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1 Introduction

Rising healthcare expenditures have motivated spending reforms such as Medicare’s prospective

payment system, which ties reimbursements to a fixed amount per service irrespective of a

provider’s actual costs. Although such initiatives aim to limit wasteful healthcare expenses, they

may inadvertently result in lower-quality care if providers cut costs by reducing the quality of

their treatments. As such, measuring the tradeoff between the number and quality of treatments

is crucial for understanding the impact of any potential policy change. Our paper examines this

tradeoff explicitly and provides an empirical framework for measuring its magnitude within

health care.

A prominent setting where such a tradeoff may be particularly acute is outpatient dialysis

treatments, a process that cleans the blood of patients with end-stage renal disease (ESRD),

more commonly referred to as kidney failure. Several features of this industry make it an

appealing empirical setting to evaluate the relationship between productivity and quality in

health care. First, dialysis treatments follow a straightforward process related to stations and

staff, which allows us to closely approximate a facility’s production function. Second, we observe

centers’ input levels (i.e., staffing and machines) and production (i.e., patient loads), which

allows us to cleanly identify the relationship between inputs and outputs. Third, facilities

have observable differences in outcomes that relate directly to the quality of care they provide

(e.g., infection and death rates), which allows us to connect a center’s inputs and outputs to

its treatment quality. Fourth, payments for treatment are largely uniform due to Medicare’s

prospective payment system and do not depend on treatment quality, making it possible for

us to isolate the effects of quality provision from price discrimination.1 Finally, payments to

dialysis facilities comprise a substantial portion of Medicare’s expenditures each year — over

$20 billion in 2011, or 6% of total Medicare spending — making it an important area for policy

analysis.

Identifying a quality-quantity tradeoff among dialysis providers requires us to first under-

stand the incentives centers face to provide high-quality care. Most directly, dialysis centers have

an incentive to minimize the costs of treating patients under Medicare’s prospective payment

1In 2012, Medicare instituted a Quality Incentive Program (QIP) for dialysis centers that reduces reimbursements
by 2 percent if centers do not adhere to a quality standard for average hemoglobin levels and urea reductions rates, two
measures of the effectiveness of dialysis treatment. However, although it is considered a novel attempt to incorporate
quality standards into the Prospective Payment System, the QIP does not account for infection rates — clearly an
important measure of treatment quality — in its measurement system. Furthermore, the QIP was not in effect for
the timespan covering the data used in our analysis.
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system, which may include providing low-quality — and hence less-costly — care. Counter-

acting this incentive, however, are plausible motivations for providing high-quality treatments.

For instance, centers must report quality statistics to Medicare and face intermittent inspec-

tions by state regulators; Ramanarayanan & Snyder (2011) argue that these publicly available

reports have a causal impact on the quality of care provided by dialysis centers.2 In addition,

patients have some choice over their dialysis providers and nephrologists make referrals based, in

part, on a center’s effectiveness, potentially leading centers to compete for patients by providing

higher-quality care (Dai 2012). Finally, non-profit centers may have objectives for providing

high-quality care unrelated to maximizing profits (Sloan 2000). In keeping with these studies,

we find that states’ inspection rates of facilities, centers’ time since last inspection, and nephrol-

ogists’ referral rates all correlate with centers’ rates of infection, suggesting that centers respond

to incentives to provide high-quality care. Accordingly, we include these factors in our model

of quality provision, as they provide an important source of variation that allows us to identify

centers’ quality-quantity tradeoff.

After establishing centers’ motivations for providing high-quality care, determining whether

dialysis centers do, in fact, face a costly tradeoff between quality and quantity — and quantify-

ing its magnitude — then requires overcoming a key empirical challenge: providers’ endogenous

choices with respect to inputs and quality may bias estimates of the quality-quantity trade-

off. That is, because centers’ input choices and targeted levels of quality are not exogenously

assigned, estimating the relationship between quality and quantity becomes confounded by un-

observed differences in productivity, such as managerial ability or patient characteristics, which

are observable to the center but not to the researcher.3 As higher levels of productivity effectively

shift out a center’s production possibilities frontier, the center becomes able to simultaneously

treat more patients and provide better care; at the extreme, a positive correlation between

quality and quantity may result. Even at modest levels of dispersion, this correlation will bias

reduced-form estimates of the quality-quantity tradeoff and lead researchers to underestimate

facilities’ true costs of improving treatment quality.

To recover the cost of providing higher-quality care in a consistent manner, we build on

the structural methods for estimating center-level production functions first proposed by Olley

2Using a regression discontinuity approach, they show that centers who are rated just below the threshold between
“worse than expected” and “as expected” on annual CMS reports have improved performance on quality metrics in
the following year relative to those who narrowly surpass the threshold.

3While we control for observable differences in patient characteristics, unobservable differences may still affect
centers’ input and quality choices.
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& Pakes (1996), and later extended by Levinsohn & Petrin (2003), Ackerberg et al. (2006),

Gandhi et al. (2013), and others. Conceptually, we adapt these methods to incorporate a

“quality-choice” stage that comes after a center’s choices of labor and capital inputs. That is,

after acquiring capital and training workers, a manager observes her center’s expected level of

productivity and chooses the quality of care to provide by, for example, stipulating guidelines for

the length of treatment or cleanliness of equipment. Accommodating these endogenous quality

choices in our estimation is a necessary adjustment for healthcare settings because providers

under a prospective payment system may inadvertently appear more productive by treating

many patients ineffectively, whereas policy makers have concerns over both productivity and

efficacy.

Because we do not directly observe centers’ choices regarding quality, we instead use ob-

servable measures of patient outcomes as a proxy for what those choices must have been — if

high-quality care is more likely to result in better health outcomes, those outcomes are valid

proxies for quality choices. Proceeding in this manner, however, presents several empirical chal-

lenges. First, health outcomes will depend not just on the choices made by centers, but also on

underlying patient characteristics. To account for this, we use center-level patient characteris-

tics to control for key sources of variation in the patient population that could affect realized

health outcomes. Second, centers themselves have more information about their patients than

researchers do. To the extent that unobservable differences in patient characteristics make

treatment easier or more difficult, they result in an additional explanation for the differences in

productivity across centers. As discussed above, we use a structural model of dialysis provision

to address this issue, allowing for unobserved and heterogeneous productivity across centers.

Finally, health outcomes depend on many factors beyond just the quality of care provided by

centers, including a large random component, which introduces attenuation bias into standard

estimation techniques. In light of this, we employ multiple measures of health outcomes (in our

case, derived from centers’ septic infection and mortality rates) and use an instrumental variable

approach to recover the impact of quality choices on output.

From our analysis, we find a substantial quality-quantity tradeoff for dialysis treatments: a

center can increase its patient load by 1.6 percent by reducing the quality of its treatments to

allow a 1 percentage point increase in its expected septic infection rate, holding input levels

and productivity constant. Equivalently, holding the number of treated patients constant but

allowing a one standard deviation increase in a center’s targeted infection rate decreases its costs
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by the equivalent of five full-time employees.

In an extension of our model, we allow for a heterogeneous quality-quantity tradeoff across

providers by making the production frontier’s slope a function of each center’s scale or input

mix. Our results suggest that, although a center’s scale appears to have little effect on the

magnitude of the quality-quantity tradeoff, the tradeoff does vary based on the capital-labor

ratio. We find that a high capital-to-labor ratio leads to a steeper-than-average tradeoff (that is,

centers can increase output more for a given decrease in quality), while centers with relatively

more labor have a flatter tradeoff. Although intuitive, the finding that the quality-quantity

tradeoff depends on a center’s input mix and scale is novel (to the best of our knowledge) in

the healthcare literature. Finally, we consider the differences in productivity among non-profit

centers, the industry’s two dominant for-profit chains — DaVita and Fresenius — and other

for-profits. Allowing for the productivity process to vary non-parametrically by ownership-type

reveals little difference across centers, in contrast to other studies that have found that for-profit

healthcare providers tend to have higher productivity (Kessler & McClellan 2002).

In addition to providing relevant policy analysis, this paper also contributes to the grow-

ing literature in empirical industrial organization on the estimation of production functions.

These methods have a long history in economics, with much prior work focused on economet-

ric issues related to selection and simultaneity bias.4 In light of this, more recent work has

developed structural techniques that use centers’ observed input decisions to control for unob-

served productivity shocks and overcome endogeneity problems.5 We extend these methods to

incorporate observable measures of output quality into the production function, which is nec-

essary for healthcare applications. To our knowledge, we are the first to apply these methods

to a healthcare setting with the goal of measuring a quality-quantity tradeoff.6 Our work also

connects to the literature on firms’ quality choices within regulated industries (Joskow & Rose

1989, Crawford & Shum 2007), as measuring the tradeoff is central to understanding the full

impact of regulations.

The remainder of our paper continues in the following section with a description of the

outpatient dialysis industry and our data sources. Section 3 develops our structural model for

4See Syverson (2011) for a recent review.
5See, for example, Olley & Pakes (1996), Ackerberg et al. (2006), and Levinsohn & Petrin (2003).
6Romley & Goldman (2011) consider quality choices among hospitals using a revealed-preference approach rather

than outcome-based quality measures. Gertler & Waldman (1992) estimate a quality-adjusted cost function for
nursing homes. Lee et al. (2012) use a structural approach to measure the impact of healthcare IT on hospital
productivity, but do not consider output quality.
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estimating a production function in the presence of an endogenous quality choices, while Section

4 outlines our methods for bringing the model to the data. Section 5 presents our estimation

results. Finally, Section 6 concludes with a discussion of our findings’ implications for policy

analysis.

2 Empirical Setting and Data Description

The demand for dialysis treatments comes from patients afflicted with end-stage renal disease

(ESRD), a chronic condition characterized by functional kidney failure that results in death

if not treated properly. Patients with ESRD effectively have only two treatment options, a

kidney transplant or dialysis. Due to the long wait-list for transplants, however, nearly all

ESRD patients must at some point undergo dialysis, a medical process that cleans the blood

of waste and excess fluids. Patients can receive different dialysis modalities, with hemodialysis,

a method that circulates a patient’s blood through a filtering device before returning it to the

body, constituting 90.4 percent of treatments (Center for Medicare and Medicaid Services). The

typical dialysis regimen calls for three treatments per week lasting 2 to 5 hours each, with the

duration dictated by a nephrologist to meet clinical thresholds. Although individual patient

characteristics, such as the severity of ESRD, influence treatment lengths, treatment frequency

rarely deviates from the standard protocol of three sessions per week.7

Patients receiving dialysis in the United States primarily do so at free-standing dialysis

facilities, which collectively comprise over 90 percent of the market (USRDS 2010).8 Medicare’s

ESRD program, instituted by an act of Congress in 1973, covers the majority of these patients;

notably, all patients with ESRD become eligible for Medicare coverage, regardless of age, and the

program now includes over 400,000 individuals. Today, Medicare spends more than $20 billion

a year on dialysis care — approximately $77,000 per patient annually — which constitutes more

than six percent of all Medicare spending despite affecting fewer than one percent of Medicare

patients (ProPublica 2011).

Beginning in 1983, Medicare has paid dialysis providers a fixed, prospective payment — the

“composite rate” — for each outpatient treatment delivered, up to a maximum of three sessions

7Generally, Medicare reimbursements are limited to three sessions per week. Hirth (2007) has argued that this
limit may lead to inadequate dialyzing of some patients and failure to experiment with alternative dialysis schedules
(such as shorter but more frequent sessions).

8Other options for receiving dialysis include hospital emergency rooms and in-home treatments.
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per week per patient. Initially, the payment rate did not adjust for quality, length of treatment,

dialysis dose, or patient characteristics, though Medicare began to adjust payments based on

patient characteristics in 2005. Many have speculated that this payment structure affects the

quality of dialysis treatments, such as Hirth (2007) who states, “Research on the relationship

between payment for dialysis and the quality and nature of the process is not definitive, but there

is evidence that practices such as dialyzer reuse, staffing reductions, and scheduling inflexibilities

(fewer dialysis stations per patient) were encouraged by financial pressures.”

Dialysis treatments require constant supervision by trained medical professionals, as patients

must remain connected to a station for several hours to filter impurities and remove excess fluid

from their blood. Prior to treatment, staff connect the machine to a patient by inserting two lines

into a vascular access and assess his condition. During treatment, staff must continually monitor

patients to evaluate their condition (e.g., blood pressure) and to treat symptoms that arise (e.g.,

hypotension). Following treatment, staff disconnect the patient from the station and assess his

condition a final time before discharge; they then clean and sanitize machines in preparation

for the next patient. As a result of this hands-on care, the cost per patient treated necessarily

increases with the average amount of time devoted to treatments and cleaning. Labor costs,

which consist largely of nurses and technicians’ wages, reflect this, accounting for approximately

70 to 75 percent of a facility’s total variable costs (Ford & Kaserman 2000).

Centers employ different types of labor, with registered nurses (RNs) comprising the majority

of staff. Technicians, who have less-extensive training than RNs, also treat patients but can

do so with only a high-school diploma and in-house training (though they must eventually

pass a state or national certification test). Notably, centers cannot quickly react to changes in

productivity by hiring more workers due to persistent nurse shortages and the additional training

and certification required to become a dialysis nurse. As an example of this, for-profit dialysis

chain Fresenius claims in an internal report that, “In practical terms, nurse staffing turnover is

a costly proposition because of the training required to bring new hires up to speed.”9 Centers

also must have board-certified physicians as medical directors, though often have no physician

on site. Medicare does not mandate a specific staffing ratio for dialysis centers, although some

states do.

In addition to staffing levels, another significant decision for dialysis facilities is the number

of stations to have in operation. Centers vary widely in terms of size, ranging from 1 to 80

9See “FMS Pathways: Nursing Shortage.”
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stations. Based on industry reports, a typical dialysis station costs $16,000 and has a useful life

of approximately seven years (Imerman & Otto 2004).

Along with labor and capital decisions, centers must also choose how much effort to put

towards providing high-quality care, the central focus of our study. Quality in this setting can

mean many things, from the effectiveness of dialysis in reducing urea from blood to the comfort

of patients during treatment. We focus on a single dimension of quality, a patient’s risk of

contracting a septic infection, as such infections are particularly costly and life-threatening for

patients. Nationally, the rate of hospitalization for septic infections while undergoing dialysis is

over 12 percent per year.

Importantly, centers can allocate their resources in ways that affect patients’ risk of infection.

For example, infections related to dialysis stem in large part from the exposure of a patient’s

blood during treatment, making the cleanliness of the dialysis center and its stations a key

factor. Because dialysis sessions require up to one hour of preparation and cleaning, the center

has considerable control over its targeted infection rate, as health professionals who follow

straightforward procedures can virtually eliminate their patients’ risk of contracting infections

(Patel et al. 2013, Pronovost et al. 2006).10

Reducing the risk of infection, however, comes with the opportunity cost of treating fewer

patients due to the resource constraints of the facility, which may ultimately reduce the center’s

profits. That is, because a facility’s reimbursement per treatment does not vary with its duration

under Medicare’s prospective payment system, a facility’s profit per treatment decreases as

treatment and cleaning times — and, hence, labor costs — increase. In essence, the tradeoff

faced by centers stems from their choice to either improve treatment quality or decrease costs.11

An extensive medical literature has examined these tradeoffs in health care more generally,

mostly from an accounting perspective (Weinstein & Stason 1977). Morey et al. (1992), for

example, found that a 1% increase in the quality of care increased hospital costs by 1.3%; Jha

et al. (2009) found that low-cost hospitals had slightly worse risk-adjusted outcomes for common

medical conditions; and Laine et al. (2005) found that efficient wards had issues with quality

10There may also be differences in the quality of dialysis stations in regard to how efficiently they can be cleaned,
although this is not highlighted in industry reports or CDC guidelines, which emphasize thorough cleaning and
sterilization of machines, the use of appropriate disinfectants, and monitoring and appropriate cleanup of blood and
other fluid spills (CDC 2001).

11Critics allege that facilities may sacrifice their quality of care in pursuit of efficiency, turning over three to four
shifts of patients a day. And while policy makers contend that technicians should not monitor more than four patients
at once, patient-to-staff ratios exceed this guideline in many facilities. At the extreme, inspection reports allege that
some clinics have allowed patients to soil themselves rather than interrupt dialysis (ProPublica 2011).
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Table 1: Summary Statistics.

Variable Mean St. Dev.

Patient Years 50.856 31.913
FTE Staff 13.484 7.769
Net Hiring 0.182 3.868
Zero Net Hiring 0.127 0.333
Stations 18.612 7.877
Zero Net Investment 0.923 0.266
Septic Infection Rate 12.504 6.399
Death Rate Ratio 1.041 0.405

Number of Centers 4,270
Number of Center-Years 18,295

for conditions that require time-consuming nursing procedures. In this paper, we consider the

tradeoff using a structural model of production intended to control for possible confounding

factors, such endogenous quality decisions and the measurement error that arises from using

observable outcomes as proxies for centers’ unobservable choices.

2.1 Data Sources

Our primary dataset comes from the Centers for Medicare and Medicaid Services (CMS) which

contracts with the University of Michigan’s Kidney Epidemiology and Cost Center to compile

customized reports for each dialysis facility across the country. In December 2010, ProPublica,

a non-profit organization dedicated to investigative journalism, obtained these reports under

the Freedom of Information Act and posted them online. We systematically downloaded all

individual reports covering 2004-2008 and constructed a usable dataset. The data include de-

tailed center-level information on aggregated patient (e.g., age, gender, co-morbid conditions,

etc.) and facility (e.g., number of stations and nurses, years in operation, etc.) characteristics.

Table 1 presents selected summary statistics from the data, and several variables deserve

note. First, Medicare analyzes individual patient records and calculates the number of patient-

years attributable to each center (e.g., a patient treated at a center for six months is accounted

for as one half of a patient-year). We use this variable as our measure of output, as it provides

an accurate record of dialysis provision that accounts for partial years of service due to death,

transfers, transplants, newly diagnosed patients, and so forth.12 We also use the number of

12Since treatment is mostly standardized at three treatments per week and the goal of dialysis is to clean the blood,
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full-time equivalent (a weighted mix of full-time and part-time) employees at each center and

the number of dialysis stations as our measures of labor and capital inputs, respectively. In

terms of capital stock, the average number of dialysis stations used by a center is 18, making

the purchase of a new machine a significant investment; reflecting this, centers have zero net

investment for 92 percent of the center-year observations in the data. In terms of hiring, centers,

on average, increase their staff by the equivalent of one full-time employee each year, while 12.7

percent of centers have no net change in employment.

We use a center’s hospitalization rate from septic (blood) infections as our primary measure

of quality, which averages 12.5 percent per year and has a standard deviation of over 6 percent.

The high infection rate reflects the severe vulnerability of the ESRD patient population relative

to the general population, for whom septic infections are rare outside of hospital settings.13

Although some of this variation is due to deliberate choices made by centers regarding their

quality of care, other factors outside of a center’s control also influence infections. For this

reason, we control for the characteristics of each center’s patient mix, which we discuss at

length in Section 4. We also allow for centers’ quality choices to depend on their unobserved

productivity, which may be related to the susceptibility of their patients to infections that is

observed by the center but not the researcher. Moreover, the number of infections may have a

large random component beyond patient characteristics and quality choices, so we must account

for this measurement error in the model. To do so, we use the ratio of deaths to expected

deaths as an alternative measure of quality.14 In our regressions, we use the septic infection

rate as our preferred measure of quality because it is the quality outcome most closely tied to

centers’ actions during dialysis treatments, whereas deaths may have many other causes besides

infection from a dialysis machine.

2.2 Incentives for Quality

Before moving to the structural model, we first consider whether variation in quality across

centers stems from deliberate managerial choices. As discussed above, the question of whether

external forces influence dialysis facilities’ incentives for providing high-quality care has been

investigated in previous studies (Ramanarayanan & Snyder 2011, Sloan 2000). To illustrate this

we do not consider differences in treatment times as output variation.
13For some perspective on this vulnerability, in 2009 remaining life expectancy for a 50-54 year old in the US

general population was 27.1 years, while for the population of ESRD patients it was 7.1 only years (USRDS 2013).
14The center-level expected death rate is calculated by Medicare using individual patient characteristics.
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in our own data, we consider a series of fixed-effects regressions of the septic infection rate on

plausibly exogenous drivers of quality and patient characteristics. These regressions use within-

center variation to show that centers facing stronger incentives to provide higher-quality care

have better outcomes, suggesting that centers do, in fact, have an ability to adjust their level of

quality when it is in their best interest to do so.

First, we look at the time since a facility was last inspected by a state authority.15 As centers

with many reported violations face the possibility of losing certification, a recently inspected

facility has an incentive to correct any reported deficiencies. Reflecting this, Column (1) of

Table 3 shows that the infection rate increases with the time since inspection by a statistically

significant 0.15 percentage points per year, or about 11.8% at the mean. Note that the most

likely source of endogeneity bias for this regression — that regulators target centers with poor

outcomes for more-frequent inspections — works against this result, making it a conservative

estimate.

Our second test uses variation in inspection rates across states, which differ based on fund-

ing and other local regulations — and in that sense not confounded by an individual center’s

unobserved characteristics. As shown in Column (2), we find that an increase in the state in-

spection rate is associated with a lower infection rate: centers in states with an inspection rate

one standard deviation above the mean have a 0.1 percentage point lower infection rate, on

average, which is about 1% lower at the mean.

Finally, we consider the possibility that the referral rates of nephrologists might affect treat-

ment quality.16 Presumably, nephrologists will not refer patients to a center with a poor record

of quality, and they may also serve as a check on facilities after referral (e.g., a nephrologist

will act as an advocate for his patients should they receive poor-quality treatments). Column

(3) shows that a higher rate of referrals is associated with a lower infection rate, with the effect

similar in magnitude to that found for the state inspection rate.

Although each of these regressions suffers from its own particular shortcomings (e.g., both

referrals from nephrologists and the likelihood of inspection are potentially endogenous with

respect to centers’ quality choices), taken together they provide consistent evidence that plausi-

bly exogenous drivers of quality do, in fact, influence a facility’s provision of quality. Note also

15We know only the year of the last inspection, so if a center is inspected this year there are “zero” years since its
last inspection.

16Unfortunately, the referral rate is available for only 3 years of our 5 year panel, severely reducing the number of
observations in the data; for this reason, we do not include it in our baseline model.
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Table 2: Quality Drivers.

Variable Mean St. Dev. N

Time Since Inspection 1.634 1.813 18,221
State Inspection Rate 29.348 11.648 18,295
% Patients Referred by Nephrologist 69.445 20.346 11,372

Table 3: Infection Rate Fixed Effects Regressions.

(1) (2) (3) (4) (5)

Time Since Inspection 0.148 0.141 0.142
(0.031) (0.031) (0.047)

State Inspection Rate -0.010 -0.007 -0.002
(0.005) (0.007) (0.694)

% Patients Referred by Nephrologist -0.009 -0.009
(0.004) (0.004)

Patient Characteristics Yes Yes Yes Yes Yes
Center Fixed Effects Yes Yes Yes Yes Yes

Observations 18221 18295 11372 18221 11342
R2 0.572 0.573 0.662 0.573 0.663

that each specification controls for facility-level fixed effects, so any time-invariant institutional

factors (e.g., the facility is in a region with sicker patients) are accounted for in the regressions.

That infection rates depend on incentives for quality provides us with an important source of

variation we will use to identify the quality-quantity tradeoff. In short, we will compare centers

with similar productive capacities but different incentives to provide high-quality treatments

to estimate the relationship between quantity and quality, with our structural model explicitly

accounting for the different incentives centers face to provide high-quality treatments, as we

discuss in Section 4.2.

3 A Model of the Quality-Quantity Tradeoff in Dialysis

To measure the relationship between a center’s productivity and its treatment quality, we pro-

pose and estimate a structural model of dialysis provision. In doing so, we account for both

the standard endogeneity problems associated with using observed input choices to estimate

production functions and the additional problem introduced by a center’s endogenous choice

of treatment quality. The complication related to endogenous quality decisions stems from the
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unobserved (to the econometrician) choice made by centers that receive positive shocks to their

productivity: they may choose either to treat more patients, or to treat current patients more

intensively. If highly productive centers choose to provide higher-quality care for their patients,

näıve estimates of the quality-quantity tradeoff will be biased, leading us to underestimate the

true cost of delivering high-quality care.

To control for this potential source of bias, we extend the work of Olley & Pakes (1996)

and Ackerberg et al. (2006) by incorporating centers’ endogenous quality targets. Because we

only observe noisy measures of quality in our data, we also control for measurement error in

quality choices, proxied for by center-level hospitalization rates for septic infection. Specifically,

the attenuation bias introduced by measurement error in quality choices would cause us to

underestimate the magnitude of the quality-quantity tradeoff, which we correct for using an

instrumental variable approach.

3.1 The Production Technology

We model the provision of dialysis treatments as a stochastic two-output production process,

where the outputs are the number of patients treated and the quality of treatments. As centers

face a tradeoff between quality and output, they operate under a production possibilities frontier

relating the number of patients they treat and the level of quality they provide. Formally, we

define centers’ production possibilities frontier as

T (ỹit, q̃it) ≤ F (kit, `it, ωit). (1)

The production function F (·) is the most familiar part of this constraint; it governs how the

center’s inputs of (log) capital, kit, and (log) labor, `it, as well as the center’s unobserved

assessment of its own productivity, ωit, determine its overall capacity for production. In esti-

mation, the number of stations is our measure of capital and the full-time equivalent number

of nurses and technicians is our measure of labor. The unobserved productivity term, ωit, is

intended to account for all factors observable to the center but not to the econometrician that

impact its production possibilities, such as the center’s square footage, managerial ability, la-

bor or capital quality, or patient characteristics; this last source of unobserved productivity is

particularly important in a healthcare setting such as dialysis where patient sorting may in-

duce large differences in each center’s ability to treat patients. For example, highly educated
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patients may follow treatment protocols more closely and therefore require less attention from

technicians while being treated. Although our data will allow us to control for a number of key

patient characteristics, some will remain unobserved and must be captured by ωit. We follow

the productivity literature in modeling ωit as a scalar representing Hicks-neutral total factor

productivity.17

The transformation function, T (·), determines how the center divides its productive capacity

between two output goals: the number of patients treated and the infection risk of those patients.

The first output, ỹit, is the center’s targeted (log) number of patient-years for the period. The

second output, q̃it, represents the quality of its treatments, which we model as a scalar index

representing the center’s targeted infection rate.18

For a variety of reasons, the center is unable to perfectly anticipate its output or infection

rate. Instead, it chooses targets (ỹ, q̃) rather than what we ultimately observe as output and

infection outcomes (y, q). For output, this is a standard approach in the productivity literature,

where an “unanticipated” productivity shock or measurement error term is typically included in

the production process. For quality, this unanticipated shock between the targeted and realized

infection rate is closely tied to the nature of infections, which are highly stochastic in nature.

While centers can implement procedures to reduce infections (i.e., choose a lower q̃), many

factors outside the center’s control also influence the observed infection rate q. For example, the

ability of a patient’s immune system to fight off a particular bacteria may depend on his or her

previous exposure, which is less likely to be known by the center’s manager when she sets her

quality standards. Put differently, although the center is able to take actions to reduce the risk

of infections, q̃, ultimately the tradeoff between such actions and the ability to treat patients

is governed by T (·). Recovering this relationship between quantity and quality is the primary

goal of our econometric analysis.

17Ideally, we would include multiple dimensions of unobserved productivity — for example, separate terms for labor
or capital productivity, or separate terms for producing output or quality. Recent work by Doraszelski & Jaumandreu
(2012) and Zhang (2014), building in part on Gandhi et al. (2013), propose using a center’s first-order conditions
of profit maximization to allow for multiple dimensions of heterogeneity. Unfortunately, since we do not explicitly
model center objectives, this approach cannot be applied in our setting.

18Note that “quality” here reflects how carefully the center acts to reduce the risk of infection, not the infection
rate itself. As we discuss in Section 2, “quality” can have many dimensions for patients, such as the likelihood of
becoming sick, the amount of time spent waiting for treatments, the convenience of the center’s operating hours, or
even having televisions available during treatments. Despite this, we focus on one specific dimension of quality, low
septic infection risk, that is arguably the most prominent dimension of quality due to its severe impact on patients’
well-being.
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3.2 The Timing of Dialysis Center Decision Making

In their seminal paper, Olley & Pakes (1996) use capital investment as a proxy for unobserved

productivity, arguing that centers with greater productivity, all else equal, will make larger

investments. Given this intuition, differences in investments will reflect differences in produc-

tivity. Although a natural assumption for an industry such as telecommunications equipment,

this approach is not appropriate for dialysis centers because investment in new stations is too

infrequent, as over 90 percent of the center-year observations in the data have zero investment.

In light of this, we instead use centers’ hiring decisions, which provide a more natural proxy in

our setting. Because industry reports suggest that nurses and technicians employed by dialysis

centers require extensive training and credentialing, costs and time lags affect centers’ hiring

and layoff decisions. Therefore, we regard labor as a dynamic variable, which allows us to use

a center’s (net) hiring decision to recover ωit.
19

In contrast to labor choices, a center can quickly adjust the quality of care it provides. For

example, to improve quality, a manager could advise her center’s staff to take extra precautions

when treating patients, or to reduce quality by placing less emphasis on cleanliness and more on

speed (Pronovost et al. 2006). At the same time, even though a center can dictate these policy

changes more quickly than it can make hiring or investment changes, a lag still exists between

a manager’s decision about quality and its actual implementation.

A center’s manager makes investment, hiring, and quality choices based on her center’s cap-

ital stock, labor productivity, and a vector of other observable characteristics, xit. Importantly,

the components of xit may affect the center’s policy function even though they do not impact

production directly, and may include the extent of competition in the market, the center’s taste

for quality via it’s non-profit and ownership status, and other differences in incentives discussed

in Section 2.2. This leads to the timing assumptions of our model:

1. Quality Choices Made. Centers begin the period knowing their current levels of capital,

kit, and labor, `it, as well as a vector of observable state variables, xit, which affect the

center’s preferences but not its productive capacity. (For example, it observes whether it

is a for-profit or non-profit, and the characteristics of the surrounding market.) In the

model, centers also observe ωqit, their productivity this period given their information set

19Note that this assumption conflicts with OP’s conception of labor representing an immediately flexible input,
though the distinction fits our setting. Although centers have some flexibility to increase nurses’ hours rather than
hire additional staff, their ability to do so is constrained by states’ overtime regulations (Bae et al. 2012).
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at the beginning of the period. Based on this information, the center choose its targeted

level of output and quality for the period, (ỹ, q̃).

2. Production Occurs. Based on its chosen target, the center treats patients and observes

realized outcomes for patient loads and infections, (y, q). The center also updates its

beliefs about its productivity, ωh.

3. Hiring and Investment Choices Made. After observing production, the center’s state is

updated to reflect what has been learned about its productivity, becoming (kit, `it, xit, ω
h
it).

With this information, the center decides on hiring, h, and investment, i; newly hired

workers and invested capital become available at the start of period t+ 1.

4. New State Realized. In line with the literature, we assume centers’ expectations of pro-

ductivity follow an exogenous Markov process between periods t and t+ 1,

E[ωqi,t+1|Ii,t] = E[ωqi,t+1|ω
h
i,t],

where Iit represents center i’s information set at the end of period t. Also following the

literature, we assume this process is stochastically increasing in ωhi,t (Pakes 1994) and

that the state variable xit moves according to an exogenous Markov process (similar to

De Loecker 2011).

In this setting, unobserved productivity encompasses any factor that allows a center to

treat more patients given its observable characteristics and quality target. For instance, a

center’s patients may follow treatment protocols more closely than other centers’ patients do,

which then frees the center either (i) to treat more patients because it devotes less time to

dealing with complications that arise, or (ii) to spend additional time treating existing patients

more intensively, which ultimately improves outcomes but does not appear in raw productivity

measures, such as output-to-labor ratios.

3.3 The Center’s Quality Decision

The center enters each period’s quality-choice stage with a state variable (k, `, x, ωq). Based

on its expected productive capacity, it chooses its targeted level of output and quality for the

period, (ỹ, q̃). We assume that demand for dialysis is inelastic, which fits with the tight capacity

in the industry (which we model though the production frontier) and wait-lists for treatment in
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many markets. After making its decision, production occurs and the center observes the number

of patients served and its infection rate for the period. In addition, the center updates its beliefs

about its productivity. Specifically, it will observe three new variables,

y = ỹ + εy,

q = q̃ + εq,

ωhit = ωqit + εωit,

the first two of which will determine period payoffs, while the last one is the center’s updated

productivity. We assume that (εyit, ε
q
it, ε

ω
it) are mean zero and uncorrelated with the information

available to the center as it makes its quality choice, though the components of this vector may

be correlated with each other. That is, conditional on both εyit and εqit being positive, we would

expect the center to raise its assessment of its own productivity.20

Because the center will not learn about (εy, εq, εω) until it treats patients, it must optimize

its quality choice under uncertainty. Because we assume quality choices are fully flexible and

that the quality and output outcomes do not affect future states, the center’s quality-choice

problem does not have dynamic links. As such, the center chooses its expected quality and

output to solve the static problem,

π(k, `, x, ωq) = max
ỹ,q̃

E[ρ(y, q, k, `, x)]

subject to: T (ỹ, q̃) ≤ F (k, `, ωq)

y = ỹ + εy

q = q̃ + εq.

(2)

Here, ρ(·) represents the center’s return from its output and infection rate in the current period

given its state variables.21 As dialysis centers’ objectives are difficult to model directly, we

remain agnostic as to the precise form of this function. For instance, even for-profit centers may

see value in treating patients as effectively as possible rather than strictly maximizing per-period

profits. Moreover, centers face potential tort litigation or additional oversight if patients have

20Without loss of generality, we could allow productivity within the period to evolve according to an unknown
stochastically increasing Markov process. Letting it evolve according to a random walk is notationally convenient
because E[ωh|ωq] = ωq.

21Note that the center payoff is determined by observed outcomes, not its underlying quality, which is difficult to
directly observe.
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particularly poor outcomes.

We assume that the per-period payoffs incorporating these considerations can be summarized

by ρ(·), which is increasing in the center’s two outcomes, y (output) and q (quality). The state

vector x may play a critical role in determining how centers view the relative importance of

each outcome. For example, given the structure of the prospective payment system, for-profit

centers may place a higher priority on y relative to q than non-profits. Alternatively, if a center

has recently been inspected — or faces a looming inspection — it may place a greater emphasis

on quality this period. Allowing ρ(·) to depend on x enables centers with the same productive

capacity to have different quality policies within the model, and this variation in centers’ policies

provides identifying power for estimating the quality-quantity tradeoff.22

Our assumption that the number of patients treated in the current period does not affect

the state of the center in subsequent periods is common in the literature. Our assumption that

current levels of quality have no dynamic implications is stronger, owing to the possibility of long-

lasting reputation effects; however, one could imagine accounting for the effects of reputation

through per-period profits (e.g., the center immediately pays for the discounted future costs of

low-quality performance). Extending the model to allow for a long-run reputation would require

an additional state variable and a precise model of how quality affects reputation.

Before moving to the firm’s hiring choice, the following lemma establishes that the return to

labor is increasing in productivity, which will be important for establishing the invertibility of

the hiring policy (in Proposition 1 below) and motivates using hiring as a proxy for productivity

as part of our estimation strategy.

Lemma 1. The center’s expected per-period return to labor is increasing in ωq; that is, ∂π
∂` is

increasing in ωq.

We provide the proof in the appendix. Intuitively, increases in both ` and ωq relax the

production constraint, which, due to non-satiation, must always bind if the center is acting

optimally. This binding constraint implies that the return to increasing ` is increasing in any

variable whose only effect is to relax the constraint further, such as ωq.

3.4 The Center’s Hiring and Investment Problem

After production, the center makes its hiring and investment decisions for the following period.

22Without variation in x, identification would rely exclusively on the timing assumption that centers choose quality
when observing ωq but decide to hire when observing ωh.
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The Bellman equation for this choice is

V h(k, `, x, ωh) = max
i,h
−c(i, h) + βE[V q(k + i, `+ h, x′, ωq

′
)|k, `, ωh, i, h], (3)

where i is net investment and h is net hiring. The function c(·) captures adjustment costs for

investment and hiring.23

Our decision to model hiring with a lag reflects the institutional detail that training and

other adjustment costs are significant in the dialysis industry relative to the difficulty of altering

current workers’ on-the-job incentives to strive for either higher output or higher quality. We

follow the literature in assuming that hiring costs are differentiable and convex, except possibly

with a fixed adjustment cost at h = 0 where a “zone of inactivity” in which the center does not

adjust its staffing level for a range of productivity levels may obtain.24

The function V q(·) represents the value of the center at the start of the period,

V q(k, `, x, ωq) = π(k, `, x, ωq) + E[V h(k, `, x, ωh)|k, `, x, ωq].

We adopt this slightly cumbersome notation because the center’s perception of its own produc-

tivity evolves over the course of the period from ωq to ωh as a result of the center observing its

own production process.

Based on the lumpiness of investment in this industry, we assume that the choice of next

period’s capital is discrete. By contrast, we view the hiring choice as effectively continuous. This

seems reasonable given the number of nurses in the industry and the ability to adjust nurses’

hours from period to period. Under these assumptions, the following proposition establishes

that, for a given level of investment, a one-to-one relationship exists between ωh and the center’s

hiring choice, h(k, `, x, ωh).

Proposition 1. For any fixed investment level ι, the center hiring function h(k, `, x, ωh) is

23We can also allow c(i, h) to be zero, in which case time-to-build is the only hiring and investment friction.
24Clearly, a fixed adjustment cost at zero means that we cannot invert the hiring function at h = 0, and these

observations must be dropped. However, under the model, this truncation only affects efficiency. On the other
hand, unanticipated zones of inactivity (say, a maximum allowable level of hiring) have the potential to bias our
estimates. The discussion on possible failure of the investment proxy in Levinsohn & Petrin (2003, 321) applies to
our hiring proxy. See also (Pakes 1994, Remark 2). Recall that in our setting hiring is zero in 12.7 percent of firm-year
observations (Table 1).
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invertible with respect to ωh on the domain {(k, `, x, ωh) : i(k, `, x, ωh) = ι},

ωh = h−1ι (k, `, x, h).

The proof of this theorem makes use of results in Theorem 1 from Pakes (1994) and Appendix

C from De Loecker (2011). We show that, given Lemma 1, our problem can be written in such

a way that we can apply Theorem 1 from Pakes (1994) directly, where hiring is the inverting

variable instead of investment. We have the added complication, however, of controlling for

centers’ discrete investment choices: if a center invests in a new station, the cost of this new

investment may lead the center to hire fewer nurses than it might in a situation where it had

lower productivity but did not choose to invest. To account for this possibility directly with our

data, we can isolate cases when centers make the same investment choice (e.g., add one new

station) and conclude that those within a given investment tier that hire more workers must

have higher productivity. Furthermore, because i = 0 in over 92% of the observed periods in

our data, any complication related to this point will be comparatively mild.

Our strategy for controlling for unobserved productivity relies on using hiring choices as

proxy, which is grounded in the relationship between net hiring and productivity in the data.

Here, labor productivity (i.e., output-per-worker) and hiring have a positive correlation of 0.36,

which is robust to considering only positive or negative hiring observations. While ωh represents

total factor productivity, it nevertheless provides some reassurance that the posited relationship

between hiring and productivity exists for readily observable productivity measures.

4 Estimation

We use the model above to estimate the underlying parameters of the production function and

recover each center’s unobserved productivity in every period, adopting the following parsimo-

nious functional forms to describe the transformation and production functions,

T (ỹit, q̃it) = ỹit + αq q̃it (4)

F (kit, `it, ω
q
it) = βkkit + β``it + ωqit. (5)

In short, we follow the common practice in the literature of assuming a Cobb-Douglas production

function, where ωit is a Hicks-neutral technology shifter. For the transformation function, we
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also assume a Cobb-Douglas-like specification that parameterizes the production possibilities

frontier by assuming that reducing the infection rate 1 percentage point (i.e., increasing q̃it by

1) will reduce expected output by a factor of αq, which is constant across centers.

This specification allows us to connect a center’s quality target to its observable outcomes

in a direct manner. By increasing the effort it puts towards providing high-quality treatments,

the center incurs additional costs but increases the likelihood of delivering better treatment

outcomes — that is, the center may treat fewer patients with the same level of inputs. On the

other hand, a change in inputs or productivity shifts the production possibilities frontier but

does not alter the relative transformation between outputs. For instance, a center with healthier

patients recognizes that its production frontier has shifted outwards, but still faces a tradeoff

between treating more patients at a given level of quality or providing higher-quality care for a

given number of patients.

In the data, we do not observe centers’ expected output and quality. Instead, we observe

realized patient loads and infection rates, which are subject to both measurement error and

unanticipated shocks. To account for this, we assume that observed output is yit = ỹit+ εyit and

the observed infection rate is qit = q̃it + εq. Substituting these into (1), we arrive at the linear

equation

yit = −αqqit + βkkit + β``it + ωqit − αε
q
it − ε

y
it. (6)

Estimating (6) by ordinary least squares with data on (y, q, k, `) would imply the composite

error term is ωqit − αε
q
it − ε

y
it, making two sources of bias immediately apparent — one due to

ωit, and the other due to εqit.

First, we have the well-known endogeneity problem associated with estimating production

functions: because ωit is observed by the center but not the econometrician, it may be correlated

with the center’s capital and labor choices. Second, our approach adds an additional endogeneity

problem, as ωqit may also affect the center’s quality target. As a result, OLS estimates of

(6) are inconsistent. Some classical methods of correcting for this endogeneity include finding

instruments for capital, labor, and quality, or assuming productivity is fixed over time (i.e.,

ωqit = ωi) and using a fixed-effects estimator (Mundalk 1961). In application, these approaches

have had limited success. Although input prices would seem to be appropriate instruments for

capital and labor choices, they often have weak predictive power and the data can be difficult to

obtain. A valid instrument for quality targets that is uncorrelated with unobserved productivity
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would be even more challenging to find. Furthermore, while the fixed-effects assumption is

relatively easy to implement, it is quite strong and would not resolve the endogeneity problems

if changes in productivity are responsible for changes in input (or, in our case, quality) choices.

To address these issues in a manufacturing context, Olley & Pakes (1996) propose an explicit

structural approach to estimate the production process that uses observed center decisions as

proxies for unobserved productivity shocks, with the basic ideas behind their method extended

further by Levinsohn & Petrin (2003) and Ackerberg et al. (2006).25 We adapt this approach

to a healthcare context. In our setting, productivity differences may be due to unobserved

differences in inputs and management practices, but also due to unobservable differences in

patient characteristics that could make achieving a given level of quality more difficult.

A second source of bias results from the error term, εqit. Although this error is unanticipated

by the center, it is, by definition, correlated with our proxy for treatment quality, the observed

infection rate qit. This form of classical measurement error will lead to attenuation bias, moving

our estimate of αq towards zero. We will address this issue by instrumenting for qit with a

second proxy for treatment quality, the center’s “unexpected” death rate, which we construct

as the actual death rate over the expected rate. If the unobservable (to the researcher) factors

that cause infections are uncorrelated with those that cause death, then the instrument is valid

and we can consistently estimate αq.
26 In the event that they are correlated and our instrument

is invalid, our estimate of αq remains biased towards zero and is best understood as a lower

bound, making our results conservative.

Estimation proceeds in three steps. First, because we do not observe quality directly, we

derive an appropriate proxy for quality based on center-level outcomes. Second, we specify the

observed policy shifters, xit, which we include in the center’s hiring function. Finally, we adapt

the standard two-stage estimation strategy to incorporate an endogenous quality choice with a

noisy proxy.

25A second approach to production function estimation comes from the dynamic panel literature (e.g., Blundell &
Bond 2000); Ackerberg et al. (2006) provides a comparison of these approaches.

26It is possible that the unobservable factors related to contracting an infection are correlated with the center’s
death rate. Note, however, that the unobservable factors from the researcher’s perspective are observable to the
center (e.g., a patient with AIDS is both more likely to contract an infection and to die) are accounted for in our
model through ωit, and not the unanticipated quality shock, εqit, and so would not induce such correlation. Because
our results ultimately show a strong quality-quantity tradeoff, our results are robust to this potential confound.
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4.1 Proxy for the Quality Target

Although we do not observe treatment quality directly, the data contain information on patient

outcomes that are correlated with a center’s choices on this dimension. In particular, we focus on

the center’s infection rate as an indicator of quality. This is only an imperfect measure, however,

because variation in the infection rate may be due to differences in patient characteristics across

centers rather than centers’ deliberate quality choices. To account for this, we control for center-

level averages of several patient characteristics that influence infection rates. Specifically, we

use the (negative) residual from a regression of infection rates on patient characteristics as our

proxy for patient quality; this residual represents the variation in infection rates that remains

unexplained after controlling for observable differences in the patient pool, and therefore serves

as a proxy for the center’s targeted quality level.

We control for several observable patient characteristics that influence a center’s infection

rate beyond its quality decision, with summary statistics displayed in Table 4. Most notably,

we include controls for patients’ vascular access type, which can be either an arteriovenous

(AV) fistula, AV graft, or venous catheter. A patient’s vascular access method influences his

likelihood of developing a blood infection, as those with an AV fistula are significantly less likely

to experience clots or infections. In addition to a patient’s vascular access, other characteristics

have been shown clinically to affect treatment outcomes. Because centers’ patient loads vary

in terms of these characteristics, we also include controls for patients’ (i) average number of

comorbid conditions, (ii) average duration of ESRD, (iii) average age, (iv) gender distribution,

and (v) average hemoglobin levels.27 Putting these center-level average patient characteristics

together into the vector zit, we estimate

fit = zitγ − qit,

where fit is the realized infection rate at center i in period t. The residuals from this regression

reflect the center’s relative infection rate after controlling for observable patient characteristics,

which we then use as our measure of center quality.

Even after controlling for observable characteristics, some unobservable differences in patient

health may remain, part of which may be observable to centers as they make their quality

choices. Within our model, we interpret these unobservable differences as differences in ωit

27Low hemoglobin levels are associated with anemia and pose health risks for dialysis patients.
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Table 4: Patient Characteristics Summary Statistics.

Variable Mean St. Dev.

Avg. Patient Age 61.518 4.381
Pct. Female 45.798 8.333
Pct. AV Fistula 43.016 13.477
Avg. Comorbid Conditions 3.026 0.826
Avg. Duration of ESRD 4.089 0.953
Avg. Hemoglobin Level 11.882 0.332

Number of Center-Years 18,221

across centers, which we can address, along with other unobservable differences in productivity

(e.g., management ability or unobserved quality of inputs), using a control function approach

to correct for these differences.

As discussed above, we account for expectational or measurement error in our specification

of the production function by including εqit and instrumenting with a second outcome variable.

Specifically, we use the ratio of actual death rates to Medicare’s estimates for each center’s

expected death rate that it constructs using individual patient characteristics (individual-level

characteristics are not released to protect patient privacy). Medicare uses this ratio as an

indicator of center quality in its own reports, and we include this measure as a second noisy

proxy for a center’s quality. For this instrument to be valid, the variation in it which is unrelated

to center quality should be uncorrelated with the variation in the infection rate that is unrelated

to quality, which fits our setting because, although infections do raise the risk of death, they are

the primary cause of fewer than 10 percent of patient deaths overall (USRDS 2013). By contrast,

over one-third of patient deaths stem from cardiovascular issues, which may be related to center

quality through the effectiveness of monitoring for hypotension and other complications that

arise during treatment. Conversely, roughly 80 percent of patients hospitalized with a septic

infection survive. We include the death rate ratio as an instrument rather than as the primary

proxy because it is less directly tied to the quality choices made by dialysis centers (e.g., cleaning

protocols) than the septic infection rate.28

28Results are qualitatively robust when the roles of the primary proxy and the instrument are reversed.
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4.2 Controlling for Policy Shifters

To invert the hiring function and recover each center’s productivity, we must explicitly control

for the factors other than productivity that affect hiring. As such, we include the following

sources of variation in x in our specification:

Ownership Status Centers differ in their ownership type, with roughly 87.7 percent oper-

ating as for-profit entities and the remainder as non-profit. Among the for-profit centers, two

major chains dominate, with DaVita owning roughly 28 percent of centers nationwide and Fre-

senius 31 percent.29 A center’s ownership structure may affect its polices related to hiring and

treatment quality, as non-profit centers could, on average, target a different weighting of quality

over quantity. We therefore control for this distinction by including a dummy variable for the

center’s ownership status in xit. This also enables us to allow for, and subsequently analyze,

differences in productivity across ownership types.

Competition Because demand for dialysis treatments is local, the extent of competition a

center faces may affect its hiring and quality choices. For instance, centers in highly competitive

markets may choose to improve quality or increase staff levels to attract patients. We include

the level of competition each center faces in xit in the form of dummy variables for having 0,

1, 2, or 3 or more competitors in an hospital service area (HSA).30 We assume that entry is

realized at the beginning of the period, so the center observes its competitors when making its

quality and hiring choices.

Quality Incentive Shifters Based on the reduced-form regressions in Section 2.2, we

include in x the number of years since a center’s last inspection and its state’s inspection rate

as proxies for the incentives centers face for providing higher-quality treatments. We do not

include the referral rate of nephrologists because it is available for only 3 of the 5 years in our

data, which would severely limit our sample size.

29These averages are taken across all years in the data.
30Following the healthcare literature, we use hospital service areas (HSA) as our market definition for dialysis

centers. The Dartmouth Atlas determines HSA boundaries based on Medicare data for patients’ actual hospital
choices, and therefore serve as a well-suited market definition because they explicitly incorporate patients’ travel
patterns in a way that geographic boundaries such as counties or MSAs would not.
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4.3 Two-Step Estimation

To recover the parameters of the production frontier, we first note that ωhit = ωqit + εωit, so we

can rewrite (6) as

yit = −αqqit + βkkit + β``it + ωhit − εωit − αε
q
it − ε

y
it.

Because (εωit, ε
q
it, ε

y
it) are revealed to the center after it makes it’s quality choice and are uncor-

related with the center’s information set at the time quality and output choices are made, they

do not impose an endogeneity problem. Because centers’ expectations about ωhit are a function

of ωqit, however, we must still control for ωhit. From Proposition 1, we know that a center’s ex-

pectation about its productivity at the time of hiring can be recovered by inverting the center’s

hiring policy at a fixed investment level such that

ωhit = h−1iit (hit, kit, `it, xit). (7)

Substituting (7) into (6), we arrive at our first-stage estimation equation,

yit = −αqqit + βkkit + β``it + h−1iit (hit, kit, `it, xit)− εωit − αε
q
it − ε

y
it. (8)

= −αqqit + Φiit(hit, kit, `it, xit) + εit,

where εit = −εωit − αε
q
it − ε

y
it and Φ(hit, kit, `it, xit) = βkkit + β``it + h−1(hit, kit, `it, xit). Due

to invertibility requirements, we only have usable observations of (8) whenever hiring is non-

zero.31 Moreover, because the function h−1i (·) depends on the level of investment, we must

estimate a separate Φi(·) for each investment level. In practice, investment is zero 92 percent

of the time, and we drop other investment levels and estimate (8) using observations where the

center did not invest. Dropping observations where hiring is zero and investment is non-zero

collectively reduce the size of the dataset by 19 percent. If the model is correctly specified,

this truncation does not bias our results. Comparing the dropped observations to those used

in the first stage, centers with dropped center-years are slightly smaller on average, but have

similar health outcomes (infection rates and ratios of deaths to expected deaths). Running the

31Because there are likely adjustment costs to hiring, h−1
i (·) is not well defined when hiring is zero (multiple

productivity levels may lead to zero net hiring). We follow the productivity literature and drop observations of zero
hiring when estimating the first stage.
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descriptive analysis presented in Table 3 on the truncated sample also produces qualitatively

similar results.

Finally, notice that the optimal policy for quality is qit = q(kit, `it, xit, ω
q
it), whereas the

optimal hiring policy is hit = h(kit, `it, xit, ω
h
it). Therefore, the difference between ωqit and ωhit

provides the variation needed to separately identify αq.

Although the approach above handles the endogeneity of ωqit, we still have attenuation bias

because εit and qit are correlated through εqit. To address this, we use a second noisy measure

of quality as an instrument in the second stage of a three-stage estimation procedure following

Robinson (1988).32 First, we estimate Ê[y|hit, kit, `it, xit, iit] and Ê[q|hit, kit, `it, xit, iit] non-

parametrically using local linear regression.33 In doing so, we are careful to account for the

possible discontinuity of these functions at hit = 0 by considering positive and negative hiring

observations separately.34 We then estimate α̂q with the linear instrumental variables regression,

yit − Ê[y|hit, kit, `it, xit, iit] = −αq(qit − Ê[q|hit, kit, `it, xit, iit]) + εit,

where we instrument for qit with a second noisy measure of quality. In practice, we use the ratio

of expected to actual deaths as this instrument, as discussed in Section 4.1. Finally, we recover

Φ̂i(·) from the nonparametric estimation

yit + α̂qqit = Φiit(hit, kit, `it, xit) + εit.

We recover the remaining parameters in a subsequent stage. Note that, given any β = (βk, β`),

we can compute an estimate of unobserved productivity for each center-year that has non-zero

hiring from

ω̂it(β) = Φ̂iit(hit, kit, `it, xit)− βkkit − β``it.
32An alternative approach, following Ackerberg et al. (2006), would have estimated yit as a non-parametric function

of (qit, hit, kit, `it, xit, iit) and then estimated αq together with (βk, β`) in the second stage. This would have the
advantage of removing the requirement that qit be flexibly chosen during the quality stage. However, the first stage
estimation would be a nonparametric instrumental variables regression, introducing significant complications due to
the high dimensionality of the problem.

33Bandwidths are chosen using the rule of thumb proposed by Scott (1992), which is a generalization of Silverman
(1986) to the multivariate case. Results are robust to using alternative bandwidths. We have also experimented with
the method of sieves which yields qualitatively similar results.

34That is, only negative hiring observations are used in the local linear regression when hit < 0, and only positive
hiring observations are used when hit > 0; Not doing this would raise the possibility of inconsistent estimates of these
expectations near zero hiring. Recall that at hit = 0, the hiring function is not invertible, and these observations are
dropped. Hiring is negative in roughly 40 percent of our observations.
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Because ωit follows a Markov process, we have

ωit = g(ωit−1) + ξit, (9)

where g is a non-parametric function of ωit−1 and ξit is a shock to productivity between time

t − 1 and t that is independent of the center’s time-t information set.35 Thus, for any given

β = (βk, β`), we can estimate g(·) from the equation

yit + α̂qqit − βkkit − β``it = g(ω̂it−1(β)) + ηit(β),

which follows from substituting the production function from (6) into the innovation of produc-

tivity from (9), where α̂q is the consistent estimator of αq recovered in the first stage.36

At the true value of β, ηit(β) = εit + ξit, and so ηit(β) is uncorrelated with the time-t labor

and capital variables by construction and β can be consistently estimated using the moment

conditions

E

 ηit(β)kit

ηit(β)`it

 = 0. (10)

We use (10) to estimate β̂ via GMM, which can then be used to recover estimates of center-level

productivity. Finally, standard errors are calculated using the block bootstrap, which accounts

for statistical uncertainty in recovering the quality proxy, as well as both stages of the estimation

process.

5 Results

We present results from our baseline model and two extensions, one which allows for the slope

of the production frontier to vary based on a center’s capital and labor, and another that allows

for heterogeneous transitions for productivity.

35We use a fifth order polynomial sieve to approximate g(·), results are robust to using other orders.
36We can estimate this equation using each observation that follows an observation used in the first stage. While

it might seem more straightforward to recover g(·) by regressing ω̂it(β) on ω̂it−1(β), this would require using only
observations where consecutive periods of hiring are non-zero (and investment is zero), reducing the available data
even further and introducing a potential selection problem since we would be censoring on a left-hand side variable
(although our results are robust to this approach). We thank David Rivers for pointing this out to us.
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5.1 Baseline Model

We present our estimates of the production and transformation functions in the first column of

Table 5. As a point of comparison for our structural estimates, we include ordinary least squares

(OLS) and fixed effects (FE) estimates in the next two columns. Finally, we include results from

a specification that excludes the effect of quality choices, which are effectively estimates of a

standard one-output production function.

We first consider the baseline production function parameters βk and β`. Estimates of these

parameters are strikingly different across methods, though similar with regards to whether or

not quality choices are included in the model. The comparison with the OLS and FE estimates

is instructive for several reasons. First, OLS does not control for endogenous input choices.

Because OLS relies on cross-sectional variation in stations to identify the labor and capital

coefficients, it must ignore the possibility of productivity differences across centers, resulting in

a substantially higher labor coefficient and, consequently, the suggestion of increasing returns

to scale. We believe that the finding of increasing returns to scale is due to endogeneity bias

from unobserved productivity, as more productive centers are likely both to use more stations

and employ more staff.

The FE procedure, by contrast, allows for productivity differences across centers but as-

sumes that these differences remain constant over time; that is, the FE estimates identify the

capital and labor coefficients on the basis of year-to-year changes in centers’ inputs. Using this

approach, both the capital and labor coefficients fall substantially relative to the OLS results.

We believe this is primarily due to two factors. First, relying on only year-to-year variation

makes measurement error in both capital and labor inputs a more prominent concern. Because

stations and employees remain fairly stable over time, measurement error for hiring and in-

vestment decisions biases these coefficients towards zero;37 this is especially an issue for capital

because of infrequent investment. A second potential reason for the discrepancy between the

OLS and FE approaches is that capital and labor differences in the cross-section may proxy for

unobserved time-invariant characteristics (e.g., floorspace) that the FE specification captures

through the productivity term.

In contrast to OLS and FE, estimates of our model yield a coefficient on labor of 0.24 and a

37For example, if a new station was installed in June of 2002, it will first be reported in 2003, but the difference in
the number of patients served in 2002 versus 2003 will underreport the impact of the new station that actually came
online for the second half of 2002.
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Table 5: Transformation and Production Estimates.

With Quality Without Quality
Model OLS FE Model OLS FE

Quality, −αq -0.0155 -0.0026 -0.0017
(0.0037) (0.0007) (0.0004)

Capital, βk 0.5204 0.4548 0.2608 0.5331 0.4572 0.2634
(0.0437) (0.0212) (0.1040) (0.0401) (0.0212) (0.1037)

Labor, β` 0.2436 0.6848 0.1985 0.2556 0.6834 0.1978
(0.0316) (0.0163) (0.0135) (0.0312) (0.0164) (0.0135)

coefficient on capital of 0.52, which suggest decreasing returns to scale overall. To review, our

structural specification employs a Markov process for productivity and uses both cross-section

and time-series variation to identify the parameters, while at the same time using centers’

hiring choices to identify unobserved productivity. The relatively larger weight of capital in this

specification fits well with our understanding of the production process. Although hiring more

employees may allow a center to treat more patients by speeding up the transition of stations

from one patient to the next, the number of patients being treated by the center at any given

time is necessarily bounded by the number of available stations. While the labor coefficient is

small relative to many previous studies, it is in line with some micro studies (e.g., De Loecker

2011), albeit for different industries. We know of no other study on the dialysis industry which

could serve as a benchmark for comparison. The finding of decreasing returns to scale may

reflect omitted inputs, such as floor-space and other forms of physical capital not related to the

number of dialysis stations, which are presumably captured by the productivity term.

We next turn to the primary focus of the paper, the estimates of the quality-quantity tradeoff

in the transformation function, αq.
38 All three specifications provide evidence of a statistically

significant quantity-quality tradeoff, though the magnitude of the effect is much larger in the

structural model than with either the OLS or FE methods. The smaller impact of quality on

output in the OLS and FE specifications likely stems from endogeneity and attenuation bias.

Because the OLS specification does not control for differences in productivity, an estimate of

αq in this setup will be biased towards zero. While the FE approach controls for time-invariant

productivity, if centers’ changes in quality choices are positively correlated with changes in their

productivity, the FE estimate of αq will also be biased downwards. This effect, coupled with the

38Note that, we report “−αq” in the tables, incorporating the negative sign in (8).
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Table 6: Robustness Checks.

Baseline No Patient No Center No Quality
Controls Controls Instrument

Quality, −αq -0.0155 -0.0126 -0.0148 -0.0108
(0.0037) (0.0032) (0.0037) (0.0008)

Capital, βk 0.5204 0.5174 0.5065 0.5233
(0.0437) (0.0435) (0.0423) (0.0418)

Labor, β` 0.2436 0.2453 0.2276 0.2467
(0.0316) (0.0312) (0.0202) (0.0307)

attenuation bias already discussed above, drives the estimates of the quality-quantity tradeoff

towards zero.

The coefficient of 0.0155 from the structural model indicates that, holding inputs fixed, a

center that improves its quality enough so that its targeted infection rate falls by 1 percentage

point would need to reduce overall patient hours by 1.55 percent. Equivalently, a center could

increase its output 1 percent by reducing quality such that its targeted infection rate increases

0.65 percentage points, holding inputs and productivity fixed. Alternatively, we can measure

the cost of providing high-quality treatments in units of labor: a center can reduce its infection

rate by 1 percent while maintaining its current level of output by increasing labor 6.4 percent.

Given that the average center employs approximately 13 full-time-equivalent nurses, this roughly

equates to expanding employment by an additional 0.83 full-time workers. Moreover, reducing

the targeted infection rate by a full standard deviation (6.3 percentage points) would cost the

equivalent of roughly five additional full-time workers for the average center.

In Table 6, we consider several robustness checks of the baseline results, which are repeated

in the first column. The second column drops controls for patient characteristics, simply useing

the infection rate itself as a proxy for quality targets instead. This has a minimal effect on

the production function parameters but decreases the quality-quantity tradeoff, a result that

may stem from the fact that our measure of quality is now contaminated by unobserved factors

previously controlled for through patient characteristics. The third column drops from the hiring

function center characteristics related to for-profit status and competition, meaning that centers

have the same hiring policy across these characteristics.39 This causes all of the production

coefficients to decline slightly, though they remain within the confidence interval. Finally, the

39We maintain controls in x for time since health inspection and the state inspection rate, although results are also
qualitatively robust to eliminating these measures.
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fourth column does not instrument for the quality proxy, but instead simply uses OLS to estimate

the first stage. We see a substantial decrease in the estimates of the quality-quantity tradeoff,

which suggests that instrumenting for quality is effectively controlling for attenuation bias. In all

cases, the effect of quality declines slightly, though our estimate of a significant quality-quantity

tradeoff remains robust to various model specifications.

5.2 Heterogeneity in the Quality-Quantity Tradeoff

Our baseline model assumes that the slope of the production frontier is homogeneous across

centers. While a reasonable starting point, the slope of the frontier may vary across centers.

In particular, we would like to know whether the slope of the frontier changes depending on

a center’s scale or capital-labor ratio. One might expect that adding nurses and technicians,

holding the number of stations fixed, could make it easier to reduce infections compared to

adding more machines. To investigate this possibility, we consider a generalized form of (6)

which allows for the slope of the frontier to depend on the center’s labor and capital inputs,40

y = −(αqqit + αqkqitkit + αq`qit`it) + βkkit + β``it + ωqit + εit. (11)

With this specification of the production frontier, the distinction between the transformation

function and the production function is no longer straightforward, though the production frontier

itself is still well defined. The quality-quantity tradeoff for a center is now αq + αqkkit + αq``it,

and the return to capital and labor is now likewise dependent on the center’s quality choice.

Table 7 presents the results for this specification of our model, as well as the OLS and FE

approaches. Although the OLS and FE approaches are statistically insignificant for the most

part, our model indicates that the slope of the production frontier is strongly related to the

capital-labor ratio. In particular, adding stations makes the quantity-quality tradeoff steeper,

while adding labor flattens it. In other words, the differential impact of adding stations expands

the production frontier relatively more in the quantity direction as compared to hiring more

employees. This result corresponds well with our description of the industry: an additional

station can be used to expand output with the same number of nurses and technicians, though

the risk of infection increases as fewer nurses are available to monitor and clean machines.

Interestingly, the coefficients on αqk and αq` sum to almost zero, which suggests that the

40Here in a slight abuse of notation we let εit collect all the unanticipated error terms.
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Table 7: Flexible Production Frontier.

Model OLS FE

Quality, −αq -0.0082 0.0057 -0.0069
(0.0252) (0.0047) (0.0025)

Quality x Capital, αqk -0.0364 0.0008 0.0023
(0.0108) (0.0025) (0.0012)

Quality x Labor, , αq` 0.0407 -0.0045 -0.0004
(0.0103) (0.0021) (0.0011)

Capital, βk 0.4451 0.4569 0.2589
(0.0603) (0.0212) (0.1056)

Labor, β` 0.2969 0.6830 0.1975
(0.0496) (0.0163) (0.0134)

quality-quantity tradeoff is insensitive to scale.41 Instead, it appears that the capital-labor ratio

is the key factor in determining the tradeoff.

Overall, the average slope of the production frontier is -0.0115, which is similar to that

found in the baseline model of Table 5, though slightly smaller in magnitude. The result is not

statistically significant, however, due to the much larger standard errors in this model. The lack

of precision is at least partially due to the high correlation between capital and labor, which

is further exacerbated when both are interacted with our quality measures. Moreover, about

20 percent of centers — those with the lowest capital-to-labor ratios — are estimated to have

a production frontier with a positive slope, which violates the model. This could be due to

specification error or attenuation bias from the use of proxies to control for quality choices.

Therefore, while the results of this specification are instructive, we take our baseline estimates

as our primary estimate of the quality-quantity tradeoff across the industry.

5.3 Heterogeneity in the Productivity Process

Finally, we extend our baseline model so that the productivity process depends on both ωt−1

and center characteristics, allowing them to differ based on for-profit status and whether the

center belongs to one of the two major chains in the industry, Fresenius and DaVita. Several

other analyses of the healthcare industry have found that for-profits tend to be more productive

than non-profits (Kessler & McClellan 2002). Our analysis considers whether this stylized fact

holds in the dialysis industry after controlling for centers’ endogenous quality choices.

41Formally, the model does not reject the hypothesis that αyq + αy` = 0; the p-value for the test is 0.67.
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Table 8: Heterogeneity in Productivity Process

Baseline Separable Nonpara.

Quality, −αq -0.0155 -0.0155 -0.0155
(0.0037) (0.0037) (0.0037)

Capital, βk 0.5204 0.5130 0.4980
(0.0437) (0.0452) (0.0500)

Labor, β` 0.2436 0.2375 0.2353
(0.0316) (0.0306) (0.0282)

Table 9: Average Productivity Transition Difference by Center Type.

Separable Nonpara.

For-Profit 0.0302 -0.0270
(0.0084) (0.0260)

Frenesius 0.0090 -0.0055
(0.0075) (0.0254)

DaVita 0.0306 0.0078
(0.0078) (0.0267)

Specifically, we consider two alternatives to (9). First, we allow center-type, p, which can be

either non-profit, independent for-profit, DaVita-owned, or Fresenius-owned, to shift the level

of the production process,

ωit = δp + g(ωt−1).

Second, we consider a non-parametric approach and estimate a separate productivity process

for each center-type,

ωit = gp(ωt−1).

We do so because institutionalized management practices at the chain level may influence the

manner in which productivity evolves within a center.

We present the results from estimates of these two alternative specifications in Table 8, with

the baseline results repeated for comparison purposes. Of course, α̂q remains the same across

all specifications because it is estimated in the first stage. More importantly, we see that the

production function estimates are robust to alternative specifications of the productivity process.

We examine type-heterogeneity in center productivity in Table 9, which shows the average

productivity differences of the three for-profit types relative to the non-profit base case. For

the separable case, this is simply the estimate of δp, while for the non-parametric case it is the
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Figure 1: Productivity Transition by Center Type.

average difference in the gp(·) functions across all centers. Interestingly, while the separable case

indicates that for-profit centers are more productive than non-profits, this result is not robust

to allowing for a fully nonparametric specification of the transition process. Some intuition for

this result can be found in Figure 1, which plots the estimates of the gp(·) functions for all

four types. While the three for-profit types are all very similar, the non-profit type appears

slightly steeper. This indicates that low-productivity non-profits are more likely to also have

lower productivity in the following period relative to for-profit centers, and vice versa for high-

productivity non-profits. Although these differences are not statistically significant, they do

suggest that the differences in productivity between for-profit and non-profit centers are more

complex than a simple level shifter would indicate.42

42Pointwise standard errors are not included in the figure for clarity, but are available from the authors by request.
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6 Conclusion

Because dialysis treatments comprise a large — and growing — expense for Medicare, controlling

their costs will likely concern policy makers for the foreseeable future. By estimating center-

level production functions that incorporate endogenous quality choices, we quantify the tradeoff

that dialysis centers face between treating more patients and providing higher-quality care.

Understanding this relationship is crucial for designing effective policies that promote the proper

balance of efficiency and efficacy.

A back-of-the-envelope calculation demonstrates how our analysis can inform policy deci-

sions. In the first of two approaches, we benchmark the cost of reducing infections by calculating

the number of patients a center would have to forgo in order to prevent one infection (in expecta-

tion). Under this scenario, the median number patient-years a center must forgo to eliminate one

infection each year is 1.5. As industry studies suggest that the cost of hemodialysis treatment

is between $45,000-55,000 per patient annually (Lee et al. 2002), this suggests the opportunity

cost of preventing one infection per year is roughly $75,000. Alternatively, we could consider

the possibility that centers treat the same number of patients but reduce infections by hiring

more staff. From this perspective, the median increase in staff required to eliminate one infec-

tion would be 1.8 full-time-equivalent employees. Although compensation varies based on staff

qualifications and location, if we assume compensation ranges from $35,000-50,000, this would

suggest preventing one infection costs $63,000-90,000.43 Under either approach, the opportunity

cost of one infection to a center is approximately $75,000.

With this estimate in hand, we can compare the opportunity cost of preventing infections for

a dialysis center to the cost of treating septic infections in a hospital. Although hospitalization

costs vary widely depending on the severity of the infection, a recent study estimates that the

hospitalization of a hemodialysis patient for an infection costs, on average, $25,000 (Ramanathan

et al. 2007). Therefore, tighter quality regulation will improve social welfare if society’s non-

hospitalization cost of infection (i.e., the increased risk of death and disutility of the infected

patient) is greater than $50,000, but will reduce welfare if it is less than this amount. While

admittedly speculative, this analysis serves as a guidepost for policy makers seeking to regulate

dialysis providers along this dimension.

43BLS (2014) reports that the median salary of all licensed practical and vocational nurses is $41,000. Our labor
measure includes nurses and technicians so this salary estimate is likely an upper bound. On the other hand, this
salary estimate does not account for non-salary compensation.
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More broadly, our work informs policy discussions by showing that, while productivity dis-

persion is extensive within the industry, cost-cutting initiatives may result in centers reducing

the quality of care they provide. Because dialysis resembles other healthcare settings, these find-

ings illustrate the challenges of introducing policies intended to minimize costs while maintaining

high standards of care.
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association between quality of care and technical efficiency in long-term care’, International
Journal for Quality in Health Care 17(3), 259–267.

37



Lee, H., Manns, B., Taub, K., Ghali, W. A., Dean, S., Johnson, D. & Donaldson, C. (2002),
‘Cost analysis of ongoing care of patients with end-stage renal disease: The impact of dialysis
modality and dialysis access’, American Journal of Kidney Diseases 40(3), 611–622.

Lee, J., McCullough, J. S. & Town, R. J. (2012), The impact of health information technology
on hospital productivity. National Bureau of Economic Research.

Levinsohn, J. & Petrin, A. (2003), ‘Estimating production functions using inputs to control for
unobservables’, The Review of Economic Studies 70(2), pp. 317–341.
URL: http://www.jstor.org/stable/3648636

Morey, R. C., Fine, D. J., Loree, S. W., Retzlaff-Roberts, D. L. & Tsubakitani, S. (1992),
‘The trade-off between hospital cost and quality of care: An exploratory empirical analysis’,
Medical Care pp. 677–698.

Mundalk, Y. (1961), ‘Empirical production function free of management bias’, Journal of Farm
Economics 43, 44–56.

Olley, G. S. & Pakes, A. (1996), ‘The dynamics of productivity in the telecommunications
equipment industry’, Econometrica 64(6), pp. 1263–1297.
URL: http://www.jstor.org/stable/2171831

Pakes, A. (1994), The estimation of dynamic structural models: Problems and prospects, in J. J.
Laffont & C. Sims, eds, ‘Advances in Econometrics: Proceedings of the 6th World Congress
of the Econometric Society’, Vol. II, pp. 171–259.

Patel, P. R., Yi, S. H., Booth, S., Bren, V., Downham, G., Hess, S., Kelly, K., Lincoln, M.,
Morrissette, K., Lindberg, C., Jernigan, J. A. & Kallen, A. (2013), ‘Bloodstream infection
rates in outpatient hemodialysis facilities participating in a collaborative prevention effort: A
quality improvement report’, American Journal of Kidney Disease 62(2), 322–330.

Pronovost, P., Needham, D., Berenholtz, S., Sinopoli, D., Chu, H., Cosgrove, S., Sexton, B.,
Hyzy, R., Welsh, R., Roth, G. et al. (2006), ‘An intervention to decrease catheter-related
bloodstream infections in the icu’, New England Journal of Medicine 355(26), 2725–2732.

ProPublica (2011), ‘Dialysis: High costs and hidden perils of a treatment guaranteed to all’.
URL: http://www.propublica.org/series/dialysis

Ramanarayanan, S. & Snyder, J. (2011), Reputations and firm performance: Evidence from the
dialysis industry. UCLA Anderson.

Ramanathan, V., Chiu, E. J., Thomas, J. T., Khan, A., Dolson, G. M. & Darouiche, R. O.
(2007), ‘Healthcare costs associated with hemodialysis catheter-related infections: A single-
center experience’, Infection Control and Hospital Epitemiology 28(5), 606–609.

Robinson, P. (1988), ‘Root-n-consistent semiparametric regression’, Econometrica 56(4), 931–
954.

Romley, J. A. & Goldman, D. P. (2011), ‘How costly is hospital quality? a revealed-preference
approach’, The Journal of Industrial Economics 59(4), 578–608.
URL: http://dx.doi.org/10.1111/j.1467-6451.2011.00468.x

Scott, D. W. (1992), Multivariate Density Estimation: Theory, Practice and Visualization,
Wiley series in probability and mathematical statistics, John Wiley and Sons, Ltd., New
York.

38



Silverman, B. W. (1986), Density Estimaton for Statistics and Data Analysis, Monographs on
statistics and applied probability, Chapman and Hall, London.

Sloan, F. (2000), Not-for-profit ownership and hospital behavior, in A. Culyer & J. Newhouse,
eds, ‘Handbook of Health Economics’, Vol. 1B, Elsevier Science B.V., Amsterdam.

Syverson, C. (2011), ‘What determines productivity?’, Journal of Economic Literature
49(2), 326–65.

USRDS (2010), 2010 Annual Data Report, Technical report, United States Renal Data System,
Minneapolis, MN.

USRDS (2013), 2013 annual data report: Atlas of end stage renal disease in the united states,
Technical report, US Renal Data System, National Institutes of Health, Bethesda, MD.

Weinstein, M. C. & Stason, W. B. (1977), ‘Foundations of cost-effectiveness analysis for health
and medical practices.’, The New England journal of medicine 296(13), 716–721.

Zhang, H. (2014), Biased technology and contribution of technological change to economic
growth: Firm-level evidence from china. University of Hong Kong.

39



A Proofs

Proof of Lemma 1 The center’s expected period-return to labor is increasing in ωq; that is,
∂π
∂` is increasing in ωq.

Proof. Because center payoffs are increasing both y and q (i.e., the center has non-satiable
payoffs), we know that the center will choose (ỹ, q̃) to solve the following problem where the
production constraint binds:

π(k, `, x, ωq) = max
ỹ,q̃

E[ρ(y, q, k, `, x)]

subject to: T (ỹ, q̃) = F (k, `, ωq)

y = ỹ + εy

q = q̃ + εq.

Totally differentiating π with respect to `, the return to an increase in labor is,

dπ

d`
= E

[
ρy
dỹ

d`
+ ρq

dq̃

d`
+ ρ`

]
,

where ρx represents the partial derivative of ρ with respect to x and the total derivatives with
respect to ỹ and q̃ are the center’s optimal policy change for a change in `. We know both are
weakly positive — with at least one strictly positive — because an increase in ` relaxes the
production constraint through an increase in F (·), and ρ(·) is increasing in both y and q. To see
that this is increasing in ωq, note that an increase in ωq also relaxes the production constraint.
Differentiating again with respect to ωq yields

d2π

d`dωq
= E

[
ρy
dỹ

d`

dỹ

dωq
+ ρq

dq̃

d`

dq̃

dωq

]
.

Non-satiation again ensures that both terms are weakly positive and at least one is strictly
positive.

Proof of Proposition 1 For any fixed investment level κ, the center hiring function h(k, `, x, ωh)
is invertible with respect to ωh on the domain {(k, `, x, ωh) : i(k, `, x, ωh) = ι},

ωh = h−1ι (k, `, x, h).

Proof. We will apply Theorem 1 from Pakes (1994) while accounting for three differences which
complicate our model. First, following Lemma 1 from Pakes (1994), we note the the inclusion
of a discrete choice of capital investment does not alter our ability to use the center’s first-order
condition with respect to hiring; we must simply substitute the (observed) optimal investment
choice ι into the first-order condition such that

ch(ι, h) + βEVh(k + ι, `+ h, x′, ωq
′
)|k, `, ωh, ι, h] = 0.

Second, because x evolves according to an exogenous stochastic process, we can use the insight
found in Appendix C of De Loecker (2011) that additional exogenous variables do not alter the
invertibility property. The only remaining difference between this problem and the traditional
investment problem described by Olley & Pakes (1996) is that our productivity process evolves
intra-period between the quality and investment stages. However, because Pr(ωq

′ |ωh) and
Pr(ωh|ωq) are both stochastically increasing in ωh and ωq (the former by assumption, and the
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latter because it is a random walk), we know that Pr(ωh
′ |ωh) is also stochastically increasing.

We can thus write a single Bellman equation for a center at the time of the hiring decision as

V (k, `, x, ωq, ξ, ωh) = max
i,h
−c(i, h, k, `)+π(k, `, x, ωq)+ξ+βE[V (k′, `′, x′, ωq

′
, ξ, ωh

′
)|k, `, x, ωh, i, h].

Note here that today’s realized profits from the quality stage are π(k, `, x, ωq) + ξ, where ξ is
uncorrelated with the agent’s information set at the time of the quality choice (or any time before
the quality choice), but is known at the time of the hiring decision since production outcomes are
already revealed; that is, they are sunk with respect to today’s hiring decision. Note also that
ωq and ξ represent two additional state variables, but they both evolve exogenously. Moreover,
conditional on ωh, they are uncorrelated with future draws of ωq and ξ, which is why they do
not appear in the final expectation term. Finally, using Lemma 1 and the fact that Pr(ωq

′ |ωh)

is stochastically increasing, we know E[∂π(k
′,`′,x′ωq′ )
∂` |k, `, x, ωh] is increasing in ωh.

Following De Loecker (2011), group k∗ = (k, `, x, ωq, ξ), meaning that the policy function
can be written as h(k∗, ωh). We can now directly apply Pakes (1994, Lemma 3) where c(h, ι, k∗)
stands for c(x, k) (recall ι is the optimal capital investment decision); π(ωq, k∗) = π(k, `, x, ωq)+ξ
for π(ω, k); and the choice variable is h (hiring), rather than x, which was continuous capital
investment in Pakes (1994).
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