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Abstract

How do nominal rigidities and information frictions in firms’ pricing decisions influence the

propagation of nominal shocks? We develop a price-setting model with menu costs and noisy

information to address this question. The interplay between these frictions can simultaneously

explain micro price-settings facts and macro evidence on the sluggish propagation of nominal

shocks. The key elements are infrequent large productivity shocks of unknown magnitude.

Uncertainty about future productivity spikes upon the arrival of an infrequent shock, and then

slowly fades with learning. These uncertainty cycles, when paired with menu costs, produce

heterogeneity in decision rules that increase non-neutrality.
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Rudi Bachmann, Anmol Bhandari, Olivier Coibion, Mark Gertler, Ricardo Lagos, John Leahy, Francesco Lippi,
Robert E. Lucas, Rody Manuelli, Simon Mongey, Joseph Mullins, Emi Nakamura, Gastón Navarro, Thomas Sargent,
Ennio Stacchetti, participants at 4th Ifo Conference on Macroeconomics and Survey Data 2013, Midwest Economics
Association Meeting 2013, 2013 Society of Economic Dynamics (SED) meeting in Seoul, seminar participants at
ITAM, New York University, Princeton University, Washington University St. Louis, and St. Louis FED for very
useful comments and suggestions. Julio A. Blanco gratefully acknowledges the hospitality of the St. Louis FED
where part of this paper was completed.
†Job Market Paper. New York University. isaac.baley@nyu.edu; https://files.nyu.edu/ib572/public
‡New York University. jab772@nyu.edu; https://files.nyu.edu/jab772/public

1

https://files.nyu.edu/ib572/public/Isaac_Baley_jmp.pdf
https://files.nyu.edu/ib572/public
https://files.nyu.edu/jab772/public


1 Introduction

How do nominal rigidities and information frictions in firms’ pricing decisions influence the prop-

agation of nominal shocks? This paper addresses this classic question in monetary economics by

developing a price-setting model that combines the most salient features of two vast literatures on

price-setting: menu cost models and imperfect information models. The interplay between these

frictions can simultaneously explain micro price-settings facts and macro evidence on the sluggish

propagation of nominal shocks.

Each friction alone cannot account for all the facts. On one hand, the advantage of menu costs

models is that the frequency of adjustment is endogenous which makes them successful in matching

micro evidence on price changes; however, those models produce modest non-neutrality unless they

are coupled with other exogenous sources of persistence such as strategic complementarities, as in

Nakamura and Steinsson (2010). On the other hand, the advantage of models with information

frictions is that they produce large nominal non-neutralities by imposing constraints on the infor-

mation sets, as in Reis (2006), Woodford (2009) and Maćkowiak and Wiederholt (2009); however,

firms adjust their prices every period which contradicts the frequency of adjustment in micro data.

The key contribution of this paper is to show that incorporating infrequent shocks of unknown

magnitude in a menu cost model can simultaneously explain micro and macro price-setting facts.

The starting point is the framework in Álvarez, Lippi and Paciello (2011) where firms receive noisy

signals about their productivity and face a menu cost to adjust their prices1. As firms estimate

their optimal prices, their decision rules become dependent on estimation variance or uncertainty.

The new element is the “noisy” arrival of large infrequent shocks: firms know when a shock occurrs,

but not its sign or size. Under this assumption, the infrequent first moment shocks paired with the

noisy signals give rise to second moment shocks or uncertainty shocks. These shocks in turn affect

the decision to adjust prices and the response to nominal shocks.

Large, infrequent idiosyncratic shocks were first introduced in menu cost models by Gertler and

Leahy (2008) and then used by Midrigan (2011) as a way to account for the empirical patterns of

pricing behavior. In our model, when an infrequent shock arrives, regardless of it is positive or

negative, it generates a spike in uncertainty. This noisy arrival of infrequent shocks is interpreted as

changes in the economic environment that affect firms’ optimal prices but that they cannot assign a

sign or magnitude to. Examples are product turnover, disruptions of the supply chain, innovation,

changes in the fiscal and regulatory environment, new competitors, and new technologies. These

shocks have the potential to push the optimal price of the firm either upwards or downwards; in

expectation, firms think these changes have no effect on their optimal price, but their estimates do

become more uncertain.

1In Álvarez, Lippi and Paciello (2011) firms pay an observation cost to get the truth revealed; the special case
considered here makes this cost infinite and thus the true state is never revealed.
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The main consequence of introducing infrequent unknown shocks is that the information friction

remains active in steady state. Upon the arrival of an infrequent shock, firm’s uncertainty about

future productivity jumps up on impact and subsequently decreases gradually as a result of learning.

Uncertainty will jump up again with the arrival of a new productivity shock. This mechanism

implies a cross-sectional distribution of uncertainty that translates into heterogeneous decision

rules. In particular, firms with high levels of uncertainty have a higher frequency of adjustment

than firms with low levels of uncertainty. Without the infrequent shocks, uncertainty becomes

constant and the heterogeneity in price-setting is eliminated, as in the model by Golosov and Lucas

(2007).

Since the information friction remains active in steady state, individual prices respond sluggishly

to unanticipated nominal shocks; this in turn slows down the response of the aggregate price level.

These aggregate implications are studied in a general equilibrium model where a continuum of

firms solve the price-setting problem with menu costs and information frictions. The model is then

calibrated using micro price statistics; in particular, the slope of the hazard rate of price changes is

used to calibrate the signal noise. The results are as follows: the half life of output after a nominal

shock is 50% larger than in a menu cost model without information frictions; this figure goes up to

300% if the infrequent shocks are also absent.

The uncertainty shocks in this paper contrast with the stochastic volatility process for produc-

tivity used elsewhere. Karadi and Reiff (2014) models stochastic volatility as an unsynchronized

process across firms; their calibration with large menu costs produces near-neutrality even for the

average level of volatility. Vavra (2014) models countercyclical stochastic volatility, synchronized

across all firms, to explain why monetary neutrality increases in recessions. In our paper the volatil-

ity of productivity shocks is fixed, and the idiosyncratic uncertainty shocks arise as the result of

firms’ learning mechanism. Even though shocks are unsynchronized, non-neutrality is high for

average levels of uncertainty, in contrast with the first paper. Furthermore, as we explain below,

non-neutrality is time varying when considering a correlated shock across firms, as in the second

paper.

To dissect the mechanism at play, the output response is decomposed into two components.

The first is the well-known selection effect, which is a measure of nominal rigidities; the second

component is a learning effects, which consists of average forecast errors across firms, a measure

of information frictions. This decomposition makes evident the ability of information frictions to

increase the effect of monetary policy, and more importantly, that the presence of forecast errors is

a testable implication of the theory. Nominal shocks make their way into estimated optimal prices

very gradually and eventually will be completely incorporated into prices. As a result, forecast

errors rise on impact and then converge back to zero. Coibion and Gorodnichenko (2012) provide

empirical support for this type of delayed response of forecast errors to aggregate shocks.
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There are two salient predictions of the uncertainty cycles in terms of the inaction region

and price statistics. A first prediction is that higher uncertainty increases the the frequency of

adjustments. As is any problem with fixed adjustment costs, the decision rule takes the form of an

inaction region, but with information frictions the inaction region becomes a function of uncertainty.

An increase in uncertainty generates two well-known opposing effects: the option value of waiting

or “wait-and-see” effect becomes larger and makes the inaction region wider; at the same time,

there is “volatility” effect that increases the probability of leaving the inaction region because firms

are hit on average with larger shocks. The model produces a new “learning” effect that works in the

same direction of the volatility effect and thus amplifies it. When uncertainty is high, firms increase

the weight they put on new information when making their estimations. Since new information

comes with noise, estimates become even more volatile and more price changes are triggered. For

small adjustment costs, the volatility and learning effects dominate the option value effect; thus

higher uncertainty is associated with a higher frequency of adjustment. Vavra (2014) documents a

strong comovement of the cross-sectional dispersion of the price changes and the frequency of price

adjustment in BLS data. Bachmann et al. (2013) documents a positive relationship between the

variance of firm-specific expectation errors and the frequency of adjustment using micro data from

German firms.

A second prediction of the model is a decreasing hazard rate of adjustment. As a result of

learning, firm uncertainty falls with time and the probability of adjusting also decreases. Conse-

quently, a firm that just received an infrequent shock expects to transition from high uncertainty

and frequent adjustment to low uncertainty and infrequent adjustments. The mechanism predicts

a decreasing hazard rate of price adjustment based entirely on a learning mechanism2. Decreasing

hazard rates have been documented in various datasets3, and we use this empirical counterpart to

discipline the information structure. The slope of the hazard rate is driven by the noise volatility,

and therefore the empirical hazard rate can be used to assess the importance of the information

friction. This approach of using a price statistic to recover information parameters was first sug-

gested in Jovanovic (1979) and Borovičková (2013) uses it to calibrate a signal-noise ratio in a labor

market framework.

Besides the large and persistent effects of nominal shocks, the model also predicts time-variation

in the propagation of nominal shocks: in highly uncertain times prices react faster to these shocks

and there are lower output effects. The quantitative exercise suggests that a nominal shock paired

with a correlated uncertainty shock across firms sharply reduces the output effect: an uncertainty

2Alternative explanations for decreasing hazard rates are heterogeneity and survivor bias as noted in Kiefer
(1988), sales as in Kehoe and Midrigan (2011), mean reverting shocks as in Nakamura and Steinsson (2008), or
experimentation as in Bachmann and Moscarini (2011).

3Decreasing hazard rates are documented by Nakamura and Steinsson (2008) using monthly BLS data for consumer
and producer prices, controlling for heterogeneity and sales, Campbell and Eden (2005) using weekly scanner data,
Eden and Jaremski (2009) using Dominik’s weekly scanner data, and Dhyne et al. (2006) using monthly CPI data
for Euro zone countries.
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shock of one times its steady state level cuts output response by half, while an uncertainty shock of

four times its steady state level (comparable to the magnitudes suggested in Bloom (2009) and Ju-

rado, Ludvigson and Ng (2013)) completely mutes the output response. Recent empirical evidence

of this relationship can be found in Aastveit, Natvik and Sola (2013) studies the propagation of

monetary shocks and its interaction with commonly used measures of uncertainty. Another study

is Berger and Vavra (2014) which documents a positive relationship between exchange-rate pass-

through and dispersion of price changes, where dispersion may be generated by uncertainty at firm

level.

The theory developed in this paper may be prove useful beyond price-setting frameworks. Mod-

els with non-convex adjustment costs, such as portfolio choice, investment, and firm entry and exit,

can be extended to incorporate information frictions using the tools developed here.

2 Firm problem with nominal rigidities and information frictions

The model developed here combines an inaction problem arising from a non-convex adjustment

cost together with a signal extraction problem, where the underlying state process features both

continuous and infrequent shocks. The decision rule takes the form of an inaction region that

varies and reflects the uncertainty dynamics. Furthermore, uncertainty never stabilizes due to the

recurrent nature of the large infrequent shocks. Although the focus is on pricing decisions, the

model is easy to generalize to other settings.

2.1 Environment

Consider a profit maximizing firm that chooses the price pt at which to sell her product. She must

pay a menu cost θ in units of product every time she changes the price. Let p∗t be the price that the

firm would set in the absence of any frictions; such price makes her markup (price over marginal

cost) constant. This target price is not observed perfectly; only noisy signals are available to the

firm. The firm has to choose the timing of the adjustments as well as the new reset prices. Time

is continuous and the firm discounts the future at a rate r.

Quadratic loss function Let µt be the markup gap, or the log difference between the current

markup and the unconstrained (constant) markup. Firms incur an instantaneous quadratic loss as

the markup gap moves away from zero:

Π(µt) = −Bµ2
t

where B > 0 is a constant. Quadratic profit functions are standard in price setting models, for

example in Barro (1972) and Caplin and Leahy (1997), and can be motivated as second order

approximations of more general profit functions as in Álvarez, Lippi and Paciello (2011).
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Stochastic process for markups The markup gap µt follows a jump-diffusion process

dµt = σfdFt + σuutdqt (1)

where Ft is a standard Brownian motion, qt is a Poisson counting process with intensity λ, and

σf and σu are the volatilities of frequent and infrequent shocks. When dqt = 1, the markup gap

receives a Gaussian innovation ut, where ut ∼ N (0, 1). The process qt is independent of Ft and ut.

Analogously, the markup gap can be also expressed as

µt = σfFt + σu

qt∑
κ=0

uκ

where {κ} are the dates when dqκ = 1 and
∑qt

κ=0 uκ is a compound Poisson process. Note that

E[µt] = 0 and V[µt] = (σ2
f + λσ2

u)t. Merton (1976) studies a version of this jump-diffusion process

in the context of stock option valuations.

This process for markup gaps nests two specifications that are benchmarks in the literature:

i) small frequent shocks modeled as the Brownian motion Ft with small volatility σf ; these shocks

are the driving force in standard menu cost models, such as Golosov and Lucas (2007)4;

ii) large infrequent shocks modeled through the Poisson process qt with large volatility σu. These

shocks produce a leptokurtic distribution of price changes and are used in Gertler and Leahy

(2008) and Midrigan (2011) as a way to capture relevant features of the empirical price change

distribution, such as fat tails.

Signals Firms do not observe their markup gaps directly. They get continuous noisy observations

of them denoted by µ̃t. These noisy signals of the markup gap evolve according to

dµ̃t = µtdt+ γdTt (2)

where the signal noise Tt follows a standard Brownian motion. The volatility parameter γ measures

the size information friction. Note that the underlying state, µt, enters as the slope of the signal.

This representation makes the filtering problem tractable (see Oksendal (2007) for details about

filtering problems in continuous time). The signal process has continuous paths. To see this, rewrite

it as µ̃t =
∫ t

0 µsds + γTt which is the sum of an integral and a Brownian motion, and therefore it

is continuous.

4Golosov and Lucas (2007) use a mean reverting process for productivity instead of a random walk. Still, our
results concerning small frequent shocks will be compared with their setup.
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Figure I illustrates the evolution of the markup gap and the signal process. When an infrequent

shock arrives (dqt = 1), the average level of the markup gap jumps to a new value; nevertheless,

the signal has continuous paths and only its slope changes to a new average value.

Figure I:
llustration of the process for the markup gap and the signal.

Dashed lines illustrate a situation in which the Brownian motions Ft, Tt are not active and only infrequent shocks
are present. The arrival of an infrequent shock changes the level of the markup gap and the slope of the signal.

Information set The information set at time t includes the history of signals µ̃ as well as the

realizations of the Poisson counter q, i.e. the firm knows if there has been an infrequent shock, but

not the size of the innovation ut. Thus the information set is given by the σ-algebra generated by

the histories of these processes:

It = σ{µ̃s, qs; s ≤ t}

The assumption that the firm knows the arrival of infrequent shocks is made for analytical tractabil-

ity. A more general approach would be to include an additional state variable to capture the hidden

state qt, although in that case the model must be solved numerically. This latter approach is used

in hidden state Markov models pioneered by Hamilton (1989).
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2.2 Filtering problem

This section describes the filtering problem and derives the laws of motion for estimates and

estimation variance. Equations (1) and (2) above jointly describe the noisy signals model for

markup gaps, and are repeated here for convenience:

(state) dµt = σfdFt + σuutdqt

(signal) dµ̃t = µtdt+ γdTt

where Ft, Tt ∼ Brownian Motion, qt ∼ Poisson(λ), ut ∼ N (0, 1)

Let µ̂t ≡ E[µt|It] be the best estimate of the markup gap (in a mean-squared error sense) and

Σt ≡ E[(µt − µ̂t)
2|It] its variance. Firm level uncertainty is defined as Ωt ≡ Σt

γ , which is the

estimation variance normalized by the signal volatility. Finally, the innovation process Wt that

represents the news or unpredictable component is defined as the difference between the realization

and its expectation plus the measurement noise:

(innovation) dWt =
1

γ
(µt − µ̂t)dt+ dTt (3)

The innovation process is a one-dimensional Brownian motion5. Proposition 1 below establishes

the laws of motion for estimates and uncertainty. The derivation of these laws of motion involve

an application of the Kalman-Bucy filter generalized to include the infrequent shocks.

Proposition 1 (Filtering equations) Given the processes in (1), (2), and (3) and initial con-

ditions (µ̂0,Ω0), the estimate of the markup gap µ̂t ≡ E[µt|It] and its uncertainty Ωt ≡ E[(µt−µ̂t)2|It]
γ

evolve according to:

dµ̂t = ΩtdWt (4)

dΩt =
σ2
f − Ω2

t

γ
dt︸ ︷︷ ︸

deterministic

+
σ2
u

γ
dqt︸ ︷︷ ︸

uncertainty shocks

(5)

Equation (4) says that the estimates µ̂t follow a Brownian motion Wt, given by the innovation

process, with time varying volatility Ωt. A notable characteristic of this filtering problem is that

point estimates, as well as the signals and innovations, have continuous paths even though the

underlying state is discontinuous. The continuity of these paths comes from the fact that changes

in the state affect the slope of the innovations and signals but not their levels, and that the

expected size of an infrequent shock ut is zero. Markup estimations are not affected by the arrival

of infrequent shocks, only uncertainty features jumps.

5See Lemma 6.2.6 in Oksendal (2007) for a proof.
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Higher uncertainty, faster learning A consequence of Bayesian learning is that when prior

uncertainty is high, the estimates put more weight on the signals than on the previous estimate.

To see how this is embedded in Equation (4) let’s take a small period of time ∆. As a discrete

process, the markup gap estimate at time t is given by the convex combination of the previous

estimate µ̂t−∆ and the signal µ̃t−∆, where the latter is the sum of the state and a white noise εt,

and the weights are a function of prior uncertainty Ωt−∆ and signal noise γ:

µ̂t =
γ

Ωt−∆∆ + γ
µ̂t−∆ +

(
1− γ

Ωt−∆∆ + γ

)(
µt∆ + γ

√
∆εt

)
︸ ︷︷ ︸

signal

, εt ∼ N (0, 1) (6)

For high prior uncertainty Ωt−∆, the weight that the forecast assigns to the signal is also high.

This means that the estimate incorporates more information about the current markup µt; in other

words learning is faster, but it also brings more white noise εt into the estimation.

Uncertainty cycles Regarding the evolution of uncertainty, Equation (5) shows that it is com-

posed of a deterministic and a stochastic component, where the latter is active whenever the markup

gap receives an infrequent shock. Let’s study each component separately. In the absence of infre-

quent shocks (λ = 0), uncertainty Ωt follows a deterministic path which converges to the constant

volatility of the continuous shocks σf , i.e. the fundamental volatility of the markup gap. This

case is studied in the Online Appendix of Álvarez, Lippi and Paciello (2011). The deterministic

convergence is a result of the learning process: as time goes by, estimation precision increases until

the only volatility left is fundamental.

In the model with infrequent shocks (λ > 0), uncertainty jumps up on impact with the arrival

of every infrequent shock and then decreases deterministically until the arrival of a new infrequent

shock that will push uncertainty up again. The time series profile of uncertainty features a saw-

toothed profile that never stabilizes due to the recurrent nature of these shocks. If the arrival of the

infrequent shocks were not known and instead the firm had to filter their arrival as well, uncertainty

would probably feature a hump-shaped profile instead of a jump.

Although uncertainty never settles down, it is convenient to characterize the level of uncertainty

such that its expected change is equal to zero. This level of uncertainty is equal to the variance

of the state V[µt] = Ω∗2t, hence it is called “fundamental” uncertainty. The following Lemma

establishes its value Ω∗.

Lemma 1 (Fundamental uncertainty) If Ωt = Ω∗ ≡
√
σ2
f + λσ2

u, then E
[
dΩt
dt

∣∣∣It] = 0.

The next sections show that the ratio of current to fundamental uncertainty is a key determinant

of decision rules and price statistics.
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2.3 Decision rules

With the characterization of the filtering problem at hand, this section proceeds to characterize

the price adjustment decision of the firm.

Sequential problem Let {τi}∞i=1 be the series of dates where the firm adjusts her markup gap

and {µτi}∞i=1 the series of reset markup gaps at the adjusting dates. Given an initial condition µ0,

the law of motion for the markup gaps, and the filtration {It}∞t=0, the sequential problem of the

firm is described by:

max
{µτi ,τi}

∞
i=1

−E
[ ∞∑
i=0

e−rτi+1

(
θ +

∫ τi+1

τi

e−r(s−τi+1)Bµ2
s ds

)]
(7)

The sequential problem is solved recursively as a stopping time problem using the Principle of

Optimality (see Oksendal (2007) and Stokey (2009) for details). This is formalized in Proposition

2. The firm’s state has two components: the point estimate of the markup gap µ̂ and the level of

uncertainty Ω attached to that estimate. Given the current state (µ̂t,Ωt), the firm policy consists

of choosing (i) the next time to adjust τ > t and (ii) the new markup gap µ′.

Proposition 2 (Stopping time problem) Let (µ̂0,Ω0) be the firm’s current state immediately

after the last markup adjustment. Also let θ̄ = θ
B be the normalized menu cost. Then the optimal

stopping time and reset markup gap (τ, µ′) solve the following stopping time problem:

V (µ̂0,Ω0) = max
τ

E
[∫ τ

0
−e−rsµ̂2

sds+ e−rτ
(
− θ̄ + max

µ′
V (µ′,Ωτ )

)∣∣∣It] (8)

subject to the filtering equations in Proposition 1.

We observe in Equation (8) that the estimates enter directly in the instantaneous return, while

uncertainty affects the continuation value. To be more precise, uncertainty does have a negative

effect on current profits that reflects the firms’ permanent ignorance about the true state. However,

this loss is constant and can be treated as a sunk cost; thus it is set to zero.

Inaction region The solution to the stopping time problem is characterized by an inaction region

R such that the optimal time to adjust is given by the first time that the state falls outside such

region:

τ = inf{t > 0 : (µt,Ωt) /∈ R}

Since the firm has two states, the inaction region is two-dimensional, in the space of markup gap

estimations and uncertainty.
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Let µ̄(Ω) denote the inaction region’s border as a function of uncertainty. The inaction region

is described by the set:

R = {(µ,Ω) : |µ| ≤ µ̄(Ω)}

The symmetry of the inaction region is inherited from the specification of the stochastic processes

and the quadratic profit function. Symmetry and zero inflation imply that the optimal reset level

of the markup gap is equal to µ′ = 0. Proposition 3 provides an analytical approximation for the

inaction region’s border µ̄(Ω). An evaluation of analytical approximations can be found in the Web

Appendix6.

Proposition 3 (Inaction region) Let r and θ̄ small. The inaction region R is approximated by

µ̄(Ωt) =
(
6θ̄Ω2

t

)1/4 Lµ̄(Ωt)︸ ︷︷ ︸
learning

where Lµ̄(Ωt) ≡
[
1 +

(Ωt

Ω∗
− 1
)24θ̄2

γ

]−1/4

(9)

The inaction region’s elasticity with respect to Ω is E ≡ 1
2 − 6θ̄2

γ
Ω
Ω∗ .

Effect of uncertainty on inaction region The inaction region can be expressed as two compo-

nents that depend on uncertainty. The first component captures the well-known option value effect

(see Barro (1972) and Dixit (1991)) and it is increasing in uncertainty. One of the new implications

of the model with information frictions is that this option value effect becomes time-varying and

driven by uncertainty. The second component, labeled as learning effect and denoted by Lµ̄(Ωt),

is a factor that amplifies or dampens the option value effect depending on the ratio of current

uncertainty to fundamental uncertainty Ω
Ω∗ . When current uncertainty is high with respect to its

average level
(

Ω
Ω∗ > 1

)
, uncertainty is expected to decrease (E[dΩt] < 0) and therefore future option

values also decrease. In turn, this feeds back into the current inaction region shrinking it by a factor

Lµ̄(Ωt) < 1. When uncertainty is low with respect to its average level
(

Ω
Ω∗ < 1

)
, it is expected to

increase (E[dΩt] > 0) and thus the option values in the future also increase. Analogously, this feeds

back into current bands that get expanded by a factor Lµ̄(Ωt) > 1. Finally, when Ωt = Ω∗, the

expected change in uncertainty is zero (E[dΩt] = 0) and the learning effect disappears.

The possibility that more uncertainty could shrink the inaction region is not intuitive, as one

could think that waiting a few more periods would bring a better estimate and decisions to adjust

should be postponed by widening the inaction region. However, lower future uncertainty reduces

the future option values. The overall effect of uncertainty on the inaction region depends on the

size of the menu cost and the signal noise. Expression (9) shows that small menu costs paired

with large signal noise make the learning effect close to one, implying that the elasticity of the

inaction region with respect to uncertainty is close to 1/2 and thus the inaction region is increasing

in uncertainty.

6The Web Appendix can be found at https://sites.google.com/a/nyu.edu/isaacbaley/Research.
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Interplay between infrequent shocks and information frictions Without infrequent shocks,

uncertainty converges to the fundamental volatility in the long run, shutting down the learning ef-

fect. The inaction region becomes constant. That is the case analyzed in the Online Appendix

of Álvarez, Lippi and Paciello (2011). As these authors show, such a model collapses to that of

Golosov and Lucas (2007) where there is no dispersion in the size of price changes. Specifically,

without infrequent shocks the steady state inaction region is constant and akin to that of a steady

state model without information frictions, namely µ̄ =
(
6θ̄σf

2
)1/4

.

Figure II shows a particular sample path for a firm for a parametrization with small menu costs

and large noise. The left panel plots the estimate of the markup gap (solid) and the inaction region

(dashed). The center panel shows the evolution of uncertainty: it decreases monotonically with

learning until an infrequent shock arrives and makes uncertainty jump up; then, learning brings

uncertainty down again. This path is inherited by the inaction region because the calibration makes

the inaction region increasing in uncertainty. The dashed horizontal line is fundamental uncertainty

Ω∗. Finally, in the right panel the black vertical lines mark the times when there is a price change.

These changes are triggered when the markup gap estimate touches the inaction region.

3 Implications for micro-price statistics

This section explores the implications of the price-setting model for micro price statistics.

3.1 Frequency of adjustment

How does firm uncertainty affect the frequency of adjustment? Figure II shows that after the

arrival of an infrequent shock at time t = 1, the inaction region is wider and also the estimation

is more volatile. The estimation hits the band more often and subsequent price changes are trig-

gered. Higher uncertainty brings more price changes. The next proposition formalizes this result

by characterizing analytically the expected time between price changes.

Proposition 4 (Expected time between price changes) Let r and θ̄ be small. The expected

time between price changes conditional on the state, denoted by E[τ
∣∣µ̂t,Ωt], is approximated as:

E[τ
∣∣µ̂t,Ωt] =

µ̄(Ωt)
2 − µ̂2

t

Ω2
t

Lτ (Ωt)︸ ︷︷ ︸
learning

where Lτ (Ωt) ≡
[
1 +

(Ωt

Ω∗
− 1
)(24θ̄2

γ

)(
3γ + θ̄2

γ + 2θ̄2

)]
(10)

and it is a decreasing function of uncertainty:
∂E[τ

∣∣µ̂t,Ωt]
∂Ωt

< 0.
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Figure II:
Sample paths for one firm.

Left: Markup gap estimate (solid line) and inaction region (dotted line). Center: Firm uncertainty (solid line) and
fundamental uncertainty (horizontal dotted line). Right: Stopping times or price changes (vertical solid lines).

The expected time between price changes has two terms that multiply. The first term µ̄(Ω)2−µ̂2

Ω2

is standard in these problems; it says that the closer the current markup gap is to the border of the

inaction region, then the shorter the expected time for the next adjustment. This term is decreasing

in uncertainty with an elasticity larger than unity in absolute value, and again the novelty is that

this effect is time varying.

The second is a new term Lτ (Ωt) that amplifies or dampens the standard effect and it arises in

the learning model. As with the learning term in the inaction region, Lτ (Ωt) is larger or smaller

than one depending on the ratio of current to fundamental uncertainty. In any case, the elasticity of

this term with respect to uncertainty is lower than unity; therefore, the overall effect of uncertainty

on the expected time to adjustment is negative: a firm with high uncertainty is going to change

the price more frequently than a firm with low uncertainty.

Proposition 5 provides an additional way to understand the negative relationship between un-

certainty and frequency of adjustment.
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Proposition 5 (Uncertainty and Frequency) The following relationship between uncertainty,

frequency of adjustment, and price dispersion holds:

E[Ω2] =
V[∆p]

E[τ ]
(11)

The previous result, which is derived in Proposition 1 of Álvarez, Le Bihan and Lippi (2014) for

the case of Ωt = σf ∀t, establishes a very intuitive link between uncertainty and price statistics.

For a given size of price change, an increase in uncertainty has to lower the expected time between

prices changes and vice-versa, for a fixed frequency, an increase in uncertainty has to increase the

size of price changes. This relationship proves to very extremely useful to back out an unobservable

state, uncertainty, with observable price statistics.

3.2 Hazard rate of price adjustment

The hazard rate of price adjustment h(τ) is defined as the probability of changing the price at date

τ given that it has not been changed up to that time, this is h(τ) ≡ f(τ)∫∞
τ f(s)ds

, where f(s) is the

distribution of stopping times. This probability is given by the probability of exiting the inaction

region, or first passage time. Assume the last adjustment occurred at time t. Then the hazard rate

is a function of two statistics:

i) the variance of the estimate at date τ from a time t perspective, or unconditional estimation

variance, denoted as p(τ |Ωt):

µ̂τ |It ∼ N (0, p(τ |Ωt))

ii) the expected path of the inaction region given the information available at time t.

An analytical characterization of the hazard rate is provided in the following proposition. The

presence of infrequent shocks only changes the level of the hazard rate but not its slope, thus we

characterize the hazard rate assuming no infrequent shocks (λ = 0). Furthermore, the inaction

region is assumed to be constant. This is also a valid assumption since what matters for the hazard

rate is the size of the inaction region relative to the volatility of the uncontrolled process. The

validity of both assumptions is explored in the Web Appendix where we compute the numerical

hazard rate. Without loss of generality, set t = 0.

Proposition 6 (Hazard rate of price adjustment) Let Ω0 be the current level of uncertainty.

Assume that there are no infrequent shocks (λ = 0) and constant inaction region µ̄(Ωτ ) = µ̄0.

• Then the unconditional forecast variance p(τ |Ω0) is given by:

p(τ |Ω0) = σ2
fτ + γ Lp(τ |Ω0)︸ ︷︷ ︸

learning

(12)
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where Lp(τ |Ω0) is an increasing and concave function, Lp(0|Ω0) = 0, limτ→∞ Lp(τ,Ω0) = Ωt

and it is given by:

Lp(τ,Ω0) ≡ Ω0 − σfcoth
(

1

2
log

(
Ω0 + σf
Ω0 − σf

)
+
σf
γ
τ

)

• The hazard of adjusting the price at date τ is characterized by:

h(τ |Ωt) =
π2

8

p′(τ |Ωt)

µ̄2
0

Ψ

(
p(τ |Ω0)

µ̄2
0

)
(13)

where Ψ is an increasing function, Ψ(0) = 0, limx→∞Ψ(x) = 1, and it is given by:

Ψ(x) =

∑∞
j=0(2j + 1)(−1)j exp

(
− (2j+1)2π2

8 x
)

∑∞
j=0(2j + 1)−1(−1)j exp

(
− (2j+1)2π2

8 x
)

• If σf is small, then for τ sufficiently large, the hazard rate is decreasing.

∂h(τ |Ω0)

∂τ

1

h(τ |Ω0)
≈ − 2

τ + γ
Ω0

< 0

Unconditional forecast variance p(τ |Ω0) in (12) captures the evolution of uncertainty. Its first

part, σ2
fτ , refers to the linear time trend that comes from the markup estimates following a Brownian

Motion. The second part, Lp(τ |Ω0), is a additional source of variance coming from learning.

Because p(τ |Ω) accumulates the variance from all shocks received since the beginning, its first

derivative reflects uncertainty (conditional forecast variance at time τ) and its second derivative

reflects uncertainty growth. Concavity of Lp(τ |Ω) is a consequence of uncertainty being expected

to decrease over time. This in turn generates a decreasing hazard rate.

Decreasing hazard rate The economics behind the decreasing hazard rate are as follows. Be-

cause of learning, firm uncertainty decreases with time and the weight given to new observations in

the forecasting process decreases too. Since the volatility of the markup gap estimates is reduced,

the probability of adjusting also decreases. A firms expects to transition from high uncertainty

and frequent adjustment to low uncertainty and infrequent adjustments, generating a decreasing

hazard rate. When frequent volatility σf is small, the slope of the hazard rate is driven by the

noise volatility γ. Therefore γ can be chosen to match the shape of the hazard rate.
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4 General Equilibrium Model

How does an economy with information frictions and nominal rigidities respond to aggregate nom-

inal shocks? This section studies the response of output to a monetary shock in a standard general

equilibrium framework with monopolistic firms that face the pricing-setting problem with menu

costs and information frictions studied in the previous sections. The main result is that imperfect

information amplifies nominal rigidities in normal times, while it reduces the effect of nominal

rigidities if uncertainty is sufficiently high.

4.1 General Equilibrium Model

Environment There is a representative consumer and a continuum of monopolistic firms indexed

by z ∈ [0, 1]. All the shocks in the model are idiosyncratic.

Representative Household The consumer has preferences over consumption Ct, labor Nt, and

real money holdings Mt
Pt

. She discounts the future at rate r > 0.

E
[∫ ∞

0
e−rt

(
logCt −Nt + log

Mt

Pt

)
dt

]
(14)

Consumption consists of a continuum of imperfectly substitutable goods indexed by z bundled

together with a CES aggregator as

Ct =
(∫ 1

0

(
At(z)ct(z)

) η−1
η
dz

) η
η−1

(15)

where η > 1 is the elasticity of substitution across goods and ct(z) is the amount of goods purchased

from firm z at price pt(z). The ideal price index is the minimum expenditure necessary to deliver

one unit of the final consumption good, and is given by:

Pt ≡
[∫ 1

0

(
pt(z)

At(z)

)1−η
dz

] 1
1−η

(16)

In the consumption bundle and the price index, At(z) reflects the quality of the good, with higher

quality providing larger marginal utility of consumption but at a higher price. These shocks are

firm specific and will be described fully in the firm’s problem.

The household has access to complete financial markets. The budget includes income from

wages Wt, profits Πt from the ownership of all firms, and the opportunity cost of holding cash

RtMt, where Rt is the nominal interest rate.
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Let Qt be the stochastic discount factor, or valuation in nominal terms of one unit of consump-

tion in period t. Thus the budget constraint reads:

E
[∫ ∞

0
Qt (PtCt +RtMt −WtNt −Πt) dt

]
≤M0 (17)

The household problem is to choose consumption of the different goods, labor supply and money

holdings to maximize preferences (14) subject to (15), (16) and (17).

Monopolistic Firms A continuum of firms produce and sell their products in a monopolistically

competitive market. They own a linear technology that uses labor as its only input: producing

yt(z) units of good z requires lt(z) = yt(z)At(z) units of labor, so that the marginal nominal cost is

At(z)Wt (higher quality At(z) requires more labor input). The assumption that the quality shock

enters both the production function and the marginal utility is done for tractability as it helps to

condense the numbers of states of the firm into one, the markup, as in Midrigan (2011). Each firm

sets a nominal price pt(z) and satisfies all demand at this posted price. Given the current price

pt(z), the consumer’s demand ct(z), and current quality At(z), instantaneous nominal profits of

firm z equal the difference between nominal revenues and nominal costs:

Π(pt(z), At(z)) = ct(pt(z), At(z))
(
pt(z)−At(z)Wt

)
Firms maximize their expected stream of profits, which is discounted at the same rate of the

consumer Qt. They choose either to keep the current price or to change it, in which case they must

pay a menu cost θ and reset the price to a new optimal one. Let {τi(z)}∞i=1 be a series of stopping

times, that is, dates where firm z adjusts her price. The sequential problem of firm z is given by:

V (p0(z), A0(z)) = max
{pτi (z),τi(z)}

∞
i=1

E

[ ∞∑
i=0

Qτi+1(z)

(
−θ +

∫ τi+1(z)

τi(z)

Qs
Qτi+1(z)

Π(pτi(z), As(z))ds

)]
(18)

with initial conditions (p0(z), A0(z)) and subject to the quality process described next.

Quality process Firm z’s log quality at(z) ≡ lnAt(z) evolves as the following jump-diffusion

process which is idiosyncratic and independent across z:

dat(z) = σfFt(z) + σuut(z)dqt(z)

where Ft(z) is a standard Brownian motion and qt(z) a Poisson counting process with arrival rate λ

and Normal innovations ut(z) ∼ N (0, 1) as in the previous sections. Parameters {σf , σu, λ, γ} are

identical across firms. These shocks influence the optimal prices and generate the cross-sectional

dispersion in price changes.
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As before, firms do not observe the shocks to their quality directly. They do not learn it from

observing their wage bill or revenues either. The only sources of information are noisy signals about

quality:

dãt(z) = at(z)dt+ γdTt(z)

where Tt(z) is an independent Brownian motion for each firm z and γ is signal noise. Each infor-

mation set is It(z) = σ{ãs(z), qs(z); s ≤ t}.

Money supply Money supply is constant at a level M̄ .

Equilibrium An equilibrium is a set of stochastic processes for (i) consumption strategies ct(z),

labor supply Nt, and money holdings Mt for the household, (ii) pricing functions pt(z), and (iii)

prices Wt, Rt, Qt, Pt such that the household and firms optimize and markets clear at each date.

4.2 Characterization of Steady State Equilibrium

Household optimality The first order conditions of the household problem establish: nominal

wages as a proportion of the (constant) money stock Wt = rM̄ ; the stochastic discount factor as

Qt = e−rt; and demand for good z as ct(z) = At(z)
η−1

(
pt(z)
Pt

)−η
Ct.

Constant prices Constant money supply implies a constant nominal wage Wt = W and a

constant nominal interest rate equal to the household’s discount factor Rt = 1 + r. The ideal price

index is also a constant P . Then nominal expenditure is also constant PC = M = W . Therefore,

there is no uncertainty in aggregate variables.

Back to quadratic losses Given the strategy of the consumer ct(z) and defining markups as

µt(z) ≡ pt(z)
At(z)W

, the instantaneous profits can be written as a function of markups alone:

Π(pt(z), At(z)) = Kµt(z)
−η
(
µt(z)− 1

)
where K ≡ M

(
W
P

)1−η
is a constant in steady state. A second order approximation to this ex-

pression produces a quadratic form in the markup gap, defined as µt(z) ≡ log(µt(z)/µ
∗), i.e. the

log-deviations of the current markup to the unconstrained markup µ∗ ≡ η
η−1 :

Π(µt(z)) = C −Bµt(z)2

where the constants are C ≡ Kη−η(η − 1)η−1 and B ≡ 1
2K

(η−1)η

ηη−1 . The constant C does not affect

the decisions of the firm and it is omitted for the calculations of decision rules; the constant B

captures the curvature of the original profit function. This quadratic problem is the same as 7.
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Markup gap estimation and uncertainty The markup gap is equal to

µt(z) = log pt(z)− at(z)− logW − logµ∗

When the price is kept fixed (inside the inaction region), the markup gap is driven completely

by the productivity process: dµt(z) = −dat(z). When there is a price adjustment, the markup

process is reset to its new optimal value and then it will again follow the productivity process.

By symmetry of the Brownian motion without drift and the mean zero innovations of the Poisson

process, dat(z) = −dat(z). The filtering equations are as in Proposition 1, but each process is

indexed by z and is independent across firms.

dµ̂t(z) = Ωt(z)dWt(z)

dΩt(z) =
σ2
f − Ω2

t (z)

γ
dt+

σ2
u

γ
dqt(z)

4.3 Data and calibration

The model is solved numerically as a discrete time version of the continuous time model de-

scribed above. The calibration of the model is done using price statistics reported in Nakamura and

Steinsson (2008), who use BLS monthly data for a sample that is representative of consumer and

producer prices except services, controlling for heterogeneity and sales. The sample is restricted

to regular price changes, that is, with sales filtered out. The moments considered are the mean

price change E[|∆p|] = 0.11, the expected time between price changes E[τ ] = 8 months, as well as

the hazard rate with negative slope. These moments are also consistent with Dominick’s database

reported in Midrigan (2011).

The frequency considered is weekly and the discount factor is set to β = 0.961/52 to match an

annual interest risk free rate of 4%. The normalized menu cost θ̄ is set to 0.064 so that the expected

menu cost payments ( 1
E[τ ]θ) represent 0.5% of the average revenue given by ( η

η−1)1−η as in Zbaracki

et al. (2004) and Levy et al. (1997). The CES elasticity of substitution between goods is set to

η = 6 in order to match an average markup of 20%.

The stochastic processes are calibrated to match the price statistics. In addition to the model

with information frictions, two other versions are calibrated to serve as benchmarks. These alterna-

tive models assume perfect information (γ = 0). The first model shuts down the infrequent shocks

(λ = 0) and its only parameter σf is set to match the frequency of adjustment. The second model

shuts down the frequent shocks (σf = 0), and its two parameters λ and σu match the frequency

and the dispersion of price changes. The model with information frictions has an additional pa-

rameter to calibrate, the signal noise, which is set to γ = 0.15 to match the shape of the hazard rate7.

7The Web Appendix shows how the slope of the unconditional hazard rate varies with different choices of γ without
changing the price change distribution.
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Table I:
Model parameters and targets

Targets Data Model

Perfect Information Imperfect Information
γ = σu = λ = 0 γ = σf = 0

E[τ ] 32 weeks σf = 0.0195 λ = 0.04 λ = 0.027
std[|∆p|] 0.08 σu = 0.145 σu = 0.2
h(τ) slope < 0 - - γ = 0.15

Monthly data from BLS in Nakamura and Steinsson (2008) converted to weekly frequency. For the slope of the
hazard rate h(τ) see Figure III.

Price statistics The left panel in Figure III shows the ergodic distribution of price changes for

different parametrizations of the model and the data. Its symmetry comes from the assumption of

zero inflation and the stochastic process. The model with only small frequent shocks [dotted line]

generates a price distribution concentrated at the borders of the inaction region. The models with

infrequent shocks, with and without information frictions, are able to better match the distribution

of price changes with fat tails and larger dispersion.

The model has difficulty matching small price changes because the minimum is bounded by the

size of the menu cost. However, as noted by Eichenbaum, Jaimovich, Rebelo and Smith (2012),

small price changes might be the result of measurement errors and not a reason to dismiss a menu

cost model. In any case, economies of scope through multi-product firms can be added to generate

such small price changes, see Midrigan (2011) and Álvarez and Lippi (2014).

The right panel of figure III plots the hazard rate of price adjustment. Infrequent shocks

with perfect information generate a non-decreasing, almost flat hazard. Perfect information and

only frequent shocks feature an increasing hazard rate. For the imperfect information model, the

decreasing hazard is obtained by calibrating the signal noise γ.

All models generate the same expected time between price changes. With imperfect information

and infrequent shocks the hazard rate is decreasing: after a price change, there are correlated price

changes triggered by the first one. These additional price changes allow us to lower the arrival rate

of Poisson shocks λ while keeping the expected duration of prices unchanged.
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Figure III:
Distribution of price changes and hazard rate of price adjustments for models and data.
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Three models and the data from Midrigan (2011) and Nakamura and Steinsson (2008).

5 Propagation of nominal shocks

This section studies the effect of unanticipated aggregate nominal shock on output. As a preliminary

step, expressions for cross-sectional averages, or ensembles, of forecast errors and markups gap

estimates are derived; these are used to decompose the output response to a nominal shock into

selection and learning effects. This decomposition highlights the role of imperfect information as

an amplification mechanism of nominal rigidities.

5.1 Ensembles

Estimates as forecast The markup estimate of firm z ∈ [0, 1] is a martingale (recall dµ̂t(z) =

Ωt(z)dWt(z)), which implies that time t estimates can be considered forecasts for any time t + j

with time t information. Take the forecast for firm z:

E[µt+j(z)|It(z)] = E[E[µt+j(z)|It+j(z)]|It(z)] = E[µ̂t+j(z)|It(z)] = µ̂t(z) ∀j, z

The ensemble (cross-sectional average) of markup gap estimations is computed as

Gt ≡
∫ 1

0
µ̂t(z)dz =

∫ 1

0
E[µt+j(z)|It(z)]dz ∀j > t (19)
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Forecast errors Forecast errors are defined as the difference between the actual realization of

the markup gap and its estimation:

ft+j(z) ≡ µt+j(z)− E[µt+j(z)|It(z)] = µt+j(z)− µ̂t(z) ∀j, z (20)

and let Ft+j ≡
∫ 1

0 ft+j(z)dz be the ensemble of forecast errors j period ahead.

5.2 Output response to an aggregate nominal shock

Unanticipated permanent nominal shocks Aggregate nominal shocks are implemented as an

unforeseen and permanent increase in nominal wages, which translates into a permanent decrease

in markups to all firms of size δ, where δ is small. This shock is unanticipated as firms assign zero

probability to it. Output responses are computed using steady state policies following Álvarez and

Lippi (2014), Proposition 7, which shows that general equilibrium effects on policies are irrelevant.

Start with the steady state invariant distribution of firms’ price changes that correspond to an

initial level of money supply equal to M̄ . Then at time t = 0, there is an unanticipated permanent

increase in the level of money supply by δ%, or in log terms:

logMt = log M̄ + δ, t ≥ 0

Since wages are proportional to the money supply, the shock translates directly into a wage increase:

W(t, δ) ≡ ln

(
Wt

W

)
= δ

Price response The ideal price index in (16) can be written in terms of the markup gaps, just

multiply and divide by the nominal wages and use the definition of markups and markup gaps:

Pt = Wt

[∫ 1

0

(
pt(z)

WtAt(z)

)1−η
dz

] 1
1−η

= Wt

[∫ 1

0
µt(z)

1−ηdz

] 1
1−η

= Wtµ
∗
[∫ 1

0

(
eµt(z)

)1−η
dz

] 1
1−η

Then take the log difference from steady state, a first order approximation to the integral, and

substitute the wage deviation for δ. Finally, add and subtract the markup estimate to express as:

ln

(
Pt

P

)
≈ δ +

∫ 1

0
µt(z)dz = δ +

∫ 1

0
[µt(z)− µ̂t(z)]dz +

∫ 1

0
µ̂t(z)dz = δ + Ft︸︷︷︸

info friction

+ Gt︸︷︷︸
nominal rigidity

Therefore, price deviations from steady state t periods after the nominal shock equal the ensemble

of markup gaps (19) plus the ensemble of forecast errors (20) at that time.
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Output response In order to compute the output response, the equilibrium condition is that

output is equal to the real wage, which in log deviations from steady state reads:

ln

(
Yt

Y

)
= δ − ln

(
Pt

P

)
= −Ft − Gt

The cumulative effect of the monetary shock (the area under the impulse response function or the

excess output above steady state) is denoted as M and it equals

M≡
∫ ∞

0
ln

(
Yt

Y

)
dt = −

∫ ∞
0
Ftdt−

∫ ∞
0
Gtdt

In a frictionless world, all firms would increase their price in δ to reflect the higher marginal costs

and the shock would have no output effects, i.e. M = 0. As long as the price level fails to reflect

the shock there are real effects on output. With perfect information, Ft = 0 ∀t. Without nominal

rigidities, Gt = 0 ∀t. When either friction is activated, the output response is dampened.

5.3 Impulse-response of output

The model with information frictions and menu costs is able to explain large and persistent responses

of output to nominal shocks. Figure (IV) compares the impulse-response functions of output for

different information and shock structures. The first three columns of Table II compute the total

output effects M and half-life relative to the case perfect information with no infrequent shocks

(λ = 0). For this case, M = 1.41% and the half-life is 1.25 months.

Figure IV:
Output response to a positive monetary shock for three models.
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Table II:
Output response to monetary shocks (as a multiple of the first column).

Perfect information Imperfect information
Statistics λ = 0 σf = 0 No Ω shock small Ω shock large Ω shock

M 1.0 3.2 4.6 2.6 1.0
Half-life 1.0 3.9 6.1 3.8 1.8

With perfect information and λ = 0 (first column) the total output effects are M = 1.41% and the half-life is 1.25

months. The results in columns 2-5 are multiples of the values in the first column. A small uncertainty shock refers

to a shock of one times the steady state level of uncertainty and a large shock to four times the steady state level.

5.4 Decomposing output response: learning vs. selection effects

Since Caplin and Spulber (1987) it has been known that what matters for the flexibility of the

aggregate price level in menu cost models is the presence or absence of selection effect: the firms

that adjust prices are those further away from the optimal reset price and thus they have large

price changes. This selection effect in turn depends on the type of idiosyncratic shocks that firms

face, as subsequent work showed. In the presence of information frictions, the output effects not

only depend on the selection effect but also on the speed at which firms incorporate the shock

into their estimations. If information frictions are important, then the ensemble average of forecast

errors has a large and persistent response to nominal shocks that in turns makes the response of

the aggregate price level equally sluggish. Propositions (7) and (8) characterize the selection effect

captured by G and the learning effect in F in the presence and absence of information frictions.

Proposition 7 (Learning and selection effects without infrequent shocks) Without infre-

quent shocks (λ = 0), forecast errors and markup estimates ensembles evolve as:

(learning) Ft =

(
1

1 +
σf
γ

)t
δ (21)

(selection) Gt = Gt−1 −
∫ 1

0
∆pδt−1(z)dz +

σf
γ
Ft (22)

with G−1 = 0. The term with the integral is the average price change triggered by monetary policy.

In the absence of infrequent shocks, the steady state features no heterogeneity in uncertainty and it

is equal to fundamental uncertainty, which in this case is equal to the frequent volatility for all firms

Ωt(z) = Ω∗ = σf . Homogeneous uncertainty implies homogenous forecast errors. The expression for

learning effect (24) implies that the half-life of forecast errors is equal to log 2/ log
(

1 +
σf
γ

)
which

is increasing in the ratio of noise to fundamental volatility γ/σf . A relatively noisy environment

produces a larger output response.
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The expression for the selection effect (25) shows that if average price changes are large enough

(for instance if the menu cost is large) then average markup estimates are forced quickly to zero.

This is consistent with estimates of menu costs in Karadi and Reiff (2014) for a sample of Hungarian

firms.

Figure (V) shows the response of output and its two components for perfect information (left)

and imperfect information (right). With perfect information firms fully adjust their expectations,

there is no learning effect and all the output response, although small, comes from the nominal

rigidity. With positive signal noise there is a larger output response coming almost exclusively from

the learning effect. The half-life more than doubles as γ goes from 0 to 0.15, its calibrated value.

Figure V:
Output response to a positive monetary shock when there are no infrequent shocks (λ = 0).
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Positive monetary shock is implemented as a reduction in permanent markups in δ = 1%. Left: Perfect information
γ = 0. Right: Information frictions with γ = 0.15. Output (solid line), average forecast errors or learning effect

(dotted line) and average markup estimates or selection effect (dashed line) for λ = 0 or only small frequent shocks.

Proposition 8 (Learning and selection effects with infrequent shocks) With information

frictions (λ > 0) and σf ≈ 0, ensembles of forecast errors and markup estimates evolve as:

(learning) Ft =

(
1− λσ2

u

σ2
u + γ2

)t
δ (23)

(selection) Gt = e−λGt−1 + (1− e−λ)0→ 0 (24)
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With infrequent shocks λ > 0 and small σf , firms’ fundamental uncertainty is close to zero and

the bulk of uncertainty movements come from the arrival of infrequent shocks. The half-life of the

forecast errors is ln 2/ ln
(

1+(σu/γ)2

1+(1−λ)(σu/γ)2

)
which is increasing in the ratio of noise to fundamental

volatility γ/σu and decreasing in λ. Note that if γ = 0, forecast errors would follow Ft ≈ (1− λ)tδ

and forecast updating would be perfectly correlated with the arrival of Poisson shocks.

Since receiving an infrequent shock implies that forecasts fully incorporate the shock (the weight

on new information is close to one) and there is a price adjustment for the same amount (the shocks

are large), (26) mostly depends on the arrival rate. This positive and high correlation between

updating information sets and updating prices resembles the model by Mankiw and Reis (2002).

This high correlation generates similar aggregate dynamics as their sticky-information model in

which this correlation is exogenously set to one. In this case, forecast errors drive almost all the

action in the output effects.

Why is the estimate ensemble close to zero in (27)? On one hand, the fraction 1− e−λ of firms

that receives a Poisson shock will update their forecast and, because of large shocks, they will

change their price in the same magnitude of the forecast update, making the new forecast estimate

equal to zero. On the other hand, the fraction e−λ of firms firms that do not receive a shock do

not adjust their prices and do not update their forecasts. Finally, since the initial condition for

markup estimates is close to zero, Gt is also close to zero.

5.5 Time-variation on the effect of nominal shocks

This section explores the interaction of correlated uncertainty shocks across firms and nominal

shocks. The main finding is that nominal shocks become neutral when uncertainty is high for

all firms. To show this, the nominal shock is interacted with an exogenous correlated shock of

uncertainty across firms. Besides the nominal shock of size δ, there is a once and for all increase in

firms’ uncertainty Ω(z) in nΩ∗ units , where n takes different values across experiments n ∈ {0, 1, 4}.
To give an idea of the magnitude of uncertainty shocks considered, when n = 4 the mean level

of uncertainty jumps 4 times above its steady state level and converges back to its steady state by

the first quarter. The magnitude and persistence of uncertainty shocks are comparable to the ones

in Bloom (2009) and Jurado, Ludvigson and Ng (2013).

Figure VI shows the results from the uncertainty experiments. We analyze the panels clockwise.

The top left panel shows that the response of output to the money shock decreases as the correlated

uncertainty shock increases. The last two columns of Table II above give concrete numbers. A

monetary shock paired with an uncertainty shock of one times its steady state level (n = 1) cuts

output response by half, and if the uncertainty shock is four times its steady state level (n = 4),

the output effects are almost muted.
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The top right panel plots the weekly frequency of price changes measured as
∫ 1

0 1{|∆p(z)|>0}]dz.

Frequency is increasing in uncertainty. However, the increase in frequency is not enough to explain

the sharp decrease in effectiveness of the policy: at the highest level of uncertainty, at most 10%

of firms are changing their prices while the output effects are undone in almost 70% by the first

quarter. Therefore, a large selection effect is operating at these high levels of uncertainty.

The lower right panel shows how the ensemble of markup gap estimates jump up to absorb the

monetary shock and then converge back to zero. The ensemble of forecast errors in shown in the

lower left panel. More uncertainty increases the optimal weight on new information and forecast

errors converge faster to zero across all firms.

Figure VI:
Responses to positive monetary shock and correlated uncertainty shocks.
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Responses to a positive monetary shock implemented as a reduction in permanent markups of δ = 1%, interacted
with an increase in uncertainty for all firms. Output (top left), weekly frequency of price change (top right), mean

forecast errors (bottom left) and mean markup estimates (bottom right). A small uncertainty shock refers to a
shock of one times the steady state level of uncertainty and a large shock to four times the steady state level.

27



6 Conclusions

Central banks around the world use models that produce large and persistent output responses

to monetary shocks at business cycle frequency. These models have two main building blocks,

namely Calvo pricing and strategic complementarities, which together generate the desired inertia

in inflation. However, the data is not compatible with such mechanisms. The cross-sectional het-

erogeneity in price-setting observed in micro data rejects the constant probability of adjustment of

Calvo pricing, and the assumption of complementarities makes reset inflation (inflation conditional

on price adjusters) very persistent, while in the data it shows no persistence, as pointed out by Bils,

Klenow and Malin (2012). The model developed in this paper is an alternative to the assumption of

complementarities that generates persistent output responses, while also explaining new evidence

about monetary policy during uncertain times.

For now the paper remains silent about the source of the infrequent shocks. If these shocks

come from a source within the firm, for instance an innovation process, then the decision to create

a new product will be linked to its pricing decision and the pricing of other products in the firm.

If these shocks come from an aggregate source, such as a tax change, then the correlation of these

shocks across firms must be incorporated into the model.
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Álvarez, F., Le Bihan, H. and Lippi, F. (2014). Small and Large Price Changes and the Propa-
gation of Monetary Shocks. Working paper, Einaudi Institute for Economic and Finance (EIEF).

— and Lippi, F. (2014). Price setting with menu cost for multi-product firms. Econometrica.

—, Lippi, F. and Paciello, L. (2011). Optimal price setting with observation and menu costs.
Quarterly Journal of Economics.

Bachmann, R., Born, B., Elstner, S. and Grimme, C. (2013). Time-varying business volatility,
price setting, and the real effects of monetary policy. Working Paper.

— and Moscarini, G. (2011). Business Cycles and Endogenous Uncertainty. 2011 Meeting Pa-
pers 36, Society for Economic Dynamics.

Barro, R. J. (1972). A theory of monopolistic price adjustment. The Review of Economic Studies,
pp. 17–26.

Berger, D. and Vavra, J. S. (2014). Volatility and Pass-through. Working paper, National
Bureau of Economic Research.

Bils, M., Klenow, P. J. and Malin, B. A. (2012). Reset price inflation and the impact of
monetary policy shocks. The American Economic Review, 102 (6), 2798–2825.

28



Bloom, N. (2009). The impact of uncertainty shocks. Econometrica, 77 (3), 623–685.
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A Appendix (PRELIMINARY)

Proposition 1 (Filtering equations) Let the following processes define the markup gap and the signal

(state) dµt = σfdFt + σuutdqt

(signal) dµ̃t = µtdt+ γdTt

(initial conditions) µ0 = µ̃0 = 0

where Ft, Tt ∼ Brownian Motion, qt ∼ Poisson(λ), ut ∼ N (0, 1)

Let the information set be given by It = σ{µ̃s, qs; s ≤ t}. Denote the best estimate (in an MSE sense) of the markup

gap as µ̂t ≡ E[µt|It] and the variance of forecast errors as Σt ≡ V[µt|It] = E[(µt− µ̂t)2|It]. Finally define uncertainty

as Ωt ≡ Σt
γ

. Then these processes evolve according to:

(estimate) dµ̂t = ΩtdWt

(uncertainty) dΩt =
σ2
f − Ω2

t

γ
dt+

σ2
u

γ
dqt

(innovation) dWt =
1

γ
(µt − µ̂t)dt+ dTt

with initial conditions (µ̂0,Ω0,W0).

Proof. Step 1 of the proof shows that given the information set, the state and signals at each date t are Gaussian

random variables; furthermore, the signals have continuous paths. Step 2 applies the Kalman-Bucy filter to the

system in the absence of infrequent shocks. Step 3 extends the formulas to include the arrival of infrequent shocks.

Step 1 Write the markup gap at time t as:

µt = σfFt + σu

qt∑
k=0

uk

where qt is the total number of infrequent shocks received up to t. Since qt, is in the information set, the state is the

sum of a Brownian motion and the sum of qt Gaussian innovations uk; therefore the random variable µt|{qs, s ≤ t}
is Gaussian as well. Note that E[µt|It] = 0 and V[µt|It] = (σ2

f + λσ2
u)t. Now rewrite the signal as

µ̃t =

∫ t

0

µsds+ γTt

which is the sum of an integral of Gaussian variables and a Brownian motion, and therefore it is continuous and

Gaussian.

Step 2 Apply the Kalman-Bucy filtering equations to the state-signal system assuming there are no infrequent

shocks (λ = 0) to obtain:

dµ̂t =
Σt
γ2

(dµ̃t − µ̂tdt)

dΣt =

(
σ2
f −

Σ2
t

γ2

)
dt

• For the estimate equation, substitute the signal dµ̃t to get:

dµ̂t =
Σt
γ

[
1

γ
(µt − µ̂t)dt+ dTt

]
=

Σt
γ
dWt = ΩtdWt

31



where the innovation process Wt is defined as the difference between the realization and its expectation plus

the measurement noise:

dWt =
1

γ
(µt − µ̂t)dt+ dTt or analogously Wt ≡

∫ t

0

1

γ
(µs − µ̂s)ds+ Tt

Using Lemma 6.2.6 in in Oksendal (2007), we have that Wt is a one-dimensional standard Brownian motion.

• For the variance of estimation errors, divide both sides by signal noise γ and apply the normalization Ωt = Σt
γ

and obtain:
dΣt
γ

=
1

γ

(
σ2
f −

Σ2
t

γ2

)
dt =⇒ dΩt =

1

γ

(
σ2
f − Ω2

t

)
dt

Step 3 Now infrequent shocks are included. Let dqt = 1 and let ∆ ≈ 0 be a small period of time.

• Upon the arrival of the shock, the state changes discretely as:

µt − µt−∆ = σf
√

∆εt + σuut

which generates a jump in the slope of the innovations:

Wt = Wt−∆ +
1

γ
(µt − µt−∆)∆− 1

γ
(µ̂t − µ̂t−∆)∆ +

√
∆εt

= Wt−∆ +
1

γ
(σf
√

∆εt + σuut)∆−
1

γ
(µ̂t − µ̂t−∆)∆ +

√
∆εt

but taking the limit ∆ → 0 shows that the innovation process is continuous. This also makes the estimation

µ̂t a continuous variable: µ̂t−∆ = µ̂t on {w : dqt = 1}. Therefore, regardless of the arrival of an infrequent

shocks, the estimates are given by: dµ̂t = ΩtdWt.

• Regarding the variance, it can be approximated in a small interval of time ∆ as:

V[µt|It] = E[(µt − µ̂t)2|It] = E[(µt−∆ + σuut − µ̂t)2|It] = E[(µt−∆ − µ̂t−∆)2|It] + σ2
u = V[µt−∆|It] + σ2

u

where in the third equality we have used the continuity of the estimate µ̂t = µ̂t−∆. Dividing by γ we get

dΩt =
1

γ

(
σ2
f − Ω2

t

)
dt+

σ2
u

γ
dqt

Lemma 1 (Fundamental uncertainty) If Ωt = Ω∗ ≡
√
σ2
f + λσ2

u, then E
[
dΩt
dt

∣∣∣It] = 0.

Proof. Let Ω∗ be such that the expected change in uncertainty is equal to zero, this is:

0 = E
[
dΩt
dt

∣∣∣It] = E
[
σ2
f − Ω2

t + σ2
u
dqt
dt

]
The solution yields:

Ω2
t = σ2

f + λσ2
u =⇒ Ω∗t =

√
σ2
f + λσ2

u

If Ωt < Ω∗, then E
[
dΩt
dt

∣∣∣It] > 0 so uncertainty is expected to increase. The opposite holds for Ωt > Ω∗.

Proposition 2 Let (µ̂0,Ω0) be the firm’s current state immediately after the last markup adjustment. Also let θ̄ = θ
B

be the normalized menu cost. Then the optimal stopping time and reset markup gap (τ, x) solve the following problem:

V (µ̂0,Ω0) = max
τ

E
[∫ τ

0

−e−rsµ̂2
sds+ e−rτ

(
− θ̄ + max

µ′
V (µ′,Ωτ )

)∣∣∣It]
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subject to the filtering equations in Lemma 1.

Proof.

• Using the definition of variance, we can write:

E[µ2
t |It] = E[µt|It]2 + V[µt|It] = µ̂2

t + V[µt|It] = µ̂2
t + (σ2

f + λσ2
u)t = µ̂2

t + Ω∗
2
t

• Let {τi}∞i=1 be the series of dates where the firm adjusts her markup gap and {µi}∞i=1 the series of reset markup

gaps. Given an initial condition µ0 and a law of motion for the markup gaps, the sequential problem of the

firm is expressed as follows:

max
{µτi ,τi}

∞
i=1

E

[
∞∑
i=0

e−rτi+1

(
−θ −

∫ τi+1

τi

e−r(s−τi+1)Bµ2
sds

)]

• Use the Law of Iterated Expectations to take expectation of the profit function given the information set at

time s. Use the decomposition above to write the problem in terms of estimates:

E

[
∞∑
i=0

e−rτi+1

(
−θ −

∫ τi+1

τi

e−r(s−τi+1)BE
[
µ2
s

∣∣∣Is] ds)]

E

[
∞∑
i=0

e−rτi+1

(
−θ −

∫ τi+1

τi

e−r(s−τi+1)(Bµ̂2
s + Ω∗

2
s)ds

)]

E

[
∞∑
i=0

e−rτi+1

(
−θ −

∫ τi+1

τi

e−r(s−τi+1)Bµ̂2
sds

)]
− Ω∗

2E

[
∞∑
i=0

∫ τi+1

τi

se−rsds

]
︸ ︷︷ ︸

sunk cost

The term inside the expectation at the end of the previous expression is equal to:

∞∑
i=0

∫ τi+1

τi

se−rsds =

∞∑
i=0

[
e−rτi(1 + rτi)− e−rτi+1(1 + rτi+1)

r2

]
=
e−rτ0(1 + rτ0)

r2

where the sum is telescopic and all terms except the first cancel out. The last term then becomes:

Ω∗
2E
[
e−rτ0(1 + rτ0)

r2

]
<∞

This constant quantity is a sunk cost for the firm, coming from the fact that she will never learn the true

realization of the markup gap. Since she cannot take any action to alter its value, so it can be ignored. Even

more, we can divide all the expression by B and denote θ̄ = θ
B

.

• Now consider the state (µ̂t,Ωt). Using the Principle of Optimality, the sequential problem can be expressed

as a sequence of stopping time problems:

V (µ̂0,Ω0) = max
τ

E
[∫ τ

0

−e−rtµ̂2
tdt+ e−rτ [−θ̄ + max

µ′
V (µ′,Ωτ )]

]
subject to the forecasting equations given above.

Proposition 3 (Inaction Region with Imperfect Information) For small menu costs θ the boundary of the
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inaction region R = {(µ,Ω) : |µ| ≤ µ̄(Ω)}, can be approximated as:

µ̄(Ωt) =
(
6θ̄Ω2

t

)1/4︸ ︷︷ ︸
option

Lµ̄(Ωt)︸ ︷︷ ︸
learning

where Lµ̄(Ωt) ≡
[
1 +

24θ̄2

γ

(Ωt
Ω∗
− 1
)]−1/4

and the new markup gap is set to zero: x = 0. The elasticity of the band with respect to Ω is E ≡ ∂ ln µ̄(Ω)
∂ ln Ω

= 1
2
− 6θ̄2

γ
Ω
Ω∗

Proof. The plan for the proof is as follows. First the Bellman equation inside the inaction region is established.

Second, the HJB equation is derived using Itō’s Lemma. A first order approximation is used to compute the value

function when an infrequent shock arrives. Then the border and smooth pasting conditions are established.

1. Notation: Partial derivatives are denoted as

Vµ̂ ≡
∂V

∂µ̂
, Vµ̂2 ≡ ∂2V

∂µ̂2
, VΩ ≡

∂V

∂Ω
, Vµ̂2,Ω ≡

∂3V

∂Ω∂µ̂2

2. Bellman Equation: Let dt be a small interval of time and 1 − e−λdt be the probability of receiving an

infrequent shock (that creates an uncertainty jump). Then the value of the firm inside the inaction region

solves the following the Bellman equation:

V (µ̂t,Ωt) = −µ̂2
tdt+ (1− e−λdt)e−rdtE

[
V

(
µ̂t+dt,Ωt+dt +

σ2
u

γ

)]
+ e−(λ+r)dtE [V (µ̂t+dt,Ωt+dt)]

= −µ̂2
tdt+ e−rdtE

[
V

(
µ̂t+dt,Ωt+dt +

σ2
u

γ

)]
− e−(λ+r)dtE

[
V

(
µ̂t+dt,Ωt+dt +

σ2
u

γ

)
− V (µ̂t+dt,Ωt+dt)

]
Start with a second order approximation (writing Vt+dt instead of V (µ̂t,Ωt)):

Vt+dt = Vt + Vµ̂dµ̂t + VΩdΩt + Vµ̂2(dµ̂t)
2 + VΩ2(dΩt)

2 + Vµ̂Ω(dµ̂t)(dΩt)

= Vt + Vµ̂ΩtdWt + VΩ

[
σ2 − Ω2

t

γ
dt

]
+

1

2
Vµ̂2Ω2

tdt+
1

2
VΩ2

t
(dΩt)

2 + Vµ̂Ω(dµ̂t)(dΩt)

= Vt + Vµ̂ΩtdWt + VΩ

[
σ2 − Ω2

t

γ
dt+

σ2
u

γ
dqt

]
+

1

2
Vµ̂2Ω2

tdt

where (dµ̂t)(dΩt) = 0 = (dΩt)
2. Applying expectations, subtracting Vt on both sides and taking the limit

dt→ 0 obtains:

E[dVt] = lim
dt→0

E[Vt+dt − Vt]
dt

= VΩ

[
σ2 − Ω2

t

γ

]
+

1

2
Vµ̂2Ω2

t

3. HJB: Using Itō’s Lemma, obtain the associated HJB equation:

rV (µ̂,Ω) = −µ̂2 + λ

[
V

(
µ̂,Ω +

σ2
u

γ

)
− V (µ̂,Ω)

]
+

(
σ2
f − Ω2

γ

)
VΩ(µ̂,Ω) +

1

2
Ω2Vµ̂2(µ̂,Ω)

Note that the odd derivatives of V with respect to µ̂ are all zero, and also the cross-derivatives of V across

arguments. This comes from the symmetry of the value function and the separability across arguments.

4. Approximation of jump in uncertainty: Consider the following first order approximation on the second

state:

V

(
µ̂,Ω +

σ2
u

γ

)
≈ V (µ̂,Ω) + VΩ(µ̂,Ω)

σ2
u

γ

Use the approximation in the second term of the HJB and grouping terms to get Ω∗:

rV (µ̂,Ω) ≈ −µ̂2 +
1

γ

[
Ω∗

2 − Ω2
]
VΩ(µ̂,Ω) +

1

2
Ω2Vµ̂2(µ̂,Ω)
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The Numerical Appendix shows that the approximation is valid in the sense that the threshold computed

analytically here and the exact numerical threshold coincide.

5. Border and smooth pasting: Observe that argmaxxV (x,Ω) = 0 by symmetry over µ̂. Then the value

matching and smooth pasting conditions are given by:

V (0,Ω)− V (µ̄(Ω),Ω) = θ̄ (1)

Vµ̂(µ̄(Ω),Ω) = 0 (2)

6. Approximations of V , Vµ̂, Vµ̂2 and Vµ̂4 . For a given level of uncertainty Ω, we approximate V and Vµ̂

on their first argument with 4th order Taylor approximations around the point (0,Ω) and evaluate them at

(µ̂,Ω) = (µ̄(Ω),Ω):

V (µ̄(Ω),Ω) = V (0,Ω) +
Vµ̂2(0,Ω)

2!
µ̄(Ω)2 +

Vµ̂4(0,Ω)

4!
µ̄(Ω)4 (3)

Vµ̂(µ̄(Ω),Ω) = Vµ̂2(0,Ω)µ̄(Ω) +
Vµ̂4(0,Ω)

6
µ̄(Ω)3 (4)

Note that odd terms do not appear due to the symmetry of the value function around µ̂. Combining equations

(2) and (4) we get an expression for Vµ̂2(0,Ω):

Vµ̂2(0,Ω)

2
= − θ

µ̄(Ω)2
−
Vµ̂4(0,Ω)

24
µ̄(Ω)2 = −

Vµ̂4(0,Ω)

12
µ̄(Ω)2 (5)

To characterize Vµ̂4 , take second derivative of HJB equation with respect to µ̂ and evaluate it at µ̂ = 0:

rVµ̂2(0,Ω) = −2 +
Ω2

2
Vµ̂4V (0,Ω) + Vµ̂2,Ω(0,Ω)

[Ω∗2 − Ω2]

γ
(6)

Evaluating the limit r → 0, we have that:

Vµ̂4(0,Ω) =
4

Ω2

(
1 +

Vµ̂2,Ω(0,Ω)

2

Ω2 − Ω∗2

γ

)
7. Derive threshold: Using smooth pasting and border conditions, and equations (3) and (4) we have that

θ̄ =
Vµ̂4(0,Ω)

24
µ̄(Ω)4

Substituting the expression for Vµ̂4(0,Ω) in (6) into (3) and solving for µ̄(Ω) we obtain the expression for the

cutoff value:

µ̄(Ω) = (6θ̄Ω2)1/4
(

1 +
Vµ̂2,Ω(0,Ω)

2︸ ︷︷ ︸
Γ(Ω)

Ω2 − Ω∗2

γ

︸ ︷︷ ︸
Λ(Ω)

)−1/4

(7)

Define Γ(Ω) ≡
V
µ̂2,Ω

(0,Ω)

2
and Λ(Ω) ≡ Γ(Ω) Ω2−Ω∗2

γ
, which are characterized next.
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8. Characterize Γ(Ω). The cross-derivative Γ(Ω) ≡
V
µ̂2,Ω

(0,Ω)

2
= ∂

∂Ω

V
µ̂2 (0,Ω)

2
is given by:

∂

∂Ω

Vµ̂2(0,Ω)

2
=

∂

∂Ω

[
−
Vµ̂4(0,Ω)µ̄(Ω)2

12

]

=
∂

∂Ω

−
(

1 +
V
µ̂2,Ω

(0,Ω)

2
Ω2−Ω∗2

γ

)
3Ω2

Ωθ̄2
(

1 +
Vµ̂2,Ω(0,Ω)

2

Ω2 − Ω∗2

γ

)−1/2


=

∂

∂Ω

[
−12θ̄2

Ω

(
1 +

Vµ̂2,Ω(0,Ω)

2

Ω2 − Ω∗2

γ

)1/2
]

Using the definition of Γ(Ω) write the previous equation recursively as:

Γ(Ω) =
∂

∂Ω

[
−12θ̄2

Ω

(
1 + Γ(Ω)

Ω2 − Ω∗2

γ

)1/2
]

(8)

9. Characterize Λ(Ω): Note that: Λ(Ω∗) = 0, Λ′(Ω∗) = 2 Ω∗

γ
Γ(Ω∗), and using (8) Γ(Ω∗) = 12θ̄2

Ω∗2 . A first order

Taylor approximation of Λ(Ω) around Ω∗ yields:

Λ(Ω) = Λ(Ω∗) + Λ′(Ω∗)(Ω− Ω∗) = 2Ω∗Γ(Ω∗)
Ω− Ω∗

γ
=

24θ̄2

γ

[
Ω

Ω∗
− 1

]
10. Finally, substitute Λ(Ω) into the cutoff value to obtain:

µ̄(Ω) ≈ (6θ̄Ω2)1/4
(

1 +
24θ̄2

γ

[
Ω

Ω∗
− 1

])−1/4

(9)

Elasticity Now we compute the elasticity of the cutoff with respect to the forecast variance, which is given by

Eφ,Ω ≡ ∂ ln µ̄(Ω)
∂ ln Ω

. Applying logs to (9) we obtain:

ln µ̄(Ω) =
1

2
ln Ω− 1

4
ln
(

1 +
24θ̄2

γ

[
Ω

Ω∗
− 1

])
Since ln(1 + x) ≈ x for x small, we approximate the previous expression with:

ln µ̄(Ω) ≈ 1

2
ln Ω− 6θ̄2

γ

[
Ω

Ω∗
− 1

]
=

1

2
ln Ω− 6θ̄2

γΩ∗
eln Ω +

6θ̄2

γΩ∗

Taking the derivative we get the result:

Eφ,Ω ≡
∂ ln µ̄(Ω)

∂ ln Ω
=

1

2
− 6θ̄2

γ

Ω

Ω∗

Proposition 4 (Expected time between price changes) Let r and θ̄ be small. Then the expected time between

price changes conditional on a current state (µ̂,Ω) is given by:

E[τ
∣∣µ̂,Ω] =

µ̄(Ω)2 − µ̂2

Ω2

[
1 +

( Ω

Ω∗
− 1
)
C

]
with constant C =

3γ + θ̄2

γ + 2θ̄2

24θ̄2

γ

Proof.

1. HJB Equation and border condition Define T (µ̂,Ω) = E[τ
∣∣Ω, µ̂], then T (µ̂,Ω) satisfies

0 = 1 + λ

[
T

(
µ̂,Ω +

σ2
u

γ

)
− T (µ̂,Ω)

]
+

(σ2
f − Ω2)

γ
TΩ(µ̂,Ω) +

Ω2

2
Tµ̂2(µ̂,Ω) (10)
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with the border condition given by

T (µ̄(Ω),Ω) = 0

2. Approximation of uncertainty jump: Approximate the uncertainty jump with a linear approximation on

the second state:

T

(
µ̂,Ω +

σ2
u

γ

)
≈ T (µ̂,Ω) +

σ2
u

γ
TΩ(µ̂,Ω)

Using this approximation and the definition of Ω∗ , the HJB in (10) reads as:

0 = 1 +
Ω∗2 − Ω2

γ
TΩ(µ̂,Ω) +

Ω2

2
Tµ̂2(µ̂,Ω) (11)

3. Taylor approximation and border condition: Approximate T (µ̂,Ω) with a second order Taylor approxi-

mation around a zero markup gap µ̂ = 0.

T (µ̂,Ω) = T (0,Ω) +
Tµ̂2(0,Ω)

2
µ̂2 (12)

• Using the border condition in (12), we get an expression for T (0,Ω)

T (0,Ω) = −
Tµ̂2(0,Ω)

2
µ̄(Ω)2 (13)

• From the HJB equation (11), we get an expression for Tµ̂2(0,Ω):

Tµ̂2(0,Ω)

2
=
−1

Ω2

[
1 + TΩ(0,Ω)

Ω∗2 − Ω2

γ

]
(14)

• Substituting (13) and (14) into (12)

T (µ̂,Ω) =
µ̄(Ω)2 − µ̂2

Ω2

1 + TΩ(0,Ω)
Ω∗2 − Ω2

γ︸ ︷︷ ︸
Λ(Ω)

 (15)

where Λ(Ω) measures the effect of changes in uncertainty on the expected time taking into account the distance

from fundamental volatility.

4. Approximate Λ(Ω) ≡ TΩ(0,Ω) Ω∗2−Ω2

γ
. A first order Taylor approximation around Ω∗ yields:

Λ(Ω) = Λ(Ω∗) + ΛΩ(Ω∗)
Ω− Ω∗

γ
= 0− 2Ω∗TΩ(0,Ω∗)

Ω− Ω∗

γ

• To characterize TΩ(0,Ω∗), take the partial derivative of (15) with respect to Ω and evaluate it at (0,Ω∗):

TΩ(Ω∗, 0) =
2µ̄(Ω)2

Ω∗3
(Eµ̄(Ω∗),Ω∗ − 1)

(
1 +

2

γ

φΩ∗2

Ω∗

)−1

= − θ̄2

Ω∗2

(
1 +

θ̄2

3γ

)(
1 +

2

γ
θ̄2
)−1

where the elasticity Eµ̄(Ω),Ω = 1
2
− 6θ̄2

γ
and for φ(Ω2)

Ω
= θ̄2 from Proposition 4.

• Substituting back in the expression for Λ(Ω) we arrive to

Λ(Ω) = −2Ω∗

γ
TΩ(0,Ω∗)(Ω− Ω∗) =

(
1 +

θ̄2

3γ

)(
2θ̄2

γ + 2θ̄2

)(
Ω

Ω∗
− 1

)
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5. Conclude Finally, we arrive at the result

T (µ̂,Ω) =
µ̄(Ω)2 − µ̂2

Ω2

[
1 +

(
1 +

θ̄2

3γ

)( 2θ̄2

γ + 2θ̄2

)( Ω

Ω∗
− 1
)]

Proposition 5 (General identification of uncertainty) The following relationship between uncertainty and price

statistics always holds for any stopping time distribution:

E[(∆p)2]

E[τ ]
= E[Ω2]

Proof. See Proposition 1 in Álvarez, Le Bihan and Lippi (2014) for a derivation of this result for the case of a fixed

uncertainty level Ωt = σ. Here we extend the proof for the case of moving uncertainty. The process for markup

estimation is given by dµ̂t = ΩtdBt. Using Ito’s Lemma we have that

d(µ̂2
t ) = Ω2

tdt+ 2µtΩtdBt

Therefore d(µ̂2
t )− Ω2

tdt is a martingale. Using the Optional Sampling Theorem we have that

E
[
µ̂2
τ −

∫ τ

0

Ω2
sds
∣∣∣(µ,Ω) = (0, Ω̃)

]
= 0 (16)

since the stochastic process inside the µ̂2
t −

∫ t
0

Ω2
sds is a martingale. Therefore we can write (16) as:

E
[
µ̂2
τ

∣∣∣(µ0,Ω0) = (0, Ω̃)
]

= E
[∫ τ

0

Ω2
sds
∣∣∣(µ0,Ω0) = (0, Ω̃)

]
Now we will integrate both sides using the renewal distribution S(Ω) with density s(Ω). This is the distribution of

uncertainty of adjusting firms. The LHS is equal to the expectation of the square of price changes or the variance of

price changes since the mean is zero∫ ∞
0

E
[
µ̂2
τ

∣∣∣(µ0,Ω0) = (0, Ω̃)
]
dS(Ω̃) = E[(∆p)2] = V[(∆p)] (17)

On the RHS, note that
∫∞

0
E[
∫ τ

0
Ω2
sds|(µ0,Ω0) = (0, Ω̃)]dS(Ω̃) is the expected local time L for the payoff function Ω2

s,

and therefore we can express it in the state domain instead of the time domain (see Stokey (2009)):∫ ∞
0

E
[∫ τ

0

Ω2
sds
∣∣∣(µ0,Ω0) = (0, Ω̃)

]
s(Ω̃)dΩ̃ =

∫ ∞
0

(∫
µ̂,Ω

L(0, Ω̃; µ̂,Ω)Ω2dµ̂dΩ

)
s(Ω̃)dΩ̃

=

∫
µ̂,Ω

(∫ ∞
0

L(0, Ω̃; µ̂,Ω)s(Ω̃)dΩ̃

)
Ω2dµ̂dΩ

= E[τ ]

∫
µ̂,Ω

(∫ ∞
0

L(0, Ω̃; µ̂,Ω)

E[τ ]
s(Ω̃)dΩ̃

)
Ω2dµ̂dΩ

= E[τ ]

∫
µ̂,Ω

Ω2f(µ̂,Ω)dµ̂dΩ

= E[τ ]E[Ω2] (18)

where f is the joint density. Putting together (17) and (18) we get the result:

V[∆p]

E[τ ]
= E[Ω2]
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Proposition 6 (Hazard rate of price adjustment) Let (µ̂,Ω) = (0,Ω0) be the initial conditions. Assume λ = 0

and constant inaction region µ̄(Ω) = µ̄(Ω0).

1. The unconditional distribution of the markup gap forecast is µ̂t|I0 ∼ N (0, p(t|Ω0)), where p(t|Ω0) is the

unconditional forecast variance given by:

p(t|Ω0) = σ2
f t+ γLp(t|Ω0)

where Lp(t|Ω0) is increasing and concave, Lp(0|Ω0) = 0 and limt→∞ Lp(t,Ω0) = Ω0 and it is given by

Lp(t,Ω0) ≡ Ω0 − σfcoth
(

1

2
log

(
Ω0 + σf
Ω0 − σf

)
+
σf
γ
t

)
2. Then hazard rate of price adjustment is

h(t|Ω0) =
π2

8

p′(t|Ω0)

µ̄(Ω0)2
Ψ

(
p(t|Ω0)

µ̄(Ω0)2

)
where Ψ has the properties Ψ(0) = 0, Ψ′ > 0 and limx→∞Ψ(x) = 1 and it is given by

Ψ(x) =

∑∞
j=0(2j + 1)(−1)j exp

(
− (2j+1)2π2

8
x
)

∑∞
j=0(2j + 1)−1(−1)j exp

(
− (2j+1)2π2

8
x
)

3. For small σf and t sufficiently large, the hazard rate is decreasing and its slope is only a function of γ:

∂h(t|Ω0)

∂

1

h(t|Ω0)
≈ − 2

t+ γ
Ω0

< 0

Proof. Assume λ = 0 and initial conditions (µ̂0,Ω) = (0,Ω0). Also assume that the inaction region is constant at

µ̄(Ω) = µ̄(Ω0).

1. First we show that from time 0 perspective, the forecast evolves as: µ̂t|I0 ∼ N (0, p(t|Ω0)), where p(t|Ω0) is

the unconditional forecast variance. Recall that the forecast evolves as dµ̂t = ΩtdBt, and because λ = 0,

uncertainty evolves deterministically as dΩt = 1
γ

(σf − Ωt). The solution to the forecast equation with initial

condition µ̂ = 0 is µ̂t =
∫ t

0
ΩsdBs. By definition of Ito’s integral

∫ t
0

ΩsdBs = lim(ti+1−ti)→0

∑
ti

Ωti(Bti+1 −
Bti). Given the Normal distribution of the increments of the Brownian motion B and that Ωti is deterministic,

we have that for each ti, Ωti(Bti+1 −Bti) has a Normal distribution too. Since the limit of Normal variables

is normal,
∫ t

0
ΩsdBs ∼ N (0, p(t)), where we defined the unconditional variance p(t|Ω0) ≡ E[µ̂2

t |I0].

We characterize the evolution of the unconditional variance. By orthogonality of the innovation to the forecast,

µt − µ̂t ⊥ µ̂t, we have that

Et[(µt − µ̂t)µt] = Et[(µt − µ̂t)2] = Σt (19)

Use the definition of unconditional variance and the result (19) we obtain:

p(t) ≡ E[µ̂2
t ] = E[(µ̂t − µt)2]− 2E[(µ̂t − µt)µt] + E[µ2

t ] = E[µ2
t ]− Σt (20)

Now we give expressions for E[µ2
t ] and Σt. First, since the observations evolve as dµt = σfdFt, we have that

µt = µ0 + σfFt, with F0 = 0. Therefore

E[µ2
t ] = E[(µ0 + σfFt)

2] = E[µ2
0] + 2E[µ0σf (Ft − F0)] + E[σ2

f (Ft − F0)2] = E[µ2
0] + σ2

f t = Σ0 + σ2
f t (21)

where we use independent increments of the Brownian motion. Second, conditional forecast variance evolves
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as dΣt =
(
σ2
f − Σ2

γ2

)
dt, and assuming an initial condition such that Σ0 > γσf , we have that the solution is

Σt = γσF
K exp(2σf t/γ) + 1

K exp(2σf t/γ)− 1
, K ≡

∣∣∣σfγ + Σ0

σfγ − Σ0

∣∣∣ =
∣∣∣σf + Ω0

σf − Ω0

∣∣∣ (22)

Substituting expressions (21) and (22) into (20) and using the definition of uncertainty Ωt = γΣt, we get:

p(t|Ω0) = σ2
f t+ γ (Ω0 − Ωt)

= σ2
f t+ γ

(
Ω0 − σf

K exp(2σf t/γ) + 1

K exp(2σf t/γ)− 1

)
= σ2

f t+ γ

(
Ω0 − σfcoth

(
log

(∣∣∣σf + Ω0

σf − Ω0

∣∣∣1/2)+
σf
γ
t

))
= σ2

f t+ γLp(t|Ω0) (23)

where we define the learning component as:

Lp(t|Ω0) ≡ Ω0 − σfcoth
(

1

2
log

(
Ω0 + σf
Ω0 − σf

)
+
σf
γ
t

)
2. Let F (σ2t, µ̄f ) be the cumulative distribution of stopping times of a Brownian motion with accumulated

variance σ2
f t, initial condition 0 and a symmetric stopping time region [−µ̄f , µ̄f ]. The accumulated variance

is given by p(t|Ω0) as above, so the distribution of stopping times is

F (p(t,Ω0), µ̄(Ω0))

and its derivative

f(t) = f(p(t,Ω0), µ̄(Ω0))p′(t|Ω0)

Using the result of the hazard rate with perfect information and λ = 0 in Álvarez and Lippi (2014)

h(t|Ω0) =
π2

8 (µ̄(Ω0))2 Ψ

(
p(t|Ω0)

µ̄(Ω0)2

)
p′(t|Ω0)

where

Ψ(x) =

∑∞
j=0(2j + 1)(−1)j exp

(
− (2j+1)2π2

8
x
)

∑∞
j=0(2j + 1)−1(−1)j exp

(
− (2j+1)2π2

8
x
)

is increasing, first convex then concave, Ψ(0) = 0 and limx→∞Ψ(x) = 1.

3. Taking derivatives of the hazard rate with respect to t:

∂h(t|Ω0)

∂t
=
π2

8

dΨ(x)

dx

∣∣∣
x=

p(t|Ω0)

µ̄(Ω0)2︸ ︷︷ ︸
→0

(
p′(t|Ω0)

µ̄(Ω0)2

)2

︸ ︷︷ ︸
>0

+ Ψ

(
p(t|Ω0)

µ̄(Ω0)2

)
p′′(t|Ω0)

µ̄(Ω0)2︸ ︷︷ ︸
<0


We know that if x→∞ then Ψ(x)→ 1, which means that the first term dΨ(x)

dx
→ 0. The second term can be

written as h(t|Ω0) p
′′(t|Ω0)
p′(t|Ω0)

where the ratio of derivatives is

p′′(t,Ω0)

p′(t,Ω0)
=

γL′′p
σ2
f + γL′p

≈ 2σf
γ

(
1− coth2

(
1

2
log

(
Ω0 + σf
Ω0 − σf

)
+
σf
γ
t

))
< 0

Since |coth(x)| ≥ 1, we have that this term is negative. Therefore, for large t we have a negative slope.
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Proposition 7 (Forecast errors without infrequent shocks (λ = 0)) Without infrequent shocks, the ensem-

bles of forecast errors and markup gap estimates evolve as:

(learning) Ft =

(
1

1 +
σf
γ

)t
δ (24)

(selection) Gt = Gt−1 −
∫ 1

0

∆pδt−1(z)dz +
σf
γ
Ft (25)

with G−1 = 0. The term with the integral is the average price change triggered by monetary policy.

Proof. For these results, we use the discrete time version of the problem (see Web Appendix).

• Learning Effect: From the Kalman filtering equations for firm z, the markup gap estimate is:

µ̂t(z) =
σf

σf + γ
µt(z) +

γ

σf + γ
µ̂t−1(z)

where we have used that in a steady state without infrequent shocks the uncertainty of all firms is the same

and equal to Ω(z) = Ω∗ = σf . One period ahead forecast error is given by

ft(z) = µt(z)− µ̂t(z) =
γ

Ω∗ + γ
(µt(z)− µ̂t−1(z)) =

γ

Ω∗ + γ
(ft−1(z) + µt(z)− µt−1(z))

Integrating across the mass of firms, we obtain the ensemble of forecast errors:

Ft =

∫ 1

0

ft(z)dz =
γ

σf + γ

∫ 1

0

ft−1(z)dz +

∫ 1

0

[µt(z)dz − µt−1(z)] dz︸ ︷︷ ︸
=0

=
γ

σf + γ
Ft−1

where the ensembles of markup gaps differences between at t and t − 1 is zero. Iterating backwards, the

previous equation we have the result with initial condition F0 = δ:

Ft =

(
1

1 +
σf
γ

)t
δ

The half life H is determined by:

H =
ln 2

ln
(

1 +
σf
γ

)
and thus the ratio of fundamental to signal volatility,

σf
γ

determines the speed of convergence towards zero.

• Selection Effect:

Gt =

∫ 1

0

µ̂t(z)dz =

∫ 1

0

[
σf

σf + γ
µt(z) +

γ

σf + γ
µ̂t−1(z)

]
dz

=
σf

σf + γ

∫ 1

0

µt(z)dz +
γ

σf + γ

∫ 1

0

µ̂t−1(z) dz

=
σf

σf + γ

∫ 1

0

ft(z)dz +
σf

σf + γ

∫ 1

0

µ̂t(z)dz +
γ

σf + γ
Gt−1

=
σf

σf + γ
Ft +

σf
σf + γ

∫ 1

0

µ̂t(z)dz +
γ

σf + γ
Gt−1

=
σf

σf + γ
Ft−1 +

∫ 1

0

µ̂t−1(z)dz −
∫ 1

0

µ̄(z)dz
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Proposition 8 (Forecast errors with infrequent shocks (λ > 0)) With information frictions (λ > 0) and σf ≈
0, ensembles of forecast errors and markup estimates evolve as:

(learning) Ft =

(
1− λσ2

u

σ2
u + γ2

)t
δ (26)

(selection) Gt = e−λGt−1 + (1− e−λ)0→ 0 (27)

Proof.

• Learning Effect: The forecast is updated whenever the Poisson shock arrives, and it is given by:

µ̂it = e−λµ̂it−1 + (1− e−λ)
σ2
u

σ2
u + γ2

µit

For very large σu, we have that forecast errors evolve as

ft(z) = µt(z)− µ̂t(z) = µt(z)− e−λµ̂t−1(z)− (1− e−λ)
1

1 +
σ2
u
γ2

µt(z)

= e−λ (µt(z)− µ̂t−1(z))

= e−λ (ft−1(z) + µt(z)− µt−1(z))

Taking the cross-sectional average:

Ft =

∫ 1

0

ft(z)dz = e−λFt−1 + e−λ
∫ 1

0

[µt(z)− µt−1(z)] dz︸ ︷︷ ︸
=0

= e−λtδ

The half-life of the forecast errors is ln 2/ ln
(

1+(σu/γ)2

1+(1−λ)(σu/γ)2

)
which is increasing in the ratio of noise to fun-

damental volatility γ/σu and decreasing in λ.

• Selection Effect: Now, to compute the mean markup estimation we condition on receiving a Poisson shock

or not:

Ei[µ̂it] = (1− e−λ)Ei[µ̂it|Jt = 1] + e−λEi[µ̂it|Jt = 0]

≈ (1− e−λ)Ei
[(

σ2
u

σ2
u + γ2

)
F it−1 −∆pδ,it−1

∣∣∣Jt = 1

]
+ e−λEi[µ̂it−1]

≈ 0 + e−λEi[µ̂it−1] (28)

In the second line, we use that (i) firms that do not receive a shock do not adjust their prices and do not

update their forecasts, and (ii) firms that receive a Poisson shock with large variance (σu is large) will update

their forecast and also will change their price in the same amount of the forecast update, canceling each other.

Finally, since the initial condition for Ei[µ̂it−1] is close to zero, Ei[µ̂it] is also close to zero.
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