size T .



Estimation Strategy

We should not estimate A by

A = PQ−1,

since A = PQ−1 is defined only on R(Q) $ H and we have an
ill-posed inverse problem.

We use the spectral representation Q =
∑∞

i=1 λi(vi ⊗ vi) with
λ1 > λ2 > · · · , and approximate Q−1 by

Q+
K =

K∑
i=1

1

λi
(vi ⊗ vi)

and define
AK = PQ+

K .

which we may estimate using P̂ and Q̂.



Orthonormal Moment Basis

We define a basis (ι◦κ) of H such that

I ι◦κ is a κ-th order polynomial

I (ι◦κ) is an orthonormal basis of H with respect to the inner
product 〈·, Q·〉

We call such a basis an orthonormal moment basis. An
orthonormal moment basis of H may be obtained through the
Gram-Schmidt orthogonalization process.



Response Function to Moment Basis

From

〈ι◦κ, wt〉 = 〈ι◦κ, Awt−1〉+ 〈ι◦κ, εt〉
= 〈A∗ι◦κ, wt−1〉+ 〈ι◦κ, εt〉,

we define
A∗ι◦κ

to be the response function for the κ-th moment of (wt).



Moment Dynamics of State Distributions

It follows from 〈v, wt〉 = 〈v,Awt−1〉+ 〈v, εt〉 that

E〈v, wt〉2 = E〈A∗v, wt−1〉2 + E〈v, εt〉2

=

∞∑
κ=1

〈v,AQι◦κ〉2E〈ι◦κ, wt−1〉2 + E〈v, εt〉2.

We define

R2
v = 1− E〈v, εt〉2

E〈v, wt〉2
= 1− 〈v,Σv〉

〈v,Qv〉
and

πv(κ) =
〈v,AQι◦κ〉2

E〈v, wt〉2
=
〈v,AQι◦κ〉2

〈v,Qv〉
,

which is the proportion of variance in 〈v, wt〉 that comes from the
variance of the past κ-th moment.



Empirical Illustrations



Intra-Month GBP/USD Ex Returns

Data Description

I 15-minute log returns of the UK Pound/US Dollar exchange
rate

I Jan 1999 - April 2015

I Every 4 weeks as a period, 212 periods

I The number of observations each period is 1550 ∼ 1904
(mean 1880)

Densities are estimated by the kernel method using

I Support [−0.0043, 0.0043]

I Epanechnikov kernel

I Optimal feasible bandwidth given by ht = 2.3449σ̂tN
−1/5
t

I Represent density with Daubechies wavelets using 1037 basis
functions



Data Plot



Scree Plot

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4
x 10

6

factor number

e
ig

e
n
v
a
lu

e
s

We set K = 4 to get the best prediction performance, and the first
4 principal components explain 99.7% of variance in density
process.



Progressive and Regressive Features
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Our principal progressive and regressive features show that normal
returns near the origin play most important roles both progressively
and regressively. Tail returns do not generate any major dynamics
neither in the forward nor in the backward.



Dynamic Analysis in Moments
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The response functions and the variance decompositions for the
first two moments of GBP/USD exchange rate log returns.



Dynamic Analysis in Tail Probabilities
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The response functions and the variance decompositions for the
tail probabilities of GBP/USD exchange rate log returns



NYSE Stock Returns

Data Description

I Monthly returns of stocks listed on NYSE

I Jan 1980 - Dec 2014

I One month as a period, 420 periods

I The number of observations each period is 1926 ∼ 3076
(mean 2464)

Densities are estimated by the kernel method using

I Support [−0.6071, 0.1.0548]

I Epanechnikov kernel

I Optimal feasible bandwidth given by ht = 2.3449σ̂tN
−1/5
t

I Represent density with Daubechies wavelets using 1037 basis
functions



Data Plot



Scree Plot
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We set K = 3 to get the best prediction performance, and the first
3 principal components explain 97% of variance in density process.



Progressive and Regressive Features
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Again, our principal progressive and regressive features show that
normal returns near the origin play most important roles both
progressively and regressively. Tail returns do not generate any
major dynamics neither in the forward nor in the backward.



Dynamic Analysis in Moments
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The response functions and the variance decompositions for the
first two moments of the NYSE stocks monthly returns.



Dynamic Analysis in Tail Probabilities
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The response functions and the variance decompositions for the
tail probabilities of the NYSE stocks monthly returns.



II. Distributional Unit Roots



Unit Root and Stationarity Subspaces

Using the symbol
∨

to denote span, we let

HN =

n∨
i=1

vi and HS =

∞∨
i=n+1

vi

so that H = HN ⊕HS . In what follows, HN and HS will
respectively be referred to as the unit root and stationarity
subspaces of H.

We also let ΠN and ΠS be the projections on HN and HS ,
respectively. Moreover, we define

wNt = ΠNwt and wSt = ΠSwt

Note that ΠN + ΠS = 1 (the identity operator on H), so in
particular we have

wt = wNt + wSt



Unit Root and Stationary Processes

When ut = ∆wt = Φ(L)εt, it follows that

wNt = ΠNwt = ΠNΦ(1)

t∑
i=1

εi −ΠN ūt

and
wSt = ΠSwt = −ΠS ūt

Clearly, (wNt ) is an integrated process, while (wSt ) is stationary.

The unit root dimension n is unknown in practical applications.

We will explain how to

I Determine n statistically

I Estimate the subspaces HS and HN



Sample Variance Operator

Our test for unit roots in (wt) is based on the sample variance
operator

MT =

T∑
t=1

wt ⊗ wt,

whose quadratic form is given by

〈v,MT v〉 =

T∑
t=1

〈v, wt〉2

for v ∈ H.

Asymptotic behavior of the quadratic form of sample variance
operator depends crucially on whether v is in HN or in HS .



Stationarity-Nonstationarity of Coordinate Processes

For v ∈ HS , the coordinate process (〈v, wt〉) becomes stationary
and we expect that

T−1
T∑
t=1

〈v, wt〉2 →p E〈v, wt〉2

as long as the expectation exists.

On the other hand, if v ∈ HN and the coordinate process (〈v, wt〉)
is integrated, it follows under a very mild condition that

T−2
T∑
t=1

〈v, wt〉2 →d

∫ 1

0
V (r)2dr −

(∫ 1

0
V (r)dr

)2

,

where V is a Brownian motion.

Therefore, the quadratic form has different orders of magnitude,
i.e., Op(T ) and Op(T

2), depending upon whether the coordinate
process (〈v, wt〉) is stationary or integrated.



Nonstationarity and Stationarity Subspaces

We let HN be n-dimensional.

Denote by vT1 , v
T
2 , . . . the orthonormal eigenvectors of the sample

variance operator MT .

It is shown that
vTi →p vi

for i = 1, 2, . . ., as T →∞.



Estimation of Nonstationarity Subspace

Once we determine the number of unit roots n in (wt), we may
estimate the nonstationarity subspace HN by

HT
N =

n∨
i=1

vTi ,

i.e., the span of the n orthonormal eigenvectors of the sample
variance operator MT associated with n largest eigenvalues of MT .

Recall

HN =

n∨
i=1

vi and HS =

∞∨
i=n+1

vi.

We establish the consistency of HT
N for HN .



Functional Principal Component Analysis

If we define λT1 ≥ λT2 ≥ · · · to be the eigenvalues of MT

associated with the eigenvectors vT1 , v
T
2 , . . ., then we have

λTi = 〈vTi ,MT vTi 〉 =

T∑
t=1

〈vTi , wt〉2

for i = 1, 2, . . ..

Therefore, it follows that

λTi =

{
Op(T

2) for i = 1, . . . , n
Op(T ) for i = n+ 1, . . .

,



Onto Testing for Distributional Unit Roots

To determine the number of unit roots in (wt), we consider the
test of the null hypothesis

H0 : dim (HN ) = n

against the alternative hypothesis

H1 : dim (HN ) ≤ n− 1

successively downward.

More precisely, we start testing the null with n = nmax, where
nmax is large enough so that dim (HN ) ≤ nmax.

Continue with n = nmax − 1 if the null is rejected in favor of the
alternative. If, for any n, dim (HN ) ≤ n and the null is not
rejected, then we may conclude that dim (HN ) = n.

Therefore, we may estimate the number of unit roots in (wt) by
the smallest value of n for which we fail to reject the null.



Intuitive but Infeasible Test

We expect that the eigenvalue λTn would have a discriminatory
power for the test of null against the alternative, since it has
different orders of stochastic magnitudes under the null and
alternative hypotheses.

However, it cannot be used directly as a test statistic, since its
limit distribution is dependent upon nuisance parameters.

Therefore, we need to modify it appropriately to get rid of its
nuisance parameter dependency problem.



A Feasible Test for Unit Root Dimension

To introduce our test, define (zTt ) for t = 1, . . . , T by

zTt = (〈vT1 , wt〉, . . . , 〈vTn , wt〉)′

Also define the product sample moment MT
n =

∑T
t=1 z

T
t z

T ′
t

(sample variance in the unit root subspace), and the long-run
variance estimator ΩT

n =
∑
|k|≤`$`(k)ΓT (k) of (zTt ), where $` is

the weight function with bandwidth parameter ` and ΓT is the
sample autocovariance function defined as
ΓT (k) = T−1

∑
t ∆zTt ∆zT ′t−k.

Our test statistic is defined as

τTn = T−2λmin

(
MT
n ,Ω

T
n

)
,

where λmin

(
MT
n ,Ω

T
n

)
is the smallest generalized eigenvalue of MT

n

with respect to ΩT
n .



Asymptotics for Distributional Unit Root Test

Under very general conditions, we show that

τTn →d λmin

(∫ 1

0
Wn(r)Wn(r)′dr −

∫ 1

0
Wn(r)dr

∫ 1

0
Wn(r)′dr

)
under the null, as T →∞, where Wn is n-dimensional standard
vector Brownian motion and λmin(·) denotes the smallest
eigenvalue of its matrix argument.

On the other hand, we have τTn →p 0 under the alternative as
T →∞.

Therefore, we reject the null in favor of the alternative if the test
statistic τTn takes small values.



Critical Values for Distributional Unit Root Test τTn

Critical values for the tests are obtained based on τTn for
n = 1, . . . , 5, by simulations.

For simulations, BM is approximated by standardized partial sum
of mean zero i.i.d. normal random variates with sample size 10,000,
and actual critical values are computed using 100,000 iterations.

n 1 2 3 4 5

1% 0.0274 0.0175 0.0118 0.0103 0.0085
5% 0.0385 0.0223 0.0154 0.0127 0.0101
10% 0.0478 0.0267 0.0175 0.0139 0.0111



Degree of Persistency in Moments

We may now find how much nonstationarity proportion exists in
each cross-sectional moment.

In what follows, we redefine ικ as ικ − 1
|K|
∫
K ικ(x)dx, so that we

may regard it as an element in H.

We may decompose ικ as ικ = ΠN ικ + ΠSικ, from which it follows
that

‖ικ‖2 = ‖ΠN ικ‖2 + ‖ΠSικ‖2 =

n∑
i=1

〈ικ, vi〉2 +
∞∑

i=n+1

〈ικ, vi〉2,

where (vi), i = 1, 2, . . ., is an orthonormal basis of H such that
(vi)1≤i≤n and (vi)i≥n+1 span HN and HS , respectively.



Nonstationarity Proportion in Moments

To measure the proportion of ικ lying in HN , we define

πκ =
‖ΠN ικ‖
‖ικ‖

=

√√√√√√√√√
n∑
i=1

〈ικ, vi〉2

∞∑
i=1

〈ικ, vi〉2
.

If ικ is entirely in HN and HS , we have πκ = 1 and πκ = 0,
respectively,

Therefore, we may use πκ to represent the proportion of
nonstationary component in the κ-th cross-sectional moment of
(wt).

The κ-th cross-sectional moment of (wt) has more dominant unit
root component as πκ tends to unity, whereas it becomes more
stationary as πκ approaches to zero.



Sample Nonstationarity Proportion

The nonstationarity proportion πκ of the κ-th cross-sectional
moment is not directly applicable, since HN and HS are unknown.

However, we may use its sample version

πTκ =

√√√√√√√√√
n∑
i=1

〈ικ, vTi 〉2

T∑
i=1

〈ικ, vTi 〉2
.

The sample version πTκ of πκ will be referred to as the sample
nonstationarity proportion of the κ-th cross-sectional moment of
(wt).

We show that the sample version πTκ is a consistent estimator for
the original πκ.



Empirical Illustrations



Overview

We demonstrate how to define and estimate the state densities,
and test for unit roots in the time series of densities representing
cross-sectional or intra-period distributions of economic variables.

State densities are estimated by standard kernel density estimation
method on cross-sectional or intra-period observations, and their
nonstationarities are analyzed using the test τ̂nT .

Unit root dimension n of state densities is determined by applying
τ̂nT successively downward starting from n = nmax.

Unit root space HN is then estimated and the unit root proportion
(πκ) is computed for the first several moments. πκ provides the
proportion of nonstationary fluctuation in the κ-th moment of the
state distribution.



Representation of Functions as Numerical Vectors

For the representation of infinite dimensional functions in Hilbert
space as finite dimensional numerical vectors, we use a Daubechies
wavelet basis.

Wavelets are two dimensional arrays in location and resolutions,
and hence they provide more flexibilities in fitting the state
densities in our applications, some of which have severe asymmetry
and time-varying support. The wavelet basis in general yields a
much better fit than the trigonometric basis.

The Daubechies wavelet is implemented with 1037 basis functions.



Cross-Sectional Distributions

of Individual Earnings



Distributions of Individual Earnings

The cross-sectional observations of individual weekly earnings are
obtained at monthly frequency from Current Population Survey
(CPS) data set. The individual weekly earnings are deflated by
consumer price index with base year 2005.

The data set provides 247 time series observations spanning from
January 1994 to July 2014, and the number of cross-sectional
observations for each month ranges from 12,180 (April 1996) to
15,826 (October 2001).

For confidentiality reasons, individual earnings are topcoded above
a certain level. Top code value was revised in 1998 up to $2,885
from $1,923. We drop all topcoded individual earnings as well as
zero earnings as in Liu (2011) and Shin and Solon (2011).



Densities of Weekly Individual Earnings



Demeaned Densities of Weekly Individual Earnings



Unit Root Dimension - Individual Earnings

To determine the unit root dimension n in the time series of
cross-sectional distributions of individual earnings, we use the
statistic τ̂Tn to test for the null hypothesis H0 : dim(HN ) = n
against the alternative H1 : dim(HN ) ≤ n− 1 with n = 1, . . . , 5.

M 1 2 3 4 5

τ̂Tn 0.1090 0.0834 0.0094 0.0078 0.0075

Our test, strongly and unambiguously, rejects H0 against H1

successively for n = 5, 4, 3. Clearly, however, the test cannot reject
H0 in favor of H1 for n = 2.

We conclude that there exists two-dimensional unit root, and set
n̂T = 2.



Scree Plot of Eigenvalues - Individual Earnings



Integrated Coordinate Processes - Individual Earnings



Stationary Distributions - Individual Earnings





UR Proportions in Moments - Individual Earnings

We compute the estimates π̂Tκ of the unit root proportions πκ with
n̂T = 2 for the first four moments.

π̂T1 π̂T2 π̂T3 π̂T4

0.5280 0.3388 0.2377 0.1822

The unit root proportions for the first four moments are all
nonnegligibly large. In particular, the unit root proportions for the
first two moments are quite substantial.

The presence of a substantial unit root proportion in the second
moment explains the recent empirical findings on changes in
volatilities of individual earnings. Dynan et al (2008) and others.

Nonstationarity in time series of individual earnings distributions
would certainly make their volatilities more persistent.



Intra-month Distributions

of Stock Returns



Intra-month S&P 500 Return Distributions

For each month during January 1992 to June 2010, we use S&P
500 index returns at one-minute frequency to estimate 222
densities for the intra-month distributions. The one-minute returns
of S&P 500 index are obtained from Tick Data Inc. The number
of intra-month observations varies from 7211 to 9177, except for
September 2001, for which we only have 5982 observations.

The intra-month observations are truncated at 0.50% and 99.5%
percentiles before we estimate the state densities.

To avoid micro-structure noise, we also use the five-minute
observations to estimate the intra-month observations. Our
empirical results are, however, virtually unchanged.



Intra-month S&P 500 Returns



Demeaned Intra-Month S&P 500 Returns



Unit Root Dimension - S&P 500 Returns

To test for existence of nonstationarity in time series of intra-month
S&P 500 return distributions, we use τ̂Tn to test H0 : dim(HN ) = n
against H1 : dim(HN ) ≤ n− 1 with n = 1, . . . , 5.

M 1 2 3 4 5

τ̂Tn 0.0612 0.0167 0.0112 0.0107 0.00104

Our test successively rejects H0 against H1 for n = 5, 4, 3, 2.

However, at 5% level, the test cannot reject H0 in favor of H1 for
n = 1. Our test result implies that there exists one-dimensional
unit root, i.e., n̂T = 1.



Scree Plot of Eigenvalues - S&P 500 Returns



Integrated Coordinate Processes - S&P 500 Returns



Stationary Components - S&P 500 Returns





UR Proportions in Moments - S&P 500 Returns

Compute the estimates π̂Tκ of the unit root proportions πκ for the
first four moments, with n̂T = 1.

π̂T1 π̂T2 π̂T3 π̂T4

0.0047 0.2087 0.0039 0.0958

The nonstationarity is more concentrated in the second and fourth
moments, with the unit root proportion of the second moment
being the largest.

The unit root proportion of the first and third moments are almost
negligible. This is well expected, since for many financial time
series strong persistency is observed mainly in volatility and
kurtosis.



III. Distributional Cointegration



Common Trends in Distributional Time Series

Introduce the notion of distributional cointegration between two
time series of densities representing cross-sectional distributions of
some economic variables

Explain how to estimate and test for such cointegrating
relationships.



A New Framework

To analyze time series of densities representing cross-sectional
distributions allowing for unit root type of nonstationarity

To analyze possible cointegration among cross-sectional
distributions

To learn and interpret both longrun and shortrun relationships
between two time series of cross-sectional distributions



Model and Methodology



Distributional Time Series

Let (ft) and (gt) be two time series of densities representing
cross-sectional distributions of some economic variables, which we
call distributional time series for short.

We regard the densities (ft) and (gt) as random elements taking
values on the Hilbert space H of square integrable functions on R.

For the main application in the paper, we designate (ft) and (gt)
respectively to be the monthly time series of densities for income
and consumption distributions. They are of course not directly
observable and should be estimated using cross-sectional
observations on household income and consumption.

However, to present our framework and methodology more
effectively, we tentatively assume that they are observable.



Coordinate Processes

For the time series of densities (ft) and (gt), we define(
〈v, ft〉

)
and

(
〈w, gt〉

)
to be the coordinate processes of (ft) and (gt) respectively in the
directions of v and w for any v, w ∈ H.



Cross-Sectional Moments

The coordinate processes of (ft) and (gt) in the direction of ικ,
where

ικ(s) = sκ,

are particularly important, since we have

〈ικ, ft〉 =

∫
sκft(s)ds and 〈ικ, gt〉 =

∫
sκgt(s)ds,

which represent the κ-th moments of the distributions represented
by ft and gt for each t = 1, . . . , T .

They will be referred subsequently to as the κ-th cross-sectional
moments of (ft) and (gt) respectively.



Distributional Regression

We consider the distributional regression

gt = µ+Aft + et

for t = 1, . . . , T , where regressand and regressor are time series of
densities for cross-sectional distributions, µ and A are function and
operator parameters, and (et) is a function-valued error process.

Operator A generalizes regression coefficient in finite-dimensional
regression, and may be called the regression operator.

We allow for nonstationarity in both (ft) and (gt). In particular,
we let some of their coordinate processes (〈v, ft〉) and (〈w, gt〉)
have unit roots and cointegration, which will be referred to as the
distributional unit roots and cointegration.

We assume that (et) is stationary and mean zero, i.e., Eet = 0 for
all t = 1, . . . , T , and impose some exogeneity condition for (ft).



Coordinate Regression

Coordinate regression of (gt) in any direction w ∈ H can be readily
obtained from our distributional regression as

〈w, gt〉 = 〈w, µ〉+ 〈w,Aft〉+ 〈w, et〉
= 〈w, µ〉+ 〈A∗w, ft〉+ 〈w, et〉

for any w ∈ H, where A∗ is the adjoint operator of A and
t = 1, . . . , T .

Represents a relationship between particular coordinate processes
of (gt) and (ft).

May be interpreted as the usual bivariate regression of the
coordinate process (〈w, gt〉) of (gt) on the coordinate process
(〈v, ft〉) of (ft) with v = A∗w for any w ∈ H.

Reveals the effect of the distribution represented by (ft) on the
coordinate process (〈w, gt〉) of distribution (gt) for w ∈ H.



More on Coordinate Regression

The coordinate regression of (gt) in any direction w ∈ H is given as

〈w, gt〉 = 〈w, µ〉+ 〈A∗w, ft〉+ 〈w, et〉

The effect of the distribution represented by (ft) on the coordinate
process (〈w, gt〉) is summarized by v = A∗w, which we call the
response function of (ft) to the coordinate process (〈w, gt〉).

If we set w = ικ, the coordinate regression reveals how the κ-th
cross- moment of (gt) is affected by the distribution represented by
(ft), and the response function v = A∗w = A∗ικ measures the
effect of (ft) on the κ-th cross-sectional moments of (gt).

We analyze the coordinate regression separately for stationary and
nonstationary components of (ft) and (gt).



Regression in a Demeaned Form

We may consider the dist regression in a demeaned form as

yt = Axt + εt,

where

xt = ft −
1

T

T∑
t=1

ft, yt = gt −
1

T

T∑
t=1

gt

and εt = et − T−1
∑T

t=1 et for t = 1, . . . , T .

Note that εt ≈ et−Eet = et for large T , since we assume that (et)
is stationary and has mean zero.

However, in general, (xt) and (yt) do not behave the same as
(ft − Eft) and (gt − Egt) even asymptotically, since (ft) and (gt)
are nonstationary.

We mainly deal with the demeaned densities (xt) and (yt) in our
statistical analysis.



Demeaned Densities and Moment Functions
We assume that the densities (ft) and (gt) all have supports
included in a compact subset K of R, for t = 1, . . . , T .

Then the demeaned densities (xt) and (yt) take values in

L2
0(K) =

{
w ∈ H

∣∣∣∣∫
K
w(s)ds = 0,

∫
K
w2(s)ds <∞

}
,

which is a subspace of the Hilbert space L2(R) of square
integrable functions on R endowed with the usual inner product.

The moment functions ικ are redefined as

ικ(s) = sκ − 1

|K|

∫
K
sκds,

where |K| denotes the length of K, so that they belong to L2
0(K).

For all our actual computations, we use an approximate one-to-one
correspondence between L2

0(K) and RM for some large M using a
Wavelet basis in L2

0(K).



Stationarity and Nonstationarity Subspaces

We allow for nonstationarity in (ft) and (gt). More precisely, the
coordinate processes (〈v, ft〉) and (〈w, gt〉) are allowed to have
unit roots in the directions of some v and w for v, w ∈ H.

Stationarity subspaces FS and GS of (ft) and (gt) are defined as
the subspaces of H defined as

FS = {v ∈ H
∣∣〈v, ft〉 is stationary}

GS = {w ∈ H
∣∣〈w, gt〉 is stationary},

Nonstationarity subspaces FN and GN of (ft) and (gt) are defined
as orthogonal complements of FS and GS , so that
H = FN ⊕ FS = GN ⊕GS .

We only consider the unit root type nonstationarity in (ft) and
(gt), and therefore the time series (〈v, ft〉) and (〈w, gt〉) are unit
root processes for all v ∈ FN and w ∈ GN .



Distributional Cointegration

If (ft) and (gt) have the unit root type nonstationarity, it is natural
to consider the possibility that some of their coordinate processes
are cointegrated.

That is, for some v ∈ FN and w ∈ GN , we may have

〈w, gt〉 = π + 〈v, ft〉+ ut

with some constant π, where (ut) is a general stationary process
with mean zero.



Distributional Cointegrating Function

Assume FN and GN are p- and q-dimensional and there are p- and
q-unit roots in (ft) and (gt), respectively.

Therefore, we have v1, . . . , vp and w1, . . . , wq, which are linearly
independent and span FN and GN , such that 〈vi, ft〉 and 〈wj , gt〉
are unit root processes for i = 1, . . . , p and j = 1, . . . , q. If the
(p+ q)-dimensional unit root process (zt) defined as

zt =
(
〈v1, ft〉, . . . , 〈vp, ft〉, 〈w1, gt〉, . . . , 〈wq, gt〉

)′
is cointegrated with the cointegrating vector

c = (−a1, . . . ,−ap, b1, . . . , bq)′ ,

then the distributional cointegration holds with

v = a1v1 + · · ·+ apvp and w = b1w1 + · · ·+ bqwq.

The pair of functions v and w are called distributional cointegrating
functions of two time series (ft) and (gt) of densities.



Longrun Response Function

Denote the distributional cointegrating functions by

vC = a1v1 + · · ·+ apvp

wC = b1w1 + · · ·+ bqwq

The distributional cointegrating function (vC , wC) of (ft) and (gt)
measures the longrun response vC of the time series of
cross-sectional distribution represented by (ft) on the time series
(〈wC , gt〉).

In particular, we define vC to be the longrun response function of
(ft) on (〈wC , gt〉), which we may interpret as summarizing the
longrun effect of (ft) on the longrun movement of (gt) in the
direction of wC .



Possible Number of Cointegrating Relations

Clearly, there are at most r-number of linearly independent
distributional cointegrating relationships, r ≤ min(p, q), between
(ft) and (gt).

Otherwise we would have a cointegrating vector c of the form
c = (−a1, . . . ,−ap, 0, . . . , 0)′ or c = (0, . . . , 0, b1, . . . , bq)

′, which
implies that there is a linear combination of v1, . . . , vp or
w1, . . . , wq whose inner product with (ft) or (gt) becomes
stationary.

This contradicts the assumption that v1, . . . , vp and w1, . . . , wq are
linearly independent functions that span FN and GN , respectively.



Distributional Cointegration

The distributional cointegration does not presume any
distributional regression relationship like gt = µ+Aft + et.
However, for two time series of densities (ft) and (gt) that are
given by the above distributional regression model, we may easily
deduce that

Lemma Let (ft) and (gt) be given by the distributional regression
model gt = µ+Aft + et with some stationary (et). Then for any
w ∈ GN , we have A∗w /∈ FS and the distributional cointegration

〈w, gt〉 = π + 〈v, ft〉+ ut

holds with v = PNA
∗w.



Longrun Response to Cross-sectional Moments

If (ft) and (gt) are given by the distributional regression
gt = µ+Aft + et, then we have

GC = GN and r = q ≤ p,

In this case, there exists a distributional cointegrating function
(vC , wC) with

wC = QN ικ

Then it follows that

〈wC , gt〉 = 〈QN ικ, gt〉 = 〈ικ, QNgt〉 = 〈ικ, gNt 〉,

where gNt = QNgt is the nonstationary component of (gt).bigskip
Therefore, we may interpret the corresponding vC as the longrun
response function of (ft) to the κ-th cross-sectional moment of
(gNt ), or the κ-th longrun cross-sectional moment of (gt).



Test for Distributional Cointegration

Assume that we find p and q, the numbers of unit roots in (ft) and
(gt), and obtain consistent estimates (vTi ) of (vi) and (wTj ) of
(wj), i = 1, . . . , p and j = 1, . . . , q, which span the nonstationary
subspaces FN and GN of (ft) and (gt).

To test for distributional cointegration, we let (zTt ) be defined as

zTt =
(
〈vT1 , xt〉, . . . , 〈vTp , xt〉, 〈wT1 , yt〉, . . . , 〈wTq , yt〉

)′
Clearly, the test τTn to determine the number of distributional unit
roots may be used to test for the number of unit roots in (zt),
zt =

(
〈v1, xt〉, . . . , 〈vp, xt〉, 〈w1, yt〉, . . . , 〈wq, yt〉

)′
.

The maximum number of unit roots for (zt) is of course given by
p+ q (no distributional cointegration in (ft) and (gt)).

n-number of unit roots for (zt) implies r-number of cointegrating
relationships with r = (p+ q)− n.



Empirical Illustrations

Income-Consumption Dynamics



Interactive Income-Consumption Dynamics

As an application of our model and methodology, we analyze the
interactions between the income and consumption dynamics.

For our analysis, we apply our theory developed thus far with (ft)
and (gt) representing the time series of household income and
household consumption distributions.



Data
The cross-sectional observations of household income and
consumptions are obtained at monthly frequency from Consumer
Expenditure Survey (CES), collected for Bureau of Labor
Statistics, US Census Bureau.

CES consists of two surveys - Quarterly Interview Survey and Diary
Survey, that provide information on buying habits, expenditures,
income, and consumer unit (families and single consumers)
characteristics. CES is the only Federal survey to provide
information on complete range of consumer expenditures and
incomes.

The data set provides 400 time series observations from October
1979 to February 2013, with cross-sectional observations for each
month ranging from 1,537 to 5,406.

During this sample period, each household is included in the survey
at most five times, and therefore CES provides a pseudo panel
data.



More on Data

In order to construct monthly household income and consumption,
we follow the definitions in Krueger and Perri (2006), and
aggregate the monthly values provided in Universal Classification
Code (UCC) level for each month and year.

We then deflated the nominal income and consumption values by
monthly CPI provided by BLS for all urban households with using a
base year which varies among 1982, 1983 and 1984.

The survey uses topcodes which may change annually and be
applied at a different starting point. We drop all top-coded values.

As in Krueger and Perri (2006), we correct expenditure on food,
impute services from vehicle and primary residence, and exclude
observations with possible measurement error or inconsistency
problem.



Interactive Dynamics of Income and Consumption

If

I the time series of income distributions has p unit roots

I the time series of consumption distributions has q unit roots

I there are r cointegrating relationships between them

Then, there are (p+ q)− r unit roots in their time series combined
together.



Densities of Household Incomes



Demeaned Densities of Household Incomes



Unit Root Dimension - Incomes

To determine the unit root dimension n in the time series of
cross-sectional distributions of household incomes, use the test τ̂Tn
to test H0 : dim(HN ) = n against H1 : dim(HN ) ≤ n− 1 with
n = 1, . . . , 5.

M 1 2 3 4 5

τ̂Tn 0.1734 0.0338 0.0106 0.0088 0.0076

Our test, strongly and unambiguously, rejects H0 against H1

successively for n = 5, 4, 3. Clearly, however, the test cannot reject
H0 in favor of H1 for n = 2.

We conclude that there exists two-dimensional unit root, and set
n̂T = 2.



Scree Plot of Eigenvalues - Incomes



Integrated Coordinate Processes - Incomes



Stationary Components - Incomes





UR Proportions in Moments - Incomes

Compute the unit root portion estimates π̂Tκ for the cross-sectional
distributions of household incomes with n̂T = 2 for the first four
moments.

π̂T1 π̂T2 π̂T3 π̂T4

0.5734 0.3943 0.2755 0.2011

The unit root proportions for the first four moments of the
cross-sectional household income distributions are all substantially
large. In particular, the unit root proportions for the first two
moments are quite substantial.
Nonstationarity in the cross-sectional household income
distributions would certainly make their volatilities more persistent.



Densities of Household Consumptions



Demeaned Densities of Household Consumptions



Unit Root Dimension - Consumptions

To test for existence of unit root in time series of cross-sectional
distributions of household consumptions, use the statistic τ̂Tn to
test H0 : dim(HN ) = n against H1 : dim(HN ) ≤ n− 1 with
n = 1, . . . , 5.

M 1 2 3 4 5

τ̂Tn 0.0452 0.0100 0.0099 0.0075 0.0069

Our test successively rejects the null against the alternative for
n = 5, 4, 3, 2.

However, at 5% level, the test cannot reject H0 in favor of H1 for
n = 1. Our test result implies n̂T = 1.



Scree Plot of Eigenvalues - Consumptions



Integrated Coordinate Processes - Consumptions



Stationary Components - Consumptions





UR Proportions in Moments - Consumptions

Compute the estimates π̂Tκ of the unit root proportions πκ for the
first four moments of the cross-sectional distributions of household
consumption, with n̂T = 1.

π̂T1 π̂T2 π̂T3 π̂T4

0.5598 0.4483 0.3595 0.3169

The unit root proportions are also substantial for all of the first
four moments.



Distributional Cointegration

HN (f) and HN (g) are estimated to be 2- and 1-dimensional and
there are 2- and 1-unit roots in (ft) and (gt), denoting income and
consumption distributions.

Therefore, v1, v2 and w1 span HN (f) and HN (g), such that
〈v1, ft〉, 〈v2, ft〉 and 〈w1, gt〉 are unit root processes.

If 3-dimensional process (zt)

zt =
(
〈v1, ft〉, 〈v2, ft〉, 〈w1, gt〉

)′
is cointegrated with the cointegrating vector

c = (α1, α2, β1)
′ ,

then the distributional cointegration holds with the cointegrating
functions of (ft) and (gt) given by

vC = α1v1 + α2v2 and wC = β1w1.



Test for Distributional Cointegration

We may use τTn also in this case to find the number of unit roots
in (zt), containing all unit root process from the time series of
income and consumption distributions by testing
H0 : (p+ q)− r = n against H1 : (p+ q)− r ≤ n− 1.

Given p = 2 and q = 1, we may have up to three unit roots in the
time series of income and consumption distributions together.
Therefore, we consider only n = 1, 2 and 3.

n 1 2 3

τ̂Tn 0.2347 0.0350 0.0113

Our test rejects H0 against H1 for n = 3. However, the test cannot
reject H0 in favor of H1 for n = 2, giving (p+ q)− r = 2.

This implies r = 1, i.e., the presence of a single cointegrating
relationship between income and consumption distributions.



Scree Plot - Distributional Cointegration Test



Cointegrating Function

Let v1 and v2 be orthonormal functions that span the nonstationary
subspace FN of the time series (ft) of income distributions, and let
w be the normalized function generating the nonstationary
subspace GN of the time series (gt) of consumption distribution.

We find one cointegrating relation between income and
consumption distributions, and therefore, there exists constants
a1, a2 and b such that

b〈w, gt〉 = δ + a1〈v1, ft〉+ a2〈v2, ft〉+ ut

with some constant function δ and general stationary process (ut)
with mean zero.

In this case, we have

vC = a1v1 + a2v2 and wC = bw,

where (vC , wC) is the cointegrating function of (ft) and (gt).



Stochastic Trends in Income and Consumption



Common Trends in Income and Consumption



Aggregate Income and Aggregate Consumptions



Longrun Response of Income to Consumption

We may readily obtain estimates of vC and wC , which we define as

vTC = aT1 v
T
1 + aT2 v

T
2 and wC = bTwT ,

from our estimates vT1 , v
T
2 and wT of v1, v2 and w, and aT1 , a

T
2 and

bT of a1, a2 and b.

The estimates vT1 , v
T
2 and wT are obtained from our testing

procedure for distributional unit roots, and the estimates aT1 , a
T
2

and bT from our testing procedure for distributional cointegration,
respectively in and between household income and consumption
distributions.

The estimated longrun response function of income distribution to
consumption distribution is given by vTC .



Longrun Response Function



Empirical Findings

The longrun trend in consumption is most affected by the income
group with monthly earnings slightly over $2,000. Roughly, all
households with monthly earnings between $1,000 and $4,000
seem to play important roles in determining the persistent
stochastic trend in consumption. As the level of monthly earning
decreases below $1,000, the longrun component of household’s
income has very little impact on the longrun consumption.

The longrun component of household’s income for the rich also
does not have any major effect on the longrun consumption,
though the magnitude of their effect decreases at a slower rate as
their income increases than the rate it decreases as the income
decreases for the poor.



Note

The income response to consumption is estimated to be negative
for the household with monthly earnings less than approximately
$500, which we believe to be just an evidence of insignificant
response.

Observations for households with monthly earnings below
approximately $500 are scarce and irregular, so we do not expect
to have any reliable results over very low income levels.
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