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Abstract

This paper introduces two new identification- and singularity-robust conditional quasi-likelihood
ratio (SR-CQLR) tests and a new identification- and singularity-robust Anderson and Rubin (1949)
(SR-AR) test for linear and nonlinear moment condition models. The paper shows that the tests
have correct asymptotic size and are asymptotically similar (in a uniform sense) under very weak
conditions. For two of the three tests, all that is required is that the moment functions and their
derivatives have 2 4+« bounded moments for some v > 0 in i.i.d. scenarios. In stationary strong
mixing time series cases, the same condition suffices, but the magnitude of « is related to the
magnitude of the strong mixing numbers. For the third test, slightly stronger moment conditions
and a (standard, though restrictive) multiplicative structure on the moment functions are imposed.
For all three tests, no conditions are placed on the expected Jacobian of the moment functions, on
the eigenvalues of the variance matrix of the moment functions, or on the eigenvalues of the expected
outer product of the (vectorized) orthogonalized sample Jacobian of the moment functions.

The two SR-CQLR tests are shown to be asymptotically efficient in a GMM sense under strong
and semi-strong identification (for all £ > p, where k and p are the numbers of moment conditions
and parameters, respectively). The two SR-CQLR tests reduce asymptotically to Moreira’s CLR
test when p = 1 in the homoskedastic linear IV model. The first SR-CQLR test, which relies on

the multiplicative structure on the moment functions, also does so for p > 2.
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1 Introduction

Weak identification and weak instruments (IV’s) can arise in a wide variety of empirical appli-
cations in economics. Examples include: in macroeconomics and finance, new Keynesian Phillips
curve models, dynamic stochastic general equilibrium (DSGE) models, consumption capital asset
pricing models (CCAPM), and interest rate dynamics models; in industrial organization, the Berry,
Levinsohn, and Pakes (1995) (BLP) model of demand for differentiated products; and in labor eco-
nomics, returns-to-schooling equations that use IV’s, such as quarter of birth or Vietnam draft
lottery status, to avoid ability biasE| Other examples include nonlinear regression, autoregressive-
moving average, GARCH, and smooth transition autoregressive (STAR) models; parametric selec-
tion models estimated by Heckman’s two step method or maximum likelihood; mixture models and
regime switching models; and all models where hypothesis testing problems arise where a nuisance
parameter appears under the alternative hypothesis, but not under the nuHE| Given this wide range
of applications, numerous methods have been developed in the econometrics literature over the last
two decades that aim to be identification-robust.

The most important feature of tests and confidence sets (CS’s) that aim to be identification-
robust is that they control size for a wide range of null distributions regardless of the strength
of identification of the parameters. This holds if the tests have correct asymptotic size for a
broad class of null distributions. However, the asymptotic size of many tests in the literature that
are designed to be identification-robust has not been established. This paper and its companion
paper, Andrews and Guggenberger (2014a) (hereafter AG1), help fill this void by establishing the
asymptotic size and similarity properties of three new tests and CS’s and the influential nonlinear
Lagrange multiplier (LM) and conditional likelihood ratio (CLR) tests and CS’s of Kleibergen
(2005, 2007) and the GMM versions of the tests that appear in Guggenberger and Smith (2005),
Otsu (2006), Smith (2007), Newey and Windmeijer (2009), and Guggenberger, Ramalho, and Smith
(2012). None of the aforementioned tests and CS’s have been shown to have correct asymptotic size

for moment condition models (even linear ones) with multiple sources of possible weak identification.

'For new Keynesian Phillips curve models, sece Dufour, Khalaf, and Kichian (2006), Nason and Smith (2008),
and Kleibergen and Mavroeidis (2009). For DSGE models, see Canova and Sala (2009), Iskrev (2010), Qu and
Tkachenko (2012), Dufour, Khalaf, and Kichian (2013), Guerron-Quintana, Inoue, and Kilian (2013), I. Andrews and
Mikusheva (2014b), Qu (2014), and Schorfheide (2014). For the CCAPM, see Stock and Wright (2000), Neely, Roy,
and Whiteman (2001), Yogo (2004), Kleibergen (2005), Carroll, Slacalek, and Sommer (2011), and Gomes and Paz
(2013). For interest rate dynamics, see Jegannathan, Skoulakis, and Wang (2002) and Grant (2013). For the BLP
model, see Armstrong (2012). For the returns-to-schooling wage equations, see Angrist and Krueger (1991, 1992) and
Cruz and Moreira (2005).

?For the time series models, see Hannan (1982), Terdsvirta (1994), Nelson and Startz (2007), and Andrews and
Cheng (2012, 2013b). For the selection model, see Puhani (2000). For the mixing and regime switching models, see
Cho and White (2007), Chen, Ponomareva, and Tamer (2014), and references therein. For the nuisance parameter
only under the alternative models, see Davies (1977) and Andrews and Ploberger (1994).



By this we mean that one or more parameters (or transformations of parameters) may be weakly
or strongly identified. In addition, the approach and results of the present paper and AG1 should
be useful for assessing the asymptotic size of other tests and CS’s for moment condition models
that allow for multiple sources of weak identification.

The three new tests introduced here include two singularity-robust (SR) conditional quasi-
likelihood ratio (SR-CQLR) tests and an SR nonlinear Anderson and Rubin (1949) (SR-AR) test.
These tests and CS’s are shown to have correct asymptotic size and to be asymptotically similar
(in a uniform sense) under very weak conditions. All that is required is that the expected moment
functions equal zero at the true parameter value and the moment functions and their derivatives
satisfy mild moment conditions. Thus, no identification assumptions of any type are imposed. The
results hold for arbitrary fixed k,p > 1, where k is the number of moment conditions and p is the
number of parameters. The case k > p is of greatest interest in practice, but the results also hold
for k < p and treatment of the & < p case is needed for the SR results. The results allow for any
of the p parameters to be weakly or strongly identified, which yields multiple possible sources of
weak identification. Results are given for independent identically distributed (i.i.d.) observations
as well as stationary strong mixing time series observations.

The asymptotic results allow the variance matrix of the moments to be singular (or near sin-
gular). This is particularly important in models where lack of identification is accompanied by
singularity of the variance matrix of the moments. For example, this occurs in all maximum likeli-
hood scenarios and many quasi-likelihood scenarios. Other examples where it holds are given below.
Some finite-sample simulation results, given in the Supplemental Material (SM) to this paper, show
that the SR-AR and SR-CQLR tests perform well (in terms of null rejection probabilities) under
singular and near singular variance matrices of the moments in the model considered.

In addition, the asymptotic results allow the expected outer-product of the vectorized orthog-
onalized sample Jacobian to be singular. For example, this occurs when some moment conditions
do not depend on some parameters. Finally, the asymptotic results allow the true parameter to be
on, or near, the boundary of the parameter space.

The two SR-CQLR tests are shown to be asymptotically efficient in a GMM sense under strong
and semi-strong identification (when the variance matrix of the moments is nonsingular and the
null parameter value is not on the boundary of the parameter space). Furthermore, as shown in the
SM, they reduce to Moreira’s (2003) CLR test in the homoskedastic linear IV model with fixed IV’s
when p = 1. This is desirable because the latter test has been shown to have approximate optimal

power properties in this model under normality, see Andrews, Moreira, and Stock (2006, 2008) and



Chernozhukov, Hansen, and Jansson (2()09)E| The first SR-CQLR. test applies when the moment
functions are of the form u;(0)Z;, where u;(0) is a scalar and Z; is a k vector of IV’s, as in Stock
and Wright (2000). It reduces to Moreira’s CLR test for all p > 1. The second SR-CQLR test does
not require the moment functions to have this form. A drawback of the SR-CQLR tests is that
they are not known to have optimality properties under weak identification in other models, see
the discussion in Section [2| below. The SR-CQLR tests are easy to compute and their conditional
critical values can be simulated easily and very quickly. Constructing CS’s by inverting the tests
typically is more challenging computationally.

Now, we contrast the aforementioned asymptotic size results with the asymptotic size results
of AG1 for Kleibergen’s (2005) Lagrange multiplier (LM) and conditional likelihood ratio (CLR)
tests. AG1 shows that Kleibergen’s LM test has correct asymptotic size for a certain parameter
space of null distributions Fy. AG1 shows that this also holds for Kleibergen’s CLR tests that
are based on (what AG1 calls) moment-variance-weighting (MVW) of the orthogonalized sample
Jacobian matrix, combined with a suitable form of a rank statistic, such as the Robin and Smith
(2000) rank statistic. Tests of this type have been considered by Newey and Windmeijer (2009) and
Guggenberger, Ramalho, and Smith (2012). AG1 also determines a formula for the asymptotic size
of Kleibergen’s CLR tests that are based on (what AG1 calls) Jacobian-variance-weighting (JVW)
of the orthogonalized sample Jacobian matrix, which is the weighting suggested by Kleibergen.
However, AG1 does not show that the latter CLR tests necessarily have correct asymptotic size
when p > 2 (i.e., in the case of multiple sources of weak identification). The reason is that for
some sequences of distributions, the asymptotic versions of the sample moments and the (suitably
normalized) rank statistic are not necessarily independent and asymptotic independence is needed
to show that the asymptotic null rejection probabilities reduce to the nominal size aE| AGI does
show that these tests have correct asymptotic size when p = 1, for a certain subset of the parameter
space Fy.

Although Kleibergen’s CLR tests with moment-variance-weighting have correct asymptotic size
for Fy, they have some drawbacks. First, the variance matrix of the moment functions must be

nonsingular, which can be restrictive (as noted above)ﬂ Second, the parameter space JFy restricts

3For related results, see Chamberlain (2007), Mikusheva (2010), Montiel Olea (2012), and Ploberger (2012).

4Lack of asymptotic independence can occur because the estimation of the variance matrix of the Jacobian of the
moments can affect the asymptotic distribution of the Jacobian-variance weighted CLR test statistic under sequences
of null distributions that exhibit weak identification of some parameters, or some transformation of the parameters,
and strong identification of other parameters, or other transformations of the parameters. Such scenarios occur when
p > 2, but cannot occur when p = 1.

Nonsingularity of the variance matrix of the moments is needed for Kleibergen’s CLR tests, because the inverse
of the sample moments variance matrix is employed to orthogonalize the sample Jacobian from the sample moments
when constructing a conditioning statistic.



the eigenvalues of the expected outer product of the vectorized orthogonalized sample Jacobian,
which can be restrictive and can be difficult to verify in some modelsﬁ Third, as shown in the SM,
Kleibergen’s CLR tests with moment-variance-weighting do not reduce to Moreira’s CLR test in
the homoskedastic normal linear IV model with fixed IV’s when p = 1. In fact, with the moment-
variance-weighting that has been considered in the literature, across different model configurations
for which Moreira’s conditioning statistic displays the same asymptotic behavior, the magnitude
of the conditioning statistic for Kleibergen’s CLR tests can be arbitrarily close to zero or infinity
(with probability that goes to one). Simulation results given in the SM show that this leads to
substantial power loss, in some scenarios of this model, relative to the SR-CQLR tests considered
here, Moreira’s CLR test, and Kleibergen’s CLR test with Jacobian-variance weighting. Fourth,
the form of Kleibergen’s CLR test statistic for p > 2 is based on the form of Moreira’s test statistic
when p = 1. In consequence, one needs to make a somewhat arbitrary choice of some rank statistic
to reduce the k x p weighted orthogonalized sample Jacobian to a scalar random Variablem

Kleibergen’s CLR tests with Jacobian-variance weighting also possess drawbacks one, two, and
four stated in the previous paragraph, as well as the asymptotic size issue discussed above when
p > 2. In contrast, the two SR-CQLR tests considered in this paper do not have any of these
drawbacks.

To establish the asymptotic size and similarity results of the paper, we use the approach in
Andrews, Cheng, and Guggenberger (2009) and Andrews and Guggenberger (2010). With this
approach, one needs to determine the asymptotic null rejection probabilities of the tests under
various drifting sequences of distributions {F,, : n > 1}. Different sequences can yield different
strengths of identification of the unknown parameter 6. The strength of identification of 8 depends
on the expected Jacobian of the moment functions evaluated at the true parameter, which is a k x p
matrix. When k < p, the parameter 0 is unidentified. When k > p, the magnitudes of the p singular
values of this matrix determine the strength of identification of 8. To determine the asymptotic size
of a test (or CS), one needs to determine the test’s asymptotic null rejection probabilities under
sequences that exhibit: (i) standard weak, (ii) nonstandard weak, (iii) semi-strong, and (iv) strong

identification Fl

Tt is shown in Section 12 in the Appendix to AG1 that this condition is not redundant. Without it, for some
models, some sequences of distributions, and some (consistent) choices of variance and covariance estimators, Kleiber-
gen’s (2005) LM statistic has a x; asymptotic distribution, where k is the number of moment conditions. This leads
to over-rejection of the null by this LM test when the standard X?, critical value is used, where p is the dimension
of the parameter, and the parameter is over-identified (i.e., k > p). Kleibergen’s CLR tests depend on his LM test
statistic, so his CLR tests also rely on the expected outer-product condition.

"Several rank statistics in the literature have been suggested, including Cragg and Donald (1996, 1997), Robin
and Smith (2000), and Kleibergen and Paap (2006).

8 As used in this paper, the term “identification” means “local identification.” It is possible for a value § € © to
be “strongly identified,” but still be globally unidentified if there exist multiple solutions to the moment functions.



To be more precise, we define these identification categories (when k > p) here. Let the k
vector of moment functions be g;(#) and the k x p Jacobian matrix be G;(0) := (9/90")gi(0).
The expected Jacobian at the true null value 0y is ErG;(0g), where F' denotes the distribution
that generates the observations. The variance matrix of g;(fp) under F' is denoted by Qg (6p). Let
{sjp : 7 < p} denote the singular values of 9;1/2(90)EFGZ-(90) in nonincreasing order (when Qr(6o)
is nonsingular)ﬂ For a sequence of distributions {F,, : n > 1}, we say that the parameter 0 is: (i)
weakly identified in the standard sense if lim n'/2s, < oo, (ii) weakly identified in the nonstandard
sense if lim nl/QspFn < oo and limn'/2s1p, = oo, (iii) semi-strongly identified if lim nl/QspFn =00
and lim s,r, = 0, and (iv) strongly identified if lim s, > 0. For sequences {F;, : n > 1} for which
the previous limits exist (and may equal co), these categories are mutually exclusive and exhaustive.
We say that the parameter 0y is weakly identified if lim n'/ 2sp];rn < 00, which is the union of the
standard and nonstandard weak identification categories. Note that the asymptotics considered
in Staiger and Stock (1997) are of the standard weak identification type. The nonstandard weak
identification category can be divided into two subcategories: some weak/some strong identification
and joint weak identification, see AG1 for details. The asymptotics considered in Stock and Wright
(2000) are of the some weak/some strong identification type.

The SR-CQLR statistics have X:t23 asymptotic null distributions under strong and semi-strong
identification and noticeably more complicated asymptotic null distributions under weak identifica-
tion. Standard weak identification sequences are relatively easy to analyze asymptotically because
all p of the singular values are O(n~/2). Nonstandard weak identification sequences are much more
difficult to analyze asymptotically because the p singular values have different orders of magnitude.
This affects the asymptotic properties of both the test statistics and the conditioning statistics.
Contiguous alternatives 6 are at most O(nil/ 2) from 6y when 6 is strongly identified, but more
distant when 0g is semi-strongly or weakly identified. Typically the parameter 6 is not consistently
estimable when it is weakly identified.

To obtain the robustness of the three new tests to the singularity of the variance matrix of the
moments, we use the rank of the sample variance matrix of the moments to estimate the rank of
the population variance matrix. We use a spectral decomposition of the sample variance matrix
to estimate all linear combinations of the moments that are stochastic. We construct the test
statistics using these estimated stochastic linear combinations of the moments. When the sample
variance matrix is singular, we employ an extra rejection condition that improves power by fully

exploiting the nonstochastic part of the moment conditions associated with the singular part of

The asymptotic size and similarity results given below do not rely on local or global identification.
9The definitions of the identification categories when Qr(6p) may be singular, as is allowed in this paper, is
somewhat more complicated than the definitions given here.



the variance matrix. We show that the resulting tests and CS’s have correct asymptotic size. This
method of robustifying tests and CS’s to singularity of the population variance matrix also can
be applied to other tests and CS’s in the literature. Hence, it should be a useful addition to the
literature with widespread applications. The robustness of the SR-CQLR tests to any form of
the expected outer product matrix of the vectorized orthogonalized Jacobian occurs because the
SR-CQLR test statistics do not depend on Kleibergen’s LM statistic, but rather, on a minimum
eigenvalue statistic.

We carry out some asymptotic power comparisons via simulation using eleven linear IV regres-
sion models with heteroskedasticity and/or autocorrelation and one right-hand side (rhs) endoge-
nous variable (p = 1) and four IV’s (k = 4). The scenarios considered are the same as in I. Andrews
(2014). They are designed to mimic models for the elasticity of inter-temporal substitution esti-
mated by Yogo (2004) for eleven countries using quarterly data from the early 1970’s to the late
1990’s. The results show that, in an overall sense, the SR-CQLR tests introduced here perform
well in the scenarios considered. They have asymptotic power that is competitive with that of the
PI-CLC test of I. Andrews (2014) and the MM2-SU test of Moreira and Moreira (2013), have some-
what better overall power than the JVW-CLR and MVW-CLR tests of Kleibergen (2005) and the
MM1-SU test of Moreira and Moreira (2013), and have noticeably higher power than Kleibergen’s
(2005) LM test and the AR test. These results are reported in the SM.

Fast computation of tests is useful when constructing confidence sets by inverting the tests,
especially when p > 2. The SR-CQLRy test (employed using 5000 critical value repetitions) can
be computed 29,411 times in one minute using a laptop with Intel i7-3667U CPU @2.0GHz in the
(k,p) = (4,1) scenarios described above. The SR-CQLRj test is found to be 115, 292, and 302
times faster to compute than the PI-CLC, MM1-SU, and MM2-SU tests, respectively, 1.2 times
slower to compute than the JVW-CLR and MVW-CLR tests, and 372 and 495 times slower to
compute than the LM and AR tests in the scenarios consideredm The SR-CQLRj, test is found to
be noticeably easier to implement than the PI-CLC, MM1-SU, and MM2-SU tests and comparable

0These computation times are for the data generating process corresponding to the country Australia, although
the choice of country has very little effect on the times. Note that the computation times for the PI-CLC, MM1-SU,
and MM2-SU tests depend greatly on the choice of implementation parameters. For the PI-CLC test, these include
(i) the number of linear combination coefficients "a" considered in the search over [0, 1], which we take to be 100,
(ii) the number of simulation repetitions used to determine the best choice of "a," which we take to be 2000, and
(iii) the number of alternative parameter values considered in the search for the best "a," which we take to be 41
for p = 1. For the MM1-SU and MM2-SU tests, the implementation parameters include (i) the number of variables
in the discretization of the maximization problem, which we take to be 1000, and (ii) the number of points used
in the numerical approximations of the integrals hl and h2 that appear in the definitions of these tests, which we
take to be 1000. The run-times for the PI-CLC, MM1-SU, and MM2-SU tests exclude some items, such as a critical
value look up table for the PI-CLC test, that only need to be computed once when carrying out multiple tests. The
computations are done in GAUSS using the Impt application to do the linear programming required by the MM1-SU
and MM2-SU tests. Note that the computation time for the SR-CQLR tests could be reduced by using a look up table
for the data-dependent critical values, which depend on p singular values. This would be most useful when p = 2.



to the JVW-CLR and MVW-CLR tests, in terms of the choice of implementation parameters (see
footnote 10) and the robustness of the results to these choices.

The computation time of the SR-CQLRs test increases relatively slowly with k and p. For
example, the times (in minutes) to compute the SR-CQLR test 5000 times (using 5000 critical
value repetitions) for k = 8 and p = 1, 2, 4, 8 are .26, .49, 1.02, 2.46. The times for p = 1 and k = 1,
2,4, 8,16 ,32, 64, 128 are .14,.15,.18,.26, .44, .99, 2.22, 7.76. The times for (k,p) = (64,8) and
(128,8) are 14.5 and 57.9. Hence, computing tests for large values of (k,p) is quite feasible. These
times are for linear IV regression models, but they are the same for any model, linear or nonlinear,
when one takes as given the sample moment vector and sample Jacobian matrix.

In contrast, computation of the PI-CLC, MM1-SU, and MM2-SU tests can be expected to
increase very rapidly in p. The computation time of the PI-CLC test can be expected to increase
in p proportionally to ng, where ng is the number of points in the grid of alternative parameter
values for each component of § = (61, ...,6,)", which are used to assess the minimax regret criterion.
We use ng = 41 in the simulations reported above. Hence, the computation time for p = 3 should
be 1681 times longer than for p = 1. The MM1-SU and MM2-SU tests are not defined in Moreira
and Moreira (2013) for p > 1, but doing so should be feasible. However, even for p = 2, one would
obtain an infinite number of constraints on the directional derivatives to impose local unbiasedness,
in contrast to the k constraints required when p = 1. In consequence, computation of the MM1-SU
and MM2-SU tests can be expected to be challenging when p > 2.

Andrews and Guggenberger (2014c) provides SM to this paper. The SM to AG1 is given in
Andrews and Guggenberger (2014b).

The paper is organized as follows. Section [2]discusses the related literature. Section [3|introduces
the linear IV model and defines Moreira’s (2003) CLR test for this model for the case of p > 1 rhs
endogenous variables. Section |4 defines the general moment condition model. Section [5| introduces
the SR-AR test. Sections[6]and [7]define the SR-CQLR; and SR-CQLRj tests, respectively. Section
provides the asymptotic size and similarity results for the tests. Section [9] establishes the asymp-
totic efficiency in a GMM sense of the SR-CQLR tests under strong and semi-strong identification.
An Appendix provides parts of the proofs of the asymptotic size results given in Section [§]

The SM contains the following. Section [I2] provides the time series results. Section [I3] pro-
vides finite-sample null rejection probability simulation results for the SR-AR and SR-CQLRj tests
for cases where the variance matrix of the moment functions is singular and near singular. Sec-
tion [I4] compares the test statistics and conditioning statistics of the SR-CQLR;, SR-CQLRg, and
Kleibergen’s (2005, 2007) CLR tests to those of Moreira’s (2003) LR statistic and conditioning sta-
tistic in the homoskedastic linear IV model with fixed (i.e., nonrandom) IV’s. Section [L5| provides



finite-sample simulation results that illustrate that Kleibergen’s CLR test with moment-variance
weighting can have low power in certain linear IV models with a single rhs endogenous variable,
as the theoretical results in Section [14] suggest. Section [16] gives the asymptotic power compar-
isons based on the estimated models in Yogo (2004). Section establishes some properties of
an eigenvalue-adjustment procedure used in the definitions of the two SR-CQLR tests. Section
defines a new SR-LM test. The rest of the SM, in conjunction with the Appendix, provides the
proofs of the results stated in AG2 and the SM.
All limits below are taken as n — oo and A := B denotes that A is defined to equal B.

2 Discussion of the Related Literature

In this section, we discuss the related literature and, in particular, existing asymptotic results in
the literature. Kleibergen (2005) considers standard weak identification and strong identiﬁcationﬂ
This excludes all cases in the nonstandard weak and semi-strong identification categories.

The other papers in the literature that deal with LM and CLR tests for nonlinear moment
condition models, including Guggenberger and Smith (2005), Otsu (2006), Smith (2007), Chaudhuri
and Zivot (2011), Guggenberger, Ramalho, and Smith (2012), and I. Andrews (2014), rely on Stock
and Wright’s (2000) Assumption C. (An exception is a recent paper by I. Andrews and Mikusheva
(2014a), which considers a different form of CLR test.) Stock and Wright’s (2000) Assumption C
is an innovative contribution to the literature, but it has some notable drawbacks. For a detailed
discussion of Assumption C of Stock and Wright (2000), see Section 2 of AG1. Here we just provide
a summary.

First, Assumption C is hard to verify or refute in nonlinear models. As far as we know it has
only been verified in the literature for one nonlinear moment condition model, which is a polynomial
approximation to the nonlinear CCAPM of interest in Stock and Wright (2000) and Kleibergen
(2005). Second, Assumption C is restrictiveE It rules out some fairly simple nonlinear models,
see AG1. Third, while it covers cases where some parameters are weakly identified and other are
strongly identified, it does not cover cases where some transformations of the parameters are weakly
identified and other transformations are strongly or semi-strongly identified.

The asymptotic results in this paper and AG1 do not require Assumption C or any related

conditions of this type.

""'The same is true of Andrews and Soares (2007), who consider rank-type CLR tests for linear TV models with
multiple endogenous variables. Moreira (2003) considers only standard weak identification asymptotics in the latter
model.

12The additive separability of the expected moment conditions, which is required by Assumption C, is the condition
that leads to the first two drawbacks described here.



Mikusheva (2010) establishes the correct asymptotic size of LM and CLR tests in the linear
IV model when there is one rhs endogenous variable (p = 1) and the errors are homoskedastic.
Guggenberger (2012) establishes the correct asymptotic size of heteroskedasticity-robust LM and
CLR tests in a heteroskedastic linear IV model with p = 1.

Compared to the standard GMM tests and CS’s considered in Hansen (1982), the SR-CQLR and
SR-AR tests considered here are robust to weak identification and singularity of the variance matrix
of the moments. In particular, the tests considered here have correct asymptotic size even when
any of the following conditions employed in Hansen (1982) fails: (i) the moment functions have a
unique zero at the true value, (ii) the expected Jacobian of the moment functions has full column
rank, (iii) the variance matrix of the moment functions is nonsingular, and (iv) the true parameter
lies on the interior of the parameter spaceH Under strong and semi-strong identification, the SR-
CQLR procedures considered are asymptotically equivalent under contiguous local alternatives to
the procedures considered in Hansen (1982) when the latter are based on asymptotically efficient
weighting matrices.

A drawback of the SR-CQLR tests is that they do not have any known optimal power properties
under weak identification, except in the homoskedastic normal linear IV model with p = 1. In
contrast, Moreira and Moreira (2013) provide methods for constructing finite-sample unbiased tests
that maximize weighted average power in parametric models. They apply these methods to the
heteroskedastic and autocorrelated normal linear IV regression model with p = 1. I. Andrews (2014)
develops tests that minimize asymptotic maximum regret among tests that are linear combinations
of Kleibergen’s LM and AR tests for linear and nonlinear minimum distance and moment condition
modelsE Although these tests are computationally tractable for minimum distance models, they
are not for moment condition models. Hence, for moment condition models, I. Andrews proposes
plug-in tests that aim to mimic the features of the infeasible optimal tests. (These feasible plug-
in tests do not have optimality properties.) He discusses the heteroskedastic normal linear IV
regression model with p = 1 in detail. Montiel Olea (2012) considers tests that have weighted
average power optimality properties in a GMM sense under weak identification in moment condition
models when p = 1@ Elliott, Miiller, and Watson (2012) consider tests that maximize weighted

average power in a variety of (finite-sample) parametric models where a nuisance parameter appears

3 Conditions (i)-(iv) appear in Hansen’s (1982) assumption (iii) of his Theorem 2.1, Assumption 3.4, assumption
that S, (the asymptotic variance matrix of the sample moments in Hansen’s notation) is nonsingular (which is
employed in his Theorem 3.2), and Assumption 3.2, respectively.

"For p > 2, the SR-CQLR tests are not in the class of tests considered in I. Andrews (2014).

15See Appendix G of Montiel Olea (2012). Whether these tests are asymptotically efficient under strong and semi-
strong identification seems to be an open question. Montiel Olea (2012) also considers tests that maximize weighted
average power among tests that depend on a score statistic and an identification statistic in the extremum estimator
framework of Andrews and Cheng (2012). Only one source of weak identification arises in this framework.



under the null.

None of the previous papers provide asymptotic size results. Moreira and Moreira (2013)
only consider finite-sample results. I. Andrews (2014) provides asymptotic results under Stock
and Wright’s (2000) Assumption C. Montiel Olea (2012) considers standard weak identification
asymptotics. The asymptotic framework and results of this paper and AG1 should be useful for
determining the asymptotic sizes of the tests considered in these papers. In particular, AG1 shows
that the sample moments and the (suitably normalized) Jacobian-variance weighted conditioning
statistic are not necessarily asymptotically independent when p > 2. This may have implications
for the asymptotic size properties of moment condition tests that rely on estimation of the variance
matrix of the (orthogonalized) sample Jacobian, such as the tests considered in Moreira and Moreira
(2013) and 1. Andrews (2014), when p > 2]

A recent paper by I. Andrews and Mikusheva (2014a) considers an identification-robust inference
method based on a conditional likelihood ratio approach that differs from those discussed above.
The test considered in this paper is asymptotically similar conditional on the entire sample mean
process that is orthogonalized to be asymptotically independent of the sample moments evaluated
at the null parameter value.

The SR-CQLR and SR-AR tests considered in this paper are for full vector inference. To
obtain subvector inference, one needs to employ the Bonferroni method or the Scheffé projection
method, see Cavanagh, Elliott, and Stock (1995), Chaudhuri, Richardson, Robins, and Zivot (2010),
Chaudhuri and Zivot (2011), and McCloskey (2011) for Bonferroni’s method, and Dufour (1989)
and Dufour and Jasiak (2001) for the projection method. Both methods are conservative, but
Bonferroni’s method is found to work quite well by Chaudhuri, Richardson, Robins, and Zivot
(2010) and Chaudhuri and Zivot (2011)[7]

Other results in the literature on subvector inference include the following. Subvector inference
in which nuisance parameters are profiled out is possible in the linear IV regression model with
homoskedastic errors using the AR test, but not the LM or CLR tests, see Guggenberger, Kleiber-
gen, Mavroeidis, and Chen (2012). Andrews and Cheng (2012, 2013a,b) provide subvector tests
with correct asymptotic size based on extremum estimator objective functions. These subvector
methods depend on the following: (i) one has knowledge of the source of the potential lack of iden-

tification (i.e., which subvectors play the roles of 3, 7w, and ( in their notation), (ii) there is only

Moreira and Moreira (2013) do not explicitly consider tests in linear IV models when p > 2. However, their
approach could be applied in such cases and would require estimation of (what amounts to) the variance matrix of
the orthogonalized sample Jacobian when this matrix is unknown (which includes all practical cases of interest), see
the appearance of ¥~ 1 in their conditioning statistic 7.

17 Cavanagh, Elliott, and Stock (1995) provide a refinement of Bonferroni’s method that is not conservative, but it
is much more intensive computationally. McCloskey (2011) also considers a refinement of Bonferroni’s method.
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one source of lack of identification, and (iii) the estimator objective function does not depend on
the weakly identified parameters 7 (in their notation) when 5 = 0, which rules out some weak IV’s
modelsm Cheng (2014) provides subvector inference in a nonlinear regression model with multiple
nonlinear regressors and, hence, multiple potential sources of lack of identification. I. Andrews
and Mikusheva (2012) develop subvector inference methods in a minimum distance context based
on Anderson-Rubin-type statistics. I. Andrews and Mikusheva (2014b) provide conditions under
which subvector inference is possible in exponential family models (but the requisite conditions
seem to be quite restrictive).

Phillips (1989) and Choi and Phillips (1992) provide asymptotic and finite-sample results for
estimators and classical tests in simultaneous equations models that may be unidentified or partially
identified when p > 1. However, their results do not cover weak identification (of standard or
nonstandard form) or identification-robust inference. Hillier (2009) provides exact finite-sample
results for CLR tests in the linear model under the assumption of homoskedastic normal errors
and known covariance matrix. Antoine and Renault (2009, 2010) consider GMM estimation under
semi-strong and strong identification, but do not consider tests or CS’s that are robust to weak
identification. Armstrong, Hong, and Nekipelov (2012) show that standard Wald tests for multiple
restrictions in some nonlinear IV models can exhibit size distortions when some IV’s are strongly
identified and others are semi-strongly identified—not weakly identified. These results indicate that
identification issues can be more severe in nonlinear models than in linear models, which provides

further motivation for the development of identification-robust tests for nonlinear models.

3 Linear IV Model with p > 1 Endogenous Variables

In this section, we define the CLR test of Moreira (2003) in the homoskedastic Gaussian linear
(HGL) IV model with p > 1 endogenous regressor variables and k > p fixed (i.e., nonrandom) IV’s.
The SR-CQLR; test introduced below is designed to reduce to Moreira’s CLR test in this model
asymptotically. The SR-CQLRs test introduced below reduces to Moreira’s CLR test in this model
asymptotically when p = 1 and in some, but not all, cases when p > 2 (depending on the behavior

of the reduced-form parameters).

"8 Montiel Olea (2012) also provides some subvector analysis in the extremum estimator context of Andrews and
Cheng (2012). His efficient conditionally similar tests apply to the subvector (m,() of (8,7,¢) (in Andrews and
Cheng’s (2012) notation), where § is a parameter that determines the strength of identification and is known to
be strongly identified. The scope of this subvector analysis is analogous to that of Stock and Wright (2000) and
Kleibergen (2004).
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The linear IV regression model is

y1; = Y9;0 +u; and
Yo, = 7' Z; + Vay, (3.1)

where y;; € R and Yy; € RP are endogenous variables, Z; € RF for k > p is a vector of fixed
IV’s, and 7 € RF*P is an unknown unrestricted parameter matrix. In terms of its reduced-form

equations, the model is

y1i = Ziml + Vi, Yoi = 7' Zi+ Vo, Vii= Vi, Vo), Vii = i + Vg0, and Sy := EV;V;.
(3.2)

For simplicity, no exogenous variables are included in the structural equation. The reduced-form
errors are V; € RPL. In the HGL model, V; ~ N (0P, 5/) for some positive definite (p+1) x (p+1)
matrix Xy .

The IV moment functions and their derivatives with respect to 6 are
g(Wi, 9) = Zi(yli — 1/2/19) and G(WZ, 9) = —Zﬂ@/i, where WZ‘ = (yli, 3/2/7;, Z{)I. (33)

Moreira (2003, p. 1033) shows that the LR statistic for testing Hy : 0 = 0y against Hj : 6 # 0y
in the HGL model in (3.1)-(3.2) when Xy is known is

S S = Amin((Sn, Tn) (8y, Ty)), where

LRuygrn :

gﬂ = (Z;Xan><k>_1/2Z7/1><kYb0(b6EVbU)_1/2 = (n_lzizxanXk)_1/2n1/2§n(bIOEVb0)_1/2 € Rk’

S|
I

n = (ZhrZnxk) P20 Y I, Ao (AT Ag) 12
= — (072 1 Znek) P0G o — G, Gn) B Ao (ApS Ag) Y2 € RRXP,
Znxk i= (21, .y Zy) € RVF Y = (Y1, ..., Y,) € Ry, .= (yy, Yy, € RPH,

bo = (1,-6p) € RPY, G i=n~" > g(Wi,60), Ag:= (6o, 1,) € RPTP,
i=1
Gn =01 G(W;,bp), (3.4)
i=1
Amin(-) denotes the smallest eigenvalue of a matrix, and the second equality for T, holds by (24.12))
in the SM Note that (S,,T) is a (conveniently transformed) sufficient statistic for (6, 7) under

YWe let Znx (rather than Z) denote (Z1, ..., Z,)’, because we use Z to denote a k vector of standard normals
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normality of V;, known variance matrix ¥y, and fixed IV’s.
Moreira’s (2003) CLR test uses the LRpgr,, statistic and a conditional critical value that
depends on the k x p matrix 7', through a conditional critical value function ¢y ,(D,1 — a), which

is defined as follows. For nonrandom D € RF*P_ let
CLRy, (D) :=Z'Z — \min((Z, D) (Z, D)), where Z ~ N (0%, Ip,). (3.5)

Define ¢ ,(D,1 — «) to be the 1 — a quantile of the distribution of CLRy, (D). For a € (0,1),

Moreira’s CLR test with nominal level « rejects Hy if

LRHGL,n > Ck,p(Tn) 1- a)' (36)

When Xy is unknown, Moreira (2003) replaces ¥y by a consistent estimator.

Moreira’s (2003) CLR test is similar with finite-sample size o in the HGL model with known Xy .
Intuitively, the strength of the IV’s affects the null distribution of the test statistic LRyqr,» and
the critical value cg , (T, 1— ) adjusts accordingly to yield a test with size o using the dependence
of the null distribution of T}, on the strength of the IV’s. When p = 1, this test has been shown
to have some (approximate) asymptotic optimality properties, see Andrews, Moreira, and Stock
(2006, 2008) and Chernozhukov, Hansen, and Jansson (2009).

For p > 2, the asymptotic properties of Moreira’s CLR test, such as its asymptotic size and
similarity, are not available in the literature. The results for the SR-CQLR; test, specialized to
the linear IV model (with or without Gaussianity, homoskedasticity, and/or independence of the

errors), fill this gap.

4 Moment Condition Model
4.1 Moment Functions
The general moment condition model that we consider is

where the equality holds when # € © C RP is the true value, 0F = (0,...,0) € R*, {W; € R™ : i =
1,...,n} are i.i.d. observations with distribution F, g is a known (possibly nonlinear) function from

R™P to R*, Ep(-) denotes expectation under F, and p,k,m > 1. As noted in the Introduction,

below.
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we allow for £ > p and k < p. In Section [I2]in the SM, we consider models with stationary strong
mixing observations. The parameter space for 6 is © C RP.

The Jacobian of the moment functions is

G(W;,0) = aaa,g(Wi, 0) € RkXp (4.2)

For notational simplicity, we let g;(f#) and G;(0) abbreviate g(W;, §) and G(W;, 0), respectively.
We denote the jth column of G;(0) by G;;(0) and G;; = G;j(0p), where 0y is the (true) null value of
0, for j =1, ..., p. Likewise, we often leave out the argument 6y for other functions as well. Thus, we
write g; and Gj, rather than g;(0g) and G;(6p). We let I, denote the r dimensional identity matrix.

We are concerned with tests of the null hypothesis
Hy : 0 = 0g versus Hy : 0 # 0. (4.3)
The SR-CQLR; test that we introduce in Section |§| below applies when g¢;(6) has the form
9i(0) = ui(0)Z;, (4.4)

where Z; is a k vector of IV’s, u;() is a scalar residual, and the (random) function w;(-) is known.
This is the case considered in Stock and Wright (2000). It covers many GMM situations, but can
be restrictive. For example, it rules out Hansen and Scheinkman’s (1995) moment conditions for
continuous-time Markov processes, the moment conditions often used with dynamic panel models,
e.g., see Ahn and Schmidt (1995), Arellano and Bover (1995), and Blundell and Bond (1995), and
moment conditions of the form g;(0) = u;(0) ® Z;, where u;(0) is a vector. For the cases ruled out,
we introduce a second SR-CQLR test in Section [7| that does not rely on . The SR-AR test
defined in Section |5| also does not require that g;(0) satisfies (4.4)).
When holds, we define

ug;i(0) := —wu;(0) € RP and u;(0) := wi(6) € RPT1 and we have G;(0) = Ziug;(0)' !
00 ugi(0)

4.5)

20The asymptotic size results given below do not actually require G(W;, #) to be the derivative matrix of g(W;, 0).
The matrix G(W;, 0) can be any k X p matrix that satisfies the conditions in FsT defined in below. For example,
G(W;,0) can be the derivative of g(W;, ) almost surely, rather than for all W;, which allows g(W;, 6) to have kinks.
The function G(W;, 0) also can be a numerical derivative, such as ((g(W;, 0 + ece1) — g(W;,0)) /e, ..., (g(Wi, 0 + gep)
— g(W3,0))/e) € R**P for some e > 0, where ¢; is the jth unit vector, e.g., e1 = (1,0, ...,0)’ € RP.

2L As with G(W;,0) defined in , ug;(0) need not be a vector of partial derivatives of u;() for all sample
realizations of the observations. It could be the vector of partial derivatives of u;(6) almost surely, rather than for all
Wi, which allows u;(0) to have kinks, or a vector of finite differences of u;(#). For the asymptotic size results for the
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4.2 Parameter Spaces of Distributions F

The variance matrix of the moments, Qr(0), is defined by
Qr(9) == Er(9:(9) — Ergi(0))(9:(0) — Ergi(0))". (4.6)

(Under Hy, Qp(6o) = Ergi(60)gi(60)’.) We allow for the case where Qp(6) is singular. The rank

and spectral decomposition of Qp () are denoted by
re(0) = rk(Qr(0)) and Qp(0) := AL ()1 (0) AL (0), (4.7)

where 7k(-) denotes the rank of a matrix, IIp(0) is the k x k diagonal matrix with the eigenvalues
of Qr(0) on the diagonal in nonincreasing order, and A}(@) is a k x k orthogonal matrix of eigen-
vectors corresponding to the eigenvalues in I1p(#). We partition A}(G) according to whether the

corresponding eigenvalues are positive or zero:
Al(0) = [Ap(0), A§(6)), where Ap(f) € R*"7 ) and A% (0) € RF*(=rr(@), (4.8)

By definition, the columns of A (0) are eigenvectors of Qp(#) that correspond to positive eigenval-
ues of Qp(0).

Let II17(0) denote the upper left rp(6) x rp(0) submatrix of IIx(6). The matrix I3 (0) is
diagonal with the positive eigenvalues of Q () on its diagonal in nonincreasing order.

The rr vector Hl_;/ 2A’F gi is a vector of non-redundant linear combinations of the moment func-
tions evaluated at 6y rescaled to have variances equal to one: Var F(Hl_;/ zA%gi) =
H;;/QA’FQFAFHEQ = I,,. The rp x p matrix H;;/QA’FGi is the analogously transformed Ja-
cobian matrix.

We consider the following parameter spaces for the distribution F' that generates the data under

H0:0:001

FEE = {F: Epg; = 0F and Ep||T; 2> Apgil |t < M},

F5R = (F € F5E : Ep|jvec(Tl > A%Gy)||*tY < M}, and

FOR = {F € 757 BpllU 1 * AR Zi| | < M, Bplluf | < M, and

Ep|[T 2 A Zi|Pu?1 (u? > ¢) < 1/2} (4.9)

SR-CQLR; test given below to hold, ue;(f) can be any random p vector that satisfies the conditions in FoR (defined

in )
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for some v > 0 and some M, ¢ < oo, where || - || denotes the Euclidean norm, and wvec(-) denotes
the vector obtained from stacking the columns of a matrix. By definition, 7' ¢ F3F c F ﬁg@ﬁ

The null parameter spaces fﬁg, fﬁgR, and FfR are used for the SR-AR, SR-CQLRs, and
SR-CQLR; tests, respectively. The first condition in F fg is the defining condition of the model.
The second condition in ]—"ﬁg is a mild moment condition on the rescaled non-redundant mo-
ment functions HI}E/ 2 '=gi. The condition in ]:QSR is a mild moment condition on the analogously
transformed derivatives of the moment conditions H;FI/ 2A’FG1-. The conditions in F7 are only
marginally stronger than those in féSR. A sufficient condition for the last condition in .7:15 R to hold
for some ¢ < 0o is Epuf < M, for some sufficiently large M, < oo (using the first condition in FOR
and the Cauchy-Bunyakovsky-Schwarz inequality).

Identification issues arise when ErG; has, or is close to having, less than full column rank,
which occurs when k < p or k£ > p and one or more of its singular values is zero or close to zero.
The conditions in F jg, .7:23 R and .7-'15R place no restrictions on the column rank or singular values
of ErG;.

The conditions in F ig, .7:59 R and .7-"1SR also place no restrictions on the variance matrix Qp :=
Ergig} of gi, such as Apin(Qp) > ¢ for some 6 > 0 or Amin(27) > 0. Hence, Qp can be singular.
This is particularly desirable in cases where identification failure yields singularity of Qp (and weak
identification is accompanied by near singularity of Qp.) For example, this occurs in all likelihood
scenarios, in which case g¢;(#) is the score function. In such scenarios, the information matrix
equality implies that minus the expected Jacobian matrix ErG; equals the information matrix,
which also equals the expected outer product of the score function Qp, i.e., —ErG; = Qp. In this
case, weak identification occurs when Qr is close to being singular. Furthermore, identification
failure yields singularity of Qg in all quasi-likelihood scenarios when the quasi-likelihood does not
depend on some element(s) of 6 (or some transformation(s) of #) for § in a neighborhood of 00@

A second example where 0 may be singular is the following homoskedastic linear IV model:
y1; = Yo + U; and Yo = Z!m + Vi, where all quantities are scalars except Z;,m € R%, § =
(B, 7)) € RPT4z EU; = EVy = 0, EU;Z; = EVi;Z; = 0% and E(V;V!|Z;) = Sy as. for

221n the results below, we assume that whichever parameter space is being considered is non-empty.

23The moment bounds in F5E F5B and FPB can be weakened very slightly by, e.g., replacing
EFHH;;/z »gilPTY < M in F5E by EFHH;;/Z };gi||21(|\H;;/2A};g1;|| > j) < ¢; for all integers j > 1 for some
€5 > 0 (that does not depend on F') for which €; — 0 as j — oo. The latter conditions are weaker because, for
any random variable X and constants 7,7 > 0, EX21(|X| > j) < E|X|*>t7/j7. The latter conditions allow for the
application of Lindeberg’s triangular array central limit theorem for independent random variables, e.g., see Billings-
ley (1979, Thm. 27.2, p. 310), in scenarios where the distribution F' depends on m. For simplicity, we define the
parameter spaces as is.

41n this case, the moment functions equal the quasi-score and some element(s) or linear combination(s) of elements
of moment functions, equal zero a.s. at 0 (because the quasi-score is of the form g;(0) = (9/90) log f(W;, 6) for some
density or conditional density f(W;,8)). This yields singularity of the variance matrix of the moment functions and
of the expected Jacobian of the moment functions.
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Vi := (Vi4, Va;) and some 2 x 2 constant matrix Xy . The corresponding reduced-form equations
are y1; = Z,mf + Vi; and Yo; = Z/m + V4;, where Vi; = U; + V5, 8. The moment conditions for 6 are
9i(0) = (y1; — ZimB) Z!, (Yo; — Zim) Z!)" € R¥, where k = 2dz. The variance matrix Xy ® EZ; Z! of
gi(00) = (V1:Z], V5, Z])" is singular whenever the covariance between the reduced-form errors Vj; and
Va; is one (or minus one) or EZ;Z! is singular. In this model, we are interested in joint inference
concerning [ and 7. This is of interest when one wants to see how the magnitude of 7 affects the
range of plausible 8 values.

A third case where Qg can be singular is in the model for interest rate dynamics discussed in
Jegannathan, Skoulakis, and Wang (2002, Sec. 6.2) (JSW). JSW consider five moment conditions
for a four dimensional parameter 6. Grant (2013) points out that the variance matrix of the moment
functions for this model is singular when one or more of three restrictions on the parameters holds.
When any two of these restrictions hold, the parameter also is unidentiﬁed

In examples one and three above and others like them, ErG; is close to having less than
full column rank (i.e., its smallest singular value is small) and Qp is close to being singular (i.e.,
Amin (2F) is small) when the null value 6y is close to a value which yields reduced column rank of
ErG; and singularity of Qp. Null hypotheses of this type are important for the properties of CS’s
because uniformity over null hypothesis values is necessary for CS’s to have correct asymptotic size.
Hence, it is important to have procedures available that place no restrictions on either EFrG; or
Qp.

In contrast, to obtain the correct asymptotic size of Kleibergen’s (2005) LM and moment-
variance-weighted CLR tests (and his Jacobian-weighted CLR test when p = 1), AG1 imposes
the condition Apin(Qr) > 0 on all null distributions F, because these tests rely on the inverse of
the sample variance matrix (AZn being well-defined and well-behaved. AG1 also imposes a second
condition that does not appear in the parameter spaces F flg, F;R, and ffR@ This second con-
dition can be restrictive and, in some models, difficult to verify. This condition arises because
Kleibergen’s LM statistic projects onto a p dimensional column space of a weighted version of the
k x p orthogonalized sample Jacobian. To obtain the desired XZQ’ asymptotic null distribution of
this statistic via the continuous mapping theorem, one needs the orthogonalized sample Jacobian
to be full column rank p a.s. asymptotically (after suitable renormalization). To obtain this under

weak identification, AG1 imposes the condition referred to abovef7| It is shown in Section 12 in

2> The first four moment functions in JSSW are (a(b—7:)r; " —yo?r; Y, a(b—ri)r; 2 — (v =1/2)02, (b—71)r; ¢ —
(1/2)02r2 =7 a(b — ri)r % — (1/2)0%r2 777 1), where 6 = (a,b,0,7)" and 7; is the interest rate. The second and
third functions are equivalent if v = (a + 1)/2; the second and fourth functions are equivalent if v = (o + 1)/2; and
the third and fourth functions are equivalent if o = a.

26See the definition of Fo in Section 3 of AGI.

>TThis condition is used in the proof of Lemma 8.3(d) in the Appendix of AG1, which is given in Section 15 in the

SM to AGL.
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the Appendix to AG1 that this condition is not redundant.

Given the discussion of the previous paragraph, it is clear that the SR-AR, SR-CQLR4, and
SR-CQLRj tests introduced below have advantages over Kleibergen’s LM and CLR tests in terms
of the robustness of their correct asymptotic size properties.

Next, we specify the parameter spaces for (F,0) that are used with the SR-AR, SR-CQLRx,
and SR-CQLR; CS’s. They are denoted by 5’-'@ AR 5’-'9 5, and fgﬁi, respectively. For notational
simplicity, the dependence of the parameter spaces F5 5 AR f , and ff Rin 1) on g is suppressed.
When dealing with CS’s, rather than tests, we make the dependence explicit and write them as

F3E(00), F5T(0o), and FYE(6y), respectively. We define

Folip = {(F,00) : F € F3f(60),00 € O},
F&E = {(F.00) : F € F5R(6y),00 € O}, and
F5 = {(F,00) : F € F(6o), 00 € O} (4.10)

4.3 Definitions of Asymptotic Size and Similarity

Here, we define the asymptotic size and asymptotic similarity of a test of Hy : 8 = 0y for some
given parameter space F (o) of null distributions F. Let RP,(6p, F,«) denote the null rejection
probability of a nominal size a test with sample size n when the null distribution of the data is F.

The asymptotic size of the test for the null parameter space F () is defined by

AsySz :=limsup sup RP,(6o,F, ). (4.11)
n—00  PcF(6o)

The test is asymptotically similar (in a uniform sense) for the null parameter space F(6y) if

liminf inf RP,(0p, F,a)=Ilimsup sup RP,(0,F, ). (4.12)
o0 FeF(6o) n—00  FcF(fo)
Below we establish the correct asymptotic size (i.e., asymptotic size equals nominal size) and the
asymptotic similarity of the SR-AR, SR-CQLR4, and SR-CQLRj tests for the parameters spaces
fAR, fSR and .7: , respectively.

Now we consider a CS that is obtained by inverting tests of Hy : 8 = 6y for all 8y € ©. The
asymptotic size of the CS for the parameter space Fg := {(F,00) : F € F(0p),00 € O} is AsySz :=
l%rr_l)icgf inf(FﬁO)ef@(l —RP, (6o, F,)). The CS is asymptotically similar (in a uniform sense) for the
(1—RP, (6o, F,)).

parameter space Fg if hnnl io%f inf (F.00) (1-RP,(0y, F,a)) = liyrln_) Sol;p SUP(f,9,)

Ef@ E?@

As defined, asymptotic size and similarity of a CS require uniformity over the null values g € O, as
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well as uniformity over null distributions F' for each null value 8y. With the SR-AR, SR-CQLR;, and
SR-CQLRjy CS’s considered here, this additional level of uniformity does not cause complications.

The same proofs for tests deliver results for CS’s with very minor adjustments.

5 Singularity-Robust Nonlinear Anderson-Rubin Test

The nonlinear Anderson-Rubin (AR) test was introduced by Stock and Wright (2000). (They
refer to it as an S test.) It is robust to identification failure and weak identification, but it relies
on nonsingularity of the variance matrix of the moment functions. In this section, we introduce a
singularity-robust nonlinear AR (SR-AR) test that has correct asymptotic size without any condi-
tions on the variance matrix of the moment functions. The SR-AR test generalizes the S test of
Stock and Wright (2000).

When the model is just identified (i.e., the dimension p of € equals the dimension k of g;(0)),
the SR-AR test has good power properties. For example, this occurs in likelihood scenarios, in
which case the vector of moment functions consists of the score function. However, when the model
is over-identified (i.e., k > p), the SR-AR test generally sacrifices power because it is a k degrees
of freedom test concerning p (< k) parameters. Hence, its power is often less than that of the
SR-CQLR; and SR-CQLRj tests introduced below.

The sample moments and an estimator of the variance matrix of the moments, Qr(6), are:
3u(0) == 7" 3 (6) and 0(0) = 0" - u(O)si(6) ~ 5u(6)3(0). (5.)
The usual nonlinear AR statistic is
AR (0) = ngn(0)' Q5 (0)3n (6). (5.2)

The nonlinear AR test rejects Hy : 0 = 0 if AR, (0p) > X%,l—ou where X%,l—a is the 1 — a quantile
of the chi-square distribution with k& degrees of freedom.

Now, we introduce a singularity-robust nonlinear AR statistic which applies even if Qp(6) is
singular. First, we introduce sample versions of the population quantities rp(6), A}(G), Arp(0),
A+(0), and I p(6), which are defined in and . The rank and spectral decomposition of
Q,(6) are denoted by

Pn(0) == rk(Qn(0)) and O, (0) == Af (0)IL,,(0) A}, (6)', (5.3)

where ﬁn(9) is the k x k diagonal matrix with the eigenvalues of QH(G) on the diagonal in non-
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increasing order, and gL(Q) is a k x k orthogonal matrix of eigenvectors corresponding to the
eigenvalues in ﬁn(e). We partition 211(9) according to whether the corresponding eigenvalues are

positive or zero:
Al (0) = [An(0), AL(9)], where A,(0) € R* () and AL(9) € RF**—Tn(®), (5.4)

By definition, the columns of ﬁn(Q) are eigenvectors of ﬁn(Q) that correspond to positive eigenvalues
of ﬁn(Q) The eigenvectors in gn(Q) are not uniquely defined, but the eigenspace spanned by these
vectors is. The tests and CS’s defined here and below using En(e) are numerically invariant to the
particular choice of A,(#) (by the invariance results given in Lemma [6.2] below).

Define Gan (0) and Qa,(6) as G (0) and Q,,(6) are defined in (5.1), but with A, (6)'g;(8) in place
of g;(0). That is,

Gan(0) := A,(0)Gn(0) € B9 and Q4,,(0) := A, (0)Q,(0) A, (0) € RTO>¥7(0) (5.5)

The SR-AR test statistic is defined by

~

SR-ARy(0) := nGan(0)' Qs (0)Gan(0). (5.6)
The SR-AR test rejects the null hypothesis Hy : 8 = 6 if
SR-ARp(00) > X2 (g).1—a O An (00)'Gn(00) # OFTn(00), (5.7)

where by definition the latter condition does not hold if 7,(6y) = k. For completeness of the
specification of the SR-AR test, if 7,(6p) = 0, then we define SR-AR,,(6y) := 0 and X%L(ﬁo),l—a = 0.
Thus, when 7, (6g) = 0, we have AL (6y) = I, and the SR-AR test rejects Hy if i, (60) # OF.

The extra rejection condition, ﬁ#(&o)’fjﬂ(eo) #£ 0= (%) improves power, but we show it has
no effect under Hy with probability that goes to one (wp—1). It improves power because it fully
exploits, rather than ignores, the nonstochastic part of the moment conditions associated with the
singular part of the variance matrix. For example, if the moment conditions include some identities
and the moment variance matrix excluding the identities is nonsingular, then A= (o) /g (6o) consists
of the identities and the SR-AR test rejects Hy if the identities do not hold when evaluated at 6y
or if the SR-AR statistic, which ignores the identities, is sufficiently large.

Two other simple examples where the extra rejection condition improves power are the following.
First, suppose (X1;, Xo;)' ~ i.i.d. N(0,Qr), where § = (61,605)" € R?, Qp is a 2 x 2 matrix of ones,

and the moment functions are g;(6) = (X1; — 01, Xo; — 02)". In this case, Qp is singular, XH(OO) =

20



(1,1) as., AL(6y) = (1,—1) as., the SR-AR statistic is a quadratic form in A, (60)Gn(fo) =
Xin + Xon — (610 + 0O20), where X = 130 | Xy for m = 1,2, and AL (09)'Gn(00) = X1n —
Xo, — (010 — 020) a.s. If one does not use the extra rejection condition, then the SR-AR test has
no power against alternatives § = (601,602)" (# 0p) for which 61 + 62 = 619 + 029. However, when
the extra rejection condition is utilized, all # € R? except those on the line 6; — 0 = 019 — 62
are rejected with probability one (because X1, — X2, = FpX1; — EpXo; = 01 — 03 a.s.) and this
includes all of the alternative 6 values for which 61 + 65 = 019 + 09g.

Second, suppose X; ~ ii.d. N(61,0s), § = (61,02)" € R?, the moment functions are g;(f) =
(X; — 01, X% — 6? — 6,)’, and the null hypothesis is Hy : 6 = (610,020)". Consider alternative

parameters of the form 6§ = (61,0). Under 6, X; has variance zero, X; = X, = 01 a.s., Xl? =

X2 = 0% as., where X2 == n ' " X2, Gu(60) = (61 — 010,07 — 035 — O2) as., Qn(60) =
G0(00)3(00)" = Gn(00)Gn(60) = 02%2 as. (provided Oy, (6p) is defined as in (5.1) with the sample
means subtracted off), and 7,,(fp) = 0 a.s. In consequence, if one does not use the extra rejection
condition, then the SR-AR test has no power against alternatives of the form 6 = (61,0)" (because
by definition the SR-AR test statistic and its critical value equal zero when 7,(0y) = 0). However,

when the extra rejection condition is utilized, all alternatives of the form 6 = (61,0)" are rejected

with probability one@@mg

28This holds because the extra rejection condition in this case leads one to reject Ho if X, # 010 or X2 —0%9—620 # 0,
which is equivalent a.s. to rejecting if 01 # 610 or 07 — 039 — 020 # 0 (because X, = 0; a.s. and X2 = 07 a.s. under
0), which in turn is equivalent to rejecting if 6 # o (because if 020 > 0 one or both of the two conditions is violated
when 6 # 6y and if 020 = 0, then 6 # 0 only if 0, # 010 since we are considering the case where 6 = 0).

29In this second example, suppose the null hypothesis is Ho : 8 = (010,0)'. That is, 020 = 0. Then, the SR-
AR test rejects with probability zero under Hp and the test is not asymptotically similar. This holds because
Gn(00) = (Xn — 010, X2 — 035)" = (0,0)" a.s., 7n(00) = 0 a.s., SR-AR,(60) = X2, (00)1—a = 0 a.s. (because 7, (6o) = 0
a.s.), and the extra rejection condition leads one to reject Ho if X, # 010 or 72 — 9%0 — 020 # 0, which is equivalent
to 010 # 010 or 039 — 03 — 020 # 0 (because X; = 1 a.s.), which holds with probability zero.

As shown in Theorem below, the SR-AR test is asymptotically similar (in a uniform sense) if one excludes null
distributions F' for which the ¢;(60) = 0* a.s. under F, such as in the present example, from the parameter space of
null distributions. But, the SR-AR test still has correct asymptotic size without such exclusions.

30We thank Kirill Evdokimov for bringing these two examples to our attention.

31 An alternative definition of the SR-AR test is obtained by altering its definition given here as follows. One omits
the extra rejection condition given in , one defines the SR-AR statistic using a weight matrix that is nonsingular

by construction when ﬁn(Gg) is singular, and one determines the critical value by simulation of the appropriate
quadratic form in mean zero normal variates when Qn(ﬁo) is singular. For example, such a weight matrix can be
constructed by adjusting the eigenvalues of Qn (6o) to be bounded away from zero, and using its inverse. However,
this method has two drawbacks. First, it sacrifices power relative to the definition of the SR-AR test in . The
reason is that it does not reject Ho with probability one when a violation of the nonstochastic part of the moment
conditions occurs. This can be seen in the example with identities and the two examples that follow it. Second,
it cannot be used with the SR-CQLR tests introduced in Sections [6] and [7] below. The reason is that these tests
rely on a statistic D, (6o), defined in below, that employs €2, (60) and if Q;; (o) is replaced by a matrix that
is nonsingular by construction, such as the eigenvalue-adjusted matrix suggested above, then one does not obtain
asymptotic independence of g,(0o) and D, (0o) after suitable normalization, which is needed to obtain the correct
asymptotic size of the SR-CQLR tests.
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The SR-AR test statistic can be written equivalently as
SR-AR(6) = 1§ (6) % (6)3(6) = nan(6)Ti;, 1 ()50 (6). (5.8)

where 5\2:{(9) denotes the Moore-Penrose generalized inverse of ﬁn(H), when 7,(0y) # 0 The
expression for the SR-AR statistic given in is preferable to the Moore-Penrose expression in
for the derivation of the asymptotic results. It is not the case that SR-AR,,(6) equals the rhs
expression in with probability one when KAZ:{ (0) is replaced by an arbitrary generalized inverse
of 0, (6).

The nominal 100(1 — a)% SR-AR CS is

CSsp-arn = {00 € © : SR-ARy(00) < X2, (9,).1—0 and Ay (00)'Gn(00) = OF (0]}, (5.9)

By definition, if 7;,(Ag) = k, the condition A (8y)Gn(80) = 0¥~ 7(60) holds.

When 7,(6) = k, the SR-AR, () statistic equals AR,,(6g) because A, (fp) is invertible and
Q10 (00) = A7 (60)2 " (60) Ay (60)'

Section [13|in the SM provides some finite-sample simulations of the null rejection probabilities
of the SR-AR test when the variance matrix of the moments is singular and near singular. The

results show that the SR-AR test works very well in the model that is considered in the simulations.

6 SR-CQLR, Test

This section defines the SR-CQLR; test. This test applies when the moment functions are of
the product form in . For expositional clarity and convenience (here and in the proofs), we first
define the test in Section for the case of nonsingular sample and population moments variance
matrices, (1,(0) and Qp(6), respectively. Then, we extend the definition in Section to the case

where these variance matrices may be singular.

32This holds by the followigg calculations. For notational simplicity, we suppress the dependence of quantities on
9. We have SR-AR, = ngnAn(ALQnAn) P ALGn = ngh An(AL[An, AR [An, ALY An)rALG = ngh A I ALG
and R R R
Hl_»n} 0’ X (k—7n)

n%Qiﬁn = nﬁ'n[AmAi] |: Ok—Fr) X (k=Fn) (k=) ] [An,Arﬂ/:fI\n = nZ]\;AannlAilgn,

where the spectral decomposition of Qn given in li and ‘D is used once in each equation above.
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6.1 CQLR; Test for Nonsingular Moments Variance Matrices

The sample Jacobian is
Gn(0) := 013 Gi(0) = (G1n(0), ..., Gpu(0)) € R¥¥P. (6.1)
i=1

The conditioning matrix ﬁn(é) is defined, as in Kleibergen (2005), to be the sample Jacobian
matrix @n(Q) adjusted to be asymptotically independent of the sample moments g, (0):

D (0) := (D1n(8), ..., Dpn(0)) € R¥*P, where
Djn(0) := Gjn(0) — T (0)Q;, 1 (0)Gn(0) € R for j =1,...,p, and

~

fjn(G) =nt :il(Gij(H) —Gn(0))gi(0) € RF¥F for j=1,...,p. (6.2)

We call D, (8) the orthogonalized sample Jacobian matrix. This statistic requires that ﬁ; 1(0) exists.
The statistics g, (6), ﬁn(H), AR,(0), and D,, () are used by both the (non-SR) CQLR; test and
the (non-SR) CQLRy test. The CQLR; test alone uses the following statistics:

Ro(0) := (B(0) ® L) Vo(6) (B(0) © I;) € RPTVRXP+DE - here

Va(0) := n1 Y ((uf (0) = 05,(0)) (ui (0) — @5,(0))") ® (Z:2]) € RPHDI@HDE,
=1

uk, (0) := 2,(0)7; € RPT,
En(0) := (Z' 1 Znxs) " 2L U*(0) € R
Zost = (Z1, s Zn) € RV, U(0) = (u}(0), ..., u5(0)) € R and
1o
B(0) := P ¢ RHIX(HD) 63)
—0 I,

where u}(0) := (u;(0),ug;(6)") is defined in . Note that (i) V;,(8) is an estimator of the variance
matrix of the moment function and its vectorized derivatives, (i) V;,(8) exploits the functional form
of the moment conditions given in 1' (iii) ‘7n(9) typically is not of a Kronecker product form,
and (iv) u} (0) is the best linear predictor of u}(#) based on {Z; : n > 1}. The estimators R, (),
V,(0), and 3, () (defined immediately below) are defined so that the SR-CQLR; test, which
employs them, is asymptotically equivalent to Moreira’s (2003) CLR test under all strengths of
identification in the homoskedastic linear IV model with fixed IV’s and p rhs endogenous variables

for any p > 1. See Section in the SM for details.
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We define $,(6) € RP+Dx(e+1) to be the symmetric pd matrix that minimizes

~

(o1 @ Q20D @ Qu(6) — Ru(®)](Tr 2 020))| (6.4)

over all symmetric pd matrices ¥ € R+ where || - || denotes the Frobenius norm (i.e.,
the Euclidean norm of the vectorized matrix). This is a weighted minimization problem with the
weights given by I, 11 20, 1/ 2(9). We employ these weights because they lead to a matrix in(Q) that
is invariant to nonsingular transformations of the moment functions. (That is, in(ﬁ) is invariant
to the multiplication of g;(8) and G;(6) by any nonsingular matrix M € RF*¥

G;(0) appear in the definitions of the statistics above, see Lemma below.) Equation (6.4]) is

, wherever g;(0) and

a least squares minimization problem and, hence, has a closed form solution, which is given as
follows. Let ijgn(G) denote the (j,£) element of %, (6). By Theorems 3 and 10 of Van Loan and
Pitsianis (1993), for j, £ =1,...,p+ 1,

~ ~

Sien(0) = tr(Rjen (), 1(0)) /K, (6.5)

where ﬁjgn(ﬂ) denotes the (j,¢) submatrix of dimension k x k of R, (0)

The estimator f]n(G) is an estimator of a matrix that could be singular or nearly singular in some
cases. For example, in the homoskedastic linear IV model in Section S (0) is an estimator of the
variance matrix Yy of the reduced-form errors when 6 is the true parameter, and Xy could be sin-
gular or nearly singular. In the definition of the QL Ry, (0) statistic, we use an eigenvalue-adjusted
version of £,(6), denoted by 3¢ (), whose condition number (i.e., Amax(Zn(0))/Amin(Zn(6))) is
bounded above by construction. The reason for making this adjustment is that the inverse of this
matrix enters the definition of QLR1,(6). The adjustment improves the asymptotic and finite-
sample performance of the test by making it robust to singularities and near singularities of the
matrix that 3, (0) estimates. The adjustment affects the test statistic (i.e., 3¢ (6) # £,(6)) only if
the condition number of f)n(H) exceeds 1/e. Hence, for a reasonable choice of ¢, it often has no effect
even in finite samples. This differs from many tuning parameters employed in the literature, such as
the ones that appear in nonparametric and semiparametric procedures, because their choice often
has a substantial effect on the statistic being considered. Based on the finite-sample simulations,
we recommend using € = .05.

The eigenvalue-adjustment procedure is defined as follows for an arbitrary non-zero positive

semi-definite (psd) matrix H € R >4 for some positive integer dp. Let € be a positive constant.

33That is, Rjen(0) contains the elements of R, (6) indexed by rows (j — 1)k + 1 to jk and columns (£ — 1)k to k.
#Moreira and Moreira (2013) utilize the best unweighted Kronecker-product approximation to a matrix, as devel-
oped in Van Loan and Pitsianis (1993), but with a different application and purpose than here.
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Let AgApA); be a spectral decomposition of H, where Ay = Diag{\m1, ..., \Hdy } € Rimxdn g
the diagonal matrix of eigenvalues of H with nonnegative nonincreasing diagonal elements and Ay
is a corresponding orthogonal matrix of eigenvectors of H. The eigenvalue-adjusted version of H,

denoted H® € R4n*du s defined by
H® := AgAy A%y, where Ay := Diag{max{ A1, Amax(H)e}, ..., max{Aga, , Amax(H)e}},  (6.6)

where Apax(H ) denotes the maximum eigenvalue of H. Note that Apax(H) = Ag1, and Apax(H) > 0
provided the psd matrix H is non-zero. From its definition, it is clear that H® = H whenever the
condition number of H is less than or equal to 1/¢ (provided ¢ < 1).

In Lemma [I7.]] in Section [I7] in the SM, we show that the eigenvalue-adjustment procedure
possesses the following desirable properties: (i) (uniqueness) H€ is uniquely defined (i.e., every
choice of spectral decomposition of H yields the same matrix H¢), (ii) (eigenvalue lower bound)
Amin(H®) > Amax(H)e, (iil) (condition number upper bound) Amax(H®)/Amin(H®) < max{1/e,1},
(iv) (scale equivariance) for all ¢ > 0, (cH)® = cH®, and (v) (continuity) HS — H¢ for any sequence
of psd matrices {H,, € R¥™ > : n > 1} that satisfies H,, — H.

The QLR; statistic, which applies when holds, is defined as follows:

QLR1,(0) := AR, (0) — Amin(nQn(0)), where
0n(0) = (0,12(0)3.(0), D3(0)) (9,22(0)3n(0). D;(0)) € ROF<D),
D%(6) := Q;Y2(0)D,(0)LY*(9) € R**P, and
Lo(0) := (6,1,)(S5,(0) 716, 1,) € R"P, (6.7)

where 3¢ (6) is defined in with H = in(ﬁ) Comparing and , one sees the com-

mon structure of the LRyqr » and QLR1,(0o) statistics, where g is the null value. The k vector
nl/20, 12 (60)Gn(60) plays the role of Sy, and the k x p matrix n'/2D? (6,) plays the role of T,,. The
matrix En (0) is defined such that these quantities are asymptotically equivalent in the homoskedas-
tic linear IV regression model with fixed IV’s (in scenarios where the eigenvalue adjustment is
irrelevant wp—1).

The CQLR; test uses the QLR; statistic and a conditional critical value that depends on the

k x p matrix nl/ 213;;(00) through the conditional critical value function ¢y (D, 1 — «), which is

35 The asymptotic size result given in Scctionbelow for the SR-CQLR; test still holds if no eigenvalue adjustment
is made to X, (0) provided the parameter space of distributions FPE is restricted so that the population version of
3, (0) has a condition number that is bounded above.
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defined in (3.5)). For « € (0, 1), the nominal o« CQLR; test rejects Hy : 6 = 0 if
QLR1,(60) > cp(n*2D%(60),1 — av). (6.8)

The nominal 100(1 — )% CQLR; CSis CScqrr,n := {00 € © : QLR1,(00) < ck7p(n1/2f)j;(00), 1—
a)}.
The following lemma shows that the critical value function ¢ ,(D,1 — «) depends on D only

through its singular values.

Lemma 6.1 Let D be a k x p matriz with the singular value decomposition D = CYB’, where C
is a k x k orthogonal matriz of eigenvectors of DD', B is a p X p orthogonal matriz of eigenvectors
of D'D, and Y is the k x p matriz with the min{k,p} singular values {r; : j < min{k,p}} of D
as its first min{k,p} diagonal elements and zeros elsewhere, where T; is nonincreasing in j. Then,

chp(D,1 —a) =cpp(Y,1 - a).

Comment: A consequence of Lemma is that the critical value ck,p(n1/2f);‘;(90), 1 — «) of the
CQLR; test depends on ﬁ;(@O) only through ﬁ;(@o)’ ﬁfl(ﬂg) (because, when k > p, the p singular
values of n!/ 213:;(00) equal the square roots of the eigenvalues of nﬁ;(ﬂg)’ D (6p) and, when k < p,

crp(D,1 — @) is the 1 — o quantile of the x? distribution which does not depend on D).

The following lemma shows that the CQLR; test is invariant to nonsingular transformations
of the moment functions/IV’s. For notational simplicity, we suppress the dependence on 6 of the

statistics that appear in the lemma.

Lemma 6.2 The statistics QLRyy,, ck’p(nl/Qﬁ;“L,l - a), ﬁ;’ﬁfl, AR, uj,, in, and L, are in-
variant to the transformation (Z;,u}) ~ (MZ;,u}) for any k x k nonsingular matriz M. This
transformation induces the following transformations: g; ~ Mg;, G; ~ MG;,gn ~ Mgy, én ~

Ménn Qn ~ MﬁnM,’ fjn ~ ijnM/uﬁn ~ Mﬁna Znxk ~ ZnXkM,u én ~ M,_lén’ Vi ~
(Ips1 @ M)V, (Iy1 @ M'), and Ry, ~» (Iys1 @ M) Ry, (I @ M) .

Comment: This Lemma is important because it implies that one can obtain the correct asymptotic
size of the CQLR; test defined above without assuming that Apin (27) is bounded away from zero.
It suffices that Qp is nonsingular. The reason is that (in the proofs) one can transform the moments
by gi; ~ Mpg;, where MpQpMj, = Ij, such that the transformed moments have a variance matrix
whose eigenvalues are bounded away from zero for some § > 0 (since Varp(Mpg;) = Ix) even if

the original moments g; do not.
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6.2 Singularity-Robust CQLR; Test

Now, we extend the CQLR; test to allow for singularity of the population and sample variance
matrices of g;(6). First, we adjust D, () to obtain a conditioning statistic that is robust to the
singularity of €,(6). For 7,(6) > 1, where 7;,(6) is defined in , we define D, (0) as D, () is
defined in , but with A, (6)g:(6), ER(G)’GU(H), and 4, (0) in place of g;(6), G,j(0), and Qn(6),
respectively, for j =1, ..., p, where ﬁn(ﬁ) and An are defined in and , respectively. That

is,

Dan(0) := (Da1n(0), ..., Dapn(0)) € R™O*P where

D ajn(0) := Gajn(0) = Tajn(0)Q4(0)gan(0) € R for j =1, ....p,

Gan(0) := A,(0)G(0) = (Ga1n(0), ..., Gapn(0)) € RD*P and

T ujn(0) := A, (0)T5(0)An(0) for j =1,...,p. (6.9)

Let Zai(0) := An(0) Z; € R™®) and Zany1(0) := ZnxpAn(0) € RV O),

The SR-CQLR; test employs statistics ﬁAn(G), iAn(H), EAn(G), and ﬁzn(ﬂ), which are defined
just as By(6), $n(6), Ln(6), and Dz (6) are defined in Section 6.1} but with Gan (6), G an(8), Qan(6),
Z4i(0), Zanxr(9), and 7,(0) in place of §,(0), Gn(8), Qn(0), Zi, Znxr, and k, respectively, using
the definitions in , and . In particular, we have

]/D;An(@) = (B(G)/ & I;«‘n(g)) ‘7An(¢9) (B(G) & I?n(g)) S R(erl)?”(e)X(erl)?”(e), where

Van(0) := n™"! Z (w7 () = Wi (0) (15 (0) — Wain (9))) @ (Zai(0)Zi(6)')

c R(P'f‘l)'/"\n (@) x (p+1)7n(0)

uAm(9) = Ean(0) Zi(0) € RPHY,
Ean(0) 1= (Zanxk(0) Zanxi(0)) ™ Z anxi(0)'U*(0) € RT»(Oxp+1)
S ajen(0) = tr(Rajen(0) Q48 (0))/Fn(0) for j, L =1,....p+ 1,
Lan(0) := ( L,)(55,(0)71(0, 1,)' € RP*P,

(0) :=

D3,(0) 1= 03,%(0)Dan ()L (6) € RO, (6.10)

Xn(ﬁ) is defined in |D f]Ajgn(Q) denotes the (j,¢) element of f)An(H), and EAjgn(H) denotes the
(j,€) submatrix of dimension 7, (6) X 7,(6) of Ran(6).
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If 7,(6) > 0, the SR-QLR; statistic is defined by

SR-QLR1,(0) := SR-AR,,(0) — Amin(nQ 4 (0)), where (6.11)
Qan(60) i= (031 (0)54n(0), D3, (0)) (U4l *(0)340(0), D3, (0)) € ROFDX041),

For a € (0, 1), the nominal size « SR-CQLR; test rejects Hy : 0 = 0 if

SR-QLR1,(00) > ¢z, (60 p(n"/ 2D, (B0), 1 — ) or AL (80) G (B0) # 0F7(%0) B (6.12)

The nominal size 100(1 — a)% SR-CQLR; CS is CSsp.corrin = {60 € © : SR-QLR1,(0p) <

5, 00)p(0/2 Dy, (B0), 1 = @) and A (80)'Gu(80) = 07001
Note that if » < p, then ¢, ,(D,1 — ) is the 1 — a quantile of

CLR,,(D) :=Z2'Z — \uin((Z,D)(Z,D)) = Z'Z ~ X2, (6.13)

where Z ~ N(0",1,) and the last equality holds because (Z, D)'(Z,D) is a (p+1) X (p+ 1) matrix
of rank r < p, which implies that its smallest eigenvalue is zero. Hence, if 7,,(6p) < p, then the
critical value for the SR-CQLR; test is the 1 —« quantile of X%\n(eo), which is denoted by X%n(Hg),lfa‘

When 7;,(60) = k, An(6p) is a nonsingular k x k matrix. In consequence, by Lemma SR-
QLR1,(00) = QLR1,,(00) and ¢z, (gy) p(n'/2D%,,(00), 1 — @) = c1,(n'/2D (), 1 — ). That is, the
SR-CQLR; test is the same as the CQLR; test defined in Section Of course, when 7,(0) < k,
the CQLR; test defined in Section [6.1] is not defined, whereas the SR-CQLR; test is. Thus, the
SR-CQLR; test defined here is, indeed, an extension of the CQLR; test defined in Section to
the case where 7,(0p) < k. Furthermore, if 7k(Qp, (69)) = k for all n large, then 7,(6y) = k and

SR-QLR1,(00) = QLR1,(0y) wp—1 under {F, € F5®:n > 1} (by Lemmas[6.2 and below).

7 SR-CQLR; Test

In this section, we define the SR-CQLR, test, which is quite similar to the SR-CQLR; test, but
does not rely on g;() having the form in (4.4). First, we define the CQLRg2 test without the SR

3By definition, A (00)'Gn(f0) # 05 7% does not hold if 7,(6o) = k. If 7,(Ao) = 0, then SR-QLR1,(6o) := 0
and X%n(eo)’l_a := 0. In this case, Ay (fo) = I and the SR-CQLR; test rejects Ho if n(00) # OF.
3By definition, if 7,(6o) = k, the condition A (6)'Gn(00) = 07~ ™(%0) holds.
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extension. We define an analogue R, (6) of En(e) as follows:

R, (0) := (B(0) @ It) Vi(8) (B(0) @ I,) € RPFVRXPHDE - where

V(0) := n! Zn: (fi(e) - ﬁ(a)) (fl-(e) — fn(e))' e RP+DEX(p+1)k,
i=1

9i(0) >
fi(0) := , and f,(0) := . . (7.1)
vec(G4(0)) vec(Gp(0))

The SR-CQLR; test differs from the SR-CQLR; test because V;, (0) (and the statistics that depend
on it) differs from V, () (and the statistics that depend on it). The estimator V,(6) does not

depend on the product form of the moment conditions given in (4.4)).
We define 3,,(6) € RPTDXP+D) just as $,(6) is defined in (6.4) and (6.5), but with R,(6) in
place of Ry, (#). We define D7 () just as D7 (8) is defined in (6.7), but with ,,(6) in place of 3, (6).

That is,

D (0) := Q,(0)"'/2D,,(0)LY?(8) € R¥P, where L,(6) := (0,1,)(5(0)) "' (6, 1,)". (7.2)

n

We use an eigenvalue-adjusted version of %, (6) in the definition of L, () because it yields an SR-
CQLR test that has correct asymptotic size even if Varp(f;) is singular for some F' in the parameter
space of distributions.

The QLRj statistic without the SR extension, denoted by QL R2,(0), is defined just as QL R1,(0)
is defined in (6.7), but with D7 (6) in place of D (6). For a € (0, 1), the nominal size @« CQLRy test
(without the SR extension) rejects Hyp : 0 = 6 if

QLRa,(00) > e p(n*/?D(00),1 — a). (7.3)
The nominal size 100(1—a)% CQLRy CSis CScqrrym == {60 € © : QLR2,(0p) < ck7p(n1/21~);§(00),
1—a)} [
For the CQLRs test with the SR extension, we define D An(0) as in . We define

Vian(0) = (L1 © A4(0))Val0) (L1 © A, (0)) € REFIHOX 170, (7.4)

where 7,(0) and A, (6) are defined in (5.3) and (5.4), respectively. In addition, we define R4, (),

38 Analogously to the results of Lemma the statistics QLRay,, ck,p(nl/Qﬁ;, 1-—a), INDIL/INDIL, f)n, and L, are
invariant to the transformation (g;, G;) ~ (Mgi;, MG;) for any k X k nonsingular matrix M. This transformation
induces the following equivariant transformations: D} ~ MD}, V, ~ (Ipy1 @ M)V, (Ip41 @ M'), and R, ~

(IP+1 ® M) Ry (Ip+1 ® M/) .
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S an(0), Lan(8), D%, (0), and Qan(0) as Ran(8), S4n(0), Lan(6), D%, (6), and Q 4, (8) are defined,
respectively, in and , but with Va,(#) in place of 17,4,1(0) in the definition of R4, (),
with R, (0) in place of Ray,(6) in the definition of 4, (6), and so on in the definitions of L 4,,(6),
ﬁj‘%(@), and Qan(#). We define the test statistic SR-QLRg,(0) as SR-QLRy,(0) is defined in
(6.11), but with @ 4,(6) in place of Qn(6).

Given these definitions, the nominal size @ SR-CQLRj test rejects Hg : 0 = 0y if

SR-QLR2(00) > ¢z, (60 p(n"/* D4, (B0), 1 — @) or AL ()G (00) # OB (7.5)

The nominal size 100(1 — )% SR-CQLRy CS is CSsp-cQrryn = {00 € © : SR-QLR3,(0y) <
00y p (12D, (B0), 1 — ) and AL (60)' G (0) = 0700} ]

Section [13] in the SM provides finite-sample null rejection probabilities of the SR-CQLRs test
for singular and near singular variance matrices of the moment functions@ The results show that
singularity and near singularity of the variance matrix does not lead to distorted null rejection prob-
abilities. The method of robustifying the SR-CQLRs test to allow for singular variance matrices,

which is introduced above, works quite well in the model that is considered.

8 Asymptotic Size

The correct asymptotic size and similarity results for the SR-AR, SR-CQLR;, and SR-CQLRs

tests are as follows.

Theorem 8.1 The asymptotic sizes of the SR-AR, SR-CQLR1, and SR-CQLRs tests defined in
, , and , respectively, equal their nominal size o € (0,1) for the null parameter
spaces fjg, .7-"15R, and ]:QSR, respectively. Furthermore, these tests are asymptotically similar (in a
uniform sense) for the subsets of these parameter spaces that exclude distributions F under which
gi = 0F a.s. Analogous results hold for the corresponding SR-AR, SR-CQLR:, and SR-CQLR,
CS’s for the parameter spaces }'gfjm, f(gff, and fgg, respectively, defined in .

Comments: (i) For distributions F under which g; = 0% a.s., the SR-AR and SR-CQLR tests
reject the null hypothesis with probability zero when the null is true. Hence, asymptotic similarity

only holds when these distributions are excluded from the null parameter spaces.

9By definition, A (60)'Gn(f0) # 057790 does not hold if 7,(6o) = k. If 7,(Ao) = 0, then SR-QLRs,(60) := 0
and x%n(go)’l_a := 0. In this case, A;5(6o) = Iy and the SR-CQLRy test rejects Ho if §n(60) # 0OF.

1By definition, if 7,(fo) = k, the condition A3 (60)'Gn(fo) = 0¥~ holds.

41 Analogous results are not given for the SR-CQLR; test because the moment functions considered are not of the
form in , which is necessary to apply the SR-CQLR; test.
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(ii) SR-LM versions of Kleibergen’s LM test and CS can be defined analogously to the SR-AR
and SR-CQLR tests and CS’s. However, these procedures are only partially singularity robust. See
Section [18 in the SM.

(iii) The proof of Theorem is given partly in the Appendix and partly in the SM.

9 Asymptotic Efficiency of the SR-CQLR Tests under
Strong Identification

Next, we show that the SR-CQLR; and SR-CQLRj tests are asymptotically efficient in a GMM
sense under strong and semi-strong identification (when the variance matrix of the moments is
nonsingular and the null parameter value is not on the boundary of the parameter space). By this
we mean that they are asymptotically equivalent (under the null and contiguous alternatives) to
a Wald test constructed using an asymptotically efficient GMM estimator, see Newey and West
(1987).

Kleibergen’s LM statistic and the standard GMM LM statistic, see Newey and West (1987),
are defined by

LM, = n%§*1/2P97L . Q;,'/%g, and LMSMM .— ng”nﬁgl/zpﬁ;mén Q;1%5,, (9.1)
respectively, where G, is the sample Jacobian defined in 1} with 0 = 6g. The test based on the
standard GMM LM statistic (combined with a X% critical value) is asymptotically equivalent to
the Wald test based on an asymptotically efficient GMM estimator under (i) strong identification
(which requires k > p), (ii) nonsingular moments-variance matrices (i.e., Amin(Q2r,) > d > 0 for all
n > 1), and (iii) a null parameter value that is not on the boundary of the parameter space, see
Newey and West (1987). This also holds true under semi-strong identification (which also requires
k > p) . For example, Theorem 5.1 of Andrews and Cheng (2013) shows that the Wald statistic
for testing Hp : 6 = 6y based on a GMM estimator with asymptotically efficient weight matrix
has a XIZJ distribution under semi-strong identification. This Wald statistic can be shown to be
asymptotically equivalent to the LMS MM gtatistic under semi-strong identification. (For brevity,
we do not do so here.)

Suppose k > p. Let Ap and II1F be defined as in and and the paragraph following
these equations with 6 = 6. Define A, A7, A3, and {\}, , :n > 1} as Ap, A1, Ag, and {\pp:n >
1}, respectively, are defined in ((10.16)-(10.18) in the Appendix, but with g; and G; replaced by

Gy = Hl_;ﬂA'ng and G, = H;},E/QA’FGZ-, with i replaced by F{®, with F, replaced by F5¥ in
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the definition of Fyyy, and with Wg (:= W1 (Wap)) and Up (:= U1 (Uzr)) defined as in and
in the Appendix for the CQLR1 and CQLRj tests, respectively, with g; and G; replaced by
g5 and G,;. In addition, we restrict {A}, , : » > 1} to be a sequence for which Amin(Er,gig;) > 0
for all n > 1@ By definition, a sequence {\, , : m > 1} is said to exhibit strong or semi-strong
identification if n'/ 232 £, — 00, where s;F denotes the smallest singular value of F FG}Z.

Let X}%,l—a denote the 1 — a quantile of the X;2; distribution. The critical value for the LM,, and

LMEMM tests is X;l_a.

Theorem 9.1 Suppose k > p. For any sequence {Az,h :n > 1} that exhibits strong or semi-strong
identification (i.e., for which nl/QS;Fn — 00) and for which A}, € A} Vn > 1 for the SR-CQLR;
test statistic and critical value and A, , € A3 Vn > 1 for the SR-CQLRy test statistic and critical
value, we have

(a) SR-QLRj, = QLRj, + 0p(1) = LM, + 0p(1) = LMSMM 4 0,(1) for j = 1,2,

(b) ck7p(n1/23;‘1, 1—a)— Xz’l_a, and

(c) ckp(n'/2Di, 1 —a) —, X%J—a-

Comments: (i) Theorem establishes the asymptotic efficiency (in a GMM sense) of the SR-
CQLR; and SR-CQLRs tests under strong and semi-strong identification. Note that Theorem
9.1] provides asymptotic equivalence results under the null hypothesis, but, by the definition of

contiguity, these asymptotic equivalence results also hold under contiguous local alternatives.

(ii) The proof of Theorem is given in Section [23[in the SM.

2 Thus, Ap = A}7 IIirp = lp, Wp := (H;;/QA}QFAFH;;/2)71/2 = Ij, and by an invariance property, which
follows from calculations similar to those used to establish Lemma Ur (defined in the Appendix) is the same
whether it is defined using g; and G; or gf; and GFf;.

13 The singular value spr, defined here, equals s,r, defined in the Introduction, for all F with Amin(Q2r) > 0, because
in this case QF = AFH1FA/F, 9;1/2 = AFH;;/2 IF, Q;l/ZEFGi = AFH;;/2AIFEFG1 = AFEFG}Z-, and AF is an
orthogonal k x k matrix. Since we consider sequences here with Amin(Qr,) = Amin(Er,gigi) > 0 for all n > 1, the
definitions of strong and semi-strong identification used here and in the Introduction are equivalent.
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10 Appendix

This Appendix, along with parts of the SM, is devoted to the proof of Theorem [8.1] The proof
proceeds in two steps. First, we establish the correct asymptotic size and asymptotic similarity

of the tests and CS’s without the SR extension for parameter spaces of distributions that bound

Amin(Q2F) away from zero. (These tests are defined in (5.2), (6.8), and (7.3).) We provide some
parts of the proof of this result in Section below. The details are given in Section 22] in the

SM. Second, we extend the proof to the case of the SR tests and CS’s. We provide the proof of

this extension in Section [[0.2] below.

10.1 Tests without the Singularity-Robust Extension
10.1.1 Asymptotic Results for Tests without the SR Extension

For the AR and CQLR tests without the SR extension, we consider the following parameter
spaces for the distribution F' that generates the data under Hy : 6 = 6g:

Far:= {F: Epg; = 0%, Ep||gi||*"" < M, and Amin(Ergigl) > 6},
Fy:={F € Far : Er|lvec(G;)|[**" < M}, and
Fi:={F € Fo: Ep||Zi|[*" < M, Ep|juf||*" < M, A\nin(ErZ;Z}) > 6} (10.1)

for some 7,6 > 0 and M < oo. By definition, F; C FoC Far. The parameter spaces Fagr, Fo,
and Fi, are used for the AR, CQLRs, and CQLR; tests, respectively. For the corresponding CS’s,
we use the parameter spaces: Fo ar = {(F,00) : F' € Fagr(bo),00 € O}, Foo :={(F,0p) : F €
Fa(00),00 € ©}, and Fo 1 := {(F,bp) : F € Fi(0p),0p € O}, where Far(bo), F2(6o), and Fi (o)

equal Fap, Fa2, and Fi, respectively, with their dependence on g made explicit.

Theorem 10.1 The AR, CQLR1, and CQLRy tests (without the SR extensions), defined in ,
, and , respectively, have asymptotic sizes equal to their nominal size o € (0,1) and are
asymptotically similar (in a uniform sense) for the parameter spaces Far, Fi, and Fa, respectively.
Analogous results hold for the corresponding AR, CQLR;1, and CQLRy CS’s for the parameter

spaces Fo AR, Fo,1, and Fe 2, respectively.

Comment: (i) The first step of the proof of Theorem is to prove Theorem m
(ii) Theorem holds for both £ > p and k < p. Both cases are needed in the proof of
Theorem [8.1f (even if k > p in Theorem (8.1)).
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10.1.2 Uniformity Framework

The proof of Theorem uses Corollary 2.1(c) in Andrews, Cheng, and Guggenberger (2009)
(ACG), which provides general sufficient conditions for the correct asymptotic size and (uniform)
asymptotic similarity of a sequence of tests.

Now we state Corollary 2.1(c) of ACG. Let {¢,, : n > 1} be a sequence of tests of some null
hypothesis whose null distributions are indexed by a parameter A with parameter space A. Let
RP,()\) denote the null rejection probability of ¢,, under \. For a finite nonnegative integer .J, let
{hn(A) = (h1n(N), ... hyn(N)) € R :n > 1} be a sequence of functions on A. Define

= {h e (RU{£o0})’ : hy, (Aw,) — h for some subsequence {w,}

of {n} and some sequence {\,, € A:n > 1}}. (10.2)

Assumption B*: For any subsequence {w,, } of {n} and any sequence {\,,, € A : n > 1} for which
huw, (Aw, ) — h € H, RP,,, (A, ) — « for some « € (0,1).

Proposition 10.2 (ACG, Corollary 2.1(c)) Under Assumption B*, the tests {¢,, : n > 1} have
asymptotic size o and are asymptotically similar (in a uniform sense). That is, AsySz := limsup
supyep BRPu(X) = a and linniioréf infyep RP,(N) = liTIZILSolip supyep BPn (). T
Comments: (i) By Comment 4 to Theorem 2.1 of ACG, Proposition m provides asymptotic
size and similarity results for nominal 1 — a CS’s, rather than tests, by defining A as one would
for a test, but having it depend also on the parameter that is restricted by the null hypothesis, by
enlarging the parameter space A correspondingly (so it includes all possible values of the parameter
that is restricted by the null hypothesis), and by replacing (a) ¢,, by a CS based on a sample of
size n, (b) a by 1 — «, (¢) RP,(X\) by CP,()\), where CP,(\) denotes the coverage probability of
the CS under A when the sample size is n, and (d) the first limsup,,_, ., supyc that appears by
liminf,, o infycp . In the present case, where the null hypotheses are of the form Hy : 0 = 6 for
some 6 € O, to establish the asymptotic size of CS’s, the parameter 6y is taken to be a subvector
of A and A is specified so that the value of this subvector ranges over ©.

(ii) In the application of Proposition to prove Theorem one takes A to be a one-to-one
transformation of Fapr, Fa, or F1 for tests, and one takes A to be a one-to-one transformation of
Fo.Ar, Fo,2, or Fg 1 for CS’s. With these changes, the proofs for tests and CS’s are the same. In
consequence, we provide explicit proofs for tests only and obtain the proofs for CS’s by analogous
applications of Proposition [10.2

(iii) We prove the test results in Theorem using Proposition by verifying Assumption
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B* for a suitable choice of A, h,(\), and A. The verification of Assumption B* is quite easy for the
AR test. It is given in Section in the SM. The verifications of Assumption B* for the CQLR4
and CQLRs tests are much more difficult. In the remainder of this Section we provide some
key results that are used in doing so. (These results are used only for the CQLR tests, not the AR
test.) The complete verifications for the CQLR; and CQLRg tests are given in Section [22[in the
SM.

10.1.3 General Weight Matrices Wn and ﬁn

As above, for notational simplicity, we suppress the dependence on 6y of many quantities, such
as ¢g;, Gy, ug;, B, and f;, as well as the quantities Vr, Zp, R, XN/F, and EF, that are introduced
below. To provide asymptotic results for the CQLR; and CQLRjy tests simultaneously, we prove
asymptotic results for a QLR test statistic and a conditioning statistic that depend on general
random weight matrices W € R** and U, € RP*P. In particular we consider statistics of the

form W D U and functions of this statistic, where Dn is defined in Le.

QLR, := AR, — )\min(n@WUn) where
Owirm = (Wnﬁnﬁn,ﬁ;“% ) <W DnUn, 017 ) e RPHDx(+1), (10.3)

The definitions of the random weight matrices Wn and ﬁn depend upon the statistic that is of

interest. They are taken to be of the form

—

Wn = Wl(W2n> € Rka nd fjn = U1<[72n> € Rpxp’ (104)

where /WQn and Uy, are random finite-dimensional quantities, such as matrices, and Wi (+) and Uy (-)
are nonrandom functions that are assumed below to be continuous on certain sets. The estimators
Wgn and ﬁgn have corresponding population quantities Waop and Usp, respectively. Thus, the

population quantities corresponding to Wn and ﬁn are
Wp = Wi(Wap) and Up := Uy (Uar), (10.5)

respectively.

44The definition of @WU” in | writes the )\mm() quantity in terms of (W D Un,ﬂ n) whereas 1}
writes the Amin(-) quantity in terms of (Q /2@1, Dy), which has the Q gn vector as the first column rather than
the last column. The ordering of the columns does not affect the value of the Amin(-) quantity. We use the order

Qn 125, DZ) in because it is c0n51stent with the order in Moreira (2003) and Andrews, Moreira, and Stock

(2006, 2008). We use the order (W DU, QY %G,) here because it has significant notational advantages in the proof
of Theorem _ 5[ below, which is given in Section [21]in the SM.
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Example 1: For the CQLR; test, one takes

—

W, = Q2 and U,, := LY? := (6o, 1,)(25) (60, I,)") /2, (10.6)

where SAZn is defined in and f]n is defined in and .

The population analogues of XA/n and ]:?n, defined in 1} are

Vi := Epfifl — Er((9i,Gi)'Br ® Zi Z!) — Ep(Zh(gs, Gs) ® Z; Z))
+Ep(EpZ: Z8p © Z;Z)) € RPHUFXHDE apg

Rp = (B'® I)Ve(B ® I;,) € RPTVRXP+DE - yhere 10.7)

Er = (BrZ:Z) "Er(gi, Gi) € RFUHD fi:= (g, vec(G,)') € RPTVF,

and B = B(fp) is defined in (6.3).
For the CQLR; test,

~

Wan := Qn, Wap = Qp = Epgigl,, Wi(Wap) = W2_F1/2,
Usn : = (Qn, Ry), Usp := (Qp, Rp), Uy(Usp) := ((80, 1) (25(p, Rr)) (00, I,))/?, and
2je(Qr, Rp) = tr(RpQp") /k (10.8)

for j,0 = 1,...,p + 1, where %;0(Qp, Rp) € RPH*@E+HD denotes the (j,¢) element %(Qp, Rp),
Y(Qp, Rp) is defined to minimize ||(Ip+1 ® 9;1/2)[2 ®@Qp — Rp|(Ip+1 ® 9;1/2)H over symmetric
pd matrices ¥ € RPTD*(+1) (analogously to the definition of in(H) in ), the last equality in
holds by the same argument as used to obtain (6.5), £¢(Qp, Rr) is defined given $(Qp, Rp)

by , and Rj¢p denotes the (j,/) k x k submatrix of Rpﬁ

Example 2: For the CQLRs test, one takes /Wn, /V[72n, Wop, and Wi(-) as in Example 1 and
O = EY2 5= (60, 1,)(55) (00, 1)) 2, (10.9)

where ¥, is defined in Section B
The population analogues of V,, and En, defined in 1' are

Vp := Ep(fi— Epfi)(fi — Epf;)| € RPHIRX@HDE 4nq
Rp := (B @ I,)Ve(B ® I};) € RPHDEx(p+1k, (10.10)

*Note that Wi (War) and U (Uszr) in (10.8) define the functions Wi(+) and Ui (+) for any conformable arguments,
such as Wa,, and Uz, not just for War and Uszp.

36



In this case,

Uz 1= (Qn, Ry), Usp == (Qp, Rp), (10.11)

Wi(-) and Uy(+) are as in 1] and R, is defined in 1' We let S5 denote E(QF,éF), which
appears in the definition of Uy (Usr) in this case. The matrix D r is defined as X is defined following
() but with Rp in place of Rp. As defined, ¥ 5 minimizes || (Ips1 ®Q;1/2)[2 ®Qp — éF](Ip-&-l ®

Q;l/Q)H over symmetric pd matrices ¥ € RP+Dx(p+1),

We provide results for distributions F' in the following set of null distributions:
Fwu = {F e Fy: )\min(WF) > 617)\Inin(UF) > 51, HWFH < Mi, and HUFH < Ml} (10.12)

for some constants d; > 0 and My < oo, where F» is defined in .

For the CQLR; test, which uses the definitions in —, we show that F; C Fwy for
01 > 0 sufficiently small and M; < oo sufficiently large, where Fi is defined in , see Lemma
22.4{(a) in Section in the SM. Hence, uniform results over F; N Fyyy for arbitrary d; > 0 and
My < oo for this test imply uniform results over Fj.

For the CQLR5 test, which uses the definitions in —, we show that F» C Fyy for
01 > 0 sufficiently small and M; < oo sufficiently large, see Lemma M(b) Hence, uniform results

over Fyy for this test imply uniform results over Fo.

10.1.4 Uniformity Reparametrization

To apply Proposition [10.2] we reparametrize the null distribution F' to a vector A. The vector
is chosen such that for a subvector of A convergence of a drifting subsequence of the subvector (after
suitable renormalization) yields convergence in distribution of the test statistic and convergence in
distribution of the critical value in the case of the CQLR tests. In this section, we define A for the
CQLR tests. Its (much simpler) definition for the AR test is given in Section in the SM.

The vector A depends on the following quantities. Let

Bpr denote a p x p orthogonal matrix of eigenvectors of Up(ErG;)WpWe(ErG;)Ur  (10.13)

ordered so that the corresponding eigenvalues (kif, ..., Kpr) are nonincreasing. The matrix Bp is

such that the columns of Wr(ErG;)UrBr are orthogonal. Let

Cr denote a k x k orthogonal matrix of eigenvectors of Wg(ErG;)UpUp(EpG;) W[ (10.14)

46The matrices Br and CF are not uniquely defined. We let Br denote one choice of the matrix of eigenvectors of
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The corresponding eigenvalues are (k1p, ..., Kpr) € RF. Let
(T1F; -+, Tmin{k,p}F) denote the min{k,p} singular values of Wr(ErG;)UF, (10.15)

which are nonnegative, ordered so that 7;r is nonincreasing. (Some of these singular values may be
zero.) As is well-known, the squares of the min{k, p} singular values of a k x p matrix A equal the
min{k, p} largest eigenvalues of A’A and AA’. In consequence, k;jp = T?F for j = 1,...,min{k, p}.
In addition, x;p = 0 for j = min{k, p}, ..., max{k, p}.
Define the elements of A to bd if|

ALF = (T1F) o, Tomin{kp}F) € Rmintk.p}
M= Br € RP*P,

A3 := Cp € RFF,

>\4,F = (EFGH, ...,EFGZ‘p) S RkXp,

!/

ropi=Ep| 7 gi € RIFDEX(p+D)k
vec(Gy) vec(Gy)

T Twmin{k,p}F min _

A6.r = (A6,1F s A6, (min{kp}—1)F) = (LF, oy #)' e [0, 1]mintkrr =1 where 0/0 := 0,
T1F T (min{k,p}—1)F

Arp = Wap,

As,p = Usr,

AgF = F, and

A= )\F = ()\LF, ...,)\97}7‘). (1016)

The dimensions of Wsr and Uspr depend on the choices of Wn = Wl(/Wgn) and CAfn = Ul(ﬁgn). We
let A5 4 denote the upper left & x k submatrix of A5 z Thus, A5 7 = Ergig; = Qp. We consider
two parameter spaces for \: A; and As, which correspond to Fyy N F1 and Fyyy, respectively,
where F; and Fyy are defined in and , respectively. The space Ay is used for the
CQLR; test. The space Ag is used for the CQLR, test@ The parameter spaces A; and As and

Up(ErG;)WpWr(ErG;)Ur and analogously for Cp.

4TFor simplicity, when writing A = (A1,F, -, Ao, r), we allow the elements to be scalars, vectors, matrices, and
distributions and likewise in similar expressions.

"8If p = 1, no vector A r appears in A because A\ ¢ only contains a single element.

49Note that the parameter A has different meanings for the CQLR; and CQLRs tests because Uzr and Ur are
different for the two tests.
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the function h,(\) are defined by

Ar:={X: A= (Aip, ..., Ao ) for some F' € Fyy N Fi},
Az :=A{X: A= (Ap, ..., Aop) for some F € Fyy}, and
hn(N) = (A5, Ao, As,py AR, As 7 A6,y A7,p, As ). (10.17)

By the definition of F3, A1 and As index distributions that satisfy the null hypothesis Hq : 6 = 6.
The dimension J of hy, () equals the number of elements in (A; p, ..., Ag ). Redundant elements in
(AL,F,...Ag,F), such as the redundant off-diagonal elements of the symmetric matrix A5 p, are not
needed, but do not cause any problem.

We define A\ and h,(\) as in and because, as shown below, the asymptotic
distributions of the test statistics under a sequence {F,, : n > 1} for which h,(Ap,) — h € H
depend on the behavior of lim n1/2)\17Fn, as well as lim \,,, g, for m =2,...,8.

For notational convenience,
{Ann i n > 1} denotes a sequence {\, € Ag : n > 1} for which h,(\,) = h e H (10.18)

for H defined in ((10.2)) with A equal to A2 By the definitions of Ay and Fywy, {App :n > 1} is
a sequence of distributions that satisfies the null hypothesis Hy : 8 = 6.

We decompose h (defined by (10.2)), (10.16[), and (10.17])) analogously to the decomposition of

the first eight components of A\: h = (hy, ..., hg), where A\, p and h,, have the same dimensions for
m =1, ...,8. We further decompose the vector hq as h; = (h1 1, ..., hme{k’p})’, where the elements
of hy could equal co. We decompose hg as hg = (h6,17"'7h6,min{k,p}—1)/' In addition, we let hs 4
denote the upper left k& x k submatrix of hs. In consequence, under a sequence {\, : n > 1}, we

have

nl/QTan — hij > 0VYj <min{k,p}, \pp, — b VM =2,...,8,

)\57an = QFn = Eanigg — h57g, and )\G,an — hﬁ’j Vj = 1, ...,min{k,p} —1. (10.19)

By the conditions in F3, defined in ((10.1)), hs 4 is pd.

%0 Analogously, for any subsequence {wy : 7 > 1}, {\w, n : 7 > 1} denotes a sequence {\y, € A :n > 1} for which
sy (M) — h € H.
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10.1.5 Assumption WU

We assume that the random weight matrices Wn = Wl(/Wgn) and U, = Ul(fjgn) defined in
(10.4) satisfy the following assumption that depends on a suitably chosen parameter space A

(C Ag), such as Ay or As.

Assumption WU for the parameter space A, C Aj: Under all subsequences {w,} and all
sequences {Ay, p :n > 1} with Ay, n € Ay,

() Waw, —p hr (:=limWap,),

(b) Usu, —p hg (:=limUsp,, ), and

(c) Wi(-) is a continuous function at h7 on some set W, that contains {\7 p (= Wap) : A =
(ALF, .-y A9 r) € Ay} and contains Wgwn wp—1 and Uj(+) is a continuous function at hg on some

set Up that contains {Ag r (= Uzr) : A = (A1,F, ..., Ao, r) € Ay} and contains ﬁgwn wp—1.

In Assumption WU and elsewhere below, “all sequences {\y,  : » > 1}” means “all sequences
{Aw,n:n > 1} for any h € H,” where H is defined in with A equal to As, and likewise with
n in place of wy,.

Assumption WU for the parameter spaces A; and A, is verified in Lemma in Section [22]in
the SM for the CQLR; and CQLRx, tests, respectively.

10.1.6 Asymptotic Distributions

This section provides the asymptotic distributions of QLR test statistics and corresponding
conditioning statistics that are used in the proof of Theorem to verify Assumption B* of

Proposition [10-2}
For any F' € Fs, define

@?C(Gi) = Varp(vee(G;) — (Ervec(Gye)gy)Qa'gi) and (IDZeC(Gi) := lim @ﬁ(Gi) (10.20)

n

whenever the limit exists, where the distributions {F,,, : n > 1} correspond to {A,, 5 : n > 1} for
any subsequence {w, : n > 1}. The assumptions allow @Zec(ai) to be singular.

By the CLT and some straightforward calculations, the joint asymptotic distribution of n'/2 (9h,

~

vec(Dy, — EF,G;)") under {\,, 5, : n > 1} is given by

- kxpk
Ih ~ N | oDk hg 07 , (10.21)
vec(ﬁh) Qpkxk @Zec(Gi)
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where g, € R* and D}, € R¥*? are independent by the definition of ﬁn, see Lemma below

To determine the asymptotic distributions of the QLR;,, and QL Ry, statistics (defined in (6.7))
and just below ) and the conditional critical value of the CQLR tests (defined in , ,
and ), we need to determine the asymptotic distribution of anf)nUFn without recentering
by Er,G;. To do so, we post-multiply anf)nUFn first by B, and then by a nonrandom diag-
onal matrix S,, € RP*P (which may depend on F, and h). The matrix S,, rescales the columns
of WFnﬁnUFnBFn to ensure that nl/QWFnﬁnUFnBFnSn converges in distribution to a (possibly)
random matrix that is finite a.s. and not a.s. zero.

The following is an important definition for the scaling matrix .S,, and asymptotic distributions

given below. Consider a sequence {\, 5 : n > 1}. Let ¢ = ¢5 (€ {0, ..., min{k, p}}) be such that
hi; = o0 for 1 <j < g and hy; < oo for g, +1 < j < min{k, p}, (10.22)

where hy; = limnl/QTan > 0 for j = 1,...,min{k,p} by and the distributions {F), :
n > 1} correspond to {A, 5 : n > 1} defined in . This value ¢ exists because {h1; : j <
min{k,p}} are nonincreasing in j (since {7,p : j < min{k,p}} are nonincreasing in j, as defined in
(10.15)). Note that ¢ is the number of singular values of Wg, (Efp, G;)Up, that diverge to infinity
when multiplied by n'/2. Heuristically, ¢ is the maximum number of parameters, or one-to-one
transformations of the parameters, that are strongly or semi-strongly identified. (That is, one
could partition @, or a one-to-one transformation of 6, into subvectors of dimension ¢ and p — ¢
such that if the p — ¢ subvector was known and, hence, was no longer part of the parameter, then
the ¢ subvector would be strongly or semi-strongly identified in the sense used in this paper.)

Let
Sy := Diag{(n*?r1p,)7, ..., n?1,r,) "1, ..., 1} € RP*P and T, := Bp, S, € RPP,  (10.23)

where g = qp, is defined in (10.22)). Note that S5, is well defined for n large, because nl/szFn — 00
for all j <gq.
The asymptotic distribution of D, after suitable rotations and rescaling, but without recentering

(by subtracting ErG;), depends on the following quantities. We partition ho and hz and define Ay,

°f one eliminates the )\min(Engg;-) > § condition in F» and one defines ﬁn in l| with ﬁn replaced by the
eigenvalue-adjusted matrix ﬁfl for some & > 0, then the asymptotic distribution in 1) still holds, but without
the independence of g, and Dj,. However, this independence is key. Without it, the conditioning argument that is
used to_establish the correct asymptotic size of the CQLR1 and CQLR2 tests does not go through. Thus, we define
D,, in using Q,, not Q5.
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as follows:

ha = (ha,q, h2p—q); h3 = (h3,q, "3 k—q)s

i 0% (p—1)
$oqi= | Diag{higi1,...h1p} | € R D if k > p,
0(k—p)x(p—9)

0ax(k—q) 02*(p—k)

S g i= € RFr=9 if | < p
b : (k=) % (p—k) ’
i Dzag{hl’qﬂ, ceey th} 0 q p

Ap = (Bhgs Bhp-g) € R¥P, Dy = hag, Dppg:=h3h$, o + hniDihsihopg,

h71 = Wl(h7>, and hgl = Ul(hg), (10.24)

where ho, € RPXY, hop g € RPXP=0) hg € R¥¥9 hyy € RF¥E=0 A, e RF¥9 A, , €
Rkxw=9) hoy € RE¥k and hg € Rpo Note that when Assumption WU holds h7; = lim Wy, =
lim W1 (Wap, ) and hgy = lim Up, = lim U;(Usf, ) under {\, 5 : n > 1}.

The following lemma allows for k£ > p and k < p. For the case where k > p, it appears in the
Appendix to AG1 as Lemma 8.3.

Lemma 10.3 Suppose Assumption WU holds for some mon-empty parameter space A, C As.
Under all sequences {\, p, : n > 1} with A\, j, € Ay,

1Y2(Gy, Dy, — Ep, Gi, Wr, DuUp, Ty) —a (s Dny ),

where (a) (gy,, Dp) are defined in (10.21)), (b) Ay, is the nonrandom function of h and Dy, defined
in (10.24), (c¢) (Dn,An) and g, are independent, and (d) under all subsequences {wy} and all
sequences { Ay, n 1 n > 1} with Ay, p € As, the convergence result above and the results of parts

(a)-(c) hold with n replaced with w,.

Comments: (i) Lemma (c) is a key property that leads to the correct asymptotic size of the
CQLR; and CQLRj tests.

(ii) Lemma 8.3 in the Appendix to AG1 contains a part (part (d)), which does not appear in
Lemma It states that Aj has full column rank a.s. under some additional conditions. For
Kleibergen’s (2005) LM statistic and Kleibergen’s (2005) CLR statistics that employ it, which are
considered in AG1, one needs the (possibly) random limit matrix of nt/ QWFn lA)n Ur, Br, Sn, viz., Ap,

to have full column rank with probability one, in order to apply the continuous mapping theorem

52There is some abuse of notation here. E.g., ha 4 and ha ,_, denote different matrices even if p — ¢ happens to
equal q.
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(CMT), which is used to determine the asymptotic distribution of the test statistics. To obtain this
full column rank property, AG1 restricts the parameter space for the tests based on aforementioned
statistics to be a subset Fy of Fa, where Fy is defined in Section 3 of AG1. In contrast, the QLR;,
and QL Rs, statistics considered here do not depend on Kleibergen’s LM statistic and do not require
the asymptotic distribution of nt/ QWFn ﬁnU r, Br, Sy to have full column rank a.s. In consequence,

it is not necessary to restrict the parameter space from F5 to Fg when considering these statistics.

Let
Kjn denote the jth eigenvalue of nﬁflf)gw;/ﬂ?nﬁnﬁn, Vi=1,...,p, (10.25)

ordered to be nonincreasing in j. The jth singular value of n!/ 2ﬁ/\nﬁnﬁn equals 7%;7/12 for j =
1,...,min{k, p}.

The following proposition, combined with Lemma [6.1] is used to determine the asymptotic
behavior of the data-dependent conditional critical values of the CQLR; and CQLRz tests. The
proposition is the same as Theorem 8.4(c)-(f) in the Appendix to AG1, except that it is extended
to cover the case k < p, not just k > p. For brevity, the proof of the proposition given in Section
in the SM just describes the changes needed to the proof of Theorem 8.4(c)-(f) of AG1 in order
to cover the case k < p. The proof of Theorem 8.4(c)-(f) in AG1 is similar to, but simpler than,
the proof of Theorem below, which is given in Section [21]in the SM.

Proposition 10.4 Suppose Assumption WU holds for some non-empty parameter space Ay C As.
Under all sequences {\, p, :n > 1} with A\, p, € Ay,

(2) Rgn —p 00 for all j < g,

(b) the (ordered) vector of the smallest p—q eigenvalues ofnﬁéﬁ;ﬁ/\éwnﬁnﬁn, i-e.; (F(g+1)ns -+
Rpn), converges in distribution to the (ordered) p—q vector of the eigenvalues on;L’p_qh&k_qhg,qu
X Appg € Rp—a)x(p—a)

(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lemma and

(d) under all subsequences {wy} and all sequences { Ay, p : 1 > 1} with Ay, € Ay, the results

in parts (a)-(c) hold with n replaced with wy,.

Comment: Proposition (a) and (b) with W, = 0, "/? and U, = L&/* is used to determine the
asymptotic behavior of the critical value function for the CQLR; test, which depends on n!/ 213;
defined in (6.7), see the proof of Theorem in Section in the SM. Proposition [10.4f(a) and
(b) with Wn =0, 12 and U, = E}/ ? is used to determine the asymptotic behavior of the critical
value function for the CQLRy test, which depends on n'/ 213;’; defined in , see the proof of
Theorem 22.7] in Section 22.2]in the SM.
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The next theorem provides the asymptotic distribution of the general QQLR,, statistic defined
in ((10.3) and, as special cases, those of the QLR;, and QLRy, statistics.

Theorem 10.5 Suppose Assumption WU holds for some non-empty parameter space Ay C As.
Under all sequences {5, : n > 1} with A, j, € Ay,

-1 —1/2_
QLR —q 9Ihh5,;9h - )‘mln((Ah,p g s, g/ Qh) b3 k— qh3 k— q(Ah,p o Py g/ 9n))

and the convergence holds jointly with the convergence in Lemma [10.3] and Proposition [10.4. When

= p (which can only hold if k > p because ¢ < min{k,p}), th q does not appear in the limit
random variable and the limit random variable reduces to (hy g/ 9n) haphs ,hs. g/ gp ~ Xp When
q = k (which can only hold if k < p), the Anin(-) expression does not appear in the limit random
variable and the limit random variable reduces to g%hgyégh ~ X%- When k < p and q < k, the
Amin () ezpression equals zero and the limit random variable reduces to §§lh;;§h ~ X%- Under all

subsequences {wy} and all sequences { Ay, n : 1 > 1} with Xy, n € Ay, the same results hold with n

replaced with w,,.

Comments: (i) Theorem m gives the asymptotic distributions of the QLRi, and QLRs,
statistics (defined by and ) once it is verified that the choices of (/Wn,ﬁn) for these
statistics satisfy Assumption WU for the parameter spaces A; and Ag, respectively. The latter is
done in Lemma 22.4] in Section 22.1]in the SM.

(ii) When ¢ = p, the parameter 6y is strongly or semi-strongly identified and Theorem m
shows that the Q LR, statistic has a X;Q) asymptotic null distribution.

(iii) When k£ = p, Theorem shows that the QLR,, statistic has a x7 asymptotic null
distribution regardless of the strength of identification.

(iv) When k£ < p, 0 is necessarily unidentified and Theorem shows that the asymptotic
null distribution of QLR,, is X%.

(v) The proof of Theorem [10.5] given in Section 21]in the SM also shows that the largest ¢
eigenvalues of n(W D Un, Qn 125 Gn)’ (W D Un, Qn 1/2 gn) diverge to infinity in probability and the
(ordered) vector of the smallest p+ 1 — g eigenvalues of this matrix converges in distribution to the

(ordered) vector of the p + 1 — ¢ eigenvalues of (Ap g, h;;ﬂﬁh)’hgvk_qxhg’qu (App—qgs h;;/zgh).

Propositions and[10.4]and Theorem [10.5)are used to prove Theorem[I0.1} The proof is given
in Section [22]in the SM. Note, however, that the proof is not a straightforward implication of these
results. The proof also requires (i) determining the behavior of the conditional critical value function

¢k p(D,1—a), defined in the paragraph containing (3.5 , for sequences of nonrandom k X p matrices
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{D,, : n > 1} whose singular values may converge or diverge to infinity at any rates, (ii) showing
that the distribution function of the asymptotic distribution of the QLR, statistic, conditional
on the asymptotic version of the conditioning statistic, is continuous and strictly increasing at its
1 — a quantile for all possible (k, p, q) values and all possible limits of the scaled population singular
values {n'/27;p, :n > 1} for j = 1,...,min{k,p}, and (iii) establishing that Assumption WU holds
for the CQLR; and CQLRy tests. These results are established in Lemmas [22.2] 22.3], and [22.4],
respectively, in Section [22] in the SM.

10.2 Singularity-Robust Tests

In this section, we prove the main Theorem for the SR tests using Theorem for the
tests without the SR extension. The SR-AR and SR-CQLR tests, defined in , , and
, depend on the random variable 7,(6) and random matrices A, (f) and AL(6), defined in
and . First, in the following lemma, we show that with probability that goes to one as
n — oo (wp—1), the SR test statistics and data-dependent critical values are the same as when
the non-random and rescaled population quantities r#(0) and Hl_},{/ 2(6)AF(9)' are used to define
these statistics, rather than 7,(6) and A,(0)’, where rp(6), Ap(6), and II;#(6) are defined as in
and . The lemma also shows that the extra rejection condition in , , and
fails to hold wp— 1 under all sequences of null distributions.

In the following lemma, 6y, is the true value that may vary with n (which is needed for the CS

results) and col(-) denotes the column space of a matrix.

Lemma 10.6 For any sequence {(F,,00,) € ‘7:5,}}4}2 :n > 1}, (a) T(0on) = 7F,(6on) wp—1,
(b) col(A,(60n)) = col(Ag, (Bon)) wp—1, (c) the statistics SR-ARy(fon), SR-QLR1,(6on), SR-
QLR2,(0on), c?n(QOn)’p(nl/Qﬁjm(HOn), 1—a), and c?n(QOn),p(nl/Qﬁjm(Hon), 1—a) are invariant wp—1
to the replacement of 7,(0on) and ﬁn(é?on)’ by rg, (Bon) and H;;f(@on)AFn(Hon)’, respectively, and

(d) Eﬁ(@on)’ﬁn(ﬁon) = 0F=Tn00n) wwp—1, where this equality is defined to hold when 7y, (0on) = k.

Proof of Lemma For notational simplicity, we suppress the dependence of various quantities
on fy,. By considering subsequences, it suffices to consider the case where rp, = r for all n > 1 for
some r € {0,1,.... k}.

First, we establish part (a). We have 7, < r a.s. for all n > 1 because for any constant vector
A € R* for which NQp, A = 0, we have Xg; = 0 a.s.[F,] and NQ\ = n~? i()\'gi)Q - (Ngn)?=0
a.s.[F,], where a.s.[F,,] means “with probability one under F),.” This comi)zlétes the proof of part

(a) when r = 0. Hence, for the rest of the proof of part (a), we assume r > 0.
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We have 7, := rk(Q,) > rk(I1; 1/2A’ Q AFnH1F/ ) because €U, is k x k, Ap, HlF/ is k xmr,

and 1 < r < k. In addition, we have

1/2A, Q AFn 1/2 = _12( 1]*{/2 ) g)(HlFl‘/2 an7')

Tl

_ 1/2 4 - -1/2
—(n ' Z HlF,{ anz)( ! Z IT), / an@)',
1/2 1/2 r_ 1/2 A 1/2

— 11, 1/2A’ AT g, A Ap T2 =1, (10.26)

and Ep, 1T, 1/ 2A’ g; = 0", where the second last equality in (|10.26)) holds by the spectral decom-
position in {i and the last equality in 1} holds by the definitions of A}, Ap, and II;F in

(4.7) and (4.8). By (10.26), the moment conditions in fSR, and the weak law of large numbers
for L1*t7/2-bounded i.i.d. random variables for v > 0, we obtain I, 1/2A’ Q nAp, I, / —p Ip.

In consequence, k(I 1/ 2A’ Q nAr, HlF/ ) > r wp—1, which concludes the proof that Th =T

wp%l@

Next, we prove part (b). Let N(-) denotes the null space of a matrix. We have

ANENQE) = NQpA=0= Varg,(Ng) =0= Ng; =0 as.[F,]
— QA =0 as[F] = X e N(Q,) as.[F,). (10.27)

That is, N(Qp,) C N(Q,) a.s.[F,]. This and rk(Qp,) = rk(Q,) wp—1 imply that N(Qp, ) =
N(Q,) wp—1 (because if N(Qy,) is strictly larger than N(Qp, ) then the dimension and rank of
Q,, must exceed the dimension and rank of N(Qp, ), which is a contradiction). In turn, N(Qp, ) =
N(Q,) wp—1 implies that col(4,) = col(Af, ) wp—1, which proves part (b).

To prove part (c), it suffices to consider the case where r > 1 because the test statistics and

their critical values are all equal to zero by definition when 7, = 0 and 7,, = 0 wp—1 when r» = 0

by part (a). Part (b) of the Lemma implies that there exists a random r X r nonsingular matrix

%3We now provide an example that appears to be a counter-example to the claim that 7, = r wp—1. We show
that it is not a counter-example because the distributions considered violate the moment bound in fﬁg. Suppose
k=1and g, =1, —1, and 0 with probabilities p, /2, p,/2, and 1 — p,, respectively, under F,, where p,, = ¢/n for
some 0 < ¢ < co. Then, Er,g; = 0, as is required, and rk(Qr,) = rk(Er,g?) = rk(p,) = 1. We have Q. =0 if
gi = 0 Vi < n. The latter holds with probability (1 — pr)" = (1 —¢/n)" — ¢~ ° > 0 as n — oo. In consequence,
Pr, (rk(Q,) = rk(QFn)) = Pr,(rk(Q,) = 1) < 1= Pr,(g: = 0Vi < n) — 1—e° < 1, which is inconsistent
with the claim that 7, = » wp—1. However, the distributions {Fn tn > 1} in this example violate the moment
bound Er||II] Y2 Al gs [2*7 < M in F3E, so there is no inconsistency with the claim. This holds because for these
distributions Ep, ||II;; 1/zAipngZHH7 = EFn|Va,7"l;i/2(gi)gi|2+7 = pn 2L (g = pn?? — 00 as n — oo, where
the second equality uses |g;| equals 0 or 1 and the third equality uses Er, |gi| = pn-
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J\//jn such that
An = Ap 0P My, wp — 1, (10.28)

because Il f, is nonsingular (since it is a diagonal matrix with the positive eigenvalues of Qg on
its diagonal by its definition following ) Equation and 7, = r wp—1 imply that the
statistics SR-AR,,, SR-QLR1,, SR-QLR2,, c;, ,(n 1/2152”, — a), and c;n’p(nl/Qﬁzn, 1 — «) are
invariant wp—1 to the replacement of 7, and A’ by r and M/ II M!TI 1/ 2A’ ., respectively. Now we
apply the invariance result of Lemma [6.2| with (k, g;, G;) replaced by (r, 1T, ;/ 2A’F gi, I1 1/ 2A’ - Gi)
and with M equal to ]\/JT’L (The extension of Lemma [6.2[ to cover the statistics employed by the
CQLRx, test is stated in a footnote in Sectionl This result implies that the previous five statistics
when based on 7 and II; ;/ Al gi are invariant to the multiplication of the moments IT;, 1/ 2A’

by the nonsingular matrix ]/\4\,’1 Thus, these five statistics, defined as in Sections |6 . and EL are

invariant wp—1 to the replacement of 7,, and 2’ by r and H;;/ 2A’F , respectively.

Lastly, we prove part (d). The equality (AL) = 0¥~ holds by definition when 7, = k (see
the statement of Lemma M(d)) and 7, = r wp—1. Hence, it suffices to consider the case where
r € {0,....k —1}. For all n > 1, we have EFn(AJ- )'Gn = 0F~7 and

nVars, (AF,)Ga) = (Af,)', A, = (A5, AL, I, (4], )'Af, = 00020, (10.29)

where the second equality uses the spectral decomposition in {i and the last equality uses AT =
[Ap, AF], see 1' In consequence, (AL )'gn = = 0F" a.s. This and and the result of part (b) that
col(AL) = col(Ag ) wp—1 establish part (d). O

Given Lemma [10.6{d), the extra rejection conditions in the SR-AR and SR-CQLR tests and
CS’s (i.e., the second conditions in , , , , and in the SR-CQLR CS definitions
following and ) can be ignored when computing the asymptotic size properties of these
tests and CS’s (because the condition fails to hold for each test wp—1 under any sequence of null
hypothesis values for any sequence of distributions in the null hypotheses, and the condition holds
for each CS wp—1 under any sequence of true values 6, for any sequence of distributions for which
the moment conditions hold at 6y, ).

Given Lemma (c)7 the asymptotic size properties of the SR-AR and SR-CQLR tests and CS’s
can be determined by the analogous tests and CS’s that are based on rp, (6g) and H;;ZQ(HO)AFTL (6o)'
(for fixed 0y with tests and for any 0y € © with CS’s). For the tests, we do so by partitioning fAR,
FyB and FPE into k sets based on the value of rk(2r(6p)) and establishing the correct asymptotic
size and asymptotic similarity of the analogous tests separately for each parameter space. That

is, we write F35% = Ulﬁ:ofjg[r]a where ]—'ﬁg = {F € F35 : rk(Qr(0p)) = r}, and establish

47



the desired results for F ﬁg[ ] separately for each r. Analogously, we write figR = Ufzofzﬁﬁ and
FPR = Uk 0]:1[ |, where .7:2[ [ = Fjg[ N F5® and F; [ ] fAR[r] N FPR. Note that we do not
need to consider the parameter space F3% AR for r = 0 for the SR-AR test when determining the
asymptotic size of the SR-AR test because the test fails to reject Hy wp—1 based on the first
condition in when 7 = 0 (since the test statistic and critical value equal zero by definition
when 7, = 0 and 7, = 7 = 0 wp—1 by Lemma[10.6{a)). In addition, we do not need consider the
parameter space F :Zg[r] for r = 0 for the SR-AR test when determining the asymptotic similarity of
the test because such distributions are excluded from the parameter space F gg by the statement of
Theorem Analogous arguments regarding the parameter spaces corresponding to r = 0 apply
to the other tests and CS’s. Hence, from here on, we assume r € {1, ..., k}.

For given r = rk(Qr (o)), the moment conditions and Jacobian are

—1/2 —1/2
9p; = HlF/ wgi and G, :=1I; / "G, (10.30)
where Ap € RF*" I, € R™", and dependence on 6 is suppressed for notational simplicity.

Given the conditions in F5'®, we have

—1/2
Epllgil 7 = Bpl T2 Agi| 7 < M,
—1/2
Ep||vec(G)|[2* = Ep|vec(Iy* ARGy || < M,

Amin(Brgigi) = Amin (2 2 A Qp ApTI ) = Apin(1) = 1, (10.31)

and Epgr;, = 0", where the second equality in the third line of holds by the spectral
decomposition in and the partition A}, = [Ap, Af] in {D Thus, F € fiﬁ for (i, Gi)
implies that F' € Fy with 6 < 1 for (g}, G};), where the definition of F3 in is extended to
allow ¢g; and G; to depend on F. Now we apply Theorem with (g3, G};) and r in place of
(9i,G;) and k and with 6 < 1, to obtain the correct asymptotic size and asymptotic similarity of
the SR-CQLRs test for the parameter space ffﬁ for r = 1,..., k. This requires that Theorem m
holds for £ < p, which it does. The fact that g%, and G}, depend on F, whereas g; and G; do
not, does not cause a problem, because the proof of Theorem [10.1] goes through as is if g; and G;
depend on F. This establishes the results of Theorem for the SR-CQLRs test. The proof for
the SR-CQLRo CS is essentially the same, but with 6y taking any value in © and with fgg and
Fo,2, defined in and just below , in place of .7-"QSR and Fa, respectively.

The proof for the SR-AR test and CS is the same as that for the SR-CQLRs test and CS, but
with vec(GF,;) deleted in and with the subscript 2 replaced by AR on the parameter spaces

that appear.
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Next, we consider the SR-CQLR; test. When the moment functions satisfy (4.4), i.e., g; = u;Z;,
we define Z5; := T N/ Al Zi, gy = wi 2%, and Gy, = Zi,ul;, where ug; is defined in (4.5) and the
dependence of various quantities on 0 is suppressed. In this case, by the conditions in ]—"f R the IV’s
T3 satisfy Ep||Z5|1"7 = Ep||T; Y2 AL Zi|| Y < M and Ep|[uf||2™ < M, where w! := (us,ul;)'.

Next we show that Amin(ErZ},; Z5;) is bounded away from zero for F € Fﬁﬁ. We have

)‘min(EFZ}k«“z'Z}k?,i) = Amin(EFH;;/z IFZZ'Zz{AFH;I«Em)
= inf  [Bp(WH AR Z)21(u? < ) + Ep(NTI Y2 A% Z)21 (12 > c)]

AER™:[|A||=1
. -1 -1/2 2 2 2

> nt [ RO AR 2P < o)

_ -1 . m—1/2 41 7822 7= 1/2 41 7\2, 24/, 2

=c inf  [Ep(NT 2 "ApZ)*ui — Ep(NTL /" AR Z;) uil(ui > c)]
AERT:|A||=1

> ¢ D (I AR Qe AP ®) = sup  Ep(VILE AR Z)Pul1(uf > o))

AER™:||A[|=1

> ¢ [ = Br|0 2 Ap Zil Puf1(a? > o))

> 1/(20), (10.32)

where the second inequality uses g; = Zju; and Qp = Epg,;g,, the third inequality holds by
H;;/ QA’FQFAFH;;/ 2o, (using and ) and by the Cauchy-Bunyakovsky-Schwarz in-
equality applied to \’ Hl}l/ 2A’FZi, and the last inequality holds by the condition Er| |H1}£/ 2A’FZi |[2u?
x1(u? > c) < 1/2 in FPE.

The moment bounds above and establish that F' € ]:f[ﬁ for (g;, G;) implies that F' € F;
for (g3;, G3;) for 6 < min{1,1/(2¢c)}, where the definition of F; in is taken to allow g; and G}
to depend on FP*|Now we apply Theorem with (¢3,, G};) and r in place of (¢;, G;) and k and
0 < min{l,1/(2¢)} to obtain the correct asymptotic size and asymptotic similarity of the CQLR;
test based on (g3;, G};) and r for the parameter space fls[ﬁ for r = 1,..., k. As noted above, the
dependence of g3, and G, on F does not cause a problem in the application of Theorem m
This establishes the results of Theorem for the SR-CQLR; test by the argument given aboveﬁ
The proof for the SR-CQLR; CS is essentially the same, but with 6y taking any value in © and
with .7:571% and Fg 1, defined in and just below , in place of figR and Fi, respectively.

This completes the proof of Theorem [8.1] given Theorem [10.1

5We require 6 < min{1,1/(2¢)}, rather than § < 1/(2¢), because Amin(Ergi:igs:) = 1 by (10.31) and Fi (C Far)
requires Amin(Ergpigp;) > 0.

»"The fact that Zj; depends on 6y through H;;/Q(HO)AF(GO)' and that G;(60) # (0/00")g%;(00) (because
(0/80')Z}; is ignored in the specification of G7};(00)) does not affect the application of Theorem The rea-
son is that the proof of this Theorem goes through even if Z; depends on 6y and for any G;(6o) that satisfies the
conditions in F1, not just for G;(0o) := (9/96")gi(00).
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11 Outline

We let AG2 abbreviate the main paper “Identification- and Singularity-Robust Inference
for Moment Condition Models.” References to sections with section numbers less than [[1] refer to
sections of AG2. All theorems, lemmas, and equations with section numbers less than [L1] refer to
results and equations in AG2.

We let SM abbreviate Supplemental Material. We let AG1 abbreviate the paper Andrews and
Guggenberger (2014a). The SM to AG1 is given in Andrews and Guggenberger (2014b).

Section [12] generalizes the SR-AR, SR-CQLR;, and SR-CQLRj tests from i.i.d. observations to
strictly stationary strong mixing observations.

Section provides finite-sample null rejection probability simulation results for the SR-AR
and SR-CQLR3 tests for cases where the variance matrix of the moment functions is singular and
near singular.

Section [I4]compares the test statistics and conditioning statistics of the SR-CQLR;, SR-CQLRz,
and Kleibergen’s (2005, 2007) CLR tests to those of Moreira’s (2003) LR statistic and conditioning
statistic in the homoskedastic linear IV model with fixed (i.e., nonrandom) I'V’s.

Section [15| provides finite-sample simulation results that illustrate that Kleibergen’s CLR test
with moment-variance weighting can have low power in certain linear IV models with a single
right-hand side (rhs) endogenous variable, as the theoretical results in Section [14] suggest.

Section provides asymptotic power comparisons based on the estimated linear IV models
(with one rhs endogenous variable) in Yogo (2004). The tests considered are the AR test, Kleiber-
gen’s (2005) LM, JVW-CLR, and MVW-CLR tests, the SR-CQLRy test, I. Andrews’s (2014)
plug-in conditional linear combination (PI-CLC) test, and Moreira and Moreira’s (2013) MM1-SU
and MM2-SU tests.

Section[L7]establishes some properties of the eigenvalue-adjustment procedure defined in Section
and used in the definitions of the two SR-CQLR tests.

Section [18] defines a new SR-LM test.

The remainder of the SM, in conjunction with the Appendix to AG2, provides the proofs of
the results stated in AG2 and the SM. Section [I9] proves Lemmas [6.1] and [6.2} Section [20] proves
Lemma [10.3] and Proposition [I0.4 Section [2I] proves Theorem Section [22] proves Theorem

10.1| (using Theorem [10.5)). Section [23| proves Theorem Section [24] proves Lemmas
and Section [25] proves Theorem

For notational simplicity, throughout the SM, we often suppress the argument 6y for various

quantities that depend on the null value 6.



12 Time Series Observations

In this section, we define the SR-AR, SR-CQLR+, and SR-CQLRs tests for observations that
are strictly stationary strong mixing. We also generalize the asymptotic size results of Theorem [8:]
from i.i.d. observations to strictly stationary strong mixing observations. In the time series case,
F denotes the distribution of the stationary infinite sequence {W; : i = ..., 0,1, }

We define

VEn(0) := Var n~ 4?2 - gi(0)
e ‘ ; vec(G;(0))

Qpn(0) := Varg(n 1/22 9i(0)), and 7., (0) == rk(Qpn(6)). (12.1)

Note that Vi, (0), Qrn(0), and 75, (0) depend on n in the time series case, but not in the i.i.d.
case. We define Ap,,(0) and II1,(0) as Ap(f) and I p(0) are defined in (4.7), (4.8), and the
paragraph following , but with Qp,,(6) in place of Qp(0).

For the SR-AR test, the parameter space of time series distributions F' for the null hypothesis
Hy : 0 =0 is taken to be

f:}ggAR = {F:{W;:i=..0,1,...} are stationary and strong mixing under F' with
strong mixing numbers {ap(m) : m > 1} that satisfy ap(m) < Cm ™4,

Epg; = 0%, and supEFHHan il P71 < M} (12.2)

for some v > 0, d > (24 v)/7, and C, M < oo, where the dependence of g;, Il r,,, and Ap, on
0o is suppressed. For CS’s, we use the corresponding parameter space fzsge,AR ={(F,0p) : F €
fﬁgAR(Qo), 0o € ©}, where fTS ar(00) denotes F%QAR with its dependence on 6y made explicit.
The moment conditions in .7-"TS Ar are placed on the normalized moment functions II Fé A’F i
that satisfy Varp(n=/230" Hl_;/fA' n9i) = Ii, for all n > 1.

For the SR-CQLR; and SR-CQLRs tests, we use the null parameter spaces .7:75:51 and .7:7513%2,
respectively, which are defined as .7-"1SR and ]:QSR are defined in , but with (i) FTS Ap in place
of FSR ans (i) Ap and II;r replaced by Ap,, and Ilix,, respectively, and (iii) sup,~; added before
the quantities flsR and .7-"25R that depend on Ag,, and Il f,,. For SR-CQLR; and SR-CQLR, CS’s,

we use the parameter spaces .7:7‘35@ ; and f;ge o, respectively, which are defined as .7-"5??@ AR 18

56 Asymptotics under drifting sequences of true distributions {F, : n > 1} are used to establish the correct asymp-
totic size of the SR-AR and SR-CQLR tests and CS’s. Under such sequences, the observations form a triangular
array of row-wise strictly stationary observations.



defined, but with fTSl(QO) and f§§2(90) in place of F SAR(QO) where FTSl(GO) and ]:*Tg§2(90)
denote .7-"TS71 and ‘7::;(’:5?2 with their dependence on 6y made explicit.

The SR-CQLR test statistics depend on some estimators ‘A/n (= 17n(90)) of V. The SR-AR test
statistic only depends on an estimator ﬁn (= Qn(ﬁg)) of the submatrix Qg of Vg,. For the SR-
AR, SR-CQLR1, and SR-CQLRx tests, these estimators are heteroskedasticity and autocorrelation
consistent (HAC) variance matrix estimators based on {g; — gn, : ¢ < n}, {(u}f —u},) ® Z; : i < n}
(defined in ), and {f; — ﬁL 11 < n} (defined in ), respectively. There are a number of HAC
estimators available in the literature, e.g., see Newey and West (1987) and Andrews (1991).

We say that V, is equivariant if the replacement of g; and G; by A’g; and A'G;, respectively,
in the definition of Vj, transforms V,, into (I, 1 Q@ A Wall i1 ® A), for any matrix A € R™F with
full row rank r < k for any r = {1,..., k}. Equivariance of Q,, means that the replacement of g;
by A’g; transforms ﬁn into A’ SAZnA. Equivariance holds quite generally for HAC estimators in the
literature.

We write the (p+ 1)k x (p + 1)k matrix Vj, in terms of its k x k submatrices:

o, T, -. D,
_ T Veun - WV
A Cr (12.3)
i fpn ‘7Gp1n t ?Gppn i

We define 7, (= 7,(60)) and A, (= A,(6p)) as in (5.3) and with 6 = 6, but with €, defined
in , rather than in .

The asymptotic size and similarity properties of the tests considered here are the same for any
consistent HAC estimator. Hence, for generality, we do not specify a particular estimator Y//\'n (or
ﬁn) Rather, we state results that hold for any estimator Vi, (or ﬁn) that satisfies one the following
assumptions when the null value 6 is the true value. The following assumptions are used with the

SR-CQLR3 test and CS, respectively.

Assumption SR-Vy:  (a) [ ® (5% 00)A% ,(00))[Va(Bo) — Vin(00)llps1 ©
(Aan(GO)Hl_;fn(HO))] —, 0PHDRXPHDE ynder {F, : n > 1} for any sequence {F, € Fpgyin>1}
for which Vg, »(0o) — V for some matrix V and rp, ,(0o) = r for all n large, for any r € {1,..., k}.
(b) Viu(6o) is equivariant.
(c) Ngi(80) = 0 a.s.[F] implies that X'Q,,(6)A = 0 a.s.[F] for all A € R* and F € Fidy.

For SR-CQLRy CS’s, we use the following assumption that allows both the null parameter g,
as well as the distribution Fj,, to drift with n.



Assumption SR-V5-CS: [L11 ® (I (00n) A%, ,(000))][Va(on) — VE,n(Bon)lllps1 ®
(Aan(GOn)H;;T/fn(HOn))] —, 0PFVRX(+DE ynder {F, : n > 1} for any sequence {(Fy,00,) €
f;geg :n > 1} for which Vg, ,(00,) — V for some matrix V' and rg, ,(0o,) = r for all n large,
for any r € {1, ..., k}.

(b) V,,(6p) is equivariant for all 6y € ©.

(c) Ngi(60) = 0 a.s.[F] implies that N'Q,(6g)A = 0 a.s.[F] for all A € R* and (F, ) € f;}qg@Q.
Assumptions SR-Va(a) and SR-V2-CS(a) require the HAC estimator based on the normalized mo-
ments and Jacobian (i.e., Hl_;fn(90n)A}:n7n(90n)gi(90n) and Hl_}};{?n(HOH)A%'mn(HOH)Gi(HOn)7 respec-
tively) to be consistent. This can be verified using standard methods. For typical HAC estimators,
equivariance and Assumptions SR-Va(c) and SR-V2-CS(c) can be shown easily.

For the SR-CQLR; test and CS, we use Assumptions SR-V; and SR-V;-CS, which are
defined as Assumptions SR-Vo and SR-V»-CS are defined, respectively, but with f;,sjgl and .7:7535“7971
in place of fﬁg’z and .7-"5?57972.

For the SR-AR test and CS, we use Assumptions SR-{2 and SR-{2-CS, which are defined
as Assumptions SR-Vy and SR-V3-CS are defined, respectively, but with (i) Assumption SR-{)(a)
being: I (60) A%, ,(00)) (2 (80) — 5, n(00)] AR, n(00)TL; 1 2 (60) —p 0FF under {F, : n > 1}
for any sequence {F,, € FISEAR :n > 1} for which Qp, ,,(6p) — €2 for some matrix Q and 75, »(0o) =
r for all n large, for any r € {1, ..., k}, (ii) Assumption SR-Q-CS(a) being as in (i), but with g, and
fﬁg@,AR in place of 6y and f;f;AR, (iii) Q. (6) in place of V,(6p) in part (b) of each assumption,
and (iv) fﬁg AR in place of f§g2 in part (c) of each assumption.

Now we define the SR-AR, SR-CQLR;, and SR-CQLR» tests in the time series context. The
definitions are the same as in the i.i.d. context given in Sections [f [0 and [7] with the following
changes. For all three tests, 7, and E,LL in the condition gﬁ’ﬁn # 0k in are defined as
in and , but with (Aln defined to satisfy Assumption SR-(), rather than being defined in
1' The SR-AR statistic is defined as in Section [5| but with ﬁn defined to satisfy Assumption
SR-Q. This affects the definitions of 7,, and ﬁn, given in and . With these changes, the
critical value for the SR-AR test in the time series case is defined in the same way as in the i.i.d.
case.

In the time series case, the SR-QLR; statistic is defined as in Section EI, but with Vn and Qn
defined to satisfy Assumption SR-V; and based on {(u} —u},) ® Z; : i < n}, rather than in
1) and |D respectively. In turn, this affects the definitions of }/in, in, En, ﬁ;;, @n, T, En,
and SR-AR,, (which appears in ) Given the changes described above, the definition of the
SR-CQLR; critical value is unchanged.

In the time series case, the SR-QLR5 statistic is defined as in Section (7| but with I7n and ﬁn



defined to satisfy Assumption SR-Vs and 1' based on {f; — ﬁb 11 < n}, in place of V, and €,
defined in () and 1 , respectively. This affects the definitions of En, f]n, En, 15;‘“ Tns ﬁn, and
SR-AR,,. Given the previous changes, the definition of the SR-CQLRs critical value is unchanged.
In the time series context,
n

Ve = 1limVarg n~1/2 Z gi

im1 \ vee(Gy)
/
_ i o i gi—m and
m=—o0o vec(Gi — EFGZ) vec(Gi_m — EFGz_m)
Qp := Z Ergigi —m; (12.4)

m=—0oQ

where the dependence of various quantities on the null value 6 is suppressed for notational sim-
plicity. The second equality holds for F € .7:7515,2@
For the time series case, the asymptotic size and similarity results for the tests described above

are as follows.

Theorem 12.1 Suppose the SR-AR, SR-CQLR1, and SR-CQLRy tests are defined as in this sec-
tion, the null parameter spaces for F' are fiig,ARv fgg;l, and .7-"755’2, respectively, and the correspond-
ing Assumption SR-Q), SR-V1, or SR-Vs holds for each test. Then, these tests have asymptotic sizes
equal to their nominal size o € (0,1). These tests also are asymptotically similar (in a uniform
sense) for the subsets of these parameter spaces that exclude distributions F' under which g; = 0
a.s. Analogous results hold for the SR-AR, SR-CQLR;, and SR-CQLRs CS’s for the parameter
spaces f:ﬁgQAR, fﬁgew and fﬁgez, respectively, provided the corresponding Assumption SR-(2-
CS, SR-V1-CS, or SR-V3-CS holds for each CS, rather than Assumption SR-§), SR-V1, or SR-Vs.

13 Simulation Results for Singular and Near-Singular Variance

Matrices

Here, we provide some finite-sample simulations of the null rejection probabilities of the nominal
5% SR-AR and SR-CQLR: tests when the variance matrix of the moments is singular and near
singular ¥ The model we consider is the second example discussed in Section in AG2 in which

the reduced-form equations are y1; = ZZ(WB +Vi; and Ya; = Z]m + V5; and the moment functions are

5TThis is shown in the proof of Lemma 19.1 in Section 19 in the SM to AGI.
58 Analogous results for the SR-CQLR, test are not provided because the moment functions considered are not of
the form in li in AG2, which is necessary to apply the SR-CQLR; test.



Table I. Null Rejection Probabilities (x100) of Nominal 5%
SR-AR and SR-CQLRsy Tests with Singular and Near Singular
Variance Matrices of the Moment Functions and k = 8
SR-AR SR-CQLR3»
n py: 95 .999,999 1.0 95,999,999 1.0

250 6.0 6.0 5.4 5.8 5.8 5.3
500 5.5 5.5 5.2 5.3 5.3 5.1
1,000 5.5 9.5 5.2 5.3 5.3 5.1
2,000 5.0 5.0 4.9 4.8 4.8 4.8
4,000 5.0 5.0 5.1 4.8 4.8 5.0
8,000 5.1 5.1 5.0 4.8 4.8 4.9
16,000 5.0 5.0 5.1 4.9 4.9 5.0

9i(0) = (y1i— ZinB) Z!, (Yoi — Z!m) Z!)' € R*, where k = 2dz and dy is the dimension of Z;. We take
(Vai, Vai) ~ N(02,Xy), where ¥y has unit variances and correlation py,, Z; ~ N (02, 14,), (Vai, Vai)
and Z; are independent, and the observations are i.i.d. across 7. The null hypothesis is Hy : (5, 7) =
(B, m0). We consider the values: py, = .95, .999,999, and 1.0; n = 250, 500, 1,000, 2,000, 4,000,
8,000, and 16,000; 79 = (710, 0,0,0)’, where 719 = w19, = C/n'/? and C = /10, which yields a
concentration parameter of A = 7' EZ; Z!m = 10 for all n > 1; and 8y = 0. The variance matrix Qp
of the moment functions is singular when py, = 1 (because g;(0o) = (V1:Z},V1,Z])" a.s.) and near
singular when py, is close to one. Under Hy, with probability one, the extra rejection condition in
is: reject Hg if [I4, —14]Gn(00) # 0%, which fails to hold a.s. and, hence, can be ignored in
probability calculations made under Hy. Forty thousand simulation repetitions are employed.

Tables I-III report results for & = 8 (which corresponds to dzy = 4), k = 4, and k = 12,
respectively. Table I shows that the SR-AR and SR-CQLRs tests have null rejection probabilities
that are close to the nominal 5% level for singular and near singular variance matrices as measured
by py. As expected, the deviations from 5% decrease with n. For all 40,000 simulation repetitions,
all values of n considered, and k = 8, we obtain 7,(0y) = 8 when p;, < 1.0 and 7,(0g) = 4 when
py = 1. The estimator 7,,(6p) also makes no errors when k = 4 and 12. Tables II and IIT show that
the deviations of the null rejection probabilities from 5% are somewhat smaller when & = 4 and
n < 1000 than when k& = 8, and somewhat larger when k = 12 and n < 500. Results for £k = 8 and
C =0, 2, v/30, and 10 produced similar results. For brevity, these results are not reported.

We conclude that the method introduced in Section [5] to make the SR-AR and SR-CQLR» tests

robust to singularity works very well in the model that is considered in the simulations.



Table II. Null Rejection Probabilities (x100) of Nominal 5%
SR-AR and SR-CQLRg Tests with Singular and Near Singular
Variance Matrices of the Moment Functions and k = 4

SR-AR SR-CQLR,

n py: 95 .999,999 1.0 95,999,999 1.0

250 5.5 9.5 5.2 5.4 5.4 4.9
500 5.1 5.1 5.2 5.0 5.0 5.0
1,000 4.9 4.9 5.1 4.8 4.8 4.8
2,000 5.1 5.1 5.2 5.0 5.0 5.0
4,000 5.1 5.1 5.1 5.0 5.0 4.9
8,000 5.1 5.1 5.1 5.0 5.0 4.8
16,000 5.1 5.1 5.0 4.9 4.9 4.8

Table III. Null Rejection Probabilities (x100) of Nominal 5%
SR-AR and SR-CQLRsy Tests with Singular and Near Singular
Variance Matrices of the Moment Functions and k& = 12

SR-AR SR-CQLR»

n py: 95 .999,999 1.0 95,999,999 1.0

250 7.0 7.0 5.6 7.0 7.0 9.5
500 6.0 6.0 5.4 6.0 6.0 5.4
1,000 5.5 9.5 5.3 9.5 9.5 5.3
2,000 5.2 5.2 5.1 5.2 5.2 5.1
4,000 5.1 5.1 5.1 5.1 5.1 5.1
8,000 5.0 5.0 4.9 5.0 5.0 4.8
16,000 4.9 4.9 5.0 4.9 4.9 5.0




14 SR-CQLR;, SR-CQLR;, and Kleibergen’s Nonlinear CLR Tests
in the Homoskedastic Linear IV Model

It is desirable for tests to reduce asymptotically to Moreira’s (2003) CLR test in the homoskedas-
tic linear IV regression model with fixed (i.e., nonrandom) IV’s when p = 1, where p is the number
of endogenous rhs variables, which equals the dimension of 8. The reason is that the latter test has
been shown to have some (approximate) optimality properties under normality of the errors, see
Andrews, Moreira, and Stock (2006, 2008) and Chernozhukov, Hansen, and Jansson (2009) Y]

In this section, we show that the components of the SR-QLR; statistic and its corresponding
conditioning matrix are asymptotically equivalent to those of Moreira’s (2003) LR statistic and
its conditioning statistic, respectively, in the homoskedastic linear IV model with k& > p fixed
(i.e., nonrandom) IV’s and nonsingular moments variance matrix (whether or not the errors are
Gaussian). This holds for all values of p > 1.

We also show that the same is true for the SR-QLRs statistic and its conditioning matrix in
some, but not in all cases (where the cases depend on the behavior of the reduced-form parameter
matrix 7 € R¥*P as n — o00.) Nevertheless, when p = 1, the SR-CQLRj test and Moreira’s (2003)
CLR test are asymptotically equivalent. When p > 2, for the cases where asymptotic equivalence of
these tests does not hold, the difference is due only to the IV’s being fixed, whereas the SR-QLRs
statistic and its conditioning matrix are designed (essentially) for random IV’s.

We also evaluate the behavior of Kleibergen’s (2005, 2007) nonlinear CLR tests in the ho-
moskedastic linear IV model with fixed IV’s. Kleibergen’s tests depend on the choice of a weight
matrix for the conditioning statistic (which enters both the CLR test statistic and the critical value
function). We find that when p = 1 Kleibergen’s CLR test statistic and conditioning statistic re-
duce asymptotically to those of Moreira (2003) when one employs the Jacobian-variance weighted
conditioning statistic suggested by Kleibergen (2005, 2007) and Smith (2007). However, they do
not when one employs the moments-variance weighted conditioning statistic suggested by Newey
and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012). Notably, the scale of the
scalar conditioning statistic can differ from the desired value of one by a factor that can be arbi-
trarily close to zero or infinity (depending on the value of the reduced-form error matrix Xy and
null hypothesis value ), see Lemma and Comment (iv) following it. Kleibergen’s nonlinear
CLR tests depend on the form of a rank statistic. When p > 2, we find that no choice of rank
statistic makes Kleibergen’s CLR test statistic and conditioning statistic reduce asymptotically to

those of Moreira (2003) (when Jacobian- or moments-variance weighting is employed).

39Whether this also holds for p > 2 is an open question.



Section [I5] below provides finite-sample simulation results that illustrate the results of the

previous paragraph for Kleibergen’s CLR test with moment-variance weighting.

14.1 Homoskedastic Linear I'V Model

The model we consider is the homoskedastic linear IV model introduced in Section [B] but with-
out the assumption of normality of the reduced-form errors V;. Specifically, we use the following

assumption.

Assumption HLIV: (a) {V; € RPT! : i > 1} are ii.d., {Z; € RF : i > 1} are fixed, not random,
and k > p.

(b) EV; =0, Sy := EV;V/ is pd, and E||V;||* < 0o

(¢) n=t>°0 | Z;Z! — Ky for some pd matrix Kz € RF*¥k n=1 5" | [|Z;]|% = o(n), and
sup;<, (' Zi)? ) 311 (¢ Zi)* — 0 Ve # 08,

(d) supyer ||7|| < oo, where II is the parameter space for .

(€) Amax(Zv)/Amin(Xyv) < 1/e for € > 0 as in the definition of the SR-QLR; or SR-QLR»

statistic.

Here HLIV abbreviates “homoskedastic linear IV model.” Assumption HLIV(b) specifies that the
reduced-form errors are homoskedastic (because their variance matrix does not depend on i or Z;).
Assumptions HLIV(c) and (d) are used to obtain a weak law of large numbers (WLLN) and central
limit theorem (CLT) for certain quantities under drifting sequences of reduced-form parameters
{mn : n > 1}. These assumptions are not very restrictive. Note that Assumptions HLIV(a)-(c)
imply that the variance matrix of the sample moments is pd. This implies that 7, (= 7,(60)) = k
wp—1 (by Lemma [I4.1b) below) and no SR adjustment of the SR-CQLR tests occurs (wp—1).
Assumption HLIV(e) guarantees that the eigenvalue adjustment used in the definition of the SR-
QLR statistics does not have any effect asymptotically. One could analyze the properties of the
SR-CQLR tests when this condition is eliminated. One would still obtain asymptotic null rejection
probabilities equal to «, but the eigenvalue adjustment would render the SR-CQLR tests to behave
somewhat differently than Moreira’s CLR test, because the latter test does not employ an eigenvalue

adjustment.

0Tn this section, the underlying i.i.d. random variables {V; : i > 1} have a distribution that does not depend on
n. Hence, for notational simplicity, we denote expectations by E, rather than Ef,. Nevetheless, it should be kept in
mind that the reduced-form parameters 7, may depend on n.
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14.2 SR-CQLR; Test

The components of the SR-QLR; statistic and its conditioning matrix are n'/ 20, Y 2§n and
n'/2D* (see and ) when 7, = k, which holds wp—1 under Assumption HLIV. Those
of Moreira (2003) are S,, and T, (see ) The asymptotic equivalence of these components in
the model specified by (3.1)-(3.2) and Assumption HLIV is established in parts (e) and (f) of the
following lemma. Parts (a)-(d) of the lemma establish the asymptotic behavior of the components

ﬁn and f]n of the test statistic SR-Q LR, and its conditioning statistic.

Lemma 14.1 Suppose Assumption HLIV holds. Under the null hypothesis Hy : 6 = 6, for any
sequence of reduced-form parameters {m, € Il : n > 1} and any p > 1, we have

(a) Fz —p Sy ® Kz,

(b) © —p DSy bo) Kz, where by := (1, —6(),

(c) S —p (0pZybo) 1y,

(d) £ =, (BhSvbo) Ty,

( nt/2Q), 1/2/\ = Sp +0p(1), and
(

/2Dy = (I + 0p(1)Tu(Iy + 0p(1)) + 0p(1).

e)
f)
Comments: (i) The minus sign in Lemma [14.1]f) is not important because QLRi, in is
unchanged if ﬁ: is replaced by —ZA);; in the definition of @n (and SR-QLRy, = QLR;,, wp—1
under Assumption HLIV)@

(ii) The results of Lemma hold under the null hypothesis. Statistics that differ by o,(1)
under sequences of null distributions also differ by o0,(1) under sequences of contiguous alternatives.
Hence, the asymptotic equivalence results of Lemma |14.1e) and (f) also hold under contiguous
alternatives to the null.

Note that in the linear IV regression model the alternative parameter values {6, : n > 1}
that yield contiguous sequences of distributions from a sequence of null distributions depend on
the strength of identification as measured by m,. The reduced-form equation states that
y1i = Zmpby + Vi; when m, and 6, are the true values of m and #. Contiguous alternatives
to the null distributions with parameters m, and 6y are obtained for parameter values m, and

n (# 6o) that satisfy 7,0, — m,00 = 7, (0, — 0y) = O(n_1/2). If the IV’s are strong, i.e.,
liminf,, oo myn =t S0 | Z; Z!m, > 0, then contiguous alternatives have true 6,, values of distance

1/2

O(n~'/2) from the null value . If the IV’s are weak in the standard sense, e.g., 7, = 7n~ /2 for

1 This holds because for a1 € R* and As € R¥*P we have Amin((a1, —A2) (a1, —A2)) = ian:(Al,A'z)/:H)\H:l(al/\l —
A2)\2)/(a1)\1 - A2)\2) = inf)\:(kh,ké)/:H)\H:l(al)\l +A2)\2),(a1)\1 + Ag)\g) = ian:()\l,)\’z)“H)\\‘:1(0’1)\1 + A2)\2),(a1)\1 +
A2)2) = Amin((a1, A2) (a1, A2)).
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some fixed matrix 7, then all # values not equal 6y yield contiguous alternatives. For semi-strong
identification in the standard sense, e.g., m, = 7n~° for some § € (0,1/2) and some fixed full-
column-rank matrix 7, the contiguous alternatives have 6, — 8 = O(n~(/2-9). For joint weak
identification, contiguity occurs when 7, = (1, ..., Tpn) € R¥*P, n1/2||m,|| — oo for all j < p,
lim sup,, .. Amin(n7,m,) < 00, and 6, is such that m,(6, — 6g) = O(n~1/2).

(iii) The proofs of Lemma [14.1]and Lemmas and below are given in Section 24| below.

14.3 SR-CQLR, Test

The components of the SR-QLRs statistic and its conditioning matrix are n'/ 20, Y 2§n and
nt/ 215;'; (see , , and ) when 7,, = k, which holds wp—1 under Assumption HLIV.
Here we show that the conditioning statistic n'/ 2157’; is asymptotically equivalent to Moreira’s
(2003) conditioning statistic 7, (in the homoskedastic linear IV model with fixed IV’s) when
T — 0F*P_ This includes the cases of standard weak identification and semi-strong identification. It
is not asymptotically equivalent in other circumstances. (See Comment (ii) to Lemma [14.2] below.)
Nevertheless, under strong and semi-strong IV’s, the SR-CQLRs test and Moreira’s CLR test are
asymptotically equivalent@ In consequence, when p = 1, the SR-CQLRs test and Moreira’s CLR
test are asymptotically equivalent (because standard weak, strong, and semi-strong identification
cover all possible cases). When p > 2, this is not true (because weak identification can occur even
when 7, - 0F*P_if n/2 times the smallest singular value of 7, is O(1)). Although asymptotic
equivalence of the tests fails in some cases when p > 2, the differences appear to be small because
they are due only to the differences between fixed IV’s and random IV’s (which cause Xy to differ
somewhat from Yy, defined below).

For m € RF*P, define

n n n !
¢,(m) i=n"t Z(ﬂ', ® Z;)Z; Zi(m & Z1) — <n1 Z(ﬂ" ® Zi)Z,-) (nl Z(ﬂ'/ ® Zi)Zi> € RFpxkp,
i=1 i=1 i=1
(14.1)
If imn =t S0 vee(Z; Z!)vee(Z; Z1)' exists, then ((7) := lim (,,(7) exists for all 7 € R¥*P. Define

kak 0k><k:p

R(r) =Yy @Kz + (B'®I)) (B ® I},) € RFPHD>kE+1), (14.2)

ok ()

52This holds because, under strong and semi-strong IV’s, the SR-QLR> statistic and Moreira’s CLR statistic
behave asymptotically like LM statistics that project onto n*/2Q;, /%D, (or equivalently, n'/20,,*/2D,, L+/?) and T,
respectively, see Theorem for the SR-QLR3 statistic, and n20,Y2D, LY? and T, are asymptotically equivalent
(up to multiplication by —1) by Lemma f). Furthermore, the conditional critical values of the two tests both
converge in probability to X;27,1—o¢ under strong and semi-strong identification, see Theorem for the SR-CQLR>
critical value.
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where B = B(fp) is defined in (6.3)).
The probability limit of %, is shown below to be the symmetric matrix (byXyb) 1Sy, €

R+ where Xy, is defined as follows. The (j,¢) element of Sy, is
EV>»<j£ = tT(Rjﬁ(ﬂ-*)/Kgl)/kv (143)

where Rj/(m) denotes the (j,¢) k x k submatrix of R(m,) for j,¢ = 1,...,p+ 1 and 7, = limm,.
Equivalently, Xy, is the unique minimizer of ||[I,+1 ® ((b62vb0)—1/2K21/2)][2 ® Kz — R(my)]
[Ip+1 ® ((ngvbo)_l/QKgl/Z)]H over all symmetric pd matrices ¥ € RP+*D*(@+1) Note that when
¢(m) = 0 (as occurs when 7, = 0¥*P), ¥y, = ¥y, (because R(m,) = Xy ® K7 in this case).

We use the following assumption.

Assumption HLIV2: (a) limn ™' Y"1  vec(Z;Z!)vec(Z;Z]) exists and is finite,
(b) m,, — . for some 7, € RE¥P_and

(€) Amax(Zvs)/Amin(Evs) < 1/e for € > 0 as in the definition of the SR-QLRx> statistic.

Assumption HLIV2(c) implies that the eigenvalue adjustment to S employed in the SR-QLRs
statistic has no effect asymptotically. One could analyze the behavior of the SR-CQLRj3 test when
this condition is eliminated. This would not affect the asymptotic null rejection probabilities, but
it would affect the form of the asymptotic distribution when the condition is violated. For brevity,
we do not do so here.

The asymptotic behavior of n'/ 2]5;; is given in the following lemma. Under Assumption HLIV,

n1/25;'; equals the SR-CQLRj conditioning statistic nl/Qﬁzn wp—1 (because 7, = k wp—1).

Lemma 14.2 Suppose Assumptions HLIV and HLIV2 hold. Under the null hypothesis Hy : 6 = 0y
and any p > 1, we have

(a) R, —p R(m),
(b) 2y —p (B4 bo) 'Sy,
(c) 3¢ —, (bhSyvbo) 'Sy, and

(d) V2D = —(Iy + 0p() T (L * L2 + 0,(1)) + 0,(1), where Lyg := (60, I,) Sy (60, I,)' €
RP*P and Ly, == (00, 1,)S1 (00, I,)' € RP¥P.

Comments: (i) If 7, = 0¥*P, which occurs when all # parameters are either weakly identified
in the standard sense or semi-strongly identified, then ((7,) = 0*P**?_ R(r,) = Ly ® Kz, and
Yy« = XNy. In this case, Lemma M(d) yields

”1/252 = — (I, + 0p(1))Tn(Ip + 0p(1)) + 0p(1) (14.4)
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and n'/ 25;; is asymptotically equivalent to T, (up to multiplication by —1).

(ii) On the other hand, if w, # 0¥*P then n!/ 25; is not asymptotically equivalent to 7', in
general due to the ((m,) factor that appears in the second summand of R(m,) in (14.2). This factor
arises because the IV’s are fixed in the linear IV model (by assumption), but the variance estimator
Y7n, which appears in Rn, see , and which determines f]n and Yy, treats the IV’s as though

they are random.

14.4 Kleibergen’s Nonlinear CLR Tests

This section analyzes the behavior of Kleibergen’s (2005, 2007) nonlinear CLR tests in the
homoskedastic linear IV regression model with k& > p fixed IV’s. The behavior of Kleibergen’s
nonlinear CLR tests is found to depend on the choice of weighting matrix for the conditioning
statistic. We find that when p = 1 (where p is the dimension of #) and one employs the Jacobian-
variance weighted conditioning statistic, Kleibergen’s CLR test and conditioning statistics reduce
asymptotically to those of Moreira’s (2003) CLR test, as desired. This type of weighting has been
suggested by Kleibergen’s (2005, 2007) and Smith (2007). On the other hand, Kleibergen’s CLR test
and conditioning statistics do not reduce asymptotically to those of Moreira (2003) when p = 1 and
one employs the moments-variance weighted conditioning statistic. The latter has been suggested
by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012). Furthermore,
the scale of the scalar conditioning statistic can differ from the desired value of one by a factor that
can be arbitrarily close to zero or infinity (depending on the value of the reduced-form error matrix
Yy and null hypothesis value 6p). This has adverse effects on the power of the moment-variance
weighted CLR test.

When p > 2, Kleibergen’s nonlinear CLR tests depend on the form of a rank statistic. In this
case, we find that no choice of rank statistic makes Kleibergen’s CLR test statistic and conditioning
statistic reduce asymptotically to those of Moreira (2003).

Kleibergen’s test statistic takes the form:

CLR,(0) := % (ARn(e) — 1k (0) + /(AR (0) — 1k (0))2 + ALM, () - rkn(9)> , where
LM, (6) := ngn(e)'ﬁ—l/Q(e)Pmm Q- 12(0)3.(0) (14.5)

n

(6) D (9)

and 7k, (0) is a real-valued rank statistic, which is a conditioning statistic (i.e., the critical value
may depend on 7k, (0)).
The critical value of Kleibergen’s CLR test is ¢(1 — «, 7k, (0)), where ¢(1 — a,r) is the 1 — «
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quantile of the distribution of

1
cr(r) == 3 <X12o + X — T+ \/(X% + X, — )+ 4Xz277") (14.6)

for 0 < r < oo and the chi-square random variables X% and X%_p in are independent. The
CLR test rejects the null hypothesis Hy : 0 = 0y if CLR,, > ¢(1 — o, rky,) (where, as elsewhere, the
dependence of these statistics on 6y is suppressed for simplicity).

Kleibergen’s CLR test depends on the choice of the rank statistic rky(6). Kleibergen (2005,
p. 1114, 2007, eqn. (37)) and Smith (2007, p. 7, footnote 4) propose to take rky,(f) to be a
function of 17571/ *(0)vec(Dp(0)), where Vp, () € R**¥P is a consistent estimator of the covariance

~

matrix of the asymptotic distribution of vec(D,(6)) (after suitable normalization). We refer to
‘71;71/ 2(9)1}60(13”(9)) as the orthogonalized sample Jacobian with Jacobian-variance weighting. In

the i.i.d. case considered here, we have

Von(0) := 171" vec(Gi(0) — G (0))vec(Gi(8) — Gn(9)) — Tn(0)Q, 1 (0)Tn(0)', where

[,(0) := (T1n(0),...,Tpnu(0)) € RPEXE (14.7)

and fln(ﬁ), vy fpn(ﬂ) are defined in (6.2).

Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012) propose to take
rk,(0) to be a function of 0,2 (0) Dy, (). We refer to A;”Q(a)f)n(e) as the orthogonalized sample
Jacobian with moment-variance weighting. Below we consider both choices. For reasons that will

become apparent, we treat the cases p =1 and p > 2 separately.

14.5 p =1 Case

Whether Kleibergen’s nonlinear CLR test reduces asymptotically to Moreira’s CLR test in the
homoskedastic linear I'V regression model depends on the rank statistic chosen. Here we consider the
two choices of rank statistic that have been considered in the literature. We find that Kleibergen’s
nonlinear CLR test reduces asymptotically to Moreira’s CLR test with a rank statistic based on
Vbn(6), but not with a rank statistic based on Q,(6). This illustrates that the flexibility in the
choice of the rank statistic for Kleibergen’s CLR test can have drawbacks. It may lead to a test
that has reduced power.

When p = 1, some calculations (based on the closed-form expression for the minimum eigenvalue
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of a 2 x 2 matrix) show that

CLR,(0) = ARy (0) — Amin(nY2Q1/2(0)5,(0), 7 (0)) (nM/2Q1/2(0) G, (6), rn(6))) provided
rkn(0) = 7,(0)'1,(6) for some random vector r,,(0) € R*. (14.8)

This equivalence is the origin of the p = 1 formula for the LR statistic in Moreira (2003). Hence,
when p = 1, for testing Hy : 6 = 6y, Kleibergen’s test statistic with rk;,(6) = 7,(0)'r,(6) is of the
same form as Moreira’s (2003) LR statistic with 7,,(6p) in place of T, and with n1/2§51/2(90)§n(00)
in place of S,,, where g is the null value of 9 The two choices for 7k, (0) that we consider when
p=1 are

rk1n(6) := nD,(0)' V51 (0) Dy (0) and 1k, (0) := 1Dy, (8)' Q5 (0) Dy (6). (14.9)

The statistic 7k, (0) has been proposed by Kleibergen (2005, 2007) and Smith (2007) and 7k, (0)
has been proposed by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith
(2012).

Let

n n n !
Colm) i=n" Y Z:Z(Zim)? - <n—1 > Zizgw> <n—1 > Zﬂﬁ) . (14.10)
i=1 i=1 =1
This definition of ¢,,(7) is the same as in (14.1)) when p = 1.

Lemma 14.3 Suppose Assumption HLIV holds and p = 1. Under the null hypothesis Hg : 0 = 0,
for any sequence of reduced-form parameters {m, € Il : n > 1}, we have

() rk1n(00) = T[Tr + LvoK ;¢ (mn) K 7% + 0, ()] 71T - (1 + 0p(1)) + 0p(1),

(b) 7kan(60) = T Tn(LyobySvbo) 1 - (1+ 0p(1)) + 0p(1), where Lo := (8o, )5 (60, 1)’ € R,
and

(c) LyobyXyby = M, where ¢? := Var(Va;)/Var(Vy;) > 0 and p = Corr(Va;, Va;) €

c?(1-p?)
(_17 1)

Comments: (i) If 7, — 0, then (,(7,) — 0 and Lemma [14.3|a) shows that rki,(6o) equals
T Ta(l + op(1)) + op(1). That is, under weak IV’s and semi-strong IV’s, rki,(6p) reduces as-
ymptotically to Moreira’s (2003) conditioning statistic. Under strong IV’s, this does not occur.
However, under strong IV’s, we have rki,(6p) —p 0o, just as T;Tn —p 00. In consequence, the test
constructed using rk1,(0p) has the same asymptotic properties as Moreira’s (2003) CLR test under

the null and contiguous alternative distributions.

%3The functional form of the rank statistics that have been considered in the literature, such as the statistics of
Cragg and Donald (1996, 1997), Robin and Smith (2000), and Kleibergen and Paap (2006) all reduce to the same
function when p = 1. Specifically, 7k, (6) equals the squared length of some k vector r,(8).
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(ii) Simple calculations show that ¢, (m,) is positive semi-definite (psd). Hence, rki,(6o) is
smaller than it would be if the second summand in the square brackets in Lemma m(a) was zero.

(iii) Lemma[14.3|(b) shows that the rank statistic rkay(6o) differs asymptotically from Moreira’s
conditioning statistic T;Tn by the scale factor (Lvobgzvbo)_l. Thus, the nonlinear CLR test
considered by Newey and Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012) does
not reduce asymptotically to Moreira’s (2003) CLR test in the homoskedastic linear IV regression
model with fixed I'V’s under weak I'V’s. This has negative consequences for its power. Under strong
or semi-strong IV’s, this test does reduce asymptotically to Moreira’s (2003) CLR test because
rk1n,(80) —p 00, just as T;Tn —,, 00, which is sufficient for asymptotic equivalence in these case.

(iv) For example, if p =0 and ¢ = 1 in Lemma(c), then (LyobpXybo) ™t = (1463)2 < 1.In
this case, if || = 1, then (LyobyXybo) ™t = 1/4 and rkay,(0p) is 1/4 as large as T;Tn asymptotically.
On the other hand, if p = 0 and 6y = 0, then (ngb{)Evbo)_l = ¢?, which can be arbitrarily close
to zero or infinity depending on c.

(v) When (LyobyXybo) ! is large (small), the rka,(6p) statistic is larger (smaller) than desired
and it behaves as though the IV’s are stronger (weaker) than they really are, which sacrifices power
unless the IV’s are quite strong (weak). Note that the inappropriate scale of rkay,(6y) does not

cause asymptotic size problems, only power reductions.

14.6 p > 2 Case

When p > 2, Kleibergen’s (2005) nonlinear CLR test does not reduce asymptotically to Moreira’s
(2003) CLR test for any choice of rank statistic rky (o) for several reasons.

First, Moreira’s (2003) LR statistic is given in (3.4), whereas Kleibergen’s (2005) nonlinear LR
statistic is defined in (|14.5)). By Lemma M(e), n1/2ﬁﬁl/2/g\n = Sp+ 0p(1), where, here and below,
we suppress the dependence of various quantities on 6y. Hence, AR,, = ?;Lgn + 0p(1). Even if rk,

takes the form 7] r, for some random k vector r,, it is not the case that
CLR,, = ARy, — Amin (202G, r) (020125, 1)) (14.11)

when p > 2. Hence, the functional form of Kleibergen’s test statistic differs from that of Moreira’s
LR statistic when p > 2.

Second, for the rank statistics that have been suggested in the literature, viz., those of Cragg
and Donald (1996, 1997), Robin and Smith (2000), and Kleibergen and Paap (2006), rk;, is not of
the form 7] r,, when p > 2.

Third, Moreira’s conditioning statistic is the k x p matrix T',,. Conditioning on this random ma-
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trix is equivalent asymptotically to conditioning on the k x p matrix n!/ 213;; by Lemma f). But,
it is not equivalent asymptotically to conditioning on any of the scalar rank statistics considered
in the literature when p > 2.

Fourth, if one weights the conditioning statistic in the way suggested by Kleibergen (2005) and
Smith (2007), then the resulting CLR test is not guaranteed to have correct asymptotic size, see

-1
n o

Windmeijer (2009) and Guggenberger, Ramalho, and Smith (2012), then the CLR test is guaranteed

Section 5 of AGI1. If one weights the conditioning statistic by Q as suggested by Newey and
to have correct asymptotic size under the conditions given in AG1, but the conditioning statistic is
not asymptotically equivalent to Moreira’s (2003) conditioning statistic and the difference can be

substantial, see Lemma [14.3(b) and (c) for the p = 1 case.

15 Simulation Results for Kleibergen’s MVW-CLR Test

This section presents finite-sample simulation results that show that Kleibergen’s (2005) CLR
test with moment-variance weighting (MVW-CLR) has low power in some scenarios in the ho-
moskedastic linear IV model with normal errors, relative to the power of the SR-CQLR; and
SR-CQLRx tests, Kleibergen’s CLR test with Jacobian-variance weighting (JVW-CLR), and the
CLR test of Moreira (2003) (Mor—CLR)ﬁ As noted at the beginning of Section Lemma m
and Comment (iv) following it show that the scale (denoted by scale below) of the moment-variance
weighting conditioning statistic can be far from the optimal value of oneﬁ We provide results for
one scenario where scale is too large and one scenario where it is too small. These scenarios are
chosen based on the formula given in Lemma [14.3

The model is the homoskedastic normal linear IV model introduced in Section Bl with unknown
error variance matrix ¥y and p = 1. The IV’s are fixed—they are generated once from a N (0%, I)
distribution. The sample size n equals 1,000. The hypotheses are Hy : § = 0 and Hy : 8 # 0.
The tests have nominal size .05. The power results are based on 40,000 simulation repetitions and
1,000 critical value repetitions and are size-corrected (by adding non-negative constants to the
critical values of those tests that over-reject under the null). The reduced-form error variances
and correlation are denoted by Xy11, Y99, and p, respectively, and A := 7' Z'Zx. The number of

IV’sis k. The MVW-CLR and JVW-CLR tests employ the Robin and Smith (2000) rank statistic.

64The MVW-CLR and JVW-CLR tests denote Kleibergen’s (2005) CLR test with the rank statistic given by the
Robin and Smith (2000) statistics rk, = /\min(nﬁ;ﬁ;lpﬁn) and rk, = )\min(nf)gffgiﬁn), respectively, where Qn
and lA)n are defined in and with 6 = 6o and \7Dn is an estimator of the asymptotic variance of ﬁn (after
suitable normalization) and is defined in . Note that the second formula for rk,, is appropriate only for the case
p = 1, which is the case considered here. The estimators (Aln and ‘7Dn are estimators of the asymptotic variances of
the sample moments and Jacobian, respectively, which leads to the MVW and JVW terminology.

55The constant scale is the constant (LvobyXvbo) ' in Lemma b) and (c).
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Results are reported for the tests discussed above, as well as Kleibergen’s LM test and the AR test.

Design 1 takes Xy11 = 1.0, Yy = 4.0, p = 0.5, 7 = 0.044, A = 2.009, and & = 5. These
parameter values yield scale = 30.0, which results in the MVW-CLR test behaving like Kleibergen’s
LM test even though the LM test has low power in this scenario. Design 2 takes ¥y11 = 3.0, Xy90 =
0.1, p = 0.95, 7 = 0.073, A = 4.995, and k£ = 10. These parameter values yield scale = 0.0033,
which results in the MVW-CLR test behaving like the AR test even though the AR test has low
power in this scenario.

The power functions of the tests are reported in Figure 1 (with OX'/? on the horizontal axes
with A1/2 fixed). Figure 1(a) shows that, for Design 1, the MVW-CLR and LM tests have very
similar power functions and both are substantially below the power functions of the SR-CQLR;,
SR-CQLRj3, JVW-CLR, and Mor-CLR tests, which have essentially equal and optimal power. The
AR test has high power, like that of the SR-CQLR;, SR-CQLR», JVW-CLR, and Mor-CLR tests,
for positive 6, and low power, like that of the MVW-CLR and LM tests, for negative 6.

Figure 1(b) shows that, for Design 2, the MVW-CLR and AR tests have similar power functions
and both are substantially below the power functions of the SR-CQLR;1, SR-CQLRjs, JVW-CLR,
Mor-CLR, and LM tests, which have essentially equal and optimal power.

16 Power Comparisons in Heteroskedastic/Autocorrelated Linear

IV Models with p=1

In this section, we present some power comparisons for the AR test, Kleibergen’s (2005) LM,
JVW-CLR, and MVW-CLR tests, and the SR-CQLR3 test introduced in AGQE] We also consider
the plug-in conditional linear combination (PI-CLC) test introduced in I. Andrews (2014), as well as
the MM1-SU and MM2-SU tests introduced in Moreira and Moreira (2013). The PI-CLC test aims
to approximate the test that has minimum regret among conditional tests constructed using linear
combinations of the LM and AR test statistics (with coefficients that depend on the conditioning
statistic), see I. Andrews (2014) for detailsf’] The MM1-SU and MM2-SU tests have optimal
weighted average power for two different weight functions (over the alternative parameter values
f and the strength of identification parameter vector u, given in below) among tests that

satisfy a sufficient condition for local unbiasedness[*]

6See (5.2), (9.1), and a footnote in Section for the definitions of AR test and Kleibergen’s LM, MVW-CLR,
and JVW-CLR tests. The AR test is called the S test in Stock and Wright (2000). The LM and JVW-CLR tests are
denoted by K and QCLR, respectively, in I. Andrews (2014).

57The PI-CLC test does not possess an optimality property because it does not actually equal the minimum regret
test.

68 The weight functions considered depend on the variance parameters ¥y¢ and Xgg in 1) below.
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We consider the same designs as in I. Andrews (2014, Sec. 6.2). These designs are for het-
eroskedastic and/or autocorrelated linear IV models with p = 1 and k& = 4. The designs are cali-
brated to mimic the linear IV models for the elasticity of inter-temporal substitution estimated by
Yogo (2004) for eleven countries using quarterly data from the early 1970’s to the late 1990’s. The
power comparisons are for the limiting experiment under standard weak identification asymptotics.
In consequence, for the simulations, the observations are drawn from the following model:

0, nt/2G,(60) 10 I Y

- ~ ~ N ; (16.1)
0 /2Go (0o) )\ Tie Sae

for # € R, p € R*, and Yya, 266 € RFXk where Yyq and Mg are assumed to be known@m
The values of u, ¥4q, and Xgq are taken to be equal to the estimated values using the data from
Yogo (2004)@ A sample is a single observation from the distribution in and the tests are
constructed using the known values ¥, and E(;Gm The hypotheses are Hy : 8 = 0 and Hy : 8 # 0.

Power is computed using 10,000 simulation repetitions for the rejection probabilities, 10,000
simulation repetitions for the data-dependent critical values of the MVW-CLR, JVW-CLR, and
SR-CQLRj, tests, and two million simulation repetitions for the critical values for the PI-CLC tests
(which are taken from a look-up table that is simulated just one time).

Some details concerning the computation and definitions of the SR-CQLR,, PI-CLC, MMI1-
SU, and MM2-SU tests are as follows. The SR-CQLR> test uses ¢ = .05, where € appears in the
definition of Zn(e) in of AG2. For the PI-CLC test, the number of values "a" considered in
the search over [0, 1] is 100, the number of simulation repetitions used to determine the best choice
of "a" is 2000, and the number of alternative parameter values considered in the search for the best
"a" is 41. For the MM1-SU and MM2-SU tests, the number of variables in the discretization of
maximization problem is 1000, the number of points used in the numerical approximations of the
integrals A1 and h2 that appear in the definitions of these tests is 1000, and when approximating
integrals h1 and h2 by sums of 1000 rectangles these rectangles cover [—4, 4].

9Tn linear IV models with i.i.d. observations, the matrix Y4c is necessarily symmetric. However, with autocorre-
lation, it need not be. In the eleven countries considered here, it is not.

"The variance matrix in the limit experiment varies slightly depending on whether one treats the IV’s as fixed or
random. For example, the asymptotic variance of nl/zén(ﬁo) under standard weak IV asymptotics varies slightly
in these two cases. Power results for the SR-CQLR; test when the limiting variance is computed using fixed IV’s
are equivalent to those computed for the SR-CQLRj test for the case where the limiting variance is computed using
random IV’s. In consequence, we do not separately report power results for the SR-CQLR; test.

"See 1. Andrews (2014, Appendices D.3 and D.4) for details on the calculations of the simulation designs based on
Yogo’s (2004) data, as well as for details on the computation of I. Andrews’ PI test, referred to here as PI-CLC, and
the two tests of Moreira and Moreira (2013), referred to here and in I. Andrews (2014) as MM1-SU and MM2-SU.
The JVW-CLR and LM tests here are the same as the QCLR and K tests, respectively, in I. Andrews (2014).

"For example, fjn(é?o) in is taken to be known and equal to ¥}, and Vi(6o) in is taken to be known
and equal to the variance matrix in .
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Table IV. Shortfalls in Average-Power (x100)

Country @'p non-Kron SR-CQLR JVW MVW PI-CLC MM1 MM2 LM AR

Australia 138 17 .0 1 1 2 2.4 1 1 6.9
Canada 48 5 .0 .0 .2 .0 1.4 b 3 6.8
France 79 6 1 .2 .0 3 .7 3 .0 8.0
Germany 10 3 .0 1 4 .0 2 1 23 6.5
Italy 84 15 5 1.1 2.0 2 1.1 .0 2.6 5.5

Japan 17 14 3.3 3.2 8.9 4 .0 24 174 .6
Netherlands 25 3 .0 2 1 2 .9 .5 1.6 6.6
Sweden 174 9 3 2 3 2 1.5 .0 375
Switzerland 31 4 1 .0 .0 4 1.3 1.1 .5 7.2
U. K. 53 38 7 6.0 5.4 .8 2.5 .0 7.8 3.8

U.S. 81 10 .8 2.0 2.9 .0 7.3 .8 3.5 3.2
Average over Countries .5 1.2 1.8 2 1.8 .5 3.3 5.7

The asymptotic power functions are given in Figure 2. Each graph is based on 41 equi-spaced
values on the x axis covering [—6,6]. The = axis variable is the parameter 6 scaled by a fixed
value of ||u|| for a given country, thus 0||u|| € [—6, 6], where 0 is the alternative parameter value
(when 6 # 0) defined in (16.1)) of AG2 and g is the mean vector that determines the strength of
identification. The y axis variable is power x100.

Table IV provides the shortfall in average-power (x100) of each test for each country relative
to the other seven tests considered, where average power is an unweighted average over the 40
alternative parameter values. Table V provides the mazimum power shortfall (x100) of each test
for each country relative to the other seven tests considered, where the maximum is taken over the
40 alternative parameter valuesm The shortfall in average-power is an unweighted average power
criterion, whereas the maximum power shortfall is a minimax regret criterion.

The last row of Table IV shows the average (across countries) of the shortfall in average-power
(x100) of each test. This provides a summary measure. Similarly, the last row of Table V shows
the average (across countries) of the maximum power shortfall (x100) of each test.

The second and third columns of Table IV provide the concentration parameter, p'p, which
measures of the strength of identification, and a non-Kronecker index, abbreviated by non-Kron,

which measures the deviation of the variance matrix in ([16.1]), call it ¥, from a Kronecker matrix.

"3 More precisely, let AP,. denote the average power of test ¢ for country ¢, where the average is taken over the 40
parameter values in the alternative hypothesis. By definition, the shortfall in average-power of test t for country c is
maxs<g APsc — AP;., where the maximum is taken over the eight tests considered.

Let Pic(0) denote the power of test ¢ in country ¢ against the alternative 6. By definition, the power shortfall of
test ¢ in country ¢ for alternative 0 is maxs<g Psc(0) — Pic(0) and the mazimum power shortfall of test ¢ in country ¢
is maxgeeo,, (maxs<g Psc(0) — Pic(6)), where ©49 contains the 40 alternative parameter values considered.

Note that, as defined, the shortfall in average-power is not equal to the average of the power shortfalls over § € ©49.
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Table V. Maximum Power Shortfalls (x100)
Country @' non-Kron SR-CQLR JVW MVW PI MM1 MM2 LM AR

Australia 138 17 ) 6 .8 1.0 8.2 1.3 9 172
Canada 48 5 .6 5 .9 7 5.4 3.0 1.7 177
France 79 6 7 8 1) 1.0 3.0 1.6 4199
Germany 10 3 .8 .8 2.2 .6 1.0 .8 10.6 18.4
Italy 84 15 4.4 5.7 6.5 3.9 97 2.3 7.1 177
Japan 17 14 21.3 414 449 86 10.1 13.6 85.8 11.9
Netherlands 25 3 .9 1.1 .9 1.4 39 3.3 8.2 18.6
Sweden 174 9 1.0 .6 1.0 7 4.9 4 1.1 19.6
Switzerland 31 4 .5 3 .5 1.6 4.8 5.5 1.4 18.8
U. K. 53 38 8.4 27.3 23.2 9.0 20.6 7.1 370 14.7

U.S. 81 10 5.2 9.0 10.2 26 27.7 5.1  11.7 124
Average over Countries 4.0 8.0 8.3 2.8 9.0 4.0 149 170

This deviation is given by the formula 1,000 x ming ¢ ||B ® C' — V||, where the minimum is taken
over symmetric pd matrices B and C of dimensions 2 x 2 and 4 X 4, respectively, || - || denotes
the Frobenius norm, and the rescaling by 1,000 is for convenience@ Germany, Japan, and the
Netherlands exhibit the weakest identification, while Sweden and Australia exhibit the strongest.
The U.K., Australia, Italy, and Japan have variance matrices that are farthest from Kronecker-
product form, while Germany, the Netherlands, and Switzerland have variance matrices that are
closest to Kronecker-product form.

The test that performs best in Tables IV and V is the PI-CLC test, followed by the SR-CQLRs
and MM2-SU tests. The difference between these tests is not large. For example, the difference
in the average (across countries) shortfall in average-power (not rescaled by multiplication by 100
in contrast to the results in Table IV) of the PI-CLC test and the SR-CQLR2 and MM2-SU tests
is .003. This small power advantage is almost entirely due to the relative performances for Japan,
which exhibits very weak identification and moderately large non-Kronecker index.

The remaining tests in decreasing order of power (in an overall sense) are the JVW-CLR, MVW-
CLR, MM1-SU, LM, and AR tests. Not surprisingly, the LM and AR tests have noticeably lower
power than the other tests in an overall sense, and the AR test has noticeably lower power than
the LM test.

We conclude that the SR-CQLRj test has asymptotic power that is competitive with, or better
than, that of other tests in the literature for the particular parameters considered here in the

particular model considered here. The SR-CQLRs test has advantages compared to the PI-CLC,

"The non-Kronecker index is computed using the Framework 2 method given in Section 4 of Van Loan and Pitsianis
(1993) with symmetry of C imposed by replacing A;; by (Ai; + Aj;)/2 in equation (9) of that paper.
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MM1-SU, and MM2-SU tests of (i) being applicable in almost any moment condition model, whereas

the latter tests are not, (ii) being easy to implement (i.e., program), and (iii) being fast to compute.

17 Eigenvalue-Adjustment Procedure

FEigenvalue adjustments are made to two sample matrices that appear in the two SR-CQLR
test statistics. These adjustments guarantee that the adjusted sample matrices have minimum
eigenvalues that are not too close to zero even if the corresponding population matrices are singular
or near singular. These adjustments improve the asymptotic and finite-sample performance of the
tests by improving their robustness to singularities or near singularities.

The eigenvalue-adjustment procedure can be applied to any non-zero positive semi-definite (psd)
matrix H € R4 *H for some positive integer dp. Let € be a positive constant. Let Ay A aAly be
a spectral decomposition of H, where Ay = Diag{\g1, ..., \may } € Ru%dn g the diagonal matrix
of eigenvalues of H with nonnegative nonincreasing diagonal elements and Apg is a corresponding

orthogonal matrix of eigenvectors of H. The eigenvalue-adjusted matrix H® € R *4H g
H® := AgAy Ay, where Ay := Diag{max{\g1, Amax(H)e}, ..., max{Agd, , Amax(H)e}}.  (17.1)

We have Amax(H) = Ag1, and Apax(H) > 0 provided the psd matrix H is non-zero.

The following lemma provides some useful properties of this eigenvalue adjustment procedure.

Lemma 17.1 Let dy be a positive integer, let € be a positive constant, and let H € R¥M*%H pe ¢
non-zero positive semi-definite non-random matriz. Then,

(a) (uniqueness) He, defined in (17.1), is uniquely defined. (That is, every choice of spectral

decomposition of H yields the same matriz HF),

(b) (eigenvalue lower bound) Amin(H®) > Amax(H )e,

(¢) (condition number upper bound) Amax(H®)/Amin(H®) < max{1/e, 1},

(d) (scale equivariance) For all ¢ > 0, (cH)® = cHE, and

(e) (continuity) HE — HE for any sequence of psd matrices {H, € R¥>*9H . n > 1} that
satisfies H, — H.

Comments: (i) The lower bound Amax(H)e for Amin(H¢) given in Lemma [17.1|(b) is positive
provided H # Qu*xdn
(ii) Lemma c) shows that one can choose € to control the condition number of H¢. The

latter is a common measure of how ill-conditioned a matrix is. If ¢ < 1, which is a typical choice,
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then the upper bound is 1/e. Note that H® = H iff Apin(H) > Amax(H )¢ iff the condition number
of H is less than or equal to 1/¢.

(iif) Scale equivariance of (-)¢ established in Lemma [17.1[d) is an important property. For
example, one does not want the choice of measurements in $ or $1,000 to affect inference.

(iv) Continuity of (-)¢ established in Lemma[17.1](e) is an important property because it implies

that for random matrices {H, : n > 1} for which H, —p H, one has HE —p HE.

Proof of Lemma For notational simplicity, we drop the H subscript on Ag, Ay , and
A5, . We prove part (a) first. The eigenvectors of H® (= AA®A’) defined in are unique up
to the choice of vectors that span the eigenspace that corresponds to any eigenvalue. Suppose the
Jy -, j+d eigenvalues of H are equal for some d > 0 and 1 < j < dp. We can write A = (A1, A, A3),
where A; € RIxU-1 A, € Rinx(d+) and A3 € RI*(dun—i=d) Tn addition, H can be written
as H = A,AA,, where A, = (A, Aas, A3), the column space of As, equals that of Ay, and A,
is an orthogonal matrix. As above, H® = AA®A’. To establish part (a), if suffices to show that
He = A, A A’ or equivalently, AAN°A’é = A,A°A’€ for any € € R#.

For any ¢ € R% | we can write £ = &; + &, where &; belongs to the column space of Ay (and

Ay, and &, is orthogonal to this column space. We have

ANA'E = AN (A1, Ag, A3) (&1 + &)
= ANS(077Y, (AGgy), 0% 90 4 AN (A1), 0, (A56,)")
= ANS(077Y, (Abg,), 09I H) 1 (Ay, Ag, Ag)AZ((A7,), 07, (A5¢,)")
= A2 A58 N5 + (A1, A3)AZ ((A1€r)', (A56,)")
= AguAb, €105 + (A1, Ag)AZ ((A162)', (A58,)")
= A NA¢, (17.2)

where AS € RU@n—d=1)x(dn—d-1) i5 the diagonal matrix equal to A° with its j, ..., j + d rows and
columns deleted, \; = max{\;, Amax(H)e}, A; is the jth eigenvalue of A, the second equality uses
Algy =071 Ayey = 09374 and A4, = 0911 the third equality holds because A\j = ... = \jiq
implies that A\j = ... = A, ;, the fourth equality holds using the definition of AZ, the fifth equality
holds because Ay AL = Ag. Al (since both equal the projection matrix onto the column space of
As (and Asy,)), and the last equality holds by reversing the steps in the previous equalities with
Ay = (A1, Agy, A3) in place of A = (Aj, Ag, A3). Because holds for any matrix A, defined
as above and any feasible j and d, part (a) holds.

To prove parts (b) and (c), we note that the eigenvalues of H® are {max{Ag;, Amax(H)c} :
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=1,...,dg} because H® = AA®A" and A is an orthogonal matrix. In consequence, Apin(H®)

ax(H )e, which establishes part (b). If Apin(H) > Amax(H )e, then H® = H, Apax(H®) /Amin(H®) =
ax(H)/Amin(H) < 1/e, and the result of part (c) holds. Alternatively, if Apin(H) < Amax(H )z,
then A\pmin(H®) = Amax(H)e. In addition, we have Apax(H®) = max{Ag1, Amax(H)e} = Amax(H)

J
Am
Am

x max{l,e} using Ag1 = Amax(H). Combining these two results gives Amax(H®)/Amin(H®) =
Amax(H) max{1l,e}/(Amax(H)e) = max{1l/e, 1}, where the second equality uses the assumption
that H is non-zero, which implies that Ayax(H) > 0. This gives the result of part (c).

We now prove part (d) and for clarity make the H subscripts on Ay and Ay explicit in this
paragraph. We have A,y = cAy and we can take A.y = Apy by the definition of eigenvalues and
eigenvectors. This implies that A, = cA5; (using the definition of A, in (6.6)) and (cH)* =
ANy ALy = cAg A3 A = cHE, which establishes part (d).

Now we prove part (e). Let A,A,A! be a spectral decomposition of H,, for n > 1. Let HE =
ApAS A for no > 1, where Aj, is the diagonal matrix with jth diagonal element given by A7, =
max{An;, Amax(Hy)e} and Ap; is the jth largest eigenvalue of H,,. (By part (a) of the Lemma, HE
is invariant to the choice of eigenvector matrix A, used in its definition.)

Given any subsequence {ng} of {n}, let {n,,} be a subsubsequence such that A,, — A for
some orthogonal matrix A that may depend on the subsubsequence {n,,}. (Such a subsubsequence
exists because the set of orthogonal di x dg matrices is compact.) By assumption, H,, — H. This
implies that A, — A, where A is the diagonal matrix of eigenvalues of H in nonincreasing order
(by Elsner’s Theorem, see Stewart (2001, Thm. 3.1, pp. 37-38)). In turn, this gives A5 — A®,
where A® is the diagonal matrix with jth diagonal element given by A5 = max{\;, Amax(H)e}
and \; is the jth largest eigenvalue of H, because Amax(-) is a continuous function (by Elsner’s
Theorem again). The previous results imply that H,,, = Ay, A, A, — AAA', H = AAA,
H, = A, A, A, ~— AAA’, and AA*A’ = H®. Because every subsequence {ns} of {n} has a
subsubsequence {n,,} for which H; — H¢, we obtain H; — H¢, which completes the proof of

part (e). O

18 Singularity-Robust LM Test

SR-LM versions of Kleibergen’s LM test and CS can be defined analogously to the SR-AR and
SR-CQLR tests and CS’s. However, these procedures are only partially singularity robust, see
the discussion below. In addition, LM tests have low power in some circumstances under weak

identification.
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The SR-LM test statistic is

0), (18.1)

Pp— I~ / i~
SR—LMn(Q) = ngAn(Q) Pﬁgiﬂw)ﬁm(ﬂ)g“‘”(

where Pp; denotes the projection matrix onto the column space of the matrix M. For testing

Hy : 0 = 0y, the SR-LM test rejects the null hypothesis if

SR-LM;(00) > Xhingr, (09) (18.2)

7p}’1_a7

2

where Xmin{7,(60),p},1 -

denotes the 1 — « quantile of a chi-squared distribution with min{7,,(6y), p}

degrees of freedom. This test can be shown to have correct asymptotic size and to be asymptotically

similar for the parameter space F fﬁ[, which is a generalization of the parameter space Fp in AG1
and has a similar (rather complicated) form to Fy. It is defined as follows: for some §; > 0,

SR .__ | min{rp,p} ~SR

Fing = szo{ F }fLMj, where

cy. GrB%L .
Fingy = AF € Fy i mip > 61 and Ay <\PF 1 5) > 81 V¢ € RV with ||¢] = 13,

Gl = T2 ALGy € RTPP, rp o= rk(Qp), gf =TT *Apg; € R'F,

7

U = Era;a; — Era;g; (Erglgl) ' Epgfa) for any random vector a;, (18.3)

Tip is the jth largest singular value of ErG} for j = 1,...,min{rp,p}, 7§p = 01, By is a
p X p orthogonal matrix of eigenvalues of (EpG}) (ErpGj}) ordered so that the corresponding
eigenvalues (kjp, ..., m;F) are nonincreasing, C% is an rp x rp orthogonal matrix of eigenvalues
of (ErGy)(ErG;)" ordered so that the corresponding eigenvalues (K], ..., %y, ) are nonincreas-
ing, B}, := (B}, Bj,_;) for Bj,; € RPJ and B}, € RP*®79) and C}, := (Cy, Cpyp_ ;) for
C; ;€ R™F*J and C};, k—j € Rrex(rr—j ) See Section 3 of AG1 for a discussion of the form of this

parameter space and the quantities upon which it depends. Note that W% is the expected outer-

product matrix of the vector of residuals, a; — Epa;g} (Erg;g;) g, from the L?(F) projections
of a; onto the space spanned by the components of g}, see AG1 for further discussion.

The conditions in ffﬁ (beyond those in ]—'25R) are used to guarantee that the conditioning
matrix Dy, € R™*P has full rank min{7,,p} asymptotically with probability one (after pre- and

post-multiplication by suitable matrices). AG1 shows that these conditions are not redundant.

"The first min{rr, p} eigenvalues of (ErG}) (ErG}) and (ErG})(ErG}) are the same. If rr > p, the remaining
rp — p eigenvalues of (ErG;)(ErGy)" are all zeros. If rp < p, the remaining p — rp eigenvalues of (ErG}) (ErGy)
are all zeros.

"0The matrices By and C'j are not necessarily uniquely defined. But, this is not of consequence because the Ap—j ()
condition is invariant to the choice of Bx and Cr.
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Given the need for these conditions, the SR-LM test is not fully singularity robust. The asymptotic
size and similarity result for the SR-LM test stated above can be proved using Theorem 4.1 of
AG1 combined with the argument given in Section [I0.2] below. For brevity, we do not provide the
details. Extensions of the asymptotic size and similarity results to SR-LM CS’s are analogous to
those for the SR-AR and SR-CQLR. CS’s.

A theoretical advantage of the SR-AR and SR-CQLR tests and CS’s considered in this paper,
relative to tests and CS’s that make use of the LM statistic, is that they avoid the complicated

conditions that appear in F ‘Lg ]\R4.

19 Proofs of Lemmas [6.1] and [6.2]

Lemma of AG2. Let D be a k x p matriz with the singular value decomposition D =
CYB’', where C is a k x k orthogonal matriz of eigenvectors of DD’', B is a p X p orthogonal
matriz of eigenvectors of D'D, and Y is the k x p matriz with the min{k,p} singular values
{rj + 7 <min{k,p}} of D as its first min{k,p} diagonal elements and zeros elsewhere, where T;

is nonincreasing in j. Then, c,p(D,1 —a) = cp(T,1 — ).

Proof of Lemma [6.1l Define

ptie | B 0| e porixo, (19.1)

/

o 1

The matrix BT is orthogonal because B is, where B is as in the statement of the lemma. The

eigenvalues of (D, Z)'(D, Z) are solutions {x; : j < p+ 1} to

(D, 2)(D,Z) — klp41| = 0 or
|BY(D, Z2) (D, Z)B" — k41| = 0 or
(DB, Z) (DB, Z) — kI,+1| = 0, or
(O, Z)CC'(CY, Z) — kly1| = 0, or,
(Y, Z*) (Y, Z*) — klpp1| = 0, where Z* := C'Z ~ N (0%, I), (19.2)

the equivalence of the first and second lines holds because |A1 42| = |A1] - |A2], |BT| = 1, and
Bt BT = I,41, the equivalence of the second and third lines holds by matrix algebra, the equiv-
alence of the third and fourth lines holds because DB = CYB'B = CY and CC’ = I, and the
equivalence of the last two lines holds by CC’ = I, and the definition of Z*. Equation implies
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that Amin((D, Z)'(D, Z)) equals Amin((Y, Z*)'(Y, Z*)). In addition, Z'Z = Z* Z*. Hence["|
CLRy (D) =2'Z — Muin((D, Z2) (D, 2)) = Z" Z* — Amin (Y, Z*)' (Y, Z%)). (19.3)

Since Z and Z* have the same distribution, CLRy, ,(D) (= Z*Z* — Anin((Y, Z*)(Y, Z*))) and
CLRy,(Y) :=2'Z — Muin((Y, Z2) (Y, Z)) have the same distribution and the same 1 — a quantile.
That is, ¢ (D, 1 —a) = ¢ p(Y,1 — ). O

Lemma of AG2. The statistics QLR1,, ck,p(nlﬂf);, 1—a), lA):‘L’D* ARy, © En, and En

are invariant to the transformation (Z;,u}) ~» (MZ;,u}) for any k x k nonsingular matriz M.

zn’

This transformation induces the following transformations: g; ~~ Mg;, G; ~ MGy, gn ~~ Mgy,
G ~» MGy, Q, ~» MQ,M’', T, ~ MT;,M’, Dy, ~» MDy, Znyp ~+ ZnxikM', By ~ M''E,,
Vi~ ( p+1®M)V (Ip41 @ M), and Ry, ~ ( L1 © MY Ry, (I @ M)

Proof of Lemma We will refer to the results of the Lemma for g;, G;, ..., ]/%n as equivariance

results. The equivariance results are immediate for g;, Gi, gn, Gn, 0, I'jn, and Z,,«j. For D,, =

(ﬁln, . ﬁpn), we have

>

= Gjn —TjnQ; "Gy ~» MGy, — ML, M'(MQ, M")"* Mg, = MD;,, (19.4)
for j =1,...,p. We have =, := (Z/,, ZnkMIMZ!U* = M5,
We have u}, = 2 Z; o~ (MTEN)MZ; = uf,. We have V, == nt S [(ur —az,)
X (uf = @) @ ZiZ]) ~ ™ 00 [ — @) (uf = 5,) @ MZ,ZIM') = (g1 @ M)V, (1 @ M)
using the invariance of @f,. We have R, := (B'® I;) Vo (B® I;) ~» (B'® M)V, (B® M') =
(Ipy1 ® M) R, (Ip+1 ® M’) using the equivariance result for V.

We have Sjp, = tr(R, Q51)/k ~ tr(MRje, M"Y (MQuM') 1) /k = tr(MR}, M'M' 10,1

Znxk) 2! U~ (MZ!

nxk

/\

jln n
H/k = ijgn for j,£ = 1,...,p + 1 using the equivariance result for R,. We have L, :=

(@, Ip)(gi)_l(ﬂ, L) ~~ L,, using the invariance result for 3,,. We have D' D := L1/2D’ Q) 1D, LL?
> E}/%ﬁ;M’(MﬁnM’)_lMDnL}A/Q — D¥ D7 . This implies that ck7p(n1/2D;‘l, 1—a) ~ ckm(nlmﬁfl,
1 — ) because ck7p(n1/2ﬁ;§, 1 — ) only depends on ]3;*Z through ]3;2’]3;2 by the Comment to Lemma
6.1

""The quantity CLRy (D) is written in terms of (D, Z) in (19.3), whereas it is written in terms of (Z, D) in (3.5).
Both expressions give the same value.
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We have AR, := ng, Q0 G, ~ ngl, M'(MQ, M') "' MG, = AR,,. We have

QLR1, := AR, — Amin <n (gn, ﬁ@;/z)’ et (% 5&}?))

PN P o~
 ARp = Amin <n (MG, MDLLY?) (MO M) (MG, MDnL,l/2)> = QLRy,, (19.5)
using the invariance of AR,, and En and the equivariance of the other statistics that appear. [J

20 Proofs of Lemma and Proposition (10.4

Lemma of AG2. Suppose Assumption WU holds for some non-empty parameter space
A, C Ag. Under all sequences { A :n > 1} with A, € Ay,

nl/Z(/g\’na ﬁn - EFnGia WFnﬁnUFﬂTn) —d (ghaﬁhazh)v

where (a) (g, Dn) are defined in (10.21)), (b) Ay is the nonrandom function of h and Dy, defined
in (10.24), (c) (Dn,A) and G, are independent, and (d) under all subsequences {wy,} and all
sequences { Ay, n 11 > 1} with Ay, n € As, the convergence result above and results of parts (a)-(c)

hold with n replaced with wy,.

Here and below, we use the following simplified notation:

D, = EFnGi7 B, = BFna Cn = CFna By, = (Bn,qa Bn,pfq)a Cn = (Cn,qa Cn,k—q)7
Wn = WFn7 WQn = WQFn, Un = UFH, and Ugn = UQFn, (20.1)

where ¢ = g3, is defined in (10.22), B, , € RP*?, By, 4 € Rpx(p—a) Chq € RFEX4 and Chi—q €
RF*(k=0) Let

Y4 := Diag{T1p,,...,7qF, } € RTY,
Yop—q = Diag{T(g+1)F, s TpF. } € RP=0x(=9) if | > p.

Yojieq = Diag{T(gs1)p,, - Thr, } € RETDXED if g < p,

T 9% (P—a)

T, := | or-a)xq € R¥Pif | > p, and

Tonp—q
ok=p)xq lk—p)x(p—q)

[ T, 0ex(k=q)  gx(p—F)
T, := N € R¥Pif | < p. (20.2)
ok—a)xq Tokq 0k—a)x(p—k)
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As defined, T,, is the diagonal matrix of singular values of W,, D, U, see ({10.15)).

Proof of Lemma The asymptotic distribution of n'/2(g,,, vec(ﬁn—E r,Gi)) given in Lemma
follows from the Lyapunov triangular-array multivariate CLT (using the moment restrictions
in F3) and the following:

I‘177,
n
n1/2vec(13n — FEr,G;) = n~1/2 Z vec(G; — Ep,G;) — : lenlﬂﬁn (20.3)
i=1 ~
Cpn
. Er,Gogy
=n 12 Z vee(G; — Ep, G;) — : Q;:gz +0,(1),
i=1
' EFnGﬁpgz

where the second equality holds by (i) the weak law of large numbers (WLLN) applied to n=! >},
Guig) for 7 =1,...,p, n 1Y) vee(Gy), and n =t 30 qug), (i) Ep,g; = OF, (iii) hs g = lim Qp, is
pd, and (iv) the CLT, which implies that n'/2g, = O,(1).

The limiting covariance matrix between n'/ 2vec(f)n — Er,G;) and nl/2G, is a zero matrix
because Er,[Gij — EF,Gij — (EFnnggZ)QEjgi]gg = 08k where G;; denotes the jth column of
G;. By the CLT, the limiting variance matrix of n/2vec(D,, — D,) equals lim Varg, (vec(G;) —
(Epnvec(Gg)gz)QI}igi) = lim @%ic(Gi) = @Zec(Gi), see (10.20), and the limit exists because (i) the

components of @zc(ci) are comprised of \g p, and submatrices of A5 p, and (ii) A\s p, — hs for

s =4,5. By the CLT, the limiting variance matrix of n'/2g, equals lim Er,9i9; = hsg.

The asymptotic distribution of n1/2WFn ]_A?nUFnTn is obtained as follows. Using ({10.13[)-(|10.15)),
the singular value decomposition of W,, D, U,, is W,,D,,U,, = C,, Y, B,,. Using this, we get

- - Iy - Iy
Wi DpUpBrg Yot = CoYuB), By g Yrt = Cn Ty o Y, 0=Cn R b Ch.g:
(20.4)
where the second equality uses BJ,B,, = I,,. Hence, we obtain
Wi DU B g Yok = WoDyUpn By g Tk + Won'/2(Dy, — Di)Uy Bryg(n/?Y ) 7
= Cnyg+0p(1) —p haq = Dpg, (20.5)

where the second equality uses (among other things) n'/ 27, — oo for all j < ¢ (by the definition

of ¢ in (10.22))). The convergence in (20.5) holds by (10.19)), (10.24), and (20.1)), and the last
equality in (20.5) holds by the definition of Ay, in (10.24).
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Using the singular value decomposition of W, D,,U,, again, we obtain: if k > p,

09%(p—q)
nY2 W, DUy B p—q = n2C, Y0 Bl B p—q = n*?C T,

Ip_q
09%(P—a) 09*(P—9)
=Cn| 02,4 | = hs| Diag{higi1,...,h1p} | =hsh?
ok—p)x(p—q) 0(k—p)x(p—q)

(20.6)

pP—q’

where the second equality uses B}, By, = I,, the third equality and the convergence hold by (|10.19)
using the definitions in ((10.24) and (20.2) with k& > p, and the last equality holds by the definition
of hi,_, in (10.24) with k > p. Analogously, if k < p, we have

07x(p—a) 07x(k—q) 02x (p—k)
02 W, DUy By p—q = n*2C, T =C,
I, n1/2Tn,k—q 0k—a)x(p—Fk)
2% (k—q) 2% (p—k)
— h3 = h3h ;4 (20.7)

Diag{h1 441, -, h1 g} OF—D*@E=F)

where the third equality holds by (20.2) with & < p and the last equality holds by the definition of
h<>

° . in (10:24) with k < p,
Using " ‘ , and n1/2(/g\n7 D, — EFnGZ) —d (gh,ﬁh)v we get

n'?W,DpUp B p—q = n*WaDnUnBpp—q + Wan'?(Dy, — Dyp)UpBnp—q

—d h3h<1>7p_q + h715hh81h2’p_q = th,q, (20.8)

where B, ;,—q — hop—q, Wy, — hr1, and U,, — hgi, and the last equality holds by the definition of

App—q in (10.24)).
Equations (20.5)) and ([20.8) combine to establish

n' W, D, U, Ty = n'*W,DpUpBnSy = (W DpUp By o Uik 0 ?Wo DU Brp—q)

n?q,

—d (Zh,(pzh,p—q) = Ay (209)

using the definition of Sy, in (10.23)). This completes the proof of the convergence result of Lemma
L0, 9

Parts (a) and (b) of the lemma hold by the definitions of (g, D;) and Aj,. The independence of
(Dy, Ay) and g, stated in part (c) of the lemma, holds by the independence of g, and Dj (which
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follows from (|10.21))), and part (b) of the lemma. Part (d) is proved by replacing n by w,, in the

proofs above. [J

Proposition of AG2. Suppose Assumption WU holds for some non-empty parameter space
A, C Ao. Under all sequences {\,p :n > 1} with A, p, € Ay,

(a) Kjn —p 00 for all j < g,

(b) the (ordered) vector of the smallest p—q eigenvalues of nﬁéﬁ%ﬁéﬁnﬁnﬁn, i€y (R(g+1)ns o
Rpn), converges in distribution to the (ordered) p—q vector of the eigenvalues of Z;L’p_qh&k_qhg,qu
X th_q e RP—9)*x(r—a)

(c) the convergence in parts (a) and (b) holds jointly with the convergence in Lemma and

(d) under all subsequences {wy} and all sequences { Ay, p : n > 1} with Ay, 5 € Ay, the results

in parts (a)-(c) hold with n replaced with wy,.

Proof of Proposition For the case where k > p, Proposition is the same as Theorem
8.4(c)-(f) given in the Appendix to AG1, which is proved in Section 16 in the SM to AG1. For
brevity, we only describe the changes that need to be made to that proof to cover the case where
k < p. Note that the proof of Theorem 8.4(c)-(f) in AG1 is similar to, but simpler than, the proof
of Theorem [10.5], which is given in Section [21] below.

In the second line of the proof of Lemma 16.1 in the SM to AGI1, p needs to be replaced by
min{k, p} three times.

In the fourth line of (16.3) in the SM to AGI1, the k x p matrix that contains six submatrices

needs to be replaced by the following matrix when k < p:

hS .o+ o(1) orix (k=) ori x(p—k)
'L

c Rkxp, (20.10)
(k—19)xr$ k=r9)x(k=r9)  (k—=r$)x (p—Fk)

O(TT2FH/TTan)(

In the first line of (16.22) in the SM to AGI, the k x (p — rj_;) matrix that contains three

submatrices needs to be replaced by the following matrix when k < p:

0o X (k=5 _) oo X (=)

kx(p—r°_1)
ot—rs_oxony | SETTT (2011)

D?:ag{Trana cey Tk‘Fn}/TTan

The limit of this matrix as n — oo equals the matrix given in the second line of (16.22) that
contains three submatrices. Thus, the limit of the matrix on the first line of (16.22) is the same for
the cases where k > p and k < p.

In the third line of (16.25) in the SM to AG1, the second matrix that contains three submatrices

(which is a k x (p — rj) matrix) is the same as the matrix in the first line of (16.22) in the SM to
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AG1, but with 7§ in place of rj_; (using rg+1 =75 +1and rg =ry_; +1). When k < p, this matrix
needs to be changed just as the matrix in the first line of (16.22) is changed in (20.11]), but with rj

<

in place of rg_;.

No other changes are needed. [

21 Proof of Theorem 10.5

Theorem of AG2. Suppose Assumption WU holds for some non-empty parameter space
A, C Ag. Under all sequences {\np, : 1 > 1} with A\, € Ay,

QLRy —a Gyl g — Mnin((Bnp—gs s s 2G0) B ke ghs g Bpegs sy “T0))

and the convergence holds jointly with the convergence in Lemma and Proposition When
q = p (which can only hold if k > p because ¢ < min{k,p}), Ap,—q does not appear in the limit
random variable and the limit random variable reduces to (h;;/2§h)/hgyph,&ph;’;/Qgh ~ X]%. When
q = k (which can only hold if k < p), the Amin(+) expression does not appear in the limit random
variable and the limit random variable reduces to gﬁlhgégh ~ xi- When k < p and q < k, the
Amin () expression equals zero and the limit random variable reduces to §’hh5j;§h ~ X%- Under all
subsequences {wy} and all sequences {Ay, n 1 n > 1} with Ay, n € As, the same results hold with

n replaced with w,,.

The proof of Theorem uses the approach in Johansen (1991, pp. 1569-1571) and Robin
and Smith (2000, pp. 172-173). In these papers, asymptotic results are established under a fixed
true distribution under which certain population eigenvalues are either positive or zero. Here we
need to deal with drifting sequences of distributions under which these population eigenvalues may
be positive or zero for any given n, but the positive ones may drift to zero as n — oo, possibly
at different rates. This complicates the proof considerably. For example, the rate of convergence
result of Lemma b) below is needed in the present context, but not in the fixed distribution
scenario considered in Johansen (1991) and Robin and Smith (2000).
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The proof uses the notation given in (20.1)) and (20.2)) above. The following definitions are used:

77 1
Df = (D,,W.'Q;%G,) € RF*0+D) T+ .= Un 07 c RP+Dxm+1)
n s n n n ’ n 01><p 1 3
x1 x1
vt oo | U O g gy o | P 0T pix),
01><P 1 01><p 1
x1
g | P U g porixery,
Ol><p 1
Bf = (B}, B} ) for Bf, € RPTV*0and BF | e RPHI*pH1=a), (21.1)
Df = (D,,0%) € RFxp+1) T = (T, 0k € Rkx(+1)
Sn 0p><l
S{f i = Diag{(nl/QﬁFn)_l, e (nl/QTan)_l, 1,.,1} = o1 . € R(p+1)x(p+1)a

where g, and (AZn are defined in with 0 = 90, . is defined in with 8 = 0, /V[7n, Un, U,
(:=Ur,), and W,, (:= Wpg,) are defined in (10.4)), hg; is defined in , B, (:= Bp,) is defined
in , D, is defined in , T, is defined in , and .S, is defined in .
Let
1 denote the jth eigenvalue of nﬁ;'ﬁf{'WT;WnD+U+ Vi=1,...,p+1, (21.2)

n-n?

ordered to be nonincreasing in j. We havd™|

+ = (W,DypUy, Q- 1%G,) and (21.3)

Anin (MW DU, 0,125, ) (Wi DU, 072G)) = Aain (00, D W, W DEUS) = RE e
The proof of Theorem [T0.5] uses the following rate of convergence lemma, which is analogous to

Lemma 16.1 in Section 16 of the SM to AG1.

Lemma 21.1 Suppose Assumption WU holds for some non-empty parameter space A, C As.
Under all sequences { A, j, : n > 1} with A, p, € Ay for which q defined in (10.22)) satisfies ¢ > 1, we

have (a) ’f%;rn —p o0 forj=1,..,q and (b) E;Ln = 0,((n'?145,)?) for allt < q and j = q+1,...,p+1.

Under all subsequences {wy} and all sequences {\y, p : n > 1} with Ay, n € Ay, the same result

"8In l| we write (Wnﬁnﬁn, ﬁ;“zgn), whereas we write its analogue (Q 1/2§n, ﬁ;) in with its columns
in the reverse order. Both ways give the same value for the minimum eigenvalue of the inner product of the matrix
with itself, which is the statistic of interest. We use the order (Q"/*g,, D%) in AG2 because it is COHblbtth with
the order in Moreira (2003) and Andrews, Moreira, and Stock (2006). We use the order (WnDnUmQ gn) here
(and elsewhere in the SM) because it has significant notational advantages in the proofs, especially in the proof of

Theorem in this Section.
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holds with n replaced with w,.

Proof of Theorem [10.5. We have n'/2g, —4 g, (by Lemma [10.3) and 0,2 —p h;;/Q (because

ﬁn - QF, —p 0%k by the WLLN, Qp, — hs g, and hs 4 is pd). In consequence, AR, —q §§lh5_751]§h.

Given this, the definition of QLR,, in (10.3)), and (21.3)), to prove the convergence result in Theorem

10.5] it suffices to show that

S DT T D4 ~ —1/2_ ~ —1/2_
Amin (nUy D' Wy WoDiUT) = Amin((Dhp—g, h5,_(1;/ 1) h3k—ghs j—q(Dhp—g, h5,;/ gn))-  (21.4)
Now we establish li The eigenvalues {r}, : j < p+ 1} of nU;r D'W! W, DU+ are the
ordered solutions to the determinantal equation |nU;" D;"W! W, D;-U;f — kl,.1| = 0. Equivalently,

with probability that goes to one (wp—1), they are the solutions to

Qi (k)] = 0, where (21.5)

Qf (k) := nSy B U Dy W WDy U By S — w8, BYUS (U0 (U5) U BEST,
because |S;| > 0, |BF| > 0, |U;| > 0, and |U;}| > 0 wp—1. Thus, Amln(nﬁ:’ﬁ;’/wgﬁnﬁ:ﬁi)
equals the smallest solution, R?;) 1y O |Q;F (k)] = 0 wp—1. (For simplicity, we omit the qualifier
wp—1 that applies to several statements below.)

We write Q! (k) in partitioned form using

B SE = (B} ,Sng B;pﬂ_q), where
Snq := Diag{(n**r1r,) 7% .., (W ?7p, )71} € RIXY. (21.6)

The convergence result of Lemma for nl/QWnlA?nUnTn (= nl/ZWnﬁnUanSn) can be written

as

nY W, DU B (Sng = nY*WoDyUpBigSng —p Dpg = hsq and

nl/QWnlA),}LU,TB;pH_q = n'?W,(Dy, W{lﬁgl/Qﬁn)UﬁBiml—q
= n1/2(WnﬁnUan,p_q7 WHW;1§;1/2§71)
—d (Zh,p—qah;;m?h)a (2L7)

where Zhﬂ and th_q are defined in ((10.24) and B, ,—, is defined in 1}
We have
W W, b =, I and U (U™ —, I (21.8)
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because W,, —, hy1 = limW,, (by Assumption WU(a) and (c)), U;f —, hi; := LmU; (by
Assumption WU(b) and (c)), and h7; and hg; are pd (by the conditions in Fyrr).
By (L13)-£L3), we have

Qs (k)
_ I, + op(1) by nPWLDEUSBE L+ 0p(1)
n'2Bl U DIWihsg+o0p(1) n'2B7 L U DYWIWn'2DYUSBY i+ 0p(1)
S2 0ax (p+1=a) SnaAl Sng  SngAs
—K n,q — K n,q /17L n,q n,q4+2n ’ Where (219)
OHi=a)xa Ip+1*f1 A;rnsn:q Agrn
” Ai_n A;’_n 1 7= 7 -1 +
Ay = = B, 'U,"(Uy)"(Uy )" 'Uy By = Ip1 = 0p(1)
AT Af
2n 3n

for A} € R1*9 A} € R*P+1=0) and Af € RPHI-0X(P+1=0) and the first equality uses A, :=
hsq and A), Ay =y hg g = imCl Crg = Iy (by (10.14), (10.16), (10.19), and (10.24)). Note
that A;’n and Xjn (defined in below) are not the same in general for j = 1,2, 3 because their
dimensions differ. For example, A] € R9*9, whereas an e R'TXT,

If g =0, then Bf =B ., .

and

nB U DWW, D U B
~ o~ o~ !/
= nB (U T (B VB U DYWL (W)
x (WaWit) (Wa DU B (B (U7 0 B

N —1/2_ ~ —1/2_
—d (Ahyp_Q’ h5,g/ gh)/(Ah,p—qaht’,’g/ gh)u (2110)

where the convergence holds by (]21.7[) and (]21.8[) and Zh’p_q is defined as in (|10.24)) with ¢ = 0.

The smallest eigenvalue of a matrix is a continuous function of the matrix (by Elsner’s Theorem, see

Stewart (2001, Thm. 3.1, pp. 37-38)). Hence, the smallest eigenvalue of n.B;" U D:'W' W, D U+ B}

~1/2_

converges in distribution to the smallest eigenvalue of (A, g, h;;/2§h)’h3’k_qhg k?q(Zh,p_q, hs o “Gn)

(using h3 k—qhy ., = hahy = Iy when ¢ = 0), which proves (21.4) when ¢ = 0.
In the remainder of (21.4), we assume ¢ > 1, which is the remaining case to be considered in
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the proof of (21.4). The formula for the determinant of a partitioned matrix and (21.9) give

Qi (k)] = |Q7,(%)] - 1Q3,(k)], where
—1"_”(/4‘) F= Iq + Op(l) - K‘STQL#] - KSn,qATnSTL,Qa

Q3,(k) :=n'?B}

n,p+1qurj/ﬁz/erLWn”1/2ﬁzU:B+ +op(1) = Klpi1-q — KA,

n,p+1—q
~[}2BE, U D Wohag + 0p(1) = kA S0 )T + 0p(1) = K% ) — £SngAL, Sng) !
x Wy 02 Wou DU B 1+ 0p(1) = KSn A, (21.11)
none of the op(1) terms depend on k, and the equation in the first line holds provided an(f@) is
nonsingular.
By Lemma [21.1{b) (which applies for ¢ > 1), for j = ¢+1,...,p+1, and A], = 0,(1) (by (21.9)),
we have EjnS,%yq = 0,(1) and KjnSn.gAT;,Snq = 0p(1). Thus,

(g;rn) = Iy +o0p(1) — E;rnsr%,q - /’%jnsn,qATnqu = Iq + op(1). (21.12)

In

By (21.5) and (21.11), [Q;f (R},)| = |Q1,(R;,)] - 1Q5,(%},)| = 0 for j = 1,....,p + 1. By (21.12),
|an('f%;rn)| #0forj=qg+1,..,p+ 1 wp—1. Hence, wp—1,

Q3 (R =0for j=g+1,..p+1. (21.13)

Now we plug in k\;rn for j=q+1,..,p+ 1 into @3, (k) in (21.11) and use (21.12)). We have

Q3. (7)) = nBY U DWW, DU BE L+ 0p(1)

n,p+l—qg-n n,p+1—q
~[ B 1 UL D Wihs g + 0p(V] (g + (1) 0 * W DL U By + 0p(1)
_k\;rn[fp-ﬂ—q + A;_n - (n1/2Br—£;+1—qU;/ﬁ:{IWrILh3,q +0p(1)) (g + Op(l))sn,qA;n
— A3 S g (I + 0p(1) (B ' PWu DEUSBY -+ 0p(1))
R AG S g(Ig + 0p(1))Sn g AZ, ] (21.14)

The term in square brackets on the last three lines of (21.14)) that multiplies E;rn equals
Ipt1—q + 0p(1), (21.15)

because Af, = o0,(1) (by (21.9)), n'/2W, D} U B ., = Op(1) (by (21.7)), Sng = o(1) (by the
definitions of ¢ and S,,, in (10.22) and (21.6), respectively, and hy ; := limn'/?7;5 ), A = 0,(1)
(by )a and E;rnA%qu(Iq +0p<1))smq‘4;n = A%E;rnsg’q/l;n—i-A%k\jnsmqop(l)quA;n = op(1)
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(using //%jtlS,%,q = 0,(1) and A5 = 0,(1)).

Equations (21.14)) and (21.15)) give

Q3,(R},)
- nl/QB;;H_qU;'lA?Z'W;L [I’f a h3vqhqu]n1/2Wnﬁ:U;B:{,pH—q + Op(l) o k\jn [Ipﬂfq + Op(l)]
= n 2B U D Wik gl 02 Wa DU B+ 0p(1) = Bl [Tpr1—g + 0p(1)]
= M'Ip—&-l—q - /’%jn[Ierlfq + 0p(1)], (21.16)

where the second equality uses I, = hshf = h37qh§)7q + h3,k_qhg7k7q (because hg = lim C), is an

orthogonal matrix) and the last line defines the (p+ 1 —¢) x (p+ 1 — ¢) matrix M;pﬂ_q.

Equations (21.13]) and (21.16]) imply that {E;rn :j=gq+1,..,p+1} are the p+ 1 — q eigenvalues

of the matrix

My [Up+1-q + 0p(D] 20T

—1/2
n,p+1—q = n,p+1—q[Ip+1_q + Op(l)] / (2117)

by pre- and post-multiplying the quantities in (21.16|) by the rhs quantity [[,411—4 + op(l)]_1/2 in

(L0, By @19,

N —1/2_ x —1/2_
MTT,;—H—q —d (Ahm—qv h5,g/ gh)/h&k—qhé,qu(Ah,p—Q’ h5,g/ gh)' (2118)

The vector of (ordered) eigenvalues of a matrix is a continuous function of the matrix (by

Elsner’s Theorem, see Stewart (2001, Thm. 3.1, pp. 37-38)). By (21.18)), the matrix MI;H_q

converges in distribution. In consequence, by the CMT, the vector of eigenvalues of MJ ;r g

viz., {E;Fn :j =q+1,...,p+ 1}, converges in distribution to the vector of eigenvalues of the
limit matrix (App—q, h;;/Qgh)lhgyk_qhgk_q(th_q, h;;ﬂgh). Hence, Amin(nU" D' W! W, D U 1),
which equals the smallest eigenvalue, E?;) )
of (App—qg, h;é”gh)’hg,k,qhg,k_qﬂw_q, which completes the proof of (21.4]).

converges in distribution to the smallest eigenvalue

The previous paragraph proves Comment (v) to Theorem for the smallest p 4+ 1 — g eigen-
values of n(Wnﬁnﬁm @;Uzﬁn)’(ﬁ\/nﬁnﬁm 551/2@1). In addition, by Lemma (a), the largest ¢
eigenvalues of this matrix diverge to infinity in probability, which completes the proof of Comment

(v) to Theorem [10.5]

When ¢ = p, the third and fourth lines in (21.7)) become n1/2WnW51§;1/2/g\n and h;é”yh,
respectively, i.e., n/2W,, DUy By »—q and Ap,,—o drop out (because UFBF . = (0P, 1)’ in this
P—q P—q n “n,pt+l—q

case). In consequence, the limit in (21.18) becomes ( 5_751’/2§h)Ihg’k,qhé7k_qh;;/2§h, which has a X%_p

distribution (because h;;ﬂgh ~ N(0%, It), hs = (hsq, hax—q) € R*** is an orthogonal matrix, and

h3 k—q has k — p columns when ¢ = p).
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The convergence in Theorem [10.5] holds jointly with that in Lemma [10.3] and Proposition [10.4]
because the results in Proposition[I0.4)and Theorem [I0.5]just rely on the convergence in distribution
of n1/2WnﬁnUnTn, which is part of Lemma

When g = k, the Apin(+) expression does not appear in the limit random variable in the statement
of Theorem m because, in the second line of above, the term I — h37qhgﬂq equals 0F*k,

Q=X (010 o (1) and M, = 000X GH-0 4o (1)

which implies that M: nptl—g

op+1-a)x(p+1-aq) i and _

When k < p and ¢ < k, the Apin(+) expression (in the limit random variable in the statement of

p

Theorem [10.5|) equals zero because hg’qu(zh,p_q, h;;/zgh) is a (k—¢q) X (p+ 1 — q) matrix, which

has fewer rows than columns when k < p + 1.
The convergence in Theorem holds for a subsequence {w, : n > 1} of {n} by the same

proof as given above with n replaced by w,. O

Proof of Lemma The proof of Lemma is the same as the proof of Lemma 16.1 in Section
16 in the SM to AG1, but with p replaced by p+1 (so p+1 is always at least two), with Tp+1)F, = 0,
with hep = limT(p+1)Fn/TpFn = 0 (using 0/0 := 0), and with Bn, ﬁn,Bn,Rjn,gn,Dn, Up, hg1, Th,

By, and By, s replaced by D}t Uyt B &E, At D U, by, T, B c.and BY | .. respec-
tively, where
A+ A+
1+ Aln A2n e (RN (TN TNV (TR 17 7+ pt+

A+ A+
A2n A?m

where Efn € Ri¥TT, g;n e RrixpHl—ry), ggrn € RPH=)x(+1=r1) "and 7% is defined as in the
proof of Lemma 13.1 in the SM to AG1. Note that the quantities A\gn for £ =1, 2,3, which depend
on A, (see (13.18) in the SM to AG1), differ between the two proofs (because A, differs from 2:{ ).
Similarly, the quantities p,, (defined in (13.24) in the SM to AG1), EEn(“) for £ =1,2,3 (defined in
(13.25) in the SM to AG1), and A\jgn (defined in (13.28) in the SM to AG1) differ between the two
proofs (because the quantities on which they depend differ between the two proofs).

The following quantities are the same in both proofs: {7;p, : 7 < p},q,{he; : 7 < p—1},Gp, {r; :
j < Gh},{T;? 1 j < Gh},hgﬁ,Wn,Wn,hn,CH, and h3. Note that the first p singular values of
W.D,U, (ie., {7jp, : 7 < p}) and the first p singular values of W, D;fU," are the same. This
holds because 7;p, = H;Iéj, where rj,. is the jth eigenvalue of W, D,U,U, D, W), W, D,fU,f =
Wi (D, 09YUF = (Wy DU, 0%), and hence, Wy, DX U UF DX'W! = Wy, Dy Un U DLW

The second equality in (13.19) in the SM to AG1, which states that W,,D,,U, B, = C,T,, is
a key equality in the proof of Lemma 13.1 in the SM to AG1l. The analogue in the proof of the
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current lemma is

U,B, 0p*!

W,D U B} = (W,D,,0")
lep 1

= (WnDnUy, By, 0F) = (C, Y, 0%) = C, T

(21.20)
Hence, this part of the proof goes through when D,,,U,, B, and Y,, are replaced by D, U, B,
and YTt respectively. [

22 Proof of the Asymptotic Size Results

In this section we prove Theorem [10.1] For the reader’s convenience, we restate this theorem

here.

Theorem of AG2. The AR, CQLR;, and CQLRj tests (without the SR extensions), defined
in (5.2)), , and ([7.3)), respectively, have asymptotic sizes equal to their nominal size a € (0,1)

and are asymptotically similar (in a uniform sense) for the parameter spaces Far, F1, and Fo,
respectively. Analogous results hold for the corresponding AR, CQLR;1, and CQLRy CS’s for the

parameter spaces Fo ar, Fo,1, and Fe 2, respectively.

Theorem [10.1] is proved first for the CQLR tests and CS’s. For the CQLR test results, we
actually prove a more general result that applies to a CQLR test that is defined as the CQLR; test
is defined in Section@ but with the weight matrices ((AZ,_L Y 2, Y 2) replaced by any matrices (T//I\/n, ﬁn)
that satisfy Assumption WU for some parameter space A, C Ag (stated in Section . Then,
we show that Assumption WU holds for the parameter spaces A; and As for the weight matrices
employed by the CQLR; and CQLRj, tests, respectively, defined in Sections [6] and [7]] These results
combine to establish the CQLR test results of Theorem [I0.1] The CQLR CS results of Theorem
[10.T] are proved analogously to those for the tests, see the Comment to Proposition [10.2] for details.

In Section [22.6] we prove Theorem for the AR test and CS.

22.1 Statement of Results

A general QLR test statistic for testing Hy : 8 = 6 is defined in ([10.3)) as

QLR, = AR, — )\min(n@WUm)v where
@WU,n = (Wnﬁnﬁna 651/2§H)I(Wnﬁnﬁna ﬁgl/2jq\n)a (22'1)
AR, is defined in 1D and the dependence of QLRn,@WU,n,Wn,Bn,ﬁn,Qn, and g, on 0y is

suppressed for notational simplicity.
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The general CQLR test rejects the null hypothesis if
QLR > ¢ p(n'*W,D, U, 1 — @), (22.2)

where ¢, (D, 1 — «) is defined just below ((3.5]).

The correct asymptotic size of the general QLR test is established using the following theorem.

Theorem 22.1 Suppose Assumption WU (defined in Section [10.1.5) holds for some non-empty
parameter space Ay C Ao. Then, the asymptotic null rejection probabilities of the nominal size «
CQLR test based on (an, Uw,) equal o under all subsequences {wy} and all sequences {QMwn

n > 1} with Ay, p € As.

Comments: (i) Theorem and Proposition imply that any nominal size &« CQLR test
based on matrices (Wn, ﬁn) that satisfy Assumption WU for some parameter space A, has correct
asymptotic size « and is asymptotically similar (in a uniform sense) for the parameter space A..
(ii) In Lemma below, we show that the choice of matrices (Wn, ﬁn) for the CQLR; and
CQLRj, tests (defined in Sections |§| and E respectively) satisfy Assumption WU for the parameter
spaces A; and Ay (defined in ), respectively. In addition, Lemmashows that 71 C Fwu
and F» C Fwy when dywy and My that appear in the definition of Fyyy are sufficiently small
and large, respectivelym In consequence, the CQLR; and CQLRs tests have correct asymptotic
size a and are asymptotically similar (in a uniform sense) for the parameter spaces F; and Fj,

respectively, as stated in Theorem [10.1]

The proof of Theorem [22.1] uses Proposition [10.4] and Theorem [10.5, as well as the following
lemmas.
Let {D¢ : n > 1} be a sequence of constant (i.e., nonrandom) k x p matrices. Here, we determine

the limit as n — oo of ¢4 p(D5, 1 — a) under certain assumptions on the singular values of Dy,.

Lemma 22.2 Suppose {D{, : n > 1} is a sequence of constant (i.e., nonrandom) k X p matrices

with singular values {75, > 0:j < min{k,p}} for n > 1 that satisfy (i) {75, > 0:j < min{k, p}}

Jn —

. o o e
are nonincreasing in j for n > 1, (ii) 7%,

— 00 for j < q for some 0 < ¢ < min{k,p} and (iii)

"Note that the set of distributions Fyu depends on the definitions of (Wg,Ur), see (10.12), and (Wr,Ur) are

defined differently for the QLR; and QLR2 statistics, see (10.6)-(10.8) and (10.9)-(10.11)), respectively. Hence, the
set of distributions Fywy differs for the CQLR1 and CQLR2 tests.
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Tin = Theo < 00 for j =q+1,...,min{k,p}. Then,

c c c . c c / min{k,p}—q
Chp(Dry 1 — @) = Chpq(T5, 1 — @), where 5, = (T{;11)000 - Tmin{kphoo) € B {kpy=a,

Y(78) = Diag{s.} € RF=0xX=a) jf k. > p,
0(k=p)x(p—q)

T(r¢,) == (Diag{Tgo},O(k*Q)X(p*k)) € Rk—0x(=9) 4 < p.

Chipq(Toos 1 — @) denotes the 1 — o quantile of

ACLRy o(75) = Z'Z — Muin (Y (7)), Z2)' (Y (7S), Z2)), and
Z1

7 = ~ N (0%, 1},) for Z, € RY and Zy € RF4.
Zo

Comments: (i) The matrix Y(75) is the diagonal matrix containing the min{k,p} — ¢ finite
limiting eigenvalues of D¢ . Note that Y (75)) has only k — ¢ rows, not k rows.

(ii) If ¢ = p (which requires that k > p), then Y(75,) has no columns, ACLRy, (75,) =
AVARS Xf,, and ¢y p (7S, 1 — @) equals the 1 — a quantile of the Xp distribution.

(iii) If ¢ = k (which requires that &k < p), then Y(75) and Zs have no rows, the Apin(+)
expression in ACLRy, ,, ,(7<,) disappears, ACLRy, , ,(75) = Z'Z ~ X2, and ¢k p4(75, 1 — ) is the
1 — a quantile of the Xk distribution.

(iv) If £ < p and g < k, then (Y(75,), Z2) has fewer rows (k — ¢) than columns (p — g+ 1)
and, hence, the Amin(+) expression in ACLRy, , ,(75,) equals zero, ACLRy, , ,(75) = Z'Z ~ X2, and
Ckpg(TS, 1 — @) is the 1 — o quantile of the x? distribution.

(v) The distribution function (df) of ACLRy, p4(75,) is shown in Lemma below to be
continuous and strictly increasing at its 1 — o quantile for all possible (k,p, ¢, 75,) values, which is

required in the proof of Lemma [22.2

The following lemma proves that the df of ACLRy, ;, 4(75,), defined in Lemma is continuous
and strictly increasing at its 1 — a quantile. This is a key lemma for showing that the CQLR; and

CQLRx tests have correct asymptotic size and are asymptotically similar.

Lemma 22.3 Let 75, and Y(7%) be defined as in Lemma[22.2] For all admissible integers (k,p, q)
(i.e, k>1,p>1, and 0 < ¢ < min{k, p}) and all min{k,p} —q (> 0) vectors 75, with non-negative
elements in non-increasing order, the df of ACLRy,  ¢(7S) = Z'Z = Anin (Y (7S), Z2)' (Y (7S)5 Z2))
is continuous and strictly increasing at its 1 — a quantile ¢y p 4(75,1 — @) for all o € (0,1), where

7 = (Z},7Z5) ~ N(0F, I,) for Zy € RY and Zy € RF4.

~

The next lemma verifies Assumption WU for the choices of (W U,) that are used to construct
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the CQLR; and CQLRy tests. Part (a) of the lemma shows that the parameter space Fy 7, when
defined for (Wn, (/jn) as in the CQLR; test, contains the parameter space F; that appears in the
statement of Theorem (for suitable choices of the constants d; and M; that appear in the
definition of Fyyr7). Part (b) of the lemma shows that Fy 7, when defined for (Wn, Uy,) as in the
CQLR5 test, contains F» for suitable 61 and Mj.

Lemma 22.4 (a) Suppose g;(0) = w;i(0)Z;, as in , and (/W?n,(/,\fn) = (@;1/2,&{/2), where U,
(= ﬁn(Qo)) and L, (= En(ﬂo)) are defined in and , respectively. Then, (1) Assumption
WU holds for the parameter space A1 with (Wgn,ﬁzn) = (Qn, (Qn,ﬁn)), Whi(Wa) = W;l/Z for
Wy € R¥*F Uy (Uap) = (60, )", Rp) (00, I,)") V2 for Usp = (U, Rp), hy = lim Wap, =
limQp, , and hg = limUsp, —:= lim(Qp,, ,RfF, ), where ¥p := X(Qp, Rp) is defined in ,
Qp := Ergig,, and Rp is defined in (10.7), and (ii) F1 C Fwuy for 61 sufficiently small and M,
sufficiently large in the definition of Fwy, where F1 is defined in and Fwy is defined in
(RE)

(b) Suppose (/Wn, U,) = (651/2,Eﬁ/2), where Q, (= Qn(00)) and Ly, (= Ln(60)) are defined in
and . Then, (i) Assumption WU holds for the parameter space Ao with (Wgn,ﬁgn) =
(Qn, (U, Ry)), Wi(-) and Ui(:) are defined as in part (a) of the lemma, hy = lim Wap, =
limQp, , and hg = limUsp, = lim(QFle,}}Fwn), where Qp = Ergig, and Rp is defined in
, and (ii) Fo = Fwu for 01 sufficiently small and My sufficiently large in the definition of
Fwu, where Fo is defined in and Fwuy is defined in .

Comment: Theorem Lemma and Proposition combine to prove the CQLR test
results of Theorem [I0.1] which state that the CQLR; and CQLRs tests have correct asymptotic size
and are asymptotically similar (in a uniform sense) for the parameter spaces F; and F», respectively.
As stated at the beginning of this section, the proofs of the CQLR CS results of Theorem [10.1] are
analogous to those for the tests, see the Comment to Proposition and, hence, are not stated

explicitly.

22.2 Proof of Theorem [22.1]

Theorem 22.1] is stated in Section R2.11
For notational simplicity, the proof below is given for the sequence {n}, rather than a subse-

quence {wy, : n > 1}. The same proof holds for any subsequence {w, : n > 1}.
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Proof of Theorem [22.1] Let

_ 7 W, hoY?%g
Zh = —hl = / S gl/gi = I h5 ;/2§h ~ N(Ok7 Ik)a (223)
Zna h3 g—qlts.g" " In

where Zp,1 € R? and Zj5 € R*7 and the distributional result holds because g;, ~ N(0F, hs.4) (by
(10.21)) and hjhs = lim C),C,, = I. Note that Zj, and (Dp,A}) are independent because g, and
(Dy, Ay) are independent (by Lemma M(c))

By Theorem
g —1— 1/2_
QLRy —4 g;th,glygh - )‘mm((Ahp g s, g/ Gn) I3 k- qh3 k— q(Ah,p g P, g/ 9n))
= 72711 - )‘min((h:s,quAh,p—qa Zna)' (h3,quAh,p—Q? Zp2)) = QLRy, (22.4)

where the equality uses h4hs = I,. When ¢ = p, the term Zhyp_q does not appear and QLR;, :=
- = = = = =
ZhZh — ZhQZhZ == ZhIZh].'

Let {Tjn : j < min{k,p}} denote the min{k, p} singular values of n'/2W, D,,U, in nonincreasing

order. They equal the vector of square roots of the first min{k, p} eigenvalues of nU/} D,,W} W,,D,,U,,

in nonincreasing order. Define

/7:1’L = (,’7_\’[1}11’,’7_\’[2}”)/ € Rmin{k,p}’ where (225)

~

Tln = (/7:171,’ "-7?1171)/ € R? and /7:[2]11 = (?(q—&—l)na "'7?min{k,p}n)/ € Rmin{k,p}fq'

By Proposition m(a) and (b), T, —p 0o for j < ¢ (or, equivalently Diag‘l{?[l]n} —p 09%9)
and

Tioln —d T[2hs (22.6)

where 7, = K, / for j < g and Ty, is the vector of square roots of the first min{k, p} —q eigenvalues
of Ah,pfqh&k—qh&k—th,p—q e RP~9*(P=9) in nonincreasing order. (When ¢ = min{k, p}, no vector
T[o)n appears.) By an almost sure representation argument, e.g., see Pollard (1990, Thm. 9.4, p. 45),
there exists a probability space, say (20, F°, PY), and random variables (QLR?, AU',QLR,L, [2} b))
defined on it such that (QLR?,7¥)" has the same distribution as (QLR,,7,)" for all n > 1,

mn’ TL

(QLRO 4[)2’} ) has the same distribution as (QLRh,?’p]h)’, and
———0
QLR QLE,
Diagfl{??l]n} — 09%4 a.s., (22.7)
~0 —
T12ln Tl
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where ??2] S Rwintkp}—q T et

Diag{7%} ¢ B¥P and T o Diag{7n}
n +—

€ RF*Pif k > p and (22.8)
0(k—p)xp o(k—p)xp

T = (Diag{#0}, 000 € R and T, i= (Diag{7,},0#9) € R if k < p.

The distributions of T?L and Tn are the same. The matrix :f% has singular values given by the

0 0 =0

vector Ty (= (T1ps s Trnin{hpn) ) Whose first ¢ elements all diverge to infinity a.s. and whose last

0
[2

C € F° with P°(w € C) = 1, we have :I'\?n(w) — oo for j < g and ??2]n(w) — ??2]h(w), where ??n(w),
??Q}H(w), #[]2} ,(w), and ?%(w) denote the realizations of the random quantities ’/7'\9”, ??Q]n, ﬁlz} 4 and
Yo

ns

min{k,p} — ¢ elements written as the subvector ??Z]n converge to T [ S Hence, for some set

respectively, when w occurs. Thus, using Lemma [22.2| with D¢ = ”/f%(w) and 75 = ?([)2]h(w),

we have
ckyp(iol(w), 1—a)— Ck,p,q(?[[)z}h(w)a 1—a) for all w € C with P*(w e C) =1, (22.9)

where ¢ 4(-,1 — @) is defined in Lemma W When ¢ = min{k, p}, no vector ﬂJQ}h(w) appears
and by Comments (ii) and (iii) to Lemma ck,pﬂ(?%]h(w), 1 — @) equals the 1 — a quantile of
the anin (k) distribution.

Almost sure convergence implies convergence in distribution, so and also hold
(jointly) with convergence in distribution in place of convergence a.s. These convergence in distri-
bution results, coupled with the equality of the distributions of (QLRY, Tg) and (QLR,, Y‘n) for

all n > 1 and of (QLR?L,TAEQ’} ,) and (QLRh,?’p] »)'> yield the following convergence result:

LR, LR, LR
E P = ? — CLE, . (22.10)
ckp(nPW, DUy, 1 — @) ckp(Tn, 1 —a) Chpq(T2gn, 1 — @)

where the first equality holds using Lemma [6.1
Equation (22.10) and the continuous mapping theorem give

P(QLRy, > ¢p(n"*W, DUy, 1 — @) — P(QLR), > ¢t pq(Tians 1 — @) (22.11)

provided P(QLR), = cjpq(Tign, 1 — a)) = 0. The latter holds because P(QLR), = ckp¢(T[2n, 1 —
a)|Dy) = 0 a.s. In turn, the latter holds because, conditional on Dy, the df of QLR,, is continuous

at its 1 — a quantile (by Lemma where QLR), conditional on Dy, and ACLRy,, (7<), which
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appears in Lemma have the same structure with the former being based on k% qZh,p_q, which
is nonrandom conditional on Dy, and the latter being based on Y (7<), which is nonrandom, and the
former only depends on hg’k_qzhp_q through its singular values, see (19.3)) and cx p o(Ti2n, 1 — @)
is a constant (because Ty, is random only through Dp).

By the same argument as in the proof of Lemma

Ck,p,q(?[Z]h’ l—a)= Ck,p,q(hé,k—qzh,p—qa 1 —a), (22.12)

where (with some abuse of notation) ck,pﬂ(hg’k_qzh,p_q, 1 — «) denotes the 1 — a quantile of Z'Z —
)\min((hg,kiqth_q,Zg)’(hg7k7qzh7p_q, Z3)) for Z as in Lemma because Ty, € RP™Y are the
singular values of h:’37kiqZh7p_q e RF—0x(P=9) and Y (Tfgn) (which appears in ACLRy g 4(Tign) =
Z'Z — Anin (Y (Tign)s Z2)' (Y (Tiggn), Z2))) is the (k — q) x (p — q) matrix with 7y, on the main
diagonal and zeros elsewhere.

Thus, we have

P(QLRy, > cppq(Tign: 1 — @)
= P(QLR;, > Ck,p,q(hg,k—qzh,pfm 1—a))
= EP(QLR), > Ck,p,q(hls,k—qzh,p—qv 1- O‘)|Zh,p—q)
= Fa = «, (22.13)

where the second equality holds by the law of iterated expectations and the third equality holds
because, conditional on Ay, g, ck,p,q(hg’k_qzh,p,q, 1 — a) is the 1 — a quantile of QLR;, (by the
definitions of ¢ p4(-,1 — @) in Lemma [22.2/and QLR;, in (22.4)) and the df of QL Ry, is continuous
at its 1 — « quantile (see the explanation following (22.11))). O

22.3 Proof of Lemma [22.2]

Lemma 22.2] is stated in Section R2.11
The proof of Lemma uses the following two lemmas. Let {75, : j < min{k,p}} be the

singular values of D, as in Lemma [22.2] Define

Diag{r¢ ...7¢
e = 9T Tond ) oo it 1 > p and
0(k—p)xp

e = (Diag{r‘{n, 7S, okx(p*’ﬂ) € R¥P if < p. (22.14)
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Lemma 22.5 Suppose the scalar constants {75, > 0: j < min{k,p}} for n > 1 satisfy (i) {75, >

C

0:j < min{k,p}} are nonincreasing in j for n > 1, (ii) 75, — oo for j < q for some 1 < g <

min{k, p}, (iii) 75, — 75, < 00 for j = q+1,...,min{k,p}, and (iv) when p > 2, T((:j+1)n/T§n — hg ;
for some hg ; € [0,1] for all j < min{k,p} — 1. Let Y7 be defined as in . Let {Iijzn 1 j <
p + 1} denote the p + 1 eigenvalues of (Y5, Z)' (Y¢S, Z), ordered to be nonincreasing in j, where
Z ~ N(0%,I;,). Then,

(a) H,jZn — o0 Vj < q for all realizations of Z and

(b) HJ-Zn =o((15,)?) V¢ < q and Vj = g+ 1,...,p+ 1 for all realizations of Z.

Comment: Lemma only applies when ¢ > 1, whereas Lemma [22.2] applies when ¢ > 0.

Lemma 22.6 Let {F)(z) : n > 1} and F*(x) be df’s on R and let o € (0,1) be given. Suppose
(i) E}(x) — F*(z) for all continuity points x of F*(x) and (ii) F*(¢oo +€) > 1 — a for all € > 0,
where oo = inf{z : F*(x) > 1 — a} is the 1 — a quantile of F*(x). Then, the 1 — a quantile of

EX(z), viz., qn := inf{x : F¥(x) > 1 — a}, satisfies ¢n — Goo-

Comment: Condition (ii) of Lemma requires that F*(z) is increasing at its 1 — a quantile.

Proof of Lemma By Lemma chp(D5, 1 —a) = ¢ (Y5, 1 — ), where T¢ is defined
in (22.14]). Hence, it suffices to show that cx (Y5, 1 — @) — ¢k p (TS, 1 — @). To prove the latter,
it suffices to show that for any subsequence {w,} of {n} there exists a subsubsequence {u,} such
that ¢, (Y5 1 —a) = chpq(7Se, 1 — ). When p > 2, given {w,}, we select a subsubsequence
{up} for which TEjH)Un/T?un — hg ; for some constant hg ; € [0,1] for all j = 1,..., min{k, p} — 1
(where 0/0 := 0). We can select a subsubsequence with this property because every sequence of
numbers in [0, 1] has a convergent subsequence by the compactness of [0, 1].

For notational simplicity, when p > 2, we prove the full sequence result that c; (5,1 — o) —

Clip,q(TSos 1 — ) under the assumption that
T(+1)n/ Tin = he; for all j <min{k, p} —1 (22.15)

(as well as the other assumptions on the singular values stated in the theorem)ﬂ The same
argument holds with n replaced by wu, below, which is the result that is needed to complete the
proof. When p = 1, we prove the full sequence result that c,(Y5,1 — a) — cipq(7é,1 — @)
without the condition in (22.15]) (which is meaningless in this case because there is only one value

Ty, » namely 77, . for each n). In this case too, the same argument holds with n replaced by u,

80The condition in (22.15) is required by Lemma , which is used in the proof of Lemma [22.2| below.
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below, which is the result that is needed to complete the proof. We treat the cases p > 2 and p =1
simultaneously from here on.

First, we show that

CLRyp(Y}) 1= Z'Z = Auin (Y7, 2)' (Y7, 2))
= 27 = ain(Y(7%), Zo) (Y (7%.), Za)) 1= ACLRypg(7S)  (22.16)

for all realizations of Z. If ¢ = 0, then holds because Y§ — Y(75) (by the definition of
T¢ in (22.14)), the definition of Y (7<) in the statement of the Lemma and assumption (iii) of
Lemma and the minimum eigenvalue of a matrix is a continuous function of the matrix (by
Elsner’s Theorem, see Stewart (2001, Thm. 3.1, pp. 37-38)).

Now, we establish (22.16) when ¢ > 1. The (ordered) eigenvalues {ﬁJZn j < p+1} of
(Y5, Z) (Y5, Z) are solutions to

(Y5, 2)(Y5, Z) = Klpia] = 0 or
1Q5.(k)] = 0, where Q6 (k) == S5(Y5, 2)/(T5, Z)S5 — (S5)? and

S¢ := Diag{(5,) ", ., (18,) 71 1, .o 1} € RPFDX(HL), (22.17)
Define
St 4 = Diag{(r§,) ™", ..., (75,) "'} € RT. (22.18)
We have
1, 7% (p+1—q)
(15, 2)S, = | (T3, 2) Spgr (T Z)
o(p+1-q)xq ’ Ipi1i-4
= (Ipg: Ty p-gp Z) € RF*P+1) " where
Iq kX
Iy = € R*"1, (22.19)
’ 0(k—a)xq
09%(P—q)
Yhpg i = Diag{t{, 1y, Tpn} | € RM=9 if | > p, and
0(k—p)x(p—q)
09%(k—q) 02*(p—k)
T, =1 \ o | BTk <p.
Diag{T{, 1) Thn} (k=) (p=F)
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By (22.17) and (22.19)), we have

I e Sc 2 ex(pt+l—q)
Qn (k) = ! taTnp-07) | B . (22.20)
(T% P—q° ) Ik,q (Tn,p—q7 ) (T% DP—q° ) 0(p+1fq)><q IP-H-Q

By the formula for the determinant of a partitioned inverse (see the footnote above),

|Qn ()] = 1@ 1(R)] - [Q5 2(%)], Where
mi(r) =1, — k(S5 , )2 € R77 and

n,1
272( ) (T%p q’ )(T;f),p qQ ) K/Ip+1fq (2221)
~(Cpegy 2) I (I — r(Sh, ) )" 1Il,e,q(T$Lp ¢ Z) € RPH1=a)x(p+1-q)

For j=q+1,...,p+ 1, we have
(k) = Iy = K5,(S5 )? = Iy = Diag{r7,(79,) "%, s k7, (74,) 2} = Iy + 0(1) (22.22)

for all realizations of Z, where the last equality holds by Lemma (which applies for ¢ > 1).
This implies that ’le(/ﬁ}jn)‘ #0for j=q+1,...,p+ 1 for n large. Hence, for n large,

Q5 a(r5) =0for j=q+1,...,p+1. (22.23)

We write
0ax(k—q)
I, = (Ik,q,Ik,qu% where Ik,qu = € ka(qu) (22.24)
I

and Iy, , is defined in 1} E

For j=q+1,...,p+ 1, we have

n2(65) = (Y50 2) (5 p g Z2) = Kudper—q = (X5, g 2) g (I + 0(D) I o (X5, g Z)

n,p—q’ n,p—q’ n,p—q’ n,p—q’
A
= (T%p qQ’ ) Ik,k—qlk,qu(T%p q’ ) + 0(1) - K‘jnIerl*q
Z
13,p+17q - ’ijnIp—i—l—q’ (2225)

where the first equality holds by (22.22) and the definition of Q;yz(n) in (22.21)) and the second

equality holds because Iy, = (Iy g, Ii k—q) Lk,gs L ki—q) = Ik’qIAq + Ik,qufllﬁk_q and Ty, = O(1)

by its definition in (22.19)) and the condition (iii) of Lemma on {T;n :j=q+1,..,min{k,p}}

81 There is some abuse of notation here because Iy, does not equal Iy 4 even if ¢ equals k — q.
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for n > 1.

Equations (22.23)) and (22.25)) imply that {/ijZn :j=q+1,..,p+1} are the p+ 1 — q eigenvalues
of the matrix M¢ By the definition of T¢ in (22.19) and the conditions of the theorem

n,p+l-q- R
on {75, :j=q+1, .., min{k p}} for n > 1, we have

!/

09%(p—a) ) 09> (p—q)
My pi1—g — I Tk gy g 7z
= (T(75), Z2) (Y(1%,), Z2) (22.26)

c

for all realizations of Z, where the equality uses the definitions of Y (75,

) and Z3 in the statement
of the theorem.

The vector of (ordered) eigenvalues of a matrix is a continuous function of the matrix (by
Elsner’s Theorem, see Stewart (2001, Thm. 3.1, pp. 37-38)). Hence, by , the eigenvalues

{K,jZn :j=q+1,..,p+1} of M¢

5 p+1—q converge (for all realizations of Z) to the vector of eigenvalues

of (Y(75), Z2)'(Y(7S,), Z2). In consequence, the smallest eigenvalue “(Z;;+1)n (of both My ., and
(Y, Z2) (Y5, Z)) satisfies

Amin(Y5, 2) (Y5, Z)) = 641y — Amin(T(75), 22)' (Y (15,), 22)), (22.27)

where the equality holds by the definition of /{(Zp H1)n in 1} This establishes (22.16|).

Now we use (22.16) to establish that ci ,(Y5,1 — @) — cpqe(TS, 1 — @), which proves the
theorem. Let

Fopare, (¥) = P(ACLRyp4(75,) < 7). (22.28)

By , for any x € R that is a continuity point of Fyp 4 < (7), we have
L(CLRy,(Y5) < ) — 1(ACLRy(7¢,) < ) as. (22.29)
Equation and the bounded convergence theorem give
P(CLRyp(Y;,) <) — P(ACLRy p4(75,) < @) = Fipgre (). (22.30)

Now Lemma gives the desired result, because (22.30]) verifies assumption (i) of Lemma
and the df of ACLRy, ) 4(75,) is strictly increasing at its 1 — o quantile (by Lemma , which

Too

verifies assumption (ii) of Lemma O
Proof of Lemma The proof is similar to the proof of Lemma 16.1 given in Section 16 in
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the SM of AG1. But there are enough differences that we provide a proof.
By the definition of ¢ (> 1) in the statement of Lemma hg, = 0 if ¢ < min{k,p}. If
q = min{k,p}, then h§ , is not defined in the statement of Lemma and we define it here to

equal zero. If hg ; > 0, then {7, : n > 1} and {7{ :n > 1} are of the same order of magnitude,

(j+1)n
ie., 0 < lim T((:j +1)n /T;:n < 1. We group the first ¢ values of 75, into groups that have the same
order of magnitude within each group. Let G (€ {1,...,q}) denote the number of groups. Note
that G equals the number of values in {hg’l, ey hg’q} that equal zero. Let ry and ry denote the
indices of the first and last values in the gth group, respectively, for ¢ = 1,...,G. Thus, r1 = 1,
rg = Tg+1 — 1, where by definition rg4+1 = ¢ + 1, and r¢; = ¢. By definition, the 75, values in the
gth group, which have the gth largest order of magnitude, are {Tﬁgn :n > 1}, .., {Tf_gn :n>1}. By
construction, hg ; > 0 for all j € {rgs-.srg — 1} for g = 1,...,G. (The reason is: if h§ ; is equal to
zero for some j <rg — 1, then {Tﬁgn :n > 1} is of smaller order of magnitude than {77 , :n > 1},
which contradicts the definition of r.) Also by construction, lim7%, /75, = 0 for any (j,j') in
groups (g,¢’), respectively, with g < ¢'.

The (ordered) eigenvalues {RJZn 17 <p+1}of (TS, Z) (TS, Z) are solutions to the determinantal
equation |(Y$, 2)' (Y, Z) — kIp41| = 0. Equivalently, they are solutions to

(7,50 "2 (X5 2) (Y5, 2) = (75, 5,) 2 Kdpa| = 0. (22.31)
Thus, {(7¢,,)"%k%, : j < p+ 1} solve
(78,) (Y5, 2) (15, Z) = Kl | = 0. (22.32)
Let
r{—1

6 = Diag{1,h§ 1, h§ 1hG o, H hg et € R (22.33)

When k > p, we have

(Trln) Y3, Z)

b + o(1) oria=ri) 000 O(1/7,,)7i!

_ olg—ri)xr{ O(Tﬁzn/Tﬁm)(q_Tf)X(q_Tf) 0lg—r)x(p—q) o(1/r¢ n) g—r{)x1
op—a)xr{ op—a)x(g—r%) 0(1/7-751”)(19—11)><(p—q) o(1/7¢, )Xt
o(k—p)xr{ o(k—p)x(g—r7) 0(k—p)x(p—q) o(1/7¢, ) k=)l

[ hee Or‘fx(p+177"f)

— 6 : (22.34)

olk=r)xry  lk—r{)x(p+1-rf)
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where O(d,,)**® denotes a diagonal s x s matrix whose elements are O(d,,) for some scalar constants

{d, :n>1},0(d )SXl denotes an s vector whose elements are O(d,, ), the equality uses 74, /77

rln -
j-1
LLFoyn/0n) = Hh ) for j = 2,..,r{ (which holds by the definition of h§,) and
/=1
T/ Trn = O(T Tzn/Trln) for j = r,...,q (because {7, : j < ¢} are nonincreasing in j), and the
convergence uses 7. ,, — oo (by assumption (ii) of the lemma since r; < ¢) and 74, /75, — 0 (by

the definition of r3).
When &k < p, (22.34)) holds but with the rows dimensions of the submatrices in the second line
changed by replacing p — ¢ by kK — ¢ and k — p by p — k four times each.

Equation (22.34) yields

(h’gfrf)Q Orfx(p-l—l—rf)

(T5yn) 2(Y5, 2) (X5, Z) — (22.35)

op+1-ri)xr{ (lp+1-rf)x(p+1-r7)

The vector of eigenvalues of a matrix is a continuous function of the matrix (by Elsner’s The-
orem, see Stewart (2001, Thm. 3.1, pp. 37-38)). Hence, by (22.32) and (22.35)), the first r{

eigenvalues of (7¢,,) " 2(Y5, Z2)' (Y¢S, 2), i.e., {(7¢,,) 2 -n :j < 7§}, satisfy

r{—1
((Tgln)_Q’%lZn? ) (T(rjln)_z’%rszn) —p (1’ hg‘,l? hg,lhg,% ) H hg,é) and so
=1
ke — oo Vj=1,..,1§ (22.36)

because 77, — oo (since r1 < g) and hg, > 0 for all £ € {1,...,r{ — 1} (as noted above). By the
same argument, the last p + 1 — r{ eigenvalues of (¢ ,,)"2(T%, 2)' (Y¢S, Z), ie., {(75,,) 2 ]n 1=
r{+1,...,p+ 1}, satisfy

(7€) 2kE, = 0Vj =75 +1,..,p+ 1. (22.37)

rin ]n

Next, the equality in (22.34) gives

(Tnn) (15, 2) (15, 2) (22.38)
(hgee)? + o(1) orsx(a—§) 07§ x(p—9) O(1/r¢,, )it 1
0@ DX O((r,/75,,)2) O DX@D gD (e, /(g ))arD
B op—a)xr§ o(P—a)x(g—rf) O(1/(7¢,,)? ye—0x(e—9)  O(1/(r 7 )2 )(p—a)x1
OW/TE )T O/ ()X O/ 00 O/ )

Equation ([22.38)) holds when k£ > p and k < p (because the column dimensions of the submatrices
in the second line of ([22.34]) are the same when k& > p and k < p).
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Define I}, j, to be the (p+1) x (j2 — j1) matrix that consists of the j; +1, ..., j2 columns of I,
for 0 < j; < j2 <p+ 1. We can write

L

| € RPTUXTT anq
O(p—l—l—ri)xri

Ip+1 = (oggs Irg pr1), where Jog =

Qrix(p+1-r9) .
Le pi1 = e RipHDx(pH1=ri), (22.39)
Ip+17rf

In consequence, we have

(TSwZ) = ((T%7Z)IO,TE7 (T%7Z)ITE,P+1) and

0 = (75) T e (X5 2) (X5, Z) g it = 0(75,0/7500), (22.40)

where the last equality uses the first row of the matrix on the rhs of (22.38) and O(1/75 ) =

o(7¢,,/7¢,n) (because T, — 00).

As in (22.32]), {(Tﬁm)_2njzn :j < p+ 1} solve

0 = [(r5,,) (Y5, 2)' (5, Z) — Kl
(TC )721(/),7“%(’1\7017 Z),(T7Cw Z)IO,Tf - RI?"% :

o rn
(r8n) 20l (Y5, 2) (X5, Z) T

(T5im) "2 0,0e (Y5, Z) (X5, Z) Irg i

(T7c“1n)72I7/“f,p+1(T%7 Z) (Y5, Z)Ire pr1 — Klpy1—e

= (75,0) 045 (X5, 2) (X5, Z) o — wlig]

rin
X\(Tiln)_QI;f,pﬂ(T%’ Z) (Y5, Z)Ine pi1 — Klpi1—re
_Q'rcll((Tgln)72](l),rf (ch”u Z)/(wa Z)IO,T’f - /ifrg)*l@ﬂ, (2241)

where the third equality uses the standard formula for the determinant of a partitioned matrix, the
definition of ¢f in , and the result given in below that the matrix which is inverted
that appears in the last line of 1) is nonsingular for x equal to any solution (Tﬁln)_2/§jzn to the
first equality in forj=r{+1,..,p+1

Now we show that, for j =r{+1,...,p+1, (T,‘fm)_QﬁjZn cannot solve the determinantal equation

7¢ V720 (Y, Z2) (XS, Z) g e — klpe| = 0, where this determinant is the first multiplicand on
rin 0,r¢ n n 71 1
the rhs of (22.41)). Hence, {(Tﬁm)_QﬁjZn :j=r{+1,...,p+1} must solve the determinantal equation
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based on the second multiplicand on the rhs of (22.41)). For j =r{ +1,...,p 4+ 1, we have

rin rin

where the equality holds by (22.35)) and (22.37)). Equation (22.42]) and )\min((hgfrf)Q) > 0 (which

follows from the definition of hg’f?"f in (22.33) and the fact that hg ; > 0 for all j € {1,..,r = 1})
establish the desired result.

(T51n) 2 00,0e (X5rs Z2) (X5 D)Mo — (50) 25 I = (h5e)? + 0(1), (22.42)

For j =r{+1,...,p+1, plugging (T;fln)_QlijZn into the second multiplicand on the rhs of (22.41))
and using (22.40) and ([22.42)) gives

0= (75,0) 2 Le p1 (Y5, 2) (X5, Z) g pir + (75,5, /750 1,)%) = (i) 2K Ippaagl. (22.43)
Thus, {(T;fln)_QIijZn cj=r{+1,...,p+ 1} solve

0= [(75,0) s p1 (Y5, 2) (X5, Z) Lot s + (75, e, /75, 1,)%) — Kilpa—r. (22.44)

Or equivalently, multiplying through by (Tﬁﬁn/rﬁan)_?, {(TﬁQn)_Q/s;jZn cj=r{+1,...,p+ 1} solve

0= ‘(7-10"271)72I7I“f,p+1(’r%7 Z)/(Tf” Z)Irf,p—l—l + 0(1) - K’Ip-ﬁ-l—’i‘ﬂ (2245)

by the same argument as in (22.31]) and ([22.32)).
Now, we repeat the argument from (22.32) to (22.45)) with the expression in (22.45)) replacing

that in (22.32) and with I, 1-p¢, 77, Tran, 75 — 75, p+ 1 — 75, and htcfrg = Dz’ag{l,hgﬁrfﬂ,

r5—1
C_pCYx (rC€—pc)
h§ e 411G re a5 oo H hg .} € RUa=r)*(a=r1) in place of Iy11, 7€, 75y, 75, p+1— 7§, and héSye,
l=r{+1
respectively. In addition, Io ¢ and Ir¢ 11 in (22.41) are replaced by the matrices Ir¢ ¢ and Irg 1.

This argument gives

K%, — 00 Vj =ra,...,75 and (75,,) k%, = 0(1) Vi =15+ 1,...,p+ 1. (22.46)

WAL n
Repeating the argument G — 2 more times yields

K, =00 Vj=1,.,rG and (15 ,) k7, =o(1) Vi=ri+1,...p+1,¥g=1,..,G.  (22.47)

Jn Jn

Note that “repeating the argument G — 2 more times” is justified by an induction argument that
is analogous to that given in the proof of Lemma 16.1 given in Section 16 in the SM of AG1.
Because r§ = ¢, the first result in (22.47)) proves part (a) of the lemma.

o4



The second result in (22.47) with ¢ = G implies: for all j =q¢+1,...,p+ 1,

(T6an) 2K5 = o(1) (22.48)

rgn

because ¢, = q. Either r¢ = 1§, = q or r¢ < r& = q. In the former case, (7¢,) 2k%, = o(1) for

qn
j=q-+1,...p+1by (22.47)). In the latter case, we have

C
lim

n .
= lim
C
rgn

—1
ch
<t = ] »é, >0, (22.49)
TTGn ’

Jj=ra

where the inequality holds because hg ; > 0 for all j € {rg,...,7G — 1}, as noted at the beginning of

the proof. Hence, in this case too, (T;n)_glijzn =o(l) for j=q+1,....,p+1 by (22.48) and ([22.49).

Because 75, > 73, for all j < g, this establishes part (b) of the lemma. OJ

Proof of Lemma For € > 0 such that g % € are continuity points of F*(x), we have

F(goo —€) = F*(goo —€) <1 —a and

Fi(goo +€) = F*(geo +6) > 1 - a (22.50)

by assumptions (i) and (ii) of the lemma and F*(geo—¢) < 1—a by the definition of g The first line
of implies that g, > goo—¢ for all n large. (If not, there exists an infinite subsequence {w,, } of
{n} for which qu, < go—cforalln >1land 1—a < Fj (quw,) < Fy (Goo—¢) = F*(goo—¢) < 1—a,
which is a contradiction). The second line of implies that ¢, < go + ¢ for all n large. There

exists a sequence {g; > 0: k > 1} for which e — 0 and ¢ + €, are continuity points of F*(x) for

all £ > 1. Hence, ¢, — ¢oo- U

22.4 Proof of Lemma [22.3

Lemma 22.3] is stated in Section 2211
Proof of Lemma We prove the lemma by proving it separately for four cases: (i) ¢ > 1,

(i) k < p, (iii) Tin{kploo = 0> Where 70, o 1. denotes the min{k,p}th (and, hence, last and

smallest) element of 75, and (iv) ¢ = 0, k > p, and 75, > 0. First, suppose ¢ > 1. Then,

ACLRipg(75) = =2'Z = Amin((Y(75), 22) (Y(750), Z2))
= 2171+ 2373 — Amin((Y (%), Z2) (Y (75,), Z2)) (22.51)

and ACLRy,p4(75,) is the convolution of a x? distribution (since Z{Z1 ~ x7) and another dis-
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tribution. Consider the distribution of X + Y, where X is a random variable with an absolutely
continuous distribution and X and Y are independent. Let B be a (measurable) subset of R with

Lebesgue measure zero. Then,
P(X+Y eB)= /P(X +y e B|lY =y)dPy(y) = /P(X € B—y)dPy(y) =0, (22.52)

where Py denotes the distribution of Y, the first equality holds by the law of iterated expectations,
the second equality holds by the independence of X and Y, and the last equality holds because
X is absolutely continuous and the Lebesgue measure of B — y equals zero. Applying ([22.52)) to
(22.51) with X = Z]Z;, we conclude that ACLRy, , ,(75,) is absolutely continuous and, hence, its
df is continuous at its 1 — « quantile for all « € (0, 1).

Next, we consider the df of X + Y, where X has support Ry and X and Y are independent.
Let ¢ denote the 1 — a quantile of X + Y for a € (0,1), and let ¢y denote the 1 — o quantile of Y.

Since X > 0 a.s., cy < c. Hence, for all € > 0,
PY<c+e)>PY <cy+e)>1—a>0. (22.53)
For € > 0, we have

P(X+Y cle,cte]) = /P(X+y € le,c+ ]|V = y)dPy (y)

= /P(X €lec—y,c—y+e])dPy(y) >0, (22.54)

where the first equality holds by the law of iterated expectations, the second equality holds by the
independence of X and Y, and the inequality holds because P(X € [¢c — y,¢ —y + ¢]) > 0 for all
y < ¢+ ¢ (because the support of X is Ry) and P(Y < ¢+¢) > 0 by (22.53). Equation
implies that the df of X 4+ Y is strictly increasing at its 1 — a quantile.

For the case when ¢ > 1, we apply the result of the previous paragraph with ACLRy, p, ,(75) =
X +Y and Z{Z; = X. This implies that the df of ACLRy, , 4(75,) is strictly increasing at its 1 — «
quantile when g > 1.

Second, suppose k < p. Then, (Y(75,), Z2)'(Y(7S,), Zo) € RP=4tD)*(p=a+1) is singular because
(Y(1%,), Z2) € RF=0x(P=a+1) and k — g < p — g + 1. Hence, Amin((Y(7S), Z2)'(Y(7S,), Z2)) = 0,
ACLRy . o(18) = 2'Z ~ X3, ACLRy, , ,(1<,) is absolutely continuous, and the df of ACLRy, ;, 4(7<,)
is continuous and strictly increasing at its 1 — a quantile for all a € (0,1).

Third, suppose 7¢ = 0. Then, Amin((T(7%), Z2) (Y (7%), Z2)) = 0, ACLRy ;, 4(75%) =

min{k,p}oo
2'Z ~ X3, ACLRy,,(15,) is absolutely continuous, and the df of ACLRy (7<) is continuous
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and strictly increasing at its 1 — a quantile for all a € (0, 1).

Fourth, suppose ¢ = 0, k > p, and 75, > 0. In this case, Zy = Z (because ¢ = 0) and
T(r¢,) = (D, 0P**=P)Y where D := Diag{r<,} is a pd diagonal p x p matrix (because Thoo > 0).
We write Z = (2!, Z}) (~ N(0%,I}.)), where Z, € RP and Z, € R¥"P and Z,, has a positive number
of elements (because k > p). Let ACLR abbreviate ACLRy, p, 4(75,). In the present case, we have

!/

) D Za D Zq
ACLR = Z'Z — Amin
ok=p)xp 7, ok=p)xp 7,
/
D? DZ,
=77 — inf S S (22.55)
e=(E.6)lEl=1 \ ¢, Z'D 7'Z £
= sup (1= ) (Zy 2 + ZyZa) — €1 D¢y — 26,2, DE, ]
€=(&1,€2)":lgl|=1
where £ € RP, €5 € R, and £, + &5 =1.
We define the following non-stochastic function
ACLR(zq,w) := sup [(1— &) (w + 22a) — E1D3€; — 2652, D¢, | (22.56)

£=(£1,62)":[I€]1=1

for z, € RP and w € Ry. Note that ACLR = ACLR(Z,, Z},Z).

We show below that the function ACLR(zq,w) is (i) nonnegative, (ii) strictly increasing in
won Ry Vz, # 0P, and (iii) continuous in (zg,w) on RP x Ry, and ACLR(z,,w) satisfies (iv)
limy, 00 ACLR(z4,w) = o0. In consequence, Vz, # 0P, ACLR(z,,w) has a continuous, strictly-

increasing inverse function in its second argument with domain [ACLR(z,,0),00) C R4, which we

denote by ACLR™(z,, x)@ Using this, we have: for all z > ACLR(z,,0) and z, # 0P,
ACLR(zq,w) < z iff w < ACLR (24, 2), (22.57)

where the condition x > ACLR(z,,0) ensures that z is in the domain of ACLR™!(2,, ).
Now, we show that for all zo € R and z, # 07,

lim P(ACLR(zq, Z}Z) < x) = P(ACLR(2a, Z)Z) < o). (22.58)

T—T0

82Properties (i), (iii), and (iv) determine the domain of ACLR™*(z4, ) for its second argument.
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To prove ([22.58)), first consider the case z9 > ACLR(z,,0) (> 0) and z, # OP. In this case, we have

lim P(ACLR(zq4, 21 7) < x) = lim P(Z;Z, < ACLR (24, 1))

Tr—xQ T—T0

= P(Z}Z, < ACLR (24, 0)), (22.59)

where the first equality holds by (22.57)) and the second equality holds by the continuity of the df
of the Xifp random variable Z; Z;, and the continuity of ACLR (2, ) at 9. Hence, (22.58)) holds
when xg > ACLR(z,,0).

Next, consider the case z9 < ACLR(z,,0) and z, # 0P. We have

P(ACLR(zq4, Z}Zy) < x0) < P(ACLR(24, Zy Zp) < ACLR(24,0)) =0, (22.60)

where the equality holds because ACLR(z,,x) is increasing on by property (ii) and Z;Z, > 0 a.s.
For z sufficiently close to xg, x < ACLR(z,,0) and by the same argument as in , we obtain
P(ACLR(zq, Z,Z)) < x) = 0. Thus, holds for zy < ACLR(z,,0).

Finally, consider the case z9p = ACLR(z,,0) and z, # O0P. In this case, holds for
sequences of values z that strictly decline to xg by the same argument as for the first case where xg >
ACLR(z,,0). Next, consider a sequence that strictly increases to zg. We have P(ACLR(z,, Z,Zp,) <
x) = 0 Vx < xy by the same argument as given for the second case where 9 < ACLR(z,,0). In

addition, we have
P(ACLR(zq4, 2} 7)) < x0) = P(ACLR(24, Zy Zy) < ACLR(24,0)) < P(Z;Z, <0) =0, (22.61)

where the inequality holds because ACLR(z,,x) is strictly increasing on for z, # 0P by property

(ii). This completes the proof of (22.58).
Using (22.58)), we establish the continuity of the df of ACLR on R. For any zo € R, we have

lim P(ACLR < z) = lim P(ACLR(Z,, Z}7%) < )

T—T0 T—T0o

= lim P(ACLR(ZG, Z{)Zb) S .’L‘)dFZa (Za)

Tr—T0
_ / P (ACLR (24, Z,Z) < 70) dF7, (24)
= P(ACLR < xy), (22.62)

where Fz () denotes the df of Z,, the first and last equalities hold because ACLR = ACLR(Z,,
Z,Zy), the second equality uses the independence of Z, and Z;, and the third equality holds by the
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bounded convergence theorem using and P(Z, # 0P) = 1. Equation shows that the
df of ACLR is continuous on R.

Next, we show that the df of ACLR is strictly increasing at all z > 0. Because the df of ACLR
is continuous on R and equals 0 for z < 0 (because ACLR > 0 by property (i)), the 1 — «a quantile
of ACLR is positive. Hence, the former property implies that the df of ACLR is increasing at its
1 — a quantile, as stated in the Lemma.

For x > ACLR(z,,0), 6 > 0, and z, # 0P, we have
P(ACLR(z,, ZyZy) € [x,x + 6]) = P (ZyZy € [ACLR '(24,2), ACLR™ ! (24,7 + 0)]) > 0, (22.63)

where the equality holds by and the inequality holds because ACLR™!(z,,x) is strictly
increasing in « for « in [ACLR(zq4,0),00) when z, # 0P and Z]Z, has a Xifp distribution, which is
absolutely continuous.

The function ACLR(z,,0) is continuous at all z, € RP (by property (iii)) and ACLR(0?,0) =0
(by a simple calculation using ) In consequence, for any = > 0, there exists a vector 2, € RP
and a constant ¢ > 0 such that ACLR(z,,0) < z for all z, € B(z},¢), where B(z},¢) denotes a

ball centered at 2z} with radius € > 0. Using this, we have: for any = > 0 and § > 0,

P(ACLR € [2,2 + 0]) = / PACLR(20, ZL2)) € |2, + 8])dF7, (2a)

> / P(ACLR (20, ZL7) € [, + 6])dF7, (za) > 0, (22.64)
Be)

where the equality uses the independence of Z, and Z, the first inequality holds because B(z},¢) C
R and the integrand is nonnegative, and the second inequality holds because P(Z, € B(z},¢)) >0
(since Z, ~ N (0P, 1) and B(z},¢) is a ball with positive radius) and the integrand is positive for
zq € B(2},€) by using the fact that x > ACLR(z,,0) for all z, € B(z},¢) by the definition
of B(z},¢). Equation shows that the df of ACLR is strictly increasing at all x > 0 and,
hence, at its 1 — o quantile which is positive.

It remains to verify properties (i)-(iv) of the function ACLR(z,,w), which are stated above.
The function ACLR(z,,w) is seen to be nonnegative by replacing the supremum in by
¢ = (0”,1)". Hence, property (i) holds. The function ACLR(z,,w) can be written as

D? Dz,

ACLR(24,w) = w + 2524 — Amin (22.65)
20D 2z +w

by analogous calculations to those in (22.55). The minimum eigenvalue is a continuous function
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of a matrix is a continuous function of its elements by Elsner’s Theorem, see Stewart (2001, Thm.
3.1, pp. 37-38). Hence, ACLR(z,,w) is continuous in (z4,w) € RP x R, and property (iii) holds.
For any &2, € [0,1) and &,; € RP such that &,,&,; = 1 — £2,, we have

ACLR(zq,w) > (1 — €2)(w + 2,24) — € D?¢,1 — 26,528 D€,y — 00 as w — 00, (22.66)

where the inequality holds by replacing the supremum over £ in by the same expression
evaluated at &, = (£,4,&,,)" and the divergence to infinity uses 1 — £2, > 0. Hence, property (iv)
holds.

It remains to verify property (ii), which states that ACLR(z,,w) is strictly increasing in w on
Ry V2, #0P. For w € Ry, let £, = (£1,€,5)" (for £,; € RP and 5 € R) be such that ||£ || = 1
and

ACLR(zg,w) = (1 = €25)(w + 22a) — €1 D%y — 26,92, DE 1. (22.67)

Such a vector £, exists because the supremum in (22.56)) is the supremum of a continuous function
over a compact set and, hence, the supremum is attained at some vector &,,. (Note that £, typically

depends on z, as well as w.) Using (22.67)), we obtain: for all § > 0, if £2, < 1,

ACLR(z4,w) < (1= &) (w+ 0+ 2hza) — £l D¢y — 2807, DE

< sup (11— &) (w + 6+ 2,za) — E1 D¢ — 2852, D&4 |
£=(£1:62)":I€l1=1
— ACLR(z4,w + 0). (22.68)

Equation (22.68)) shows that ACLR(z,,w) is strictly increasing at w provided €2, < 1.

Next, we show that 532 = 1 only if z, = 0. By (22.56) and (22.67)), £, maximizes the rhs
expression in (22.56) over & € RPH! subject to €&, 4+ €2 = 1. The Lagrangian for the optimization

problem is

(1= &3)(w + 242a) — E1D*€; — 2652, DE; + (1 — €5 — £16y), (22.69)

where v € R is the Lagrange multiplier. The first-order conditions of the Lagrangian with respect

to &;, evaluated at the solution (£/,;,£,9) and the corresponding Lagrange multiplier, say ,,, are
- 2D2£w1 - 2§w2Dza - 27w§wl = 0P, (2270)

The solution is §,; = 0P (which is an interior point of the set {&; : ||£;]| < 1}) only if £ 5 = 0 or
Zy = OP (because D is a pd diagonal matrix). Thus, €2, = 1 —¢/,,6,; = 1 only if z, = OP. This
concludes the proof of property (iv). O
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22.5 Proof of Lemma [22.4

Lemma [22.4] is stated in Section R2.11
For notational simplicity, the following proof is for the sequence {n}, rather than a subsequence

{wy, : n > 1}. The same proof holds for any subsequence {w,, : n > 1}.
Proof of Lemma We prove part (a)(i) first. We have

n

Wan =11 (9i6} — Er,0i9}) + Er,9i9; —p hs.g, (22.71)
i=1
where the convergence holds by the WLLN (using the moment conditions in F3) and A7 g,
War, = QF, = Er,gi9, — hsg (by the definition of the sequence {\,; : n > 1}). Hence,
Assumption WU(a) holds for the parameter space Ay with hy = hs 4.

Next, we verify Assumption WU(b) for the parameter space A; for fjgn = (Q, ﬁn) Using the
definition of V, (= ‘A/n(Ho)) in (6.3), we have

n n
V. 1Zu* VR ZiZ) -0 (@l ® Z:Z) —nt Y (ufty, ® ZiZ)
=1 =1
—1 A* /\*l /
UinUin, ® ZiZ;). (22.72)

We have

n

712( fui' ® ZiZ;) = Ep, fif + 0p(1),

=1
n= "2k Znx) T 20U = (B, ZiZ]) ' Ep, Ziuj' + 0,(1)

3

[11)

= (Ep, Z:iZ]) " Er,(9:,Gi) + Op(l) =:Ep, +op(1), (22.73)
n
n! Z uioul @ 2,2 =n~! Z = Ziul' @ Z;Z0) = Er, (Zp (91, Gi) @ Zi ZL) + 0p(1), and
; =1
n! AZ‘nAZ’z ® ZiZj) =n""! Z (ELZiZ{2, ® Z;Z]) = B, (Ep, ZiZ{Zr, ® ZiZ]) + 0p(1),
i=1

where the first line holds by the WLLN’s (since ufu} ® Z;Z! = f; f! for f; defined in and
using the moment conditions in F3), the second line holds by the WLLN’s (using the conditions in
F1 and Fy), Slutsky’s Theorem, and Z;u}’ = (g;, G;), the fourth line holds by the WLLN’s (using
Er(([1(gi, Gl - |1Zil[)H7%) < (Brl|(9:, Go) P72 Ee|| Zi||*T7)1/? < oo for 4 > 0 by the Cauchy-
Bunyakovsky-Schwarz inequality and the moment conditions in F; and F3) and the result of the

second and third lines, and the fifth line holds by the WLLN’s (using the moment conditions in F;
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and F2) and the result of the second and third lines.

Equations (10.7)) (which defines Vi), (22.72)), and (22.73|) combine to give

Vy, — Vi, — 0. (22.74)

Using the definitions of R, and Ry (in and (10.7)), @2.71), (2.74), and hy := lim Wy, =
lim QF, yield

(Q, Ry) —p im(Qp,, R, ) =: hs. (22.75)

This establishes Assumption WU(b) for the parameter space A; for part (a) of the lemma.

Now we establish Assumption WU(c) for the parameter space A; for part (a) of the lemma.
We take W, (which appears in the statement of Assumption WU(c)) to be the space of psd k x k
matrices and Uz (which also appears in Assumption WU(c)) to be the space of non-zero psd matrices
(Q, R) for Q € R¥* and R € RPHDEX(p+DE, By the definition of Way,, Way € Wy a.s. We have
Waor € Wa VF € Fyu because Wop = Epgig. is psd. We have Usp € Uy VF € Fyy because
Usp = (Qp, Rp), QF = Epgg, is psd and non-zero (by the last condition in F», even if that
condition is weaken to Amax(Ergig;) > 0) and Rp := (B’ ® I})Vr(B ® Ij) is psd and non-zero
because B (defined in (6.3)) is nonsingular and Vi (defined in (10.7))) is non-zero by the argument
given in the paragraph following below. By their definitions, ﬁn and fzn are psd. In
addition, they are non-zero wp—1 by and the result just established that the two matrices
that comprise hg are non-zero. Hence, (Qn, ﬁn) € Uy wp—1.

The function Wy (Wa) = W, 1/2 55 continuous at Wy = h7 on Wy because Apin(h7) > 0 (given
that hy = lim Er, g;g; and Amin(Ergig,) > ¢ by the last condition in F3).

The function Uj(-) defined in is well-defined in a neighborhood of hg and continuous at
hg provided all psd matrices Q € R*** and R € RPTDFx(+DE with (Q, R) in a neighborhood
of hg := lim(Qp,, Rr,) are such that (2, R) is nonsingular, where (2, R) is defined in the
paragraph containing with (©, R) in place of (Qr, Rr) and X°(2, R) is defined given X(£2, R)
by (6.6). Lemma[17.1(b) shows that X°({, R) is nonsingular provided Amax(2(£2, R)) > 0. We have

> 3 _ ~1/2p -1/2
Amax(E(Q,R))_jrggflzm(ﬂﬂ) jrggfltr(ﬁ Rj;Q%) [k

)\/Q—l/Q O-1/2)

> Amax(QV2R;;07Y2) [k = . Q72N 12k

= jglgi{l ( 37 )/ j%lg?—&}-(l )\:ﬁ;l\ﬁ):l HQ—1/2)\|| ) HQ_1/2>‘H ” H /

> max Amax(Rj;) Amin (271 /k > 0, (22.76)
j<p+1

where ¥;;(2, R) denotes the (j,j) element of 3(Q, R), Rj; denotes the (j,j) k x k submatrix of
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R, the first inequality holds by the definition of Apax(+), the first equality holds by with
(2, R) in place of (QH(H),ﬁn(G)), the second inequality holds because the trace of a psd ma-
trix equals the sum of its eigenvalues by a spectral decomposition, the third inequality holds
by the definition of Apin(-), and the last inequality holds because the conditions in F» imply
that Amin(271) = 1/Amax(Q) > 0 for Q in some neighborhood of lim Qf, (because Amax(2r)
= supyepr =1 Er(Ngi)? < Epllgil|> < M¥3) < oo for all F € Fp using the Cauchy-
Bunyakovsky-Schwarz inequality) and infpec s, Amax(RrF) > 0, which we show below, implies that
Amax(Rj;) > 0 for some j < p+ 1.

To establish Assumption WU(c) for part (a) of the lemma, it remains to show that

inf Apax . 22.
Anf Amax(RrF) >0 (22.77)

We show that the last condition in Fs, i.e., inf pe g, Amin(Ergig,) > 0 implies (22.77)). In fact, the
last condition in F3 is very much stronger than is needed to get (22.77)). (The full strength of the
e . . . A-1/2
last condition in F3 is used in the proof of Lemma see Section because €2, ' enters the
definition of ﬁn and (AZn —QF, —p Oka, where Qp = Erg;g..) We show that (22.77)) holds provided
iansz )\max(Enggg) > 0.
Let z* € RPTDF he such that l[z*]| = 1 and Apax(VF) = 2 Vea*. Let 2t = (B®1I;,)"'a*. Then,

we have

)\max(RF) = )\max((B/ & Ik)VF(B & Ik)) = sup :B,(B, & Ik)VF(B & Ik)a:
x€R@PTDE:||z||=1

> $T,(B, ® I)Vp(B® Ik):cT . HxTH_2 = o"Vpx*/(z¥ (B ® L) Y(B® Ik)_lx*)
Z )\max(VF)/Amax«B & Ik)ill(B & Ik:)il) Z K)\max(VF)’ (2278)

where K := 1/Anax((B ® I,) V(B ® I},) 1) is positive and does not depend on F' (because B and
B @ I}, are nonsingular and do not depend on F for B = B(f) defined in (6.3)).

Next, inf pe 7, Amax(Vr) > inf per, Amax(Ergig;) because Vi can be written as Ep(uf—E%2Z;) (u) —
E7;) @ Z;Z!, the first element of 2 7; is zero (because Zp := (EpZ; Z!) 1 Er(gi, Gi), see ,
and Epg; = 0F), the first element of u} — Z%.7; = u; (because u} = (uj, ul,)’), the upper left k x k
submatrix of Vg equals Eru?Z;Z! = Ergig:, and 50, Amax(VF) > Amax(Ergig)). This result and
imply that holds provided inf ez, Amax(Ergig;) > 0. As noted above, the latter is
implied by the last condition in F5. This completes the verification and the verification of
Assumption WU(c) in part (a) of the lemma.

Now, we prove part (a)(ii) of the lemma. We need to show that the four conditions in the
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definition of Fyyy in hold.

(I) We show that infper Amin(Wr) > 0, where Wg := Wy(Wap) = 9;1/2 = (Engg;)_1/2
(by and the paragraph containing ) The inequality Er||g;|[*t? < M in F» implies
Amin(WF) > 01 for 61 sufficiently small (because the latter holds if Ayax(Wx 2) < 5;2 and W 2
Qr = Ergig,.

(II) We show that suppcr, ||Wr|| < 0o, where Wg := Wi (Wap) := 9;1/2 = (Epgigh)~'/? (by
(10.5)) and the paragraph containing (10.11))). We have inf ez, Amin(Qr) > 0 (by the last condition
in F3).

(III) We show that infrper Amin(Ur) > 0, where in the present case Up := U;(Usp) :=
(60, I,) (25 (2, RF)) "1 (00, I,)")Y/? and %(Qp, Rr) has (j,£) element equal to tr(R;ZFQEI)/k: (by
(10.8)). The inequalities Ep||Z;||*" < M, Ep||(g},vec(G:))||** < M, and A\pin(ErZ;Z!) > 6
imply that sup e, (121 + | B fi 11| + 1 Br(Ep 2 ZEr © Z,Z)|| + | Erlgi, Gi)Er @ ZiZ)) < oo,
where Zp is defined in (10.7) (using the Cauchy-Bunyakovsky-Schwarz inequality). This, in turn,
implies that suppcz, ||[Vr|| < 00, suppeg, ||[Rr|| < 00, suppeg, |[[XF|| < 00, suppes, ||X%]] < oo,
and Amin(Lr) > 02 for some 63 > 0, where Vg and Rp are defined in , Yr = X(Qp, Rp),
Lp = (00,1,)(3%) (00, 1,)", and (25)7! exists by (IV) below (and Amin(Lp) > d2 holds be-
cause A = (6, I) € RP*®+D has full row rank p, and Amin(Lr) = infyego.yj=1 N A(S5) 1 A'N
> infye o =1 (AN (25) 7 (AN /IAM? X infae geyja=1 [[AA? = Amin((E%) ™) Amin (A4") > 62
for some d3 > 0 that does not depend on F'). Finally, Amin(LF) > d2 implies the desired result that
Amin(Ur) > 01 for some 61 > 0 (because Up := L}/Q).

(IV) We show that suppe 7, ||Ur|| < 0o, where U is as in (III) immediately above. By the same
calculations as in (which use (22.77))) with Xp and (Qp, Rp) in place of £(€2, R) and (Q, R),
respectively, we have infpez Amax(Xr) > 0. The latter implies inf pez, Amin(X%) > 0 by Lemma
17.1fb). In turn, the latter implies the desired result suppcr, ||Ur|| = supper, |[((60, 1p)(35)
< (B0, 1) 2| < oo.

Results (I)-(IV) establish the result of part (a)(ii).

Now, we prove part (b)(i) of the lemma. Assumption WU(a) holds for the parameter space Ay
with h7 = hs 4 by the same argument as for part (a)(i). Next, we establish Assumption WU(b) for
the parameter space Ag. Using the definition of Vj, (= V,,(6p)) in , we have

Vo =01 fifl = Fufh = Ep, fif} — (Bp, f1)(Ep, fi) + 0p(1) (22.79)
i=1
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by the WLLN’s (using the moment conditions in F3). In consequence, we have

R, = (B'® L) (Er, fif, — (Er, f:)(Er, 1) (B ® I) + 0,(1)
—p Ry = (B' @ I,) [hs — vec((0F, ha))vec((0%, hy)) (B @ I,) (22.80)

where B = B(6) is defined in , the convergence uses the definitions of Ay r and A5 r in ,
and the definition of {\,; :n > 1} in .
This yields
Usn = (Q, R) —p (5,9, Ri) = hs, (22.81)

which verifies Assumption WU(b) for the parameter space As for part (b) of the lemma.

Assumption WU(c) holds for the parameter space Ay, with W, and Uy defined as above, by
the argument given above to verify Assumption WU(c) in part (a) of the lemma plus the in-
equality Amax(éh) > 0, which is established as follows. The inequality )\max(éh) > 0 is im-
plied by infrcr, )\max(ﬁp) > (. The latter holds by the same argument as used above to show
inf per, Amax(Rr) > 0 (which is given in the paragraph containing and the paragraph follow-
ing it), but with (i) Rpin place of Rp and (ii) inf pe 7, )\max(vp) > 0, rather than inf pe £, Amax(VE) >
0, holding because Erg;g, is the upper left p x p submatrix of VF, which implies that )\max(f?p) >
Amax(Ergigl), and Amax(Ergig;) > by the last condition in Fo.

Now we prove part (b)(ii). It suffices to show that F» C Fyy for §; sufficiently small and
M sufficiently large because Fyyy C Fo by the definition of Fyyy. We need to show that the four
conditions in the definition of Fyy in hold.

(I) & (II) We have inf pe 7, Amin(WF) > 0 and suppcz, ||[Wr|| < oo by the proofs of (I) and (II)
for part (a)(ii) of the lemma.

(III) We show that infrper, Amin(Ur) > 0, where in the present case Up = Uj(Uzp) :=
(Ao, Ip)(i%)_l(%, I,))'/? and Sp = %(Qp, Rp) has (4, ) element equal to tr(é}wﬂgl)//ﬁ (by the
paragraph containing ) We have sup pe £, ||RF|| = supper, || (B' @ I)xVarp(fi) (B® Ii) || <
oo (where the inequality uses the condition Er||(g}, vec(G;)")||*T < M in F). In addition, infre g,
Amin(€2F) > 0 (by the last condition in F3). The latter results imply that suppe £, |SF|| < oo (be-
cause Y p minimizes | (Lp+1 ® 9;1/2)[2 ®Qp — ]TZF](IPH ® QEI/Z)H, see the paragraph containing
). This implies that suppe g, |]§]‘€F|| < oo. In addition, X is nonsingular VF € F, (because
inf pe 7, Amin(SF) > 0 by the proof of result (IV) below). The last two results imply the desired re-
sult inf ez, Amin(Ur) = inf pez, Amin((00, L) (55) (00, I,))/2) > 0 (because (6, I,) € RP*P+1)
has full row rank p).

(IV) We show that suppcr, ||Ur|| < oo, where Up is defined in (III) immediately above. The
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proof is the same as the proof of (IV) for part (a) of the lemma given above, but with Rp in place of
Rp and with the verification that inf pe £, )\max(é r) > 0 given in the the verification of Assumption
WU(c)) above.

This completes the proof of part (b)(ii). O

22.6 Proof of Theorem [10.1] for the Anderson-Rubin Test and CS

Theorem [10.1] is stated in Section [8] of AG2 and, for convenience, is restated at the beginning

of this section, i.e., Section

Proof of Theorem for AR Test and CS. We prove the AR test results of Theorem [10.1]
by applying Proposition with

A= Ap := Ergig;, hy(\) := X, and A := {\: X\ = \p for some F € Far}. (22.82)

We define the parameter space H as in (10.2]). For notational simplicity, we verify Assumption B*
used in Proposition for a sequence {\, € A : n > 1} for which h,(\,) — h € H, rather than
a subsequence {\,, € A :n > 1} for some subsequence {wy} of {n}. The same argument as given

below applies with a subsequence {Ay,, : n > 1}. For the sequence {\, € A : n > 1}, we have

The k X k matrix h is pd because Amin(EFR, gig;) > 0 > 0 for all n > 1 (by the last condition in Fup)
and lim Amin (EF,9i9,) = Amin(h) (because the minimum eigenvalue of a matrix is a continuous
function of the matrix).

By the multivariate central limit theorem for triangular arrays of row-wise i.i.d. random vectors

with mean 0, variance A, that satisfies A, — h, and uniformly bounded 2+~ moments, we have
n%G, —q W% Z, where Z ~ N (0%, I,). (22.84)

We have

n
O =n""> (919 — Er,9i97) — Gn + Er,9i9; —p b and Q' —, b7, (22.85)
=1

where the equality holds by definition of Qn in 1) the first convergence result uses ([22.83)),
(122.84)), and the WLLN’s for triangular arrays of row-wise i.i.d. random vectors with expectation

that converges to h, and uniformly bounded 1 + /2 moments, and the second convergence result
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holds by Slutsky’s Theorem because h is pd.

Equations ([22.84) and (22.85) give

ARy =g, Q7 G, —a ZBM20TIRPZ = 77 ~ 3. (22.86)
In turn, (22.86|) gives
Pp,(ARy > Xi1 o) = P(Z'Z > X34 0) = . (22.87)

where the equality holds because X%,l—a is the 1 — o quantile of Z'Z. Equation verifies
Assumption B* and the proof of the AR test results of Theorem [10.1]is complete.

The proof of the AR CS results of Theorem [10.1] is analogous to those for the tests, see the
Comment to Proposition [10.2] O

23 Proof of Theorem [9.1]

Theorem of AG2. Suppose k > p. For any sequence {)}, , : n > 1} that exhibits strong or
semi-strong identification and for which )\;‘hh € A7 Vn > 1 for the SR-CQLR; test statistic and
critical value and X, j, € A3 Vn > 1 for the SR-CQLRy test statistic and critical value, we have
(a) SR-QLRj, = QLRj, + 0,(1) = LM,, + 0,(1) = LMGMM 4 0,(1) for j = 1,2,
(b) Ck,p(n1/2ﬁ2> 1—a)— X;Q),l—av and

(c) ckm(nl/zﬁfl, 1—a)—, X;Q),l—a-

The proof of Theorem [9.1] uses the following Lemma that concerns the QLR,, statistic, which is
based on general weight matrices /Wn and ﬁn, see , and considers sequences of distributions F
in F1 or Fa, rather than sequences in flsR or ]:égR. Given the result of this Lemma, we obtain the
results of Theorem [9.1] using an argument that is similar to that employed in Section combined
with the verification of Assumption WU for the parameter spaces A1 and Ay for the CQLR; and
CQLRx tests, respectively, that is given in Lemma in Section

For the weight matrix Wn € RF*F Kleibergen’s LM statistic and the standard GMM LM
statistic are defined by

LM, (W,) = ng,Q; 2P Q-12G, and LMSMM(W,)) = ng' Q2P Q%5 (23.1)

n WpDp T

respectively, where @n is the sample Jacobian defined in 1) with 6 = 6y. In Lemma we

1/ 27'pFn — 00, the QLR,, statistic is asymptotically equivalent to the LMn(Wn)

and LMGMM (/Wn) statistics.

show that when n
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The condition n'/ 2TpFn — oo corresponds to strong or semi-strong identification in the present
context. This holds because, for F' € Fyyy, the smallest and largest singular values of Wg(ErG;)Up
(i-e, Tmin{kpyr and T1p) are related to those of QEI/ZEFG’Z-, denoted (as in the Introduction) by
Smin{kp}F and sip, via c1sjp < Tjp < casjp for j = min{k,p} and j = 1 for some constants
0 < ¢1 < ¢ < 00. This result uses the condition Apin (2r) > d > 0 in Fyyy. (See Section 8.3 in the
Appendix of AG1 for the argument used to prove this result.) In consequence, when k > p, the
standard weak, nonstandard weak, semi-strong, and strong identification categories defined in the

Introduction are unchanged if s;f, is replaced by 7, in their definitions for j = 1, p.

Lemma 23.1 Suppose k > p and Assumption WU holds for some non-empty parameter space
A, C Ay. Under all sequences {\, j, : n > 1} with A\, j, € Ay for which nl/QTpFn — 00, we have

(¢) QLR = LM, (W,) + 0,(1) = LMSMM(W,,) 4 0,(1) and

(b) ckjp(nl/QWnﬁnﬁn, 1—a)— X}%,l—a'

Comment: The choice of the weight matrix ﬁn that appears in the definition of the QLR,
statistic, defined in , does not affect the asymptotic distribution of LR, statistic under
strong or semi-strong identification. This holds because QLR,, is within o,(1) of LM statistics that
project onto the matrices Wnﬁnﬁn and Wn@nﬁn, but such statistics do not depend on ﬁn because
Pﬁ,\n B0, = PWn B, and Pﬁ/\n .0, = PI7V\TL a. when ﬁn is a nonsingular p X p matrix. In consequence,
the LM statistics that appear in Lemma (and are defined in ) do not depend on Up.

Proof of Theorem of AG2. By the last paragraph of Section forj =1, SR-QLR;»(6o) =
QLR;,(0p) wp—1 under any sequence {F,, € F5® : n > 1} with rg, (6g) = k for n large. By the
same argument as given there, the same result holds for 7 = 2. This establishes the first equality in
part (a) of Theorem because by assumption Amin(EF,gig;) > 0 for all n > 1 (see the paragraph
preceding Theorem [9.1)).

Assumption WU for the parameter spaces A; and As is verified in Lemma in Section
for the CQLR; and CQLRj tests, respectively. Hence, Lemma [23.1] implies that under sequences
{Anp i n > 1} we have QLR;, = LM, (0 "/%) + 0,(1) = LMSMM (0, /%) 4 0,(1) for j = 1,2,
where Q LRy, and QL Ry, are defined in and in the paragraph containing , respectively,
and LMH(QZLI/Q) and LMEMM(Q#/Q) are defined in with W, = Oy, /2. In addition, Lemma
23.1{implies that ckm(nl/QZA);‘;, l—a)—, X2, ,and ckp(n'2DE1—a) —, X21_q- Note that all of
these results are for sequences of distributions F in Fy or Fo, not FP'® or F5F.

Next, we employ a similar argument to that in ([10.30])-(10.32|) of Section Specifically, we
apply the version of Lemma described in the previous paragraph with gp, = Hl_;/ 2A’ng-
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and G, = HI;QA},Gi in place of g; and G; to the QLRj, test statistics and their corre-

sponding critical values for 5 = 1,2. We have nl/Qs;F — oo iff nl/QT;‘)

n

*
F, — 00, where Spp de-

notes the smallest singular value of FrG7, and T;F is defined to be the smallest singular value

of (Epgtgt) VA EpGh)Up = (Hl_Fl/QA%QFAFH;;/Z)—l/Q(EFG;*)UF = (EpG¥)Up. In conse-
quence, the condition n'/27,r, — oo of Lemma [23.1| holds for the transformed variables 95, ; and

1/27-;Fn — 00. In the present case, {II, 5 1/2A,

GL i le,n :n > 1} are nonsingular k£ X k matrices
by the assumption that Amin(EF,gig;) > 0 for all n > 1 (as specified in the paragraph preceding
Theorem . In consequence, by Lemma (and a footnote in Section |7, which extends the
results of Lemma to the QLRa, statistic and its critical value), the QLR1, and QLRs, test
statistics and their corresponding critical values are exactly the same when based on g7, and G7%;
as when based on g; and G;. By the definitions of .7-"1SR and F5 the transformed variables gr; and
G7,; satisfy the conditions in 77 and F, see and ((10.32] m In particular, Erg},gim: = I and
Amin(EpZ3; Z3) > 1/(2¢) > 0, where Z5, := H;;/QA' Z; and c is as in the definition of FP® in
.. In addition, the LM, and LMEM M statistics are exactly the same when based on gp; and
G; as when based on g; and G;. (This holds because, for any k x k nonsingular matrix M, such
as M = I, 2> A%, we have LM,, :=ngl,Q;1D,[D!,Q; D, ] "1 D, QG = ng, M'(MQ, M')~*MD,,
(D! M’ (M, M) M D,,| "1 D!, M" (M, M)~ 1§, and likewise for LMCMM ) Using these results,
the version of Lemma [23.T]described in the previous paragraph applied to the transformed variables

g7; and G7.,; establishes the second and third equalities of part (a) and parts (b) and (c) of Theorem
O

Proof of Lemma We start by proving the first result of part (a) of the lemma. We have
n1/2rppn — oo iff ¢ = p (by the definition of ¢ in ) Hence, by assumption, ¢ = p. Given
this, Q;n(/i) (defined in in the proof of Theorem [10.5) is a scalar. In consequence,
and with 7 = p+ 1 give

0= |Q2n( (p+1)n )| = ‘M;:p—&-l—q ( +1)n (14 0p(1))] and, hence,
Rlein = Ml o1+ 0p(1))

:( 1/2B+/ U+ID+IWI>h3k qh3k q( 1/2W D+U+B

n,p+1—q n,p+1— q)(l + Op(l)) + Op(l)

= (012G, 0, AW, W g gl g o (0 W W 102G, (14 0,(1)) + 0,(1)

= ng, 05 2 h hghy oy %G + 0p(1), (23.2)

where //%z; ) is defined in , the equality on the third line holds by the definition of M p g
in (21.16)), the equality on the fourth line holds by lines two and three of (21.7] m ) because when ¢ = p
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the third line of 1) becomes nl/QWnW,;lﬁ;l/Zﬁn, ie., nl/QWn]jnUan’p,q drops out, as noted
near the end of the proof of Theorem and the last equality holds because Wn/Wn_ L=, +op(1)
by Assumption WU and n1/2§;1/2§n = Op(1).

Next, we have

QLR, = AR, — Amin(n@WU,n)
_ ~+
= ABn = Ry,

= g0, 2 (I = hs kgl )2, *Gn + 0p(1)
= ngh Q2 hs g by (0 %G, + 0p(1), (23.3)
where the first equality holds by the definition of QLR,, in (|10.3)), the second equality holds by the

,, in (21.2), the third equality holds by (23.2)) and the definition AR,, := n/g\;lﬁfl/g\n

n

“ . /\Jr
definition of R (p+1)

in (5.2]), and the last equality holds because hg = (h3 4, h3 y—q) is a k X k orthogonal matrix.

When ¢ = p, by Lemma [10.3] we have

nl/QWnlA)nUnTn —N— h3,q and so
02 W, DU, T, = hsg, (23.4)

where the equality holds by the definition of Ay, in (10.24) when ¢ = p and the second convergence
uses ann_ 1= I} + 0,(1) by Assumption WU. In consequence,

Pan)n = Popow, pov,r, = Dhag + op(1) = h?»,qhg,q + op(1) and
QLR, = LM,(W,) + 0,(1), (23.5)

where the first equality holds because n'/2U,, T}, is nonsingular wp—1 by Assumption WU and post-
multiplication by a nonsingular matrix does not affect the resulting projection matrix, the second
equality holds by , the third equality holds because h:'37qh37q = I, (since hg = (h3 4, h3k—q)
is an orthogonal matrix), and the second line holds by the first line, , nt/2Q);, 1 2§n = 0p(1),
and the definition of LMn(Wn) in .

As in in Section [20| with én in place of ﬁn, we have

WnGnUnBn g Yok = WaDpUp By g Tk + Won/2(Gr, — Dy)Up B g (/2T )7

= Cpq+0p(1) —p hag, (23.6)

1/2

where D,, := EF,G;, the second equality uses (among other things) n'/*7;p, — oo for all j < ¢
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(by the definition of ¢ in (10.22))). The convergence in (23.6)) holds by (10.19)), (10.24}), and (20.1)).
Using 1j in place of the first line of 1) the proof of QLR,, = LMEMM(Wn) + 0p(1) is the

—

same as that given for QLR,, = LM, (Wy) + o,(1). This completes the proof of part (a) of Lemma
2311
By (22.10)) in the proof of Theorem we have

Ck,p(n1/2wnﬁnﬁn7 1- a) —d Ck,p,q(Fp]h? 1- a) and

Chpq(Ti2ihs 1 — @) = Xp1_q When ¢ =p, (23.7)

where the second line of ([23.7]) holds by the sentence following (22.9)). This proves part (b) of Lemma
because convergence in distribution to a constant is equivalent to convergence in probability

to the same constant. [J

24 Proofs of Lemmas [14.1] [14.2) and

24.1 Proof of Lemma [14.1]

In this section, we suppress the dependence of various quantities on g for notational simplicity.
Thus, g; == gi(0o), Gi = Gi(6p) = (Gi, ..., Gip) € R¥*P_ and similarly for g,, Gy, fi, B, Rn, D},
Dy, Ly, I'j,, and 2,.

The proof of Lemma [14.1] uses the following lemmas. Define

/ / /
A= Sy B bo2vaco, - bovpsico ) RHD*P B . o0 ). RO+DX (1)
I, —6y —I,

co 1= (bpSvbo) L bo == (1,—05), (Bv1, ..., Sypea) i= By € RETDXEHY ang

Lyo := (00, 1,)%, (00, I,)' € RP*. (24.1)
As defined in (3.4), Ag := (6o, I,)’ € RPTD*P,
Lemma 24.1 AjLyo = —A.

Comment: Some calculations show that the columns of Aj and A are all orthogonal to bg. Also,
Aj and Ag both have full column rank p. Hence, the columns of Af and Ag span the same space
in RPT1. It is for this reason that there exists a p x p positive definite matrix L = Ly that solves

ASL = — A,.
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Lemma 24.2 Suppose Assumption HLIV holds. Under Hy, we have (a) n 125, —, N (0%, by Xy bo -
Kz), (b)n~! Zl(Gijgé—EGijQD = 0p(1) Vi < p, (¢) G = Op(1), (d) n! Z(ng, Egigi) = op(1),
and () Gy —n?! S LEG; = 0p(n~1/?).

Proof of Lemma m. To prove part (a), we determine the probability limit of Vn defined in
(6.3). By (6.3 and (3.1)-(3.3), in the linear IV regression model with reduced-form parameter 7,

we have

u; = ui(0o) = y1; — Yo;00, Eu; =0, ug; = —Yo; = -, Z; — Vay, Fug; = —m), Z;,

ul = L = ‘ =27+ ' , where =, = (0%, —m,,) € RF>*+1),
up; —Yai —Va
— Us = —_ \/
Eu; = =,7Z;, u; — Fu; = = B'V;, u}, — Fuf = (£, — Z,)'Z;, and
—Va;
U = (ul,....,u}) = ZnxkZn + VB, where V := (V1,...,V,,) € R™@P+D (24.2)

and B := B(fp) is defined in (6.3)).

Next, we have

[11)

n—Zn = (Zrlzkanxk) Z/ ka* —Zp = ( 712 xk;ank)i 71ZI kaB @) ( 71/2)7 (24-3)

where the first equality holds by the definition of én in , the second equality uses the last line of
, and the third equality holds by Assumption HLIV(c) (specifically, n 1an &
Ky is pd) and by n=Y/2Z/ V= O,(1) (which holds because EZ’ ,V = 0 and the variance of the
(4, €) element of n=1/27" \Visn~ 131 72 EVZ — Kz;;EV2 < 0o using Assumption HLIV(c),
where Kz;; denotes the (j,j) element of Kz, for all j <k, ¢ <p+1).

By the definition of ‘A/n in 1} and simple algebra, we have

ank — KZ and

n

Vo= 2> [(uf — @) (uf — @) @ Z:2)) (24.4)
n n

=n Y [ - Bu)) (uf — Bul) @ ZiZ)) -0t (@, — Bu)) (u — Bu}) © Z;Z])

i=1

S [(uf - Bup) (@, — Bu))' ® ZiZ]) +n”" Z - Bul) ® Z,2] .
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Using the third line of (24.2)), the fourth summand on the rhs of (24.4) equals
n
n! Z [(En —E4)'ZiZ{(Bn — Zn) ® ZiZl{] . (24.5)
i=1

The elements of the fourth summand on the rhs of are each o,(1) because each is bounded
by Op(n~1)n~1 S0, [|Zi||* using (@23) and n=! Y7 [|Z4[[* < n X0, [1ZIAL(1 24l > 1) +1 <
n~tS°" L 11Zi]|% + 1 = o(n) by Assumption HLIV(c).

Using the third line of (24.2), the second summand on the rhs of (excluding the minus

sign) equals

n
Y [(En =) ZV/B& Z,-Zg} . (24.6)
=1

The elements of the second summand on the rhs of are each op(1) because Zp — 5, =
Op(n_l/Q) by and for any ji, j2, 73 < kand £ < pwe have n ™t >"" | Z;i Zii Ziia Vie = op(nl/Q)
because its mean is zero and its variance is EVZn 1Y Zi2j1 Z%szjg = o(n) by Assumption
HLIV(c). By the same argument, the elements of the third summand on the rhs of are each
op(1).

In consequence, we have

Vo = n 'Y [BViV/B® ZiZ]) + 0p(1)
=1

n n
=n'Y [(BViV/B-BSyB)® ZZ]+ |BSyBen™ Y Z,Z/| +op(1)
=1 i=1
—yp Blsz ® Kz, (24'7)

where the first equality holds using , the argument in the two paragraphs following , and
the third line of , the second equality holds by adding and subtracting the same quantity, and
the convergence holds by Assumption HLIV(c) (specifically, n=1 Y | Z;Z! — Kz) and because
the first summand on the second line is 0,(1) (which holds because it has mean zero and each of
its elements has variance that is bounded by O(n=2 3", [|Z;||*) = o(1), where the latter equality
holds by the calculations following )

Equation ([24.7)) gives
R,:=(B'®@L) VW (B&I}) =, Sy @ Kz (24.8)

because B'B’ = BB = I,;1. Hence, part (a) holds.
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To prove part (b), we have

~ n n n
Qpi=n" Zlgigé — Gugy, =" ZlEgigg +nt Zl(gigg — Egig}) + Op(n™1Y)
1= 1= 1=
n
=0~y ZiZIBuf + 0p(1) —p (byZvbo) Kz, (24.9)

=1

where the first equality holds by the definition in , second equality uses n'/2g, = O,(1)
by Lemma (a), the third equality holds by Lemma (d), and the convergence holds by
Assumption HLIV(c) and because Fu? = E(V/by)? = byXy by by Assumption HLIV(b).

Part (c) holds because

~

Sitm = tr(RjenQ ") [k —p tr(Sy 0Kz (bySvbo) K ;Y k= Sy je(bySvbo) L, (24.10)

where ijgn and Yy j, denote the (j, ) elements of f)n and Xy, respectively, Ejgn denotes the (7, /)
submatrix of ]/%n of dimension k X k, and the convergence holds because ﬁjgn —p 2y jeKz for
jl=1,...,p+1and Q, —p (byXvbo) Kz by parts (a) and (b) of the lemma.

Part (d) holds because 3¢ —p (0hZvbo) 12y ) by part (c) of the lemma and Lemma (e),
(BB bo) '8y )F = (BySvbo) 'E5, by Lemma[17.1(d), and X5, = Sy by Assumption HLIV(e) and
Comment (ii) to Lemma [17.1)).

We prove part (f) next. We have

n n n
N Y = (”_1 > Zilyn — Yoiflo) + 07t Y ZY5,00,m7 > Zz'Y%)
i=1 i=1 =1

L (1o

= (/g\n - Gn007 _Gn) = @n, Gn) = (fq\n, én)B, (24.11)
—6y —I,

where the expressions for g, and én use |D Using (24.11)) and the definition of Ly in 1'
the statistic T',, defined in (3.4)) can be written as

T o= (ZhwZnxk) 220 Y S5 A (A Ag) /2
= 0202 Zc) 2 Gy Gn) BS G Ao Lyt ?. (24.12)

Note that, using the definitions of B and Ly in (24.1)) and Ag in (3.4), the rhs expression for T,

equals the expression in ([3.4)).
Now we simplify the statistic D, = (131”, ceey ﬁpn), where lA)jn = @jn—fjnﬁglﬁn forj=1,...,p,
by replacing fjn and €, by their probability limits plus op(1) terms. Let m, = (T1n, ..., Tpn) €
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REXP_For j =1,...,p, we have

n

Ljni=n"" z< Gin)gi =n llzl EGygi+n~" 32(Gijgf — EGijg) = Gind,
=n ! ZlEGijgl/- +op(1) = —n~! ZlEZZ-Y%jzgui + 0,(1)
i =
= —n! iZiZngijm/bo +nt ilzizg(zgwjn)Eui + 0p(1)
i= =
= —n! Z:Zizgz’vjﬂbo + 0p(1), (24.13)
=

where g; = Zi(y1i — Yg;00) = Ziu; by (3.3), the third equality holds by Lemma [24.2|(a)-(c), the
fourth equality holds by with 6 = 6y, the fifth equality uses Ya;; = Z/mjp + Vai; and u; = V;bo,
and the sixth equality holds because EV; = 0 by Assumption HLIV(b), u; = V/by, and Ty :=
(Svi, ... Evp+1) .= EV;V.

Equations (24.9)) and (24.13)) give

/\ ~

Djn = Gjn — TjuQ G0 = Gjn + i 4100(0hSvbo) "G + 0p(n~Y/?) and

= =~ -~ A Py boCO,...,Z, boCo _
D, = (Dlna "'7-Dpn) = (gnaGn) vz VpHl + o0 (n 1/2)
Ip
~ ¥ 0boco, vy X511 boC
_ (ﬁn,Gn)BZ(/l Sy B V2Y0¢0 . Vp+170%0 +op(n_1/2)
P
= (G, GBSy AG + 0y (n71/2), (24.14)

where the second equality on the first line uses g, = Op(nfl/ ) by Lemma (a), the second line
uses ¢o = (bpXybg) L, the second last equality holds because B~ = B, and the last equality holds

by the definition of A§ in (24.1)).

Now, we have

nV2D% = 2512 P T2
= (bhSvbo) AL + 0p(D) (0 2} g Zuscr) P0G, G) BE A
X (B Sy bo) V2 LYE (I, + 0,(1)) + 0p(1)
= (I + 0p(1)) (" Zly x Zurcre) 202G, G) BES Ao Ly 2 (I + 0p(1)) + 0p(1)
= —(Ij + 0p(1)Tn(Ip + 0p(1)) + 0,(1), (24.15)

where the first equality holds by the definition of ZA?;TL in Qmi the second equality holds by (|24.14),

75



Q,, —, (BhSybo) Kz (which holds by part (b) of the lemma), and Ly, := (6o, 1,)(35) (60, I,) —,
(byXvbo)Lyo (which holds because se —p (bpZybo) "ty by part (d) of the lemma), for Lyg =
(0o, Ip)E;l (0o, I,)" defined in 1j the third equality holds by Lemma and the last equality
holds by . This completes the proof of part (f).

Lastly, we prove part (e). The statistic S,, satisfies

S o= (2! 1 Znx) Y22 Y bo(bySyrbg) T2

n

— n1/2<n—1 Z:IZiZZ{)—l/Q/g\n(b/OEVbO)—l/Q
1=
= 020,125, + 0,(1), (24.16)
where the first equality holds by the definition of S, in (3.4), the second equality holds because

Y/by = u;, and the third equality holds by (24.9) and n'/2g, = O,(1) by Lemma [24.2(a). This
proves part (e). O

Proof of Lemma By pre-multiplying by BXy!, the equation AfLyo = —Ap is seen to be

equivalent to

/ / / / /
b02V2607~-7b02Vp+100 00 -1 0P 1 0

Lyo = —BY,? = DI . (24.17)
Ip v Ip 90 Ip v Ip
The last p rows of these p + 1 equations are
LVO = (907 Ip)z\_/l(007 Ip)/u (2418)

which hold by the definition of Ly in (24.1]).
Substituting in the definition of Ly, the first row of the equations in ([24.17)) is

(b6 Ev2€0, -y lyEvpr1€0) (00, Ip) 2y (00, 1) = (—1,07)S3 (0o, I,)- (24.19)

Equation (24.19)) holds by the following argument. Write Xy := (Xv1, Xi,,) for 3}, € RP+1)xp,
Then, bjX}400 = —byXvbo + byXy1, since by := (1, —0;)". The left-hand side of (24.19)) equals

(bézf/Qe()Co, b62v200, ey b6EVp+1CO)Z\_/1 (00, Ip)/
= ((—b62vb0 + 562\/1)00, b62v260, ceey bE)EVp_HCO)E‘_/I(Ho, Ip)/
= (=1 +bySvico, bySv2co, - bySvpr1c0) Sy (0, ), (24.20)
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where the second equality uses the definition of ¢g in (24.1]).
Hence, the difference between the left-hand side (lhs) and the rhs of (24.19) equals

/

by SV 1€0; -y By Zvpr10) Sy (B0, Ip) = coby Sy Syt =0, (24.21)

I
using b)) := (1, —65). Thus, (24.19) holds, which completes the proof. [J

Proof of Lemma Part (a) holds by the CLT of Eicker (1963, Thm. 3) and the Cramér-
Wold device under Assumptions HLIV (a)-(c) because n'/2g, = n=t 37 | Zu; is an average of i.i.d.
mean-zero finite-variance random variables u; with nonrandom weights Z;.

To show part (b), we write

n n
n~ ' S (Gijg — EGiig)) = —n"t Y. ZiZ{(Yaijui — EYaiju;) (24.22)
=1 =1
1 n ! ! 1 n ! !
=-n" > ZiZi(Zmwin)ui = Y ZiZi(Vaijui — Xy 1bo),
1=1 =1

where the first equality holds because g; = Z;u; and G;; = —Z;Ys;;, the second equality holds
because Ys;; = Z/mjy, + Vaij and EVaiju; = EVa;jV/bg = Z’Vj+1b0. Both summands on the rhs have
mean zero. The ({1, {2) element of the first summand has variance equal to n ™2 Y7, (Zie, Zie, 217 jn)?
x Var(u;), which converges to zero for all /1,0y < k because n= 1> | [|Zi||% = o(n), Var(u;) =
bpXvbo < 00, and sup,<, ,>1 |[Tjnl| < 00 by Assumption HLIV(b)-(d). The (¢1,¢2) element of the
second summand has variance equal to n =2 > Zi2€1 ZZ-Q82 Var(Vaijui), which converges to zero for
all £1,0y < k because n=1 Y"1 | ||Z;||5 = o(n) and Var(Vaiju;) < E(Vai;jVibe)? < byboE||Vi|[* < oo
by Assumptions HLIV(b)-(c). This establishes part (b).

For part (c), we have

Co= =0 'S 2V = —n S ZiZlrn —n S ZiVi (24.23)
i=1 i=1 i=1

The first term on the rhs is O(1) by Assumption HLIV(c)-(d). The second term on the rhs is

O,(n~2) (= 0,(1)) because it has mean zero and its (£,5) element for £ < k and j < p has

variance n=2 Y 1| Z2 Xy =+, where Sy j+j+ < 00 is the (j*,j*) element of ¥y and j* = j + 1, and

nt Sy ngEVj*j* — KzpYv i+, where Kzy < oo is the (¢,¢) element of K7. Hence, the rhs is

Op(1), which establishes part (c).
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To prove part (d), we have

n n
n~t Y2 (9ig; — Bgigi) =t Y ZiZi(ui — Buf) —, 0, (24.24)

=1 =1

where the convergence holds because the rhs of the equality has mean zero and its (¢1, f2) element
has variance equal to n~! times n~! Z?:I(Zz?el Z?Z2Va7"((VZ-/bo)2) <n IS0 | ZAE| Vil 4 ol |* <
oo by Assumption HLIV(b)-(c) for all ¢1, ¢y < k. This proves part (d).

Part (e) holds by the following argument:

*1ZEG *122 Ya; — EYy;) = *1ZZV22 L (n 2, (24.25)
=1

where the last equality holds by the argument following (24.23)). O

24.2 Proof of Lemma [14.2]

Proof of Lemma m To prove part (a ), we determine the probability limit of V,, defined in
(7.1), where f; = (Zlu;, —vec(Z;Yy,)") by (3.1) and (3.3). For ¢, () defined in (14.1)), we can write

¢ (mp) =nt Z 7% 7% where (24.26)
n n
Z' = wvec (ZiZZ{ﬂ'n —nt Z ZgZéﬂ'n> = (n! ® Z))Z; —n~ ! Z(T{';L ® Zy)Zy € R
(=1

and the second equality in the second line follows from vec(ABC) = (C' ® A)vec(B).
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‘We have

n

Vo :=n"! 1<fl 12Efg)<fl—nIZEfg> (fn—nleﬂg)( —nlefg>

1=

/
n Ziu; Ziu;
=n ! Z ' Z + 0p(1)
i —vec(ZVy;,) — ZF, —vec(ZVy;) — Z,
!/
n Wi 0k><k kakp
=n! Z ‘ ® ZZZ{ + oox e
= _‘/21 _Vv2i oFPx Cn(ﬂn)
/ /
- Ziu; 0k n 0k T
+n—1z 1 U , n_1z A , +0p(1)
o1\ —vec(Z;Vy;) —Zpi i1 \ —Zn; —vec(Z;Vy;)
!/
1 —@ 1 - n kak kakp
— L 0 @ |\n 'y ZZ |+ +0,(1)
0 —I, o —I, | 0>k ()

kak Okap

n
= (B'SyB)® <n1;ZiZ£> Al G ) +op(1), (24.27)
where the second equality holds using Fu; = 0, EVa; = 0P, Yo; = 7, Z; 4+ Va;, vec(Z; Yy, —n~ 1 S0,
EZY),) = vec(ZiVy;)+ Z*;, and Lemma[24.2(a) and (e) because fo—n1 Y1 Efe= (g, vee(Gy—
n~ 1> EGy)"), the third equality holds by and simple rearrangement, the fourth equality
holds because (i) the first summand on the rhs of the fourth equality is the mean of the first
summand on the lhs of the fourth equality using u; = (1, —6()V;, (ii) the variance of each element
of the lhs matrix is o(1) because E||V;||* < co and n™1 31 | || Z;||* = o(n) by Assumption HLIV(b)-
(0) (because n ! S, [|Z414 < 0t S, 1 ZIM(IZi > D) +1 <0t S0 (1Z08 4+ 1 = ofn) using
Assumption HLIV(c)), (iii) {,,(my) — ((ms) by Assumption HLIV2(a)-(b), and (iv) the third and

fourth summands on the lhs of the fourth equality have zero means and the variance of each

element of these summands is o(1) (because each variance is bounded by n=2 31 | ||Z%.[1?[| Zi||? <
7l 12 (02 320 [1Z6]]% + 2072 300 11 Zl 1 ™t 30y (1 Zel P+ 2 320 I Zil P (0t 3200 (1 Ze]12)?) =
o(1), using [|Z5[| < |lmnl[([[Zil* + n ™ 32021 [1Zl]?), supren llmnll < oo, and E[|V][> < oo by

Assumption HLIV(b)-(d)), and the fifth equality holds by the definition of B in (6.3).

Using the definitions of R, in and R(m,) in , part (a) of the lemma follows from
R4.27).

Next we prove part (b). We have

/\

Sjtn = tr(Rp Q) k —p tr(Rje(m.) (6gSvbo) LK 7Y /k =2 (bhSvbo) ™ Syae, (24.28)
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where ijgn and Yy.je denote the (j,¢) elements of Y, and Yvs, respectively, R;Zn and Rj(my)
denote the (j,¢) submatrices of dimension k x k of R], and R(m.), respectively, the convergence
holds by part (a) of the lemma and Lemma M(b), and the last equality holds by the definition
of Xy in . Equation establishes part (b).

Part (c) holds because part (b) of the lemma and Lemma M(e) imply that ¢ —p
((bhZvbo) *Sy4 )%, Lemmall7.1)d) implies that ((bySybo) ~1Sv.)¢ = (bySvbo) "5, and Assump-
tion HLIV2(c) implies that X5, = Xy

To prove part (d), we have

n1/2]_~);
_ nl/?@;lﬂﬁnz%ﬂ
= ((0hSvboK2) 2K )? 4 0p)(1) (07 Zsn Zncie) ™20 (G, G) BE ALyl
x (L > (BoSvbo L)% + 0,(1)) + 0p(1)
= (I + 0p(1) (01 2L Zoasers) ™20V 2 (G, o) BET Ao L 2 (L2 LY2 4 0,(1)) + 0,(1)

= (I + 0p ()T Ly Lyf2 + 0,(1)) + 0,(1), (24.29)

where the first equality holds by the definition of 15;; in , the second equality holds by (i)
, (ii) the result of part (c) of the lemma that ¥5 —, (bySybo) 'Sy, (iii) the result of
Lemma (b) that 0, —, (BhSvbo)Kz, (iv) n~ 2. Znxk — Kz by Assumption HLIV(c), (v)
Ln = (00, 1,)(35)"1(60, I,)’ as defined in with 0 = g, and (vi) Ly, —, bySyboLy for Ly,
defined in part (d) of the lemma, the third equality holds by Lemma and the last equality
holds by . This completes the proof of part (d). O

24.3 Proof of Lemma [14.3

When p = 1, we write

2
(o8] pPo102

Sy = EV;V! := (Sy1, Bya) = € R?*? (24.30)

2
pPC102 %5}

for y1, Xye € R?, using the definition in (3.2).

The proof of Lemma [14.3] uses the following lemma.

2 2 o
Lemma 24.3 Under the conditions of Lemma |14.3}, (a) Lyo = 2 i?‘;%ﬁi?;fO% >0, (b) byXybo =

J% — 290p0102 + 9%05, and (C) LV()(U% — (5621/2)2(()62‘/()0)71) =1.
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Proof of Lemma We prove part (b) first. By (24.9) and (24.14)),

n' 202D, = n' (1, + 0p(1) (0 Z o Znck) "2 @Gy Gr) BETAG (b Sbo) ™2 + 0,(1)
= 2Ly + 0,(V)) (02 3 Zne) "2 Gy G) BEE Ao L L (063 00) ™V/2 4 0,(1)
= — (I + 0p(1))Tn(LyobySybo) "2 + 0,(1), (24.31)

where the second equality holds by Lemma and the third equality holds by (24.12]). Because
T, (I + op,(INT), = T T, + 0p(1)||T|[?, the result of part (b) follows.

Next, we prove part (a). We have
n Y (Gi — Gn)(Gi — Gr)
i=1

n n n / n n /
=n! Z (Gi —nt Zz: EG() (Gz' —nt Ez: EG@) - (@n —nt Z EGi) (@n —nt Z EG,-)
=1 =1 —1

i=1 =1

n n n !
=1

=1 (=1
n n n n !
=n"'Y (ZVai)(ZiVai) + 2070 (ZiZimn)(ZiVai) — 2 <n1 > Zgzgwn> <n1 > ZV2>
=1 =1 /=1 =1
+Cn(mn) + 0p(1)
= n_IZ;zkanXkU% + Cn(mn) + 0p(1), (24.32)

where the first equality holds by algebra, the second equality holds by Lemma (e), G = —Z;Ys;,
Yo = Zlmy, + Va;, and so Yy, — EYy; = Vb, the third equality holds by multiplying out the terms
on the lhs of the third equality and using the definition of {, () in , the first summand on
the lhs of the fourth equality equals the first summand on the rhs of the fourth equality plus o, (1)
by the same argument as for Lemma d) with V2 in place of u? and o3 := EVZ in place of
Eu?, the second summand on the lhs of the fourth equality is 0,(1) because it has mean zero and
its elements have variances that are bounded by 403n=2>"" | ||Z;||® sup,cr ||7||?, which is o(1) by
Assumption HLIV(c)-(d), and the third summand on the lhs of the fourth equality is 0,(1) because
n S ZeZyw, = O(1) by Assumption HLIV(c) and (d) and n= !>}, Z;Va; = 0,(1) by the
argument following .
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Combining (24.13), (24.9), (24.32) and the definition of Vp,, in (14.9), we obtain

Von =71 ZiZ{(05 — (bySv2)* (6o Xvbo) 1) + () + 0p(1)
=1

= KzLyg + Cu(mn) + 0p(1), (24.33)

where the second equality holds by Lemma [24.3(c) and Assumption HLIV(c).

Next, we have

_ ~1/2 A _ “1/2 ~ A 1 4
n'/? (n IZ;LXanXk) / D"L%//O2 = n'/? (n IZ;kanXk) / (gmGn)BEVIAOL%//O2 +0p(1)
_ —“1/2 . A _ _ _
= —n'" (07 2w Zux) P (G0, GBS Ao L + 0y(1) = =T + 0y(1), (24.34)

where the first equality holds by (24.14)), the second equality holds by Lemma and the third

equality holds by (24.12).
Using (24.33)), we obtain

n 2V D, = [KzLyd + Co(ma) + 0p(1)] /201 /2D,
— —[KzLyb + Cu(mn) + 0p(] ™2 (07 2l Zoscr) 2 T Lyt + 0p(1)
= —[KzLyg + Culma) + 0p(1)] 2K/ * T Lyg (14 0p(1)) + 0p(1),  (24.35)

where the second equality holds using (24.34) and Assumption HLIV(c), the third equality holds

by Assumption HLIV(c) and some calculations. Using this, we obtain

P i= DV Dy = T K (K Lyf + Colmn) + 0 (D] K/ * T L (14 0p(1)) + 0p(1)

= Tlle + LvoK ;¢ (mn) K2 + 0p(1)] 7 T (1 + 0p(1) + 0,(1), (24.36)

where the last equality holds by some algebra. This proves part (a) of the lemma.
Part (c) of the lemma follows from Lemma [24.3(a) and (b) by substituting in 03 = c?0%. O

Proof of Lemma Part (a) holds by the following calculations:

-1

2
o 010 0
Lvo := (60,1) Lo 12 2 0 (24.37)
pPO103 05 1
1 (60.1) o3 —po102 0o 02 — 20ppoi09 + 0303
= 55— (Vo =
J%U%(l - p?) —po102 O'% 1 U%J%(l - p?)
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We have Lyg > 0 because Xy is pd by Assumption HLIV(b) and (g, 1) # 02.
Part (b) holds by the first of the following two calculations:

o2 010 1
662\/[)0 = (1, —(90) ! po1o2 = J% — 290/)0102 -+ H%J% and
pPoO102 U% —(90
1)62\/2 = (1, —90)(,0010’2,0%)/ = poi109 — 900’%. (24.38)

Using (24.38)), we obtain

(po103 — 0903)*
02 — 200poi0oy + 0303

03 — (bhSv2)?(bpXyby) ! = 03 — (24.39)

_ a%a% — 290p010§’ + 9%0‘21 — (porog — 0003)2 _ U%O’%(l — ,02) _
U% — 20ppoi09 + 030% O’% — 20ppoi0s + 930% vor

which proves part (c). O

25 Proof of Theorem 12.1

In Section [8] we establish Theorem [8.1] by first establishing Theorem which concerns non-
SR versions of the AR, CQLR;, and CQLRy tests and employs the parameter spaces Fagr, Fi,
and Fo, rather than F ig, ]—'fR, and .7-"§R. We prove Theorem here using the same two-step
approach.

In the time series context, the non-SR version of the AR statistic is defined as in based
on {f; — fn : 1 < n}, but with ﬁn defined in 1) and Assumption 2 below, rather than in ,
and the critical value is X%,lf o The non-SR QLR time series test statistic and conditional critical
value are defined as in Section but with ‘A/n and (AZn defined in and Assumption V1 below
based on {(u} —u},) ® Z; : i < n}, rather than in and (5.1)), respectively. The non-SR QLRy
time series test statistic and conditional critical value are defined as in Section |7, but with 17” and

ﬁn defined in 1) and Assumption V below based on {f; — fn ;i < n}, in place of V,, and (AZn
defined in ([7.1]) and (5.1)), respectively.

For the non-SR AR and non-SR CQLR tests in the time series context, we use the following

parameter spaces. We define

Frsar = {F :{W;:i=..,0,1,...} are stationary and strong mixing under F' with
strong mixing numbers {ap(m) : m > 1} that satisfy ap(m) < Cm ™4,

Ergi = 0%, Epllgi|*" < M, and Amin(Qp) > 0} (25.1)
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for some 7,8 > 0,d > (24 )/v, and C, M < oo, where Qp is defined in . We define Frg 2
and Frg1 as F2 and Fp are defined in , respectively, but with Frg ar in place of Fag. For
CS’s, we use the corresponding parameter spaces Frso ar := {(F,6o) : F' € Frs,ar(0o), 00 € O},
Frsez2 = {(F,00) : F € Frsa(fo),00 € O}, and Frsei1 = {(F,b) : F € Frsi(0o),00 € O},
where Frs ar(6o), Frs2(0o), and Frg1(0o) denote Frs ar, Frsz2, and Frg 1, respectively, with
their dependence on #y made explicit.

For the (non-SR) CQLR; test and CS in the time series context, we use the following assump-

tions.

Assumption V: V,(6y) — Vg, (60) —p 0PFDEX(PHDE ynder {F, : n > 1} for any sequence {F,, €
Frsz :n > 1} for which Vg, (0g) — V for some matrix V' whose upper left £ x k submatrix Q is
pd.

Assumption V-CS: V,(6o,) — Vi, (00n) —p 0PTDRX@HDE ynder {(F,,00,) : n > 1} for any
sequence {(Fy,00,) € Frsez : n > 1} for which Vg, (0o,) — V for some matrix V' whose upper
left k£ x k submatrix € is pd.

For the (non-SR) CQLR; test and CS, we use Assumptions V3 and V;1-CS, which are defined
to be the same as Assumptions V and V-CS, respectively, but with Frg; and Frgse 1 in place of
Frs2 and Frge,.

For the (non-SR) AR test and CS, we use Assumptions 2 and Q-CS, which are defined as
follows. Assumption €: Q,(6) — Qp, n(00) —p 0"*% under {F, : n > 1} for any sequence
{F, € Frsar :n > 1} for which Qp, ,(0g) — Q for some pd matrix Q and rg, ,,(0g) = r for all n
large, for any r € {1,...,k}. Assumption 2-CS is the same as Assumption 2, but with 6, and
Frse,Aar in place of Oy and Frg Ar.

For the time series case, the asymptotic size and similarity results for the non-SR tests and CS’s

are as follows.

Theorem 25.1 Suppose the AR, CQLR;1, and CQLRs tests are defined as above, the parame-
ter spaces for F' are Frsar, Frsi, and Frsa, respectively (defined in the paragraph containing
(25.1)), and the corresponding Assumption 2, V1, or V holds for each test. Then, these tests have
asymptotic sizes equal to their nominal size o € (0,1) and are asymptotically similar (in a uniform
sense). Analogous results hold for the AR, CQLR;1, and CQLR2 CS’s for the parameter spaces
Frs.e,Ar: Frs,e,, and Frse 2, respectively, provided the corresponding Assumption 2-CS, V1-CS,
or V-CS holds for each CS, rather than Assumption €, Vi, or V.

The proof of Theorem [12.1} uses Theorem [25.1| and the following lemma.
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Lemma 25.2 Suppose {X; : i = ...,0,1,...} is a strictly stationary sequence of mean zero, square
integrable, strong mizing random variables. Then, Var(X,) = 0 for any n > 1 implies that X; = 0

a.s., where X, :==n"t3 " | X;.

Proof of Theorem The proof of Theorem using Theorem [25.1]is essentially the same
as the proof (given in Section of Theorem using Theorem and Lemma m Thus, we
need an analogue of Lemma to hold in the time series case. The proof of Lemma m (given
in Section goes through in the time series case, except for the following;:
(i) in the proof of 7, < r (=rp,) a.s. Vn > 1 we replace the statement “for any constant vector
A € R¥ for which NQp A = 0, we have Ng; = 0 a.s.[F},] and NQ,\ = n~? i(A'gi)z -~ (Ngn)?=0
a.s.[Fy,]” by the statement “for any constant vector A € R for which \'Q FHZ)T 1: 0, we have X g; = 0
a.s.[Fy,] by Lemma (with X; = XNg;) and in consequence NQ,A = 0 a.s.[F,] by Assumption
SR-V;(c), SR-V3-CS(c), SR-Vi(c), SR-V1-CS(c), SR-Q(c), or SR-Q-CS(c).”
—-1/2

(ii) in the proof of 7, > 7 a.s. Vn > 1 we have Hl_;fA’FnQnAFnHlFZ —p I, with II1 5, and

Ar

n

replaced by Iy, ,, and Ap, 5, respectively, by Assumption SR-Va(a) or SR-V2-CS(a), rather
than by the definition of Q,, combined with a WLLN for i.i.d. random variables,

(iii) in , the second implication holds by Lemma (with X; = Ng;) and the fourth
implication holds by Assumption SR-Vj(c), SR-V2-CS(c), SR-Vi(c), SR-V;-CS(c), SR-Q(c), or
SR-Q-CS(c), and

(iv) the result of Lemma which is used in the proof of Lemma holds using the equivari-
ance condition in Assumption SR-Va(b), SR-V2-CS(b), SR-V;(b), SR-V1-CS(b), SR-Q(b), or SR~
Q-CS(b). O

Proof of Theorem [25.1} The proof is essentially the same as the proof of Theorem [10.1] (given
in Section and the proofs of Lemma and Proposition m (given in Section [20| above and
Section 16 in the SM of AGI, respectively) for the i.i.d. case, but with some modifications. The
modifications are the first, second, third, and fifth modifications stated in the proof of Theorem 7.1
in AG1, which is given in Section 19 in the SM to AG1. Briefly, these modifications involve: (i) the
definition of A5 , (ii) justifying the convergence in probability of Q,, and the positive definiteness
of its limit by Assumption V, V-CS, V1, V1-CS, Q, or Q-CS, rather than by the WLLN for i.i.d.
random variables, (iii) justifying the convergence in probability of fjn (= fjn(ﬁg)) by Assumption
V, V-CS, Vi, or V;-CS, rather than by the WLLN for i.i.d. random variables, and (iv) using the
WLLN and CLT for triangular arrays of strong mixing random vectors given in Lemma 16.1 in the
SM of AG1, rather than the WLLN and CLT for i.i.d. random vectors. For more details on the
modifications, see Section 19 in the SM to AG1l. These modifications affect the proof of Lemma
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110.3l No modifications are needed elsewhere. [J

Proof of Lemma Suppose Var(X,) = 0. Then, X, equals a constant a.s. Because
EX,, =0, the constant equals zero. Thus, Z?:l X,; =0 a.s. By strict stationarity, Z?Zl Xitsn =0
a.s. and Z?:Ql Xitsn = 0 a.s. for all integers s > 0. Taking differences yields Xi4s, = X14n4sn for
all s > 0. That is, X1 = X4y, for all s > 1.

Let A be any Borel set in R. By the strong mixing property, we have
&, =|P(X1 €A, Xiysn € A)— P(X1 € A)P(Xi4sn € A)| < ax(sn) — 0as s — oo, (25.2)

where ax(m) denotes the strong mixing number of {X; : i = ...,0, 1, ...} for time period separations

of size m > 1. We have
&, =|P(X1€A)—P(X; € A)2| =P(X; € A)(1-P(X; € A), (25.3)

where the first equality holds because X1 = Xj14, a.s. and by strict stationarity. Because £, — 0
as s — oo by and &, does not depend on s by ([25.3), we have £, = 0. That is, P(X; € A)
equals zero or one (using ) for all Borel sets A and, hence, X; equals a constant a.s. Because
EX; =0, the constant equals zero. [
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