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Abstract

We develop a tractable framework that jointly determines trading connections

and risk allocations banks in over-the-counter (OTC) markets. In an environment

with ex-ante homogenous and risk-averse banks, a concentrated structure arises

when banks are endowed with limited liability or options of investing technologies.

The equilibrium network is payoff unique, trading off between the benefit of risk-

sharing vs. risk-concentration. A continuous change in asset riskiness or policy

parameters can trigger a structural shift, resulting in discontinuous changes in ag-

gregate risks and transaction prices. We use this framework to evaluate the effect

of different interventions on the market structure.
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1 Introduction

How does banks’ risk valuations affect the interbank market structure? To answer this

question, this paper develops a novel framework that jointly determines interbank links

and risk allocations through them. Even when banks are ex-ante homogeneous, we find

that they trade not only to share risks but also to concentrate them, creating an asym-

metric interbank network consistent with empirical regularities: a few banks grow large

and bear more risks. Our approach also provides a tractable framework for policy analysis

and comparing market structures for assets with varied riskiness, providing new insights

on how and when the the interbank network and the risk exposure of large banks may

change.

We connect trading frictions in the OTC market to the limited information that banks

have about other banks’ asset positions when they form finite trading links and the

uncertainty or risk it entails. Formally, they choose their trading partners sequentially

for multiple round of bilateral trades, based on potential counterparties’ identity and,

more importantly, beliefs about their asset positions. At each trading round, we require

that the bilateral matchings at the round and future rounds be stable, allowing multiple

deviations. The collection of banks’ counterparties and trades over all trading rounds

represents the underlying trading network.

The final payoff of an individual bank depends on its risk position after OTC trades.

We allow for a general payoff function at the individual level and analyze how it affects the

aggregate network. At the individual level, we assume that banks’ payoffs decrease in the

risks (i.e., they all dislike holding risks). We show that the standard risk-sharing strategies

may be overturned when banks face diminishing marginal cost of bearing risks. The

diminishing cost is relevant in many applications, for example, when bank have limited

liability and/or options of investing technologies to lower their risk-bearing cost(e.g.,

entering a trading platform or different risk-management technologies).

Having a few extremely risky banks could be optimal because they take on risks

from other banks and have lower marginal risk-bearing costs (as they are in turn likely

to default or access other trading platforms). But concentrating risks to a subset of

banks generates higher overall risk exposure than sharing risks evenly across banks. The

equilibrium network is determined by this trade-off. The asymmetric network emerges
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when the benefit of risk-concentration dominates.

The key dynamic element in our model is the public belief about a bank’s asset

positions at each trading round. It endogenously depends on with whom the bank has

traded with and how it has traded with the counterparties. We show that the variance of

a bank’s position, which can be interpreted as the risk that a bank bears, is the sufficient

static for network formation. The main equilibrium objects are thus the evolution of

banks’ risk exposures (i.e., how each bank trades over times) and their counterparties

(i.e., whom they trade with).

To understand how risks are concentrated through dynamic connections, we first

establish that, with diminishing marginal cost of bearing risks, risks are concentrated

through positive sorting over times. That is, riskier banks, who hold more risks in the

past, are matched with each other.

How banks allocate risks within a match depends on their marginal cost of bearing

additional risk, which we refer to as their risk-bearing capacity. A bank’s risk-bearing

capacity evolves endogenously based on the trading network and trading dynamics. Given

any network that is locally optimal, a bank’s current-period capacity equals the harmonic

mean of the next-period capacities of the bank and its period-t counterparty.

In the first application with limited liability, we show that a small increase in the

riskiness of the asset, thus the balance sheet cost of holding it, can result in a regime shift

in the interbank network, whereupon banks switch from sharing risks with each other

through the network to concentrating risks to a small set of banks. The switch to risk

concentration results in a discontinuously large increase in aggregate default probability.

In this sense, a small shock can trigger “systematic risks” through trading networks.

Our notion of default risks in this application is different from standard theories of

financial contagion, which analyze how bank defaults propagate through given network

connections.1 In our framework, the aggregate default risks increase because banks sys-

tematically change their trading behaviors through the interbank network. Hence, even

without contagion, we highlight another source of systematic risks through the network.

We show that the globally optimal network features more symmetric risk capacity in
1A growing literature focuses on the role of the architecture of financial systems as an amplification

mechanism. For example, Allen et al. (2000)(Allen and D. Gale 2000), Acemoglu et al. (2014)(Acemoglu,
Ozdaglar, and Tahbaz-Salehi 2013), Elliott et al. (2014)(Elliott, Golub, and Jackson 2014), Cabrales et
al. (2014)(Cabrales, Gottardi, and Vega-Redondo 2014), and Gofman (2014) (Gofman 2014) study the
financial contagion in given networks.
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earlier matches. Because risk concentration increases the overall risk exposure, it is better

to have it later. In the simple case in which banks can take binary actions in the final

period, we show that, given any number of core banks who choose to take costly actions

to increase their risk bearing capacities in the final period, the optimal network must

distribute the core access evenly within a match. The optimal network is then reduced

to choosing the optimal core size.

We use this analytical characterization to study our second application, where banks

can choose whether to access a multilateral platform to increase their risk-bearing ca-

pacity for a fixed entry fee. The aggregate market structure in this case depends on the

cost of bearing risks relative to the entry fee. This summary statistic allows us to de-

rive positive and normative implications of reforms that promote central clearing and/or

discourage risk taking, taking into account the equilibrium response of the underlying

market structure.

Consistent with empirical evidence, our model predicts that policies that increase

balance sheet costs relative to the entry fee could result in a more symmetric market

structure. Nevertheless, it can have ambiguous effects on transaction costs measured by

volume-weighted average bid-ask spreads.

Related Literature Methodologically, our dynamic framework with repeated bilateral

matching2 contributes a tractable approach to studying the formation of trading network.

Our method differs from the existing network formation literature3 as it breaks down a

complex network formation game into a sequence of subgames, each of which involves one

round of bilateral matching together with asset trading, and a subsequent sub-game. How

an agent traded in the past is summarized by his characteristic, which becomes the state

variable governing how he trades in later periods. By imposing sequential rationality, we
2Most works in the matching literature involve a static environment, with only a few exceptions.

Corbae, Temzelides, and Wright (2003) introduced directed matching into the money literature, where
the key state variable is the traders’ money holding. Because there are no information frictions in
Corbae, Temzelides, and Wright (2003), belief updating is not essential for their analysis, whereas it is
a key component of our theory. With regard to the labor market, Anderson and Smith (2010) analyzed
the dynamic matching pattern for which the public belief about a trader’s skill (i.e., his reputation)
evolves according to matching decisions. In our trading environment, the updating process depends
endogenously on both the traders’ matching decisions and the terms of trade within a match.

3See the survey in Jackson 2005 for overview. Specifically, papers that have studied network formation
in the financial market include Hojman and Szeidl (2008), D. M. Gale and Kariv (2007), Babus and Hu
(2017), and Cabrales, Gottardi, and Vega-Redondo (2017), Farboodi (2014), Wang (2016)), where the
last two papers in particular focuses on the core-periphery structure.
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can solve the network formation problem through backward induction.

While we use pairwise stability to characterize the equilibrium matching in a subgame,

a deviating agent in a subgame can change all his future links, not just one link as in the

static setup that the literature adopt. This method derives a unique solution. It is thus

in sharp contrast to the standard network formation problem where agents form multiple

links simultaneously, which is often subject to the curse of dimensionality and prone to

multiple equilibria, because pairwise stability allows for the deviation of only one pair of

traders even though traders form multiple links.

A similar approach has been used in our previous work, Chang and Zhang (2018),

where we consider a pure bilateral OTC market with risk-neutral agents and an indivisible

asset. This paper allows for risk-averse agents and unrestricted asset holdings, which

allows us to analyze risk concentration within the network.

The common approaches to modeling OTC markets are based on random matching

(e.g., Duffie, Gârleanu, and Pedersen 2005) or exogenous networks.4 Relative to the

literature that takes the network as given, our model provides a formal analysis of how

the underlying structure of the OTC market might respond to policies.

Because one of our applications is on the joint determination of the bilateral trading

network and platform access, our paper also sheds new lights on the literature on the costs

and benefits of centralized vs. decentralized markets.5 Instead of focusing on the trade-off

between these two markets, we allow for nonexclusive participation and emphasize the

interdependence between these two choices. The paper is related to recent works that

studies the co-existence of these two venues and market fragmentation, including Dugast,

Üslü, and Weill (2019) and Babus and Parlatore (2017). Our framework is designed to

analyze the network response and the results can be generalized to multiple types of

platforms.
4For example, see Gofman (2011), Babus and Kondor (2018), and Malamud and Rostek (2014).
5Specifically, existing studies (e.g., Malamud and Rostek (2014), Glode and Opp (2019), and Yoon

(2017)) consider other dimensions such as price impact and asymmetric information. They show that
OTC markets can be beneficial for certain types of traders. In our model, a centralized platform is
assumed to be a superior trading technology but requires a higher participation cost.
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2 Model

We consider a trading game in an economy that lasts N + 1 periods and is populated by

a set of banks, each with a fixed identity i ∈ I = [0, 1]. Banks trade among each other for

N periods, and his payoff at the terminal period N + 1, depends on his positions after

bilateral trades.

There are two types of consumption goods, numeraire goods and dividend goods, and

one type of asset. The asset generates a unit stream of dividend goods in each period. All

banks are endowed with an initial asset position which is an i.i.d. draw from a symmetric

distribution with mean zero, variance v1, and distribution function π1(a).

The heterogeneity in asset positions is the source of gains from trade in the economy.

Banks can trade their asset positions with numeraire goods, of which they have deep

pockets. The flow utility at period t of a bank i that has asset position ai,t ∈ R and

receives transfer xi,t ∈ R is ut(ai,t) + xi,t. We assume that a bank derives mean-variance

utility from dividend goods and normalize the mean to zero; above, ut(ai,t) = −κta2
i,t with

κt ≥ 0 for all t ≤ N .6 In other words, the ideal asset position of a bank is normalized

zero. Parameter κt represents the balance sheet cost of holding nonzero asset positions

at period t, which can be associated with the riskiness of the asset.

Contacting Frictions in Bilateral Trades From period 1 to period N , banks can

connect sequentially to N counterparties with no extra cost to engage in N rounds of

bilateral trades. Bilateral trades are subject to limited information that prevents banks

from locating ideal trading counterparties.

We explicitly model this friction by assuming that an bank can only observe another

bank’s asset position after the two have contacted one another. In other words, each

bank faces uncertainty about the counterparty’s asset position before making the con-

tact. Thus, there is limited information at the matching stage but complete information

between matched banks after they make contact.

Observe that, given the assumed payoff structure, if all banks could observe each

other’s realized positions before they choose their matches, it is straightforward to show

that the economy achieves perfect risk sharing with one round of trade. In this case,
6More generally, ut(ai,t) = κ0,tai,t + κ1,ta

2
i,t. Because κ0,t does not contribute to the heterogeneity

in marginal utility, it is without loss of generality to set it to zero.
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banks with position a are matched with banks with the opposite position −a, and their

posttrade positions would net out to zero (i.e., there would be perfect negative sorting

on asset positions.) Hence, the assumed contacting frictions aim to capture the spirit of

conventional search frictions.

Post-Trade Risk Exposures We assume that the expected payoff of an bank depends

on the variance of his asset position after OTC trades, denoted by WN+1(vi,N+1), where

vi,N+1 is the variance of πi,N+1(a). Observe that, if there were no additional actions at

N + 1, then the final payoff for a bank is simply WN+1(vi,N+1) = EuN+1(ai,N+1) =

−κN+1vi,N+1. More generally, we allow for any final payoff WN+1(v)

Assumption 1. (Risk-Averse)WN+1(v) is a decreasing function of post-trade risk-exposure

vi,N+1.

Assumption 1 means that, at the individual level, all agents would like to reduce their

risk-holdings. We impose this assumption to avoid trivial risk-taking behaviors.

As discussed later in details, while it’s costly to hold risks for all banks (W ′
N+1(v) ≤ 0),

what matters for the aggregate network is the convexity of WN+1(v), where a convex

WN+1(v) represents diminishing marginal costs of holding risks.

This can happens when, for example, when banks are protected by limited liability;

and thus, the marginal cost of taking additional risks is lower for riskier banks that are

likely to default. Or, one can also imagine that banks have options to invest with superior

but more expensive trading or risk-management technologies. Since the value of doing

so is higher for riskier banks, whose marginal cost of holding risks thus can be lower. To

proceed, we first establish the general results for any WN+1(v) and then apply it to two

specified applications: platform access (Section 4) and limited liability (Section 5).

2.1 Matching and Trading Decisions

Given the uncertainty, the matching decisions are thus based on the identities of their

counterparties. Formally, the choice of counterparties is modeled as choosing N coun-

terparties sequentially at t = 0; that is, banks decide ex ante bilateral matches for each

trading round.

7



Ex Ante Network Denote the trading counterparty of a bank i at period t ji,t. The

collection of a bank i’s counterparties ji,t over N rounds of trade forms his trading links.

We assume that banks form their trading links before their asset holdings and valuations

are realized. Therefore, our setup effectively has a network formation stage ex ante, and

we can interpret trading links as permanent trading relationships between banks. Since

trading needs are banks’ private information at the trading stage, the assumption that

banks form trading links ex ante and cannot be contingent on realized trading needs also

avoids some technical complications in matching models under asymmetric information.7

Terms of Trade: Contingent Asset Flows and Prices While the connections are

determined ex ante, trades are contingent on the realized asset positions of a bank and

her counterparty in a match, because trading takes place after she and her counterparty

make their contact and observe each other’s realized asset positions. Thus, if we think

of the economy as a trading game within a trading day and repeat it over time, even

though the network remains the same, banks’ realized asset positions change how they

trade (i.e., the asset flows) within the network from day to day.

Formally, the terms of trade within a match, including both asset allocations and

transfers of numeraire goods, are contingent on the realized positions of a bank i and her

counterparty j, denoted by ai and aj respectively. Let y(i, j) = {ãk(ai, aj), x̃k(ai, aj), k ∈
{i, j}} be the terms of trade within the match (i, j), where ãk(ai, aj) denotes the posttrade

asset holding of bank k, and x̃k(ai, aj) denotes the transfer to bank k, k ∈ {i, j}. The

within-match transfers sum up to zero,

Σk=i,jx̃k(ai, aj) = 0. (1)

The within-match asset allocation is feasible if

Σk=i,j ãk(ai, aj) = ai + aj. (2)

The allocation of asset positions is associated with the allocation of risks from uncertain
7Without this assumption, banks can in theory signal their types through different matching decisions

and the equilibrium would depend on how we specify off-equilibrium beliefs and require heavier notations.
One can in theory impose off-equilibrium beliefs that support a pooling equilibrium and obtain the same
outcome.
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asset positions because given a distribution of banks i and j’s pretrade asset positions,

the posttrade positions also follow a distribution. This is the key characteristic that

governs bilateral matching. Note that, while the terms of trades are only contingent on

the realized positions within a pair, agents choose it optimally according to the network

in equilibrium, which we will explain in detail later in the equilibrium definition.

We make the following assumption on posttrade asset allocations.

Assumption 2. The posttrade asset allocations between matched agents i and j are

quasilinear in their pretrade total asset holdings, ai + aj.

ãk(ai, aj) = αk(ai + aj) + βk, for k = i, j.

Assumption 2 simplifies our analysis but is not restrictive on the allocation of risks.

Under this assumption, the feasibility constraint on posttrade asset holdings, (2) for all

ai and aj, is reduced to two constraints, αi+αj = 1 and µi+µj = 0, where αi controls the

riskiness of agent i’s asset holding, µi controls the expected amount of her holding. For

example, when αi = 1, αj = 0, the variance of agent i’s holding equals to the variance

of total asset holdings, ai + aj. When αi = αj = 0.5, the allocation diversifies risks,

Var(ãi) = Var(ãj) = 1
4
Var(ai + aj). Assumption 2 does rule out nonlinear allocations,

for example, ãi(ai, aj) = max(ai + aj, 0), ãj(ai, aj) = min(ai + aj, 0). Such nonlinear

rules may allow agents to coordinate their matching in a different manner, which may be

relevant for some applications.

Sequential Choices of Trading Links and Terms of Trade When banks decide

trading links and terms of trade ex ante, they make decisions for earlier trading rounds

first. All trading links and terms of trade before a period t are public information when

banks decide matching and within-match terms of trade for the period. Thus, links

and terms of trade are sequentially optimal in the sense that when a bank chooses his

counterparty and terms of trade for a period t, he takes into account all banks’ matches

and terms of trade before the period.

A bank i’s strategy at period t conditional on the public information at that period

includes the choice of his counterparty, ji,t, and the terms of trade with the counterparty,

yt(i, j) for j = ji,t.

9



We can summarize the public information for period t strategies by the public belief

of joint distribution of banks’ asset positions.8 Now that banks’ strategies are contingent

on the public belief of banks’ trading needs, characterizing its evolution over time is an

essential part of our analysis. Denote the joint distribution of banks’ asset holdings at

the beginning of period t πt : R[0,1] → [0, 1] and the marginal distribution of bank i’s

asset position at the beginning of period πi,t(a) : R→ [0, 1].

Evolving Characteristics To understand how a bank’s asset holding distribution

evolves over time, consider the following example: suppose a bank i bears all position

exposures within her match at period 1. That is, her asset position in the next period

equals the sum of her and her counterparty j’s current asset positions, ai,2 = ai,1 + aj,1.

Her posttrade asset distribution πi,2(a) now has mean zero and a variance of 2v1 when her

pretrade position is uncorrelated with her counterparty’s. On the other hand, under this

first-period strategy, her counterparty’s posttrade asset position is always zero, aj,2 = 0

(i.e., πj,2(a) is degenerate with both its mean and variance being zero).

In general, the law of motion of the asset distribution of a bank i, πi,t(a), is given by

the Bayes’ rule,

πi,t+1(a) =

ˆ ˆ
I(ãi,t(ai, aj) ≤ a)πi,j,t(dai, daj), for a ∈ R, (3)

where πi,j,t(ai, a−i) denotes the joint distribution of bank i and her counterparty j’s

period-t pretrade asset positions. This again highlights the fact that bank i’s posttrade

asset distribution, πi,t+1(a), depends on the the joint distribution of the pretrade asset

positions of bank i and her optimally chosen counterparty, and on how she trades with

her counterparty, ãi.t(ai, aj).

To sum up, we study a dynamic matching model with evolving characteristics; the

marginal asset distribution πi,t(a) and the correlation pattern between the marginal dis-

tributions depend on past matching and trading decisions. We can think of the joint

distribution πt of all banks’ asset positions as the aggregate state variable.
8As we will show later, the gains from trade from period t onwards depend on the trading history

only through the public belief of banks’ asset positions.
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2.2 Equilibrium Definition

Denote the joint payoff between two banks i and j, Ωt(i, j). Given the aggregate distri-

bution at period t as

Ωt(i, j) ≡ max
ãi,t,ãj,t

−κt
ˆ ˆ

[(ãi,t)
2 + (ãj,t)

2]πi,j,t(dai, daj) + Ŵt+1(i) + Ŵt+1(j) (4)

subject to feasibility constraints, which depends on the pretrade joint asset distribution

of banks i and j, πi,j,t(ai, aj). The within-match transfers do not show up in (4) because

they sum up to zero.

Let Ŵt+1(i) denote the bank’s maximum payoff in the next period with any marginal

distribution πi,t(a) and joint distribution with other banks’ asset holding, taking the

aggregate distribution πt+1 and other banks’ equilibrium payoffs Wj+1(j) as given.

Ŵt+1(i) ≡ max
j

Ωt+1(i, j)−Wj+1(j). (5)

On the equilibrium path, a bank’s payoff is given by Wt+1(i), which equals Ŵt+1(i) for a

bank i that adopts equilibrium strategies before period t+ 1.

In other words, for any round t, an agent i takes the future aggregate evolution of π∗τ
and hence the individual payoff Ŵτ (i) ∀τ ≥ t as given, and choose his trading partner

and the term of trades at round t optimally. Our formulation thus means that each agent

is negligible relative to the aggregate distribution; however, each agent is non-negligible

in pursuit of his own interest through matching and contracting within a pair.9

Definition 1. Given π0, an equilibrium consists of strategies {s∗i,t}∀i,t, market utilities

Wt(i), and a path of common beliefs π∗t such that the following properties hold for all

t ∈ {1, . . . , N + 1}:

1. Pairwise stability at t ≤ N : if j ∈ jt(i),

Wt(i) = max
j

Ωt(i, j)−Wt(j),

9In this sense, it can be understood as a competitive equilibrium as in the literature on large games
(McAfee 1993), where the payoff of each individual is determined only by his own decision and by the
aggregate distribution of trading decisions in the market.
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where the post-trade position {ãi,t, ãj,t} maximizes Equation (4).

2. Feasibility of bilateral matching at t ≤ N .

3. Dynamic Bayesian consistency: The joint asset distributions evolves following the

Bayes rule given banks’ strategies.

Our equilibrium notion can be understood as multiple rounds of pairwise stabile

matching. Bilateral matches across all banks at period t are stable if no individuals

in a match can be better off by forming new matches, conditional on providing the coun-

terparty at least the latter’s equilibrium market utility, denoted by Wt(j).

Our notion, however, does allow for joint deviations with multiple banks that occur

sequentially, which is thus different from the standard pairwise stability in simultaneous-

move network formation games. Specifically, when a bank deviates at period t, the bank

is also allowed to switch own future trading partners accordingly, conditional on providing

own counterparties with equilibrium payoff Wt+1(j). The deviation payoff is described by

Equation (5), which allows banks to re-optimize their future counterparties.

3 General Properties

3.1 Equivalence and Uniqueness

We first establish that the equilibrium outcome is unique and maximizes the aggregate

payoff. Denote the aggregate payoff of the economy at period t to be Πt, which depends

on the joint asset distribution πt. Given a strategy st at period t, the aggregate payoff

equals

Πt(πt) = −κt
ˆ 1

0

Et(ãi,t
2)di+ Πt+1(πt+1). (6)

where Et(ãi,t2) =
´ ´

ãi,t(ai, ajt(i))
2πi,jt(i),t(dai, dajt(i)) and the terminal payoff depends on

the post-trade variance at periodN, which is given by ΠN+1(πN+1) =
´ 1

0
WN+1 (vi,N+1) di,where

vi,N+1 =
´
a2
i,N+1πN+1(dai,N+1).

Proposition below first shows that, given any κt and WN+1(v), the equilibrium strate-

gies - including agents’ bilateral connections and the terms of trade thin each match -

maximizes the aggregate payoffs.
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Proposition 1. Strategies {si,t}∀i,t are equilibrium strategies if and only if they maximize

Π1(π1).

Proposition 1 has three implications. First, without any deviation between private

and social values, the equilibrium is efficient.10 Second, when a deviation arises for varied

reasons, one can implement the social planner’s solution through taxes by simply align-

ing costs. Third, it implies that the equilibrium market structure and asset allocations

through the market structure are payoff unique. The multiplicity that often makes it

hard to characterize financial networks does not show up in our framework. This gives

the theoretical foundation to solve the trading network numerically.

3.2 Risk Allocation

Reformulation: Variance Representation Instead of working with asset alloca-

tions, we first reformulate the problem in the space of variance (i.e., risks). Within a

match (i, j), the posttrade positions ãk(ai, aj) depend on the realized positions of the two

banks (ai, aj). Given any allocation rule, let ṽk ≡ V ar(ãk(ai, aj)) denote the variance of

posttrade positions and Vij ≡ V ar(ai + aj) denote the variance of the sum of pretrade

positions. The feasibility constraint on bilateral trade, Equation (2), implies the following

connection between pretrade and posttrade risk:

ṽi + ṽj + 2ρ̃ij
√
ṽiṽj = Vij, (7)

where ρ̃ denotes the correlation of posttrade positions of two banks, which depends en-

dogenously on the allocation rule.

Lemma 1. The optimal posttrade positions must have zero mean for all banks, and the

posttrade positions for any two matched banks are perfectly positively correlated. More-

over, the pretrade positions of any two matched banks in the efficient solution are uncor-

related.

Under the quadratic utility, the aggregate payoff decreases with the variance and

mean, which explains why it is optimal to maintain the mean of posttrade positions at

zero and change only their correlation and variances.
10Because agents have quasilinear preferences, this is equivalent to solving for Pareto optimal alloca-

tions.
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Moreover, positive correlation between pretrade positions of two matched banks neces-

sarily increases the variance of their total pretrade positions, which is the right-hand-side

of the feasibility constraint for variance allocation, Equation (7). This implies that, all

else equal, it is optimal to match banks with zero correlations. This observation allows

us to solve the model by focusing on the variance of individual banks’ positions. It also

implies that it is not optimal to match two banks twice because asset positions of any

two previously matched banks are positively correlated. The pretrade variance on any

path of optimal matches can thus be simplified to Vij = vi + vj.

Given that the asset positions for all agents are uncorrelated on the path, the sufficient

statics of an agent’s characteristic is his pre-trade variance vi,t. In other words, vi,t is the

state variable and thus, we now use Wt(vi,t) to denote the bank’s maximum payoff given

his characteristic vi,t.

Corollary 1. At each period t, given any pre-trade variance Vij for the agent i and j,

the optimal share α ∈ [0, 1] solves

Ωt(Vij) = max
α∈[0,1]

{
−κt

(
α2 + (1− α)2

)
Vij +Wt+1(α2Vij) +Wt+1((1− α)2Vij)

}
(8)

In other words, the optimal asset/risk allocation with any pair with post-trade vari-

ance Vij can thus be reformulated as choosing the share of the risks within a pair (i, j),

where bank i holds a share αi ∈ [0, 1] of total position, so that ãi(ai, aj) = αi(ai+aj) and

bank j holds αj = 1 − αi share. A bank who holds a larger share of the total position

will then have a higher variance on her posttrade asset position than her counterparty,

as ṽk = α2
kVij.

Allocation of Risks Within the matches Given any match, the risk allocation

within the pair is thus pins down by the FOC condition from Equation (8). Assuming

Wt(v) is differentiable ∀t, v, we thus have

αt(V ) =
κt +W ′

t+1((1− α)2V )(
κt +W ′

t+1((1− α)2V
)

+
(
κt +W ′

t+1(α2V )
) . (9)

In our framework, not only agents change the risk allocation within the match but

also whom they trade with. As shown in Corollary (1), choosing different agents results
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in different per-trade variance Vij, which in turns affect the post-trade variance of an

agent. The joint determination of these two decisions pins down the underlying trading

network. We thus now analyze the matching outcome.

3.3 Sorting Dynamics

First of all, observe that when Wt+1(v) is concave, one can show that the objective

function in Equation (8) is concave; and since α = 1
2
satisfies the FOC condition, it

is also the unique global maximum. In other words, the standard predictions on risk-

sharing are obtained in this case: agents share their exposure equally with any match

and thus vi,t+1 =
vi,t+vj,t

4
. Moreover, since all agents share the risk equally, there is no

cross-sectional dispersion of vi,t, the matching outcome is equivalent to random matching.

In this sense, the trading outcome is the same as in Afonso and Lagos (2015), which can

be nested in our framework as WN+1(v) = −κN+1v.
11,12

Lemma 2. When WN+1(v) is concave in v, the unique trading network is full risk-

sharing, where vi,t = 1
2
vi,t−1 =

(
1
2

)t
v0 ∀i, t, and the matching outcome is equivalent to

random matching.

Given that a concave WN+1(v) is well-understood, we focus on the case when Wt+1(v)

is convex throughout the rest of the paper. Observe that the FOC conditions in this

case are generally not sufficient, and asymmetric risk-allocation could be optimal. That

is, it is possible to exist α ∈ (1
2
, 1] that also satisfies the FOC where W ′

t+1(α2V ) >

W ′
t+1((1 − α)2V ). That is, Agent i unloads more risk to her counterparty j when Agent

j has a lower marginal cost of risk-bearing the next period.

Whether the asymmetric solution is indeed optimal, it will then generally depend on

the convexity ofWt(v). In the static model (N = 1), the solution depends on the specified

property of WN+1(v) and the given initial condition vi,N = v1∀i.
In our dynamic environment, the post-trade variance vi,N depends on how an agent

traded through bilateral network over times; moreover, at any period t, the value func-

11Afonso and Lagos (2015) predicts that post-trade exposure is given by akt+1 =
ait+a

j
t

2 , which implies

that the post-trade variance is reduced to half, vit+1 =
vit+v

j
t

4 . Since all agents share the risk equally, their
characteristics remains the same (vit =

(
1
2

)t
v0 ∀i).

12More generally, concavity in WN+1(v) predicts negative sorting. Even if the economy starts with
two different initial values (say half of agents start with low (high) exposure vL0 (vH0 )), all agents again
become homogeneous next periods under NAM.
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tion Wt(v) endogenously depends on the optimal choice of counterparties, which can be

expressed as

Wt(vi) = max
j

{Ωt(Vij)−Wt(vj)} .

In other words, through the dynamic trades, our framework captures how the risk can

accumulated through the trading network. Proposition below first establishes risks are

in fact concentrated over time through positive associative matching.

Proposition 2. (Sorting) When WN+1(v) is convex in v, the optimal sorting outcome is

PAM on vt ∀t.

This is because that, with convex WN+1(v), one can show that Ωt(Vij) is also convex

in Vij = vi+vj ∀t. Hence, given any distribution of vi,t, agents are matched with counter-

parties that hold the same level of risk, thus on the equilibrium path, Vij = 2vi. In other

words, agents that accumulate risks from others (higher post-trade variance vi,t+1) are

matched among with each other. Through this channel, compare to the random match-

ing, where the risk exposure of his counterparty next period is drawn randomly, these

agents thus handle more risks on average.

Our approach admits a tractable characterization with a convex payoff function in

the final period, WN+1(v), as shown later in our detailed analytical characterization. Our

setup also admits a tractable numerical algorithm for any WN+1(v). A feature of PAM is

that the optimal solution is distribution-free.: the matching and trading strategies of an

agent holds for any distribution of risk exposures across agents. Under PAM, the network

formation problem can be greatly simplified. First, solve agents’ value functions, Wt(v),

and policy functions, αt(v), backward from period N to period 1. Given equilibrium

matching is positive assortative, Wt(v) and αt(v) for a value v is the solution to a one-

dimensional optimization problem in Eq (8). As a byproduct of the optimization problem,

we also solve the transfers within a match. Second, given the policy functions and positive

assortative matching in equilibrium, solve for the evolution of variances vit over time.

Because the numerical algorithm involves only one dimensional optimization, it is easy

to solve even if the objective function is convex. As a result, unlike the typical network

formation problem that often suffers from the curse of dimensionality and may be hard

to track, our recursive approach admits a rather tractable solution. Note that this is true

even when the model is static – which can be obtained by setting κt = 0 for t ≤ N so
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Figure 1: Risk-concentrating Network (N = 2)

that only the final allocation matters.

3.4 Trading Network

Figure 1 illustrates an example of trading network that involves risk-concentration. Within

a match, the allocation must solves Equation 8, which means that two matching agents

can potentially have different post-trade variance. We use the arrow points toward the

agent with higher post-trade variance if asymmetric allocation arises. In this example,

all agents start with the same initial risk position v1. At period 1, Agent 3 and 4 take

on more risks from Agent 1 and 2. At period 2, PAM implies that Agent 3 and 4 are

matched while Agent 1 and 2 are matched.

Our sequential formulation of networks implies that the effect of earlier connections

and trading outcomes is summarized by the state variable vt. Conditional on vt, the

allocation at period t only depends on the future connections moving forward. That is,

in this example, when Agent 1 trades with Agent 3 at period 1, he takes into account that

she is connected to Agent 4 at period 2. In this sense, Agent 1 is indirectly connected to

Agent 4 through Agent 3 at period 1.

To define the indirect connections, denote a set of agents I and their counterparties

at period t Jt(I). Jt(I) = ∪i∈I{i, jt(i)}. We say that an agent i is connected to an agent

j from period t onwards if j ∈ JN(JN−1(. . . (Jt+1(Jt(i))) . . .)). Under this definition, the

set of agents that Agent i is connected to from period t onwards is a tree with its root at
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the current match Jt(i) = {i, jt(i)}.13 At period t, there are N − t+ 1 rounds of bilateral

matching that remain, and an agent can be connected to at most 2N−t+1 agents from

period t onwards. Let gt(vi,t) summarizes the period-t network for an agent with vi,t,

which includes risk positions of all his connected counterparites

gt(vi,t) = {vk,τ , jk,τ} ∀k∈Jt(i),∀t≤τ≤N

Two notes: First, since Agent i can have higher or lower post-trade variance within

the pair vt at each round, there can be at most 2N types of dynamic path of risk-positions

over N trading rounds. It is thus convenient to interpret that g1(v) represents the ex-ante

trading networks among 2N types of agents. Mapping to a continuum of traders, each

type then has a measure of 1
2N
.

Second, the network at period t+1 can be understood as deleting bilateral links {jt(i)}
at period t from network gt(vi,t). Let ṽθ(v) denote the post-trade variance within the pair

v, where θ ∈ {h, l} and ṽh(v) ≥ ṽl(v). In this example, after Agent 3 holds takes on more

risks v3,t+1 = ṽh(v) > v1,t+1 = ṽl(v), at period t = 1, these two agents are no longer

connected and now in two different sub-networks, given by gt+1(ṽh(v)) and gt+1(ṽl(v)),

respectively.

Risk-bearing Capacity and Dynamic Connections The dynamics of connections

thus affect agents’ risk-bearing capacity over times, which in turns determines the risk-

allocation within a pair. Let Ŵt(v|gt(v)) represent the joint payoff and payoff of an agent

with pre-trade position v under network gt(v).

Given that two matching agents are identical at period t (because of PAM), the

equilibrium payoff for each agent must be identical, which yields

Ŵt(v|gt(v)) =
1

2

(
Σθ

{
−κtṽθ(v) + Ŵt+1(ṽθ(v)|gt+1(ṽθ(v))

})
.

We refer the marginal cost of holding risk for an with vt as his risk-bearing capacity

at period t, which is denoted by Ŵ ′
t(vt|gt(v)). Recall that any solution ṽθ(v) must satisfy

13Due to the dynamic nature of our framework, the future links are the specific factor that matters
for current trading decisions. Thus, the relevant connections for an agent can be understood as a tree.
Nevertheless, the actual network g1 ={jτ (i), Ai,N+1}∀i,1≤τ≤N does not need to be a tree. For example,
according to Figure ??, the network graph contains loops.
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FOCs in Equation 9. Lemma below establishes that the risk-bearing capacity can be

characterized recursively for any network that satisfies FOCs and PAM.

Lemma 3. For any network gt(v) that satisfies the FOC conditions and PAM, the

marginal cost of holding risks for agent with position v at period t is given by

Ŵ ′
t(v|gt(v)) =

1

2
H
(
κt + Ŵ ′

t+1(ṽh(v)|gt+1(ṽh(v))), κt + Ŵ ′
t+1(ṽl(v)|gt+1(ṽl(v)))

)
∀t ≤ N.

(10)

Equation 10 has a simple interpretation: the risk-bearing cost of Agent i at period t is

the harmonic mean14 of the post-trade risk-bearing cost of Agent i and her counterparty

jt(i). It also shows that, while two matching agents can have different capacity next

period, they must have the same capacity at period t, given they allocate the risks jointly,

taking into their future connections.

In general, observe that when Wt(v) is convex, there could exist multiple solutions

that satisfy FOCs and PAM. In other words, these two are only necessary conditions for

the optimal network. To proceed, we consider two applications and establish properties of

the global optimal network. First, we provide conditions and full characterization when

there is at most one “core” agent and κt = 0. We apply this result to highlight the excess

risk-taking through network as a result of limited liability. Second, we allow for κt > 0

and analyze the optimal core size in an environment where banks have options to invest

better technologies (such as, entering a centralized platform).

4 Application 1: Limited Liability

A prevalent concern in financial intermediation is the risk-taking incentive that results

from limited liability. We now show that banks might collectively use their network

to concentrate risks instead of sharing risks. This result holds despite that, banks are

risk-averse (i.e., under Assumption 1).15 Since default effectively offloads downside risks

to outside creditors, any risk-taking is inefficient from viewpoint of planner. We then

consider how interventions can correct such incentives.
14The harmonic mean of any two variables γj and γj is 2

γ−1
i +γ−1

j

.
15Note that, the standard risk-taking behavior arises where banks’ payoffs are convex in their asset

positions and thus banks might prefer higher variance, which gives higher upsides. Our result here goes
beyond this channel as we assume that WN+1(v) decreases in v.
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4.1 Regime Shift: Full Risk–sharing vs. Maximum Concentra-

tion

In this application, we are interested in the interaction between any given banks’ individ-

ual payoff WN+1(v) and the outcome of bilateral networks. In particular, we show that

a small change in such incentives at the individual level can shift the aggregate network

from sharing risks to concentrating risks. It thus can generate a discontinuously large

increase in aggregate default probability.

To illustrate this point, we set κt = 0 for simplicity; hence, this environment is

equivalent to a static model in the sense that only the final risk positions matter. Observe

that, a static problem, which involves allocating risks vi,N+1 among 2N agents, is a highly

multidimensional optimization problem. Below, we first identify the sufficient conditions

that guarantees the if asymmetric allocation arises, risks are concentrated only at one of

the 2N agents. We thus refer this agent as the “core”.

Condition 1. WN+1(v) is twice differentiable, and for ∀v W ′
N+1(v) < 0, W ′′

N+1(v) > 0,

W ′
N+1(v) is bounded

Condition 2. (Monotonicity) c(v) ≡ −W ′′N+1(v)

W ′N+1(v)
> 0 weakly increases in v ∈ [0, 2Nv0].

Condition 1 guarantees that the solution is interior. Since the benefit of concentration

is driven by the convexity W ′′
N+1(v) and the cost of holding risks is captured by W ′

N+1(v),

one can be interpret that Condition 2 means the relative benefit of concentration increases

in the risk positions. It thus implies that concentration are more likely to happen for

large risk positions.

Lemma 4. (Concentration w/ One Core) Under Condition 1, 2, and κt = 0, risk alloca-

tions among 2N agents involve at most one core agents with post-trade variance vcN+1, and

the rest of non-core agents have the same terminal variance v0
N+1, where vcN+1 ≥ v0

N+1.

Lemma thus reduces the multidimensional problem to one-dimensional. The aggregate

payoff can be understood as 2N agents share a total risk of V ≡ 2Nv0,where one “core”

agent may hold more risks than the rest of 2N − 1 agents, which yields

Π(v0, N) =
1

2N
max
α≥ 1

2N

{
WN+1

(
α2V

)
+
(
2N − 1

)
WN+1

((
1− α
2N − 1

)2

V

)}
. (11)
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Observe that α = 1
2N

represent the case with fully risk-sharing among all agents; and

thus viN+1 =
(

1
2N

)2
V = v0

2N
∀i.

4.1.1 Aggregate Implications: Regime Shifts

Let α∗(V ) denote the optimal risk-allocation that solves Equation 11. The solution can

be understood as the following: Agents engage fully risk-sharing (α∗(V ) = 1
2N

) for lower

initial risk-position v0. However, there exists a marginal value v∗ such that it is optimal

for agents to shift to maximum concentration to only core agent, i.e., α∗(V ) > 1
2N

.

Moreover, when this happens, α∗(V ) involves discontinuous jump with N ≥ 2. We

thus refer this discontinuous changes as regime shifts. In fact, such a discontinuous change

will not exist if N = 1 (i.e., with minimum interconnectedness). In other words, α∗(V )

is a continuous and increasing function in V. Moreover, a higher N implies that the core

agent can collect more risks from more counterparties. Hence, higher N leads to higher

degree of concentration. Our result thus highlights the risk-concentration incentives are

relevant when banks are highly interconnected, or have higher risk positions.

Expected Transfers (Prices of Risks) The regime shift does not imply discontinuous

change in the aggregate risks, but also affects the transaction price. To see this, we now

look at the price/transfer that implements the optimal network in equilibrium. Note

that, because of positive sorting, any two matching agents have are homogeneous when

they meet (which is characterized by vi,t ) at period t on the equilibrium path. Hence,

while the optimal allocation of risk is generally asymmetric, the transfers must be such

that they are indifferent.

Given that holding risk is costly, agent j that holds more risk needs to be compensated

so that the agent will be indifferent. Specifically, the expression of Wt(v) shows that an

agent’s maximum payoff is decreasing in v. Thus, the expected transfer from agent i to j

solves

− κtṽi +Wt+1(ṽi)− xt = −κtṽj +Wt+1(ṽj) + xt, (12)

where ṽk is given by the optimal allocation and ṽi = ṽl(v) ≤ ṽj = ṽh(v) and xt ≥ 0.

The equilibrium transfer xt(i, j) within the pair can be implementedxx don’t talk

about implmentation of BA.
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as linear bid-ask spread times the expected volume. Specifically, the agent who holds

higher post-trade variance within the pair charges linear bid and ask prices, PA
t (i, j) and

PB
t (i, j), respectively. The spread St(i, j) ≡ PA

t (i, j)− PB
t (i, j) then solves(

St(i, j)

2

)
ϑt(i, j) = xt(i, j),

where ϑt(i, j) ≡ E|αi,t(ai,t−1 +aj,t−1)−ai,t−1| represents the expected volume between the

pair (i, j).

This immediately implies that when banks engage in risk-sharing, the bid-ask spread

is zero within the pair. Hence, when the network shifts to risk-concentration, bid-ask

spread must become positive. Moreover, such increase is discontinuous with discontinuous

increase in the risk concentration.

Proposition 3. Under Condition 1 and 2, there exists a cutoff v∗ such that the equilib-

rium is fully risk-sharing for v ≤ v∗ and features concentration with one core agent with

v ≥ v∗. For any N > 1, the aggregate post-trade exposures,
´
vi,N+1di, and bid-ask spread

discontinuously increase at v∗.

Figure 2 illustrates this result using WN+1(v) = −1 + e−cv, which implies constant
W ′′N+1(v)

W ′N+1(v)
= c and thus Condition 1 and 2 are satisfied. The red line represents the outcome

where banks choose to share risks. Hence, each of them has low final risk exposure and

default probability. The blue line, on the other hand, represents the case when it becomes

optimal for banks to concentrate risks to the core, which results in higher aggregate

probability of default (which is proportional to the total variance). In this sense, our

model predicts that a small increase in risk-taking incentives can trigger a financial crisis

through the network connections.

4.1.2 Distribtuion of Risks in Banking Network

builing up risks and then get rid of risks “better”

When risk concentration arises, the core agent collects risk from others. While the

final allocation can be understood from a static model, our sequence setting further

gives predictions regarding how the asset flows through the bilateral network. Intuitively,

agents who are directly or indirectly connected to the core agent will have lower cost of
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Figure 2: Regime Shift: WN+1(v) = −1 + e−cv, c = 1.0196, v0L = 1.02 and v0H = 1.03.

holding risks and thus can take on more risks from his counterparties. Importantly, as

shown in Lemma 3, the model dynamics imply that the risk-bearing cost of Agent i is

time-varying.

Dynamic Cores Access (to understand how risks flow) Let ci,N+1 = 1 iff vi,N+1 =

vcN+1 denote the agent is the core and zero otherwise. We define the core access of an agent

at time t as the number of core agents that Agent i is directly and indirectly connected

at period t :

ci,t ≡ Σk∈Jt(i)ck,N+1.

Recall that the network of an agent at time t can be understood as adding the bilateral

jt(i) to their t + 1 networks. Hence, the core access can be defined recursively: ci,t =

ci,t+1 + cjt(i),t+1. That is, by connecting his counterparty jt(i), Agent i obtains the future

core access of agent jt(i) at period t.

When there is only one core agent among 2N agents, then the core access is always

binary at any t: ci,t = 1 iff agent i is directly or indirectly connected to the core agent

at period t and ci,t = 0 otherwise. When κt = 0,Lemma 3 further implies that the risk-

capacity of an agent at period t only depends on the harmonic mean of W ′
N+1(vk,N+1) of
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all his connected counterparties at period t, which yields

W ′
t(vi,t) =

1

2N−t

{
Σ2N−t

k∈Jt(i)

(
1

W ′
N+1(vk,N+1)

)}−1

.

In other words, the risk-capacity for an agent at period t only depends on whether

he has core access at that period. If the agent is connected to the core at period t, then

one of W ′
N+1(vk,N+1) is valued at the core agent W ′

N+1(vcN+1), while the rests are valued

at W ′
N+1(v0

N+1). Since W ′
N+1(vcN+1) ≥ W ′

N+1(v0
N+1), it means that the agent with core

access will have lower cost of holding risks.

Recall that there can be at most one agent within the pair can maintain the core

access at period t+1,or equivalently, one of them must loss core access. Hence, according

to the FOCs, the share to agent i within the pair is thus strictly higher if and only if

agent i has core access. Agents share risk if and only if both of them do not have core

access at period t+ 1.

To summarize, when there is one core agent (i.e., ci,1 = 1 ∀i), the dynamic path

for any agent i can be understood as when he loss his core access. For an agent where

ci,t = 1 ∀t ≤ τ and ci,t = 0 ∀t ≥ τ + 1, he will collect risks from his counterparties for

τ −1 periods, unload his the risks to his counterparties at period τ, and then engage fully

risk-sharing afterward.

Expected Volume Agents that collect risks for more periods will thus then have

higher expected volume. Formally, the expression of ϑt(i, j) highlights that the expected

volume depends on their pre-trade exposure, where PAM implies that vi,t = vj,t, and

the optimal allocation of risks, captured by αi,t. Suppose that, for example, the pretrade

position ai,t follows a normal distribution, given any (vi,t, α),the volume is then given by

ϑt(i, j) = (2/π)1/4
√

((1− αi,t)2 + α2
i,t)vi,t. This thus shows that agents that hold more

risks over time are likely to higher expected volume, as ϑt(i, j) increases with vi,t.

Note that while agent with longer core access will have higher expected volume; they

are not riskier at the end, as they will ultimately unload their risks to the core. According

to Lemma 4, they are in fact as “safe” as other banks, measured by their final risk

exposures. This result holds more generally even when κt > 0 as discussed in Section 5.1.
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4.2 Policy Implications

Normative Implications In this application, any risk-taking is social inefficient be-

cause default effectively offloads downside risks to outside creditors. Since the social

planner prefers risk-sharing, the efficient network can be restored by increasing the cost

of holding risks – such as setting a tax to increase banks’ flow costs of holding risks

κt(1 + τκ).

Formally, the objective of the social planner is

−
ˆ 1

0

[
N+1∑
t=1

κt(1 + τκ)vi,t

]
di+ T

where T is a lumpsum transfer from the planner. The planner maximizes the objective

subject to the government budget constraint,

ˆ 1

0

[
N+1∑
t=1

κtτ
kvi,t

]
di− T ≥ 0.

Relation to Systematic Risk in Networks In the existing literature on financial

networks, banks use their links to diversify the risks, while the systemic risk could arise

from cascading failures among banks interconnected through a predetermined financial

network. We point out that, apart from the ex post contagion, the aggregate default risk

can increase as banks can change their risk-taking behaviors by changing how banks are

connected and concentrate risks ex ante.

5 Application 2: Platform Access

Many financial over-the-counter (OTC) markets operate as classical two-tiered markets

where a few core banks have exclusive access to an exchange-like interdealer market. Such

a structure have been the focus of regulation and policy debates after the 2007-08 financial

crisis.16 Motivated by this, we now consider the environment where the convexity arises

when banks have options to invest better technologies in order to reduce their risk-bearing
16In particular, post crisis reforms have increased dealer banks’ balance sheet costs through tightened

capital requirements and additional liquidity requirements and have promoted all-to-all exchanges. See
detailed discussions in Yellen (2013) and Duffie (2018).
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cost. We model this option as banks can choose a binary action, ci,N+1 ∈ {0, 1} at period
N + 1.

Assumption 3. Piece-wise linear with Binary Action

WN+1(v) = max
cN+1∈{0,1}

{−γN+1(cN+1)v − φ(cN+1)} , (13)

where γN+1(0) > γN+1(1) and φ(0) < φ(1).

One can interpret cN+1 = 1 represents that banks have access to a centralized plat-

form, where γN+1(1) means agents can have lower post-trade exposure in that platform

and φN+1(1) represents its corresponding entry cost. A fully competitive centralized mar-

ket can be understood as a platform that allows fully risk-sharing, where γN+1(1) = 0.

In case when banks do not have access, γN+1(0) is then the cost of holding assets and we

normalize φ(0) = 0. We now apply our framework to study the positive and normative

implications of reforms, taking into the equilibrium response of the market structure.

Remark 1. More generally, the usage cost can have variable components beyond the fixed

cost. For example, consider the required collateral may be higher with larger positions

(given by φcv). This would effectively lead to higher γN+1(1).

Remark 2. While the timing of our framework implies that the platform entry is at the

end, this assumption can be relaxed as long as there is a fixed cost associated with each

entry. If there is no delay cost, it is indeed optimal to postpone the access until the end,

as agents would prefer to accumulate as much risk as possible from bilateral trades first

before joining the platform.

5.1 Full Characterization: Delayed Concentration and Core Size

(shorten)

In this application, we take into account that holding risks on the balance sheets can

be costly within the trading window, not just at the terminal period. We thus consider

the general case where κt > 0. Theoretically, this implies that dynamic connections now

matter.

To see this, consider N = 2 and thus there were four banks that could potentially be

connected. Suppose that, the bilateral trading outcome is such that, at period N + 1,
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Figure 3: Late vs. early Concentration (N = 2)

both Agents 3 and 4 have higher post-trade variance and chooses the action to reduce

their risk-bearing costs (such as, paying a fee to access to a centralized market). Agent

1 and 2, on the other hand, have lower post-trade variance and do not have access.

Figure 3 shows two possible network graph which differ in terms of their dynamic

bilateral connections {jτ (i)}τ=1,2 and thus risk-allocations over times. In the left graph of

Figure 3, an agent is first connected with another with the same platform access and then

connected with another agent with with different platform access at period 2. Intuitively,

this connection implies that all four agents have direct or indirect access to the platform

at period 2. Indeed, according to Lemma 3, their effective risk-bearing capacity are in

fact symmetric under the left network is given by 1
2
H (κN + γN+1(0), κN + γN+1(1))) ∀i.

Hence, the optimal allocation at period N−1 must also be symmetric. In other words,

all agents first adopt risk-sharing at period 1 for the left network. This order of matching

however is reversed under the right network. According to 3, the marginal cost of holding

risk for Agent 3 and 4 is now lower than the one of Agent 1 and 2. Hence, under the right

network, the risk-allocation between {1, 3} and {2, 4} at period 1 must be asymmetric,

given that their risk-capacity at period 2 differs.

We now show that, for any κt > 0, the right network, which results higher asymmetric

risk-capacity at period t + 1 and thus earlier concentration, is dominated by the left

network, which results in more symmetric risk-capacity at period t + 1 and thus late

concentration. Intuitively, this is because that concentration necessarily results in higher

total variance; and thus, any network that violates back-loading property is dominated.

Lemma 5. When κt > 0, for any optimal network, if v4,t+2 ≥ v3,t+2 > v2,t+2 ≥ v1,t+2,

it must be the case that agents with v1,t+2 (v2,t+2) are matched with agents with v4,t+2

(v3,t+2) at period t+ 1.

We prove this by showing that, if this condition is violated, fixing vk,t+2 and all the
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networks onward, re-matching type 1 (2) agent with type 4 (3) agent at period t + 1

lowers the total variance of vk,t+1. Hence, whenever κt > 0, such a deviation is profitable.

We now show that Lemma 3 and 5 together pins down the unique market structure.

We refer agents that have platform access as “core agents”. The definition of core access

ci,t is the same as before, with the difference that ci,t can be more than one. Lemma 5

implies that, given any core access within a pair, the optimal network must distribute

the core access as even as possible next period. Hence, the core access ci,t becomes the

sufficient statistic for the network. We thus use γt(ci,t) to denote the risk capacity for

agent with core access ci,t at time t under the optimal connections.

Corollary 2. Under A3 (binary actions), core access ci,t is the sufficient statics for agent

i’s risk capacity at period t. The risk-capacity, γt(ci,t), decreases in ci,t and

γt(ci,t) =
1

2
H
(
κt + γt+1(bci,t

2
c), κt + γt+1(dci,t

2
e)
)
∀t ≤ N. (14)

Optimal Core Size Since we have established that there is a unique optimal market

structure given any core size c.17 The optimal network can be further reduced to choosing

the number of core agents in the beginning of the trading game among 2N agents, which

can be expressed as

Π = max
c

{
−γ1(c)v1 −

c

2N
φ
}
. (15)

Given any c, γ1(c) represents the risk capacity for all agents, taking into account the

future connections. It again highlights that while each agent might have asymmetric

access over time, their effective risk exposures are the same ex ante, as they optimize

jointly the allocation over their core access.

Proposition 4. (Optimal Network and Risk-Allocation with Binary Actions) All agents

start with core access ci,1 = c∗ ∀i, where the optimal core size c∗ solves Equation (15).

For any two matching matching i and j at period t, their post-trade core access are

adjacent integers, ci,t+1 = b ci,t
2
c and cj,t+1 = d cj,t

2
e. Their posttrade variance is given by

vi,t+1 =

(
κt+γt+1(cj,t+1)

Σk(κt+γt+1(ck,t+1))

)2

(2vi,t) .

17Recall that, an agent i can connect, directly or indirectly, to at most 2N agents in N rounds of trade,
where each type has a measure of 1

2N
. Thus, if there are c cores among 2N agents, the total measure of

core agents would be c
2N

. Then, there are 1/2N identical replica of the finite network of size 2N .
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5.2 Intensive Margin

5.3 Extensive Margin (Core Size)

5.3.1 Intensive Margin (fixing core size)

• crossional implications across banks

• volume change respect to δ

5.3.2 Equilibrium Response of Market Structure

We model the polices that promote central clearing and/or discourage risk taking as

providing subsidy of platform participation and/or taxing banks’ net exposure. In other

words, the policy can be understood as increasing κt (i.e., making it more costly for banks

to hold risks) and/or decreasing the entry cost of the platform (φ).

Since these policies change agents’ incentives to hold risks and/or the entry cost, the

equilibrium response can thus be understood through comparative statics on κt and φ.18

Importantly, agents in our framework can respond in two margins. First, for fixed agents’

connections, the asset and risk allocation can differ. Such a change is hence similar to

the existing literature with exogenous networks.

The key advantage of our framework is that agents can change their connections and

access optimally. Moreover, since our predicts that the market structure is unique and

the core size is the sufficient statics. The change in the market structure, which includes

the set of agents who choose to have platform access and peripheral connections, can be

summarized by the core size at the aggregate level.

To explore how the core size depends on the underlying parameters, we impose fol-

lowing parameterizations:

P1: γN+1(1) = κ, κt = δκ ∀t ≤ N , and η = γN+1(0)

γN+1(1)
∈ [0, 1).

The parameter δ captures the cost of holding risk in an earlier period relative to the

terminal period, and η represents the benefit of using the platform, where η = 0 can

be understood as a fully competitive market. Given any (δ, η), one can show that the

risk-capacity γ∗t (c) is a homogeneous function of degree 1 in κ. Hence, the optimal core
18Recall that κ ≡ κN+1 and κt = δκ ∀t ≤ N. Since we assume that the tax τκ applies to all periods,

for private agents it is equivalent to a higher κ.
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Figure 4: Pre vs. Post-regulation Market Structure.
Each panel shows the graph of the equilibrium trading network. In the network graph, each
node represents a bank. The area of the node represents the gross trading volume involving the
bank. The edges between nodes represent bilateral trading relationships. The width of an edge
represents the bilateral trading volume. The left panel illustrates the pre-regulation market
structure. The right panel illustrates the post-regulation market structure with increased
balance sheet costs and lowered cost of accessing the centralized trading platform.

size depends on the entry cost relative to level of risks φ
κv1
, where κ represents the balance

cost of holding the assets and can be mapped to riskiness of the underlying assets and v1

represents the ex-ante exposure. Since agents face the trade-off between the cost of risk

concentration and that of entry, the model thus predicts a (weakly) larger core size when

entry costs are lower or when the cost of holding risks are higher.

Proposition 5. Under P1, given any (δ, η), the optimal measure of cores (weakly) de-

creases with φ
κv1
.

The effect of reforms that subsides entry or increasing balance sheet costs can thus

be understood as resulting in lower φ
κv1
. Figure 4 illustrates the change in the market

structure before and after such a policy, which induces an increase in participation in the

central platform (i.e., a larger core size).

Our model predicts that the structure becomes more symmetric; nevertheless, the

two-tier market structure persists. This explains why, as discussed in Collin-Dufresne,

Junge, and Trolle (2018) and Duffie (2018), all-to-all trading has not materialized and

the provision of clearing services remains concentrated.

Moreover, as the size of cores increases, banks transit from risk-concentrating, market-
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making trades towards risk-sharing trades. Since trades among customers share risks on

asset positions symmetrically and have zero spread, such a structural change could result

in lower average transaction costs despite the increase in the spread that market-makers

charge.

Our prediction is consistent with the empirical findings in Choi and Huh (2018) and

rationalizes the seemingly contradicting evidence in the post-Volcker rule era.19 The stan-

dard results that banks’ balance sheet cost increases the bid-ask spreads and transaction

costs may not hold when the market structure changes in response. Our result further

suggests that under an endogenous market structure, transaction costs are generally no

longer a sufficient measure of welfare.

5.4 Normative Implications

Concentration Can be Efficient Our results highlight that the optimal interven-

tion should not be targeting all-to-all trading or reducing risk concentration because the

existence of exclusive core members and a high concentration of risks and volume can be

efficient, if there is no gap between private incentives of risk taking and entry-cost.

Welfare-maximizing Policy On the other hand, whenever there are frictions that lead

to a deviation between private incentives of risk taking and entry-cost, the equilibrium

can be inefficient. According to Proposition 1, such an inefficiency (if it exists) can be

corrected by aligning private and social value of risk-taking and/or entry.

Entrenchment by Incumbent Cores One common concern, for example, is that the

platform might be controlled or entrenched in by the incumbent dealers. One can capture

this in our environment by assuming that a set I0 of agents with exogenous measure c0
2N

have built relationships among themselves and collectively operate the trading platform

at cost φ. The incumbent agents jointly own the platform and decide whether to charge

a new entrant to the platform an exogenous fee ∆ > 0.

Given any fee, this setup can thus be understood as our trading game with heteroge-

neous costs φi where φi ≡ φ + ∆ for potential entrants i /∈ I0 and φi = φ for incumbent
19Bao, O’Hara, and Zhou (2016) and Bessembinder et al. (2018) show that the Volcker rule leads to

lower inventories and capital commitment for bank-affiliated dealers. Such a decline, however, does not
worsen the overall market liquidity measured by the bid-ask spread.

31



banks i ∈ I0. That is, the incumbent cores have a lower entry cost than the rest of the

market. The existence of the fee thus generate the wedge between private and social

value of platform.

Our model thus predicts that by setting the subsidy for entry so that c∗(φ+∆−sc) =

c∗(φ), or introducing a new platform with entry cost φ will restore the efficient market

structure.

6 Conclusions

In this paper, we develop a tractable framework of endogenous trading networks and use

it to analyze how the market structure may respond to underlying parameters and/or

regulatory changes. Exactly because banks can accumulate risks from others, any policy

must take into account the network effect of risk-taking behaviors among banks. Although

the network structure seems complex, our framework provides a tractable and unique

characterization as well as a simple guideline for possible interventions when private

incentives are distorted relative to the social cost.

A Appendix: Omitted Proofs

A.1 Efficiency and Uniqueness

Because agents’ utility is quadratic in their asset holding, only the mean and variance of a

distribution are relevant to their payoff. In general, we can represent the joint distribution by

the means and variances of agents’ asset holdings and covariances between their asset holdings.

To do this, we first show that it is optimal to keep the means of individual asset holding at zero.

We then show that it is optimal to match agents whose asset holdings are not correlated.

Because agents have quasilinear utility, Pareto optimal allocations are the solution to a sim-

ple social planner’s optimization problem where the planer maximizes the present value of total

utility of the economy. The planner’s choices at period t include any agent i’s counterparty ji,t,

asset allocation within a match, ãi,t+1(ai,t, aji,t,t) and ãji,t,t+1(ai,t, aji,t,t). The planner chooses

period-t counterparties given period-0 information and asset distribution at period t. The plan-

ner’s value function at period t has the joint asset distribution across agents as its state variable
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and can be characterized as

Πt(πt) = −
ˆ
κi,tEt(ã

2
i,t(ai,t, aji,t,t))di+ βΠt+1(πt+1), for t ≤ N,

ΠN+1(πN+1) =

ˆ
max{−φi,t,−EN+1(a2

i,N+1)κi,N+1}di.

The constraints that the planner faces include:

(1) Given πt, the planner’s period-t is feasible if and only if

ˆ i

0
Pr(jι,t ≤ ι)dι ≤ i, (A.1)

ãi,t(ai, aji,t) + ãj(ai, aji,t) = ai + aji,t , (A.2)

where (A.1) is the feasibility constraint of the matching allocation of the planner, ∆(πi,t) refers

to the support of the marginal distribution πi,t; (2) The joint distribution evolves consistently

with the counterparty assignment and within match asset allocations.

Lemma 6. It is optimal to keep the means of individual asset holding at zero.

Proof. Assumption (2) can be translated into controlled changes in the mean and variance of

an agent’s asset holding. Denote Etai,t = mi,t, Et(ai,t−mi,t)
2 = vi,t and ρi,j,t =

Cov(ai,t+1,aj,t+1)√
vi,t+1vj,t+1

for all i, j, and t. Because the utility function of the agent is quadratic, the marginal asset

distribution for Agent i enter the social planner’s objective through its expected value and

variance. Let mt = {mi,t}∀i, vt = {vi,t}∀i, ρt = {ρi,j,t}∀i,j . Then the period-t state variable of

the social planner can be summarized by (mt,vt,ρt).

The planner’s objective function is then

Πt(mt,vt,ρt) = −
ˆ
κi,t
(
m2
i,t+1 + vi,t+1

)
di+ βΠt+1(mt+1,vt+1,ρt+1), for t ≤ N, (A.3)

ΠN+1(mN+1,vN+1,ρN+1) =

ˆ
max{−φi,−(m2

i,N+1 + vi,N+1)κi,N+1}di, (A.4)

given optimal choices for (mt+1,vt+1,ρt+1). The choices at periodN+1 are obvious: the planner

chooses to access multilateral clearing for Agent i if and only if (m2
i,N+1 + vi,N+1)κi,N+1 > φi.

The feasibility of within-match asset allocation between agent i and her counterparty j

implies that ai,t+1 + aj,t+1 = ai,t + aj,t for all t ≤ N , which is translated into two separate
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constraints for the mean and the variance of asset allocation to Agents i and j

mi,t+1 +mj,t+1 = mi,t +mj,t, (A.5)

vi,t+1 + vj,t+1 + 2
√
vi,t+1vj,t+1ρi,j,t+1 = vi,t + vj,t + 2

√
vi,tvj,tρi,j,t. (A.6)

Notice that the choice over the expected asset holding is subject to a separate constraint, (A.5),

from the choice over its variance, (A.6). And the law of motion of asset holding variance and

correlation does not depend on the expected asset holding.

The planner’s optimization problem at period t can be summarized by the following La-

grangian,

Lt(mt,vt,ρt) = −
ˆ
κi,t
(
m2
i,t+1 + vi,t+1

)
di+ βΠt+1(mt+1,vt+1,ρt+1) (A.7)

+

ˆ
λmi,ji,t,t (mi,t −mi,t+1) di

+

ˆ
λvi,ji,t,t(vi,t +

√
vi,tvji,ttρi,ji,t,t − vi,t+1 −

√
vi,t+1vji,t+1,t+1ρi,ji,t,t+1)di

for all t ≤ N, where λmi,ji,t,t refers to the Lagrangian multiplier for constraint (A.5) for agent i

and his counterparty ji,t, λvi,ji,t,t refers to the Lagrangian multiplier for constraint (A.6).

For periodN+1, ∂ΠN+1(mN+1,vN+1,ρN+1)

∂mi,N+1
,
∂ΠN+1(mN+1,vN+1,ρN+1)

∂vi,N+1
≤ 0 and ∂ΠN+1(mN+1,vN+1,ρN+1)

∂ρi,j,N+1
=

0 for all i, j.

Using mathematical deduction, we can then show that ∂Πt(mt,vt,ρt)
∂mi,t

≤ 0 for all i and all

t ≤ N , where the inequality is strict if and only if there exits t ≤ t′ ≤ N such that κt′ > 0. This

is because given the counterparty choices, ji,t, the first order condition with respect to mi,t+1

implies that λmi,ji,t,t < 0 when κt > 0 or ∂Πt+1(mt+1,vt+1,ρt+1)

∂mi,t+1
< 0.

The effect of within-match asset allocation on Agent i’s expected asset holding can be

summarized by αmi,t, such that mi,t+1 = αmi,t(mi,t + mj,t), mj,t+1 = (1 − αmi,t)(mi,t + mj,t). If
∂Πt+1(mt+1,vt+1,ρt+1)

∂mi,t+1
< 0, it is clear that αmi,t should be between 0 and 1. If αmi,t were greater

than 1 or less than 0, the planner can strictly increase either agent i or her counterparty ji,t’s

marginal contribution to the planner’s period t objective function without reducing other agents’

contribution. For example, if αmi,t > 1, by setting αmi,t to 1 reduces m2
i,t+1 to (mi,t + mj,t)

2 and

m2
ji,t,t+1 to 0. If ∂Πt(mt+1,vt+1,ρt+1)

∂mi,t+1
= 0, but κi,t > 0, the same argument applies so that

0 ≤ αmi,t ≤ 1. If ∂Πt(mt+1,vt+1,ρt+1)

∂mi,t+1
= 0, and κi,t = 0, it is without loss to the social planner to

impose 0 ≤ αmi,t ≤ 1.

Because the expected value of agents’ initial marginal asset distribution is zero, the fact that

0 ≤ αmi,t ≤ 1 implies that mi,t = 0 for all i and all period.
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Lemma 6 is the first step in characterizing the efficient asset allocation. It implies that the

socially optimal asset distribution in any period can be represented by the variance of individual

agents’ asset holdings and the correlation of their asset holdings.

Lemma 7. In the socially optimal matching assignments and asset allocations, the post trade

asset holdings of two matched Agents i and j are perfectly correlated, and the planner always

match agents with uncorrelated asset holding. That is, ρi,ji,t,t = 0, and ρi,ji,t,t+1 = 1, for any

agent i and their optimal counterparty ji,t.

Proof. The proof takes two steps. First, we show that if ρi,ji,t,t = 0 for for any agent i and their

optimal counterparty ji,t, it is optimal to have within match asset allocation perfectly correlated.

If ρi,ji,t+1,t+1 = 0, then for all i, j such that ρi,j,t+1 > 0, we can show by differentiating the

planner’s Lagrangian, (A.7), that ∂Πt+1(mt+1,vt+1,ρt+1)

∂ρi,j,t+1
= 0. Following similar argument to that

in the proof for Lemma 6, we can see that the marginal value of increasing an agent’s variance

is negative ∂Πt+1(mt+1,vt+1,ρt+1)

∂vi,t+1
≤ 0.

The feasibility of within-match asset allocation implies that variances of asset allocations

satisfy (A.6). According to (A.6), increasing the correlation between the asset allocations to

matched agents reduces the total variance of asset allocation to them, vi,t+1 + vji,t,t+1. Because
∂Πt+1(mt+1,vt+1,ρt+1)

∂ρi,j,t+1
= 0, it is then optimal to set ρi,ji,t,t+1 = 1.

The second step is to show ρi,ji,t,t = 0. Because the initial asset holdings are not correlated, if

ρi,ji,t,t+1 = 1, then the asset allocations are either uncorrelated or perfectly positively correlated.

Because there is a continuum of agents in the economy, for any agent i, if the planner is to match

him with an agent with variance v′, there always exists such an agent whose asset holdings are

uncorrelated with agent i. According to (A.7), this shadow value of ρi,ji,t,t equals λvi,ji,t,t, which is

weakly negative. It is then optimal to match two agents whose asset holdings are not correlated.

Lemma 7 implies that even though agents have the option to trade repeatedly with a coun-

terparty, repeated trade without receiving new asset holding shocks is suboptimal. Trading once,

the asset holdings of Agent i and the counterparty become positively correlated. Then, trading

twice is dominated by trading with a new counterparty with the same asset holding variance but

whose asset holding is not correlated with Agent i’s. Thus, we can characterize the equilibrium

using a representation of the aggregate asset holding distribution by the variances of individual

agents’ asset holding distribution.
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A.2 Network Properties

A.2.1 Proof for Lemma 2

From Equation 8, let

F (α) ≡ −κt
{
α2 + (1− α)2

}
V +Wt+1(α2V ) +Wt+1((1− α)2V )

We thus have

F ′(α) =
(
−κt +W ′

t+1(α2V )
)

2αV −
(
−κt +W ′

t+1((1− α)2V )
)

2(1− α)V.

If W ′′
t+1 < 0,F (α) is a concave function in α, as

F ′′(α) =
(
−κt +W ′

t+1(α2V )
)

2V +
(
−κt +W ′

t+1((1− α)2V )
)

2V

+W ′′
t+1(α2V )(2αV )2 +W ′′

t+1((1− α)2V ) (2(1− α)V )2 < 0.

Hence, α = 1
2
, which satisfies the FOC, is the global maximizer; and thus vi,t+1 = 1

2
vi,t

and since all agents are symmetric over time, it is WLOG to assume random matching.

Note that, more generally, if all agents start with different vi,1, one can show that the

sorting is generally NAM as as Ωt(V ) is concave when WN+1(v) is concave.

A.2.2 Proposition 2

Given that Vij = vi + vj, to establish PAM, it is sufficient to show that Ωt(V ) is convex

in V ∀t. Let α = α∗(V ) denote the optimal allocation under V.

Ωt(λV ) + Ωt((1− λ)V )

≥κt
{

(α2 + (1− α)2)V
}

+Wt+1(α2λV ) +Wt+1((1− α)2λV )

+Wt+1(α2(1− λ)V ) +Wt+1((1− α)2(1− λ)V )

≥
{
κt(α

2 + (1− α)2)V +Wt+1

(
α2 (λV + (1− λ)V )

)
+Wt+1

(
(1− α)2 (λV + (1− λ)V )

)}
= Ωt(V ).

where the first inequality follows that the surplus under optimal allocation α∗(λV ) and

α∗((1 − λ)V ) is higher than using the allocation rule α∗(V ). The second follows that

Wt+1(v) is convex in v, which is true for WN+1(v). Assume that Wt+1(v) is convex, it
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thus implies that Ωt(Vij) is convex in Vij = vi + vj. Moreover, since

Wt(vi) = max
j
{Ωt(vi + vj)−Wt(vj)} ,

it thus shows that Wt(v) is convex in v ∀t. Hence, by backward induction, Ωt(vi + vj) is

convex in vi + vj and hence PAM ∀t.

A.2.3 Proof for Lemma 3

Proof. For any α(V ) that satisfies the FOC condition and PAM,we thus have

Ωt(V |gt) = Σk

{
−κtα2

kV +Wt+1(α2
kV |gt+1(α2

kV ))
}
,

where αi = α(V ) = 1− αj.
By Envelop, and v = 2V,Wt(v|gt) = 1

2
Ωt(2v|gt), we have

W ′
t(v|gt) = Ω′t(2v|gt) =

{
−κt +W ′

t+1(α2V |gt+1(α2V ))
}
α2 +

{
−κt +W ′

t+1((1− α)2V |gt+1((1− α)2V ))
}

(1− α)2

=

∏
k∈{i,j}

(
−κt +W ′

t+1(α2
kV |gt+1(α2

kV ))
)

Σk∈{i,j}
(
−κt +W ′

t+1(α2
kV |gt+1(α2

kV ))
) =

1

2
H(−κt +W ′

t+1(α2V |gt+1(α2V )),−κt +W ′
t+1((1− α)2V |gt+1((1− α)2V ))

, where using the fact that from FOC αk =
−κt+W ′t+1(α2

−kV |gt(α
2
−kV ))

Σk(−κt+W ′t+1(α2
kV |gt(α

2
kV )))

.

A.2.4 Proof for Lemma 4

We prove this result by the following two lemmas.

Lemma 8. When κt = 0, the sequential setting is equivalent to the static optimization

problem, where {vk,N+1} maximizes

max Σ2N

k=1WN+1(vk,N+1)[
Σk
√
vk,N+1

]2
= 2Nv1 (A.8)

Proof. Observe that any ṽk that satisfy the pair-wise constraints and PAM must satisfy

(
√
vi,t+1 +

√
vj,t+1)2 = 2vt
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Hence,

√
vt =

√
vi,t+1 +

√
vj,t+1√

2
=

(
1√
2

)N−t+1 {
Σ2N−t+1

k

√
vk,N+1

}
(√

2
)N √

v1 = Σ2N

k

√
vk,N+1

2Nv1 =
[
Σ2N

k

√
vk,N+1

]2

We now shows that any solution that satisfies Equation A.8, there exists j∗τ (k) and

{vk,τ}τ≤N such that pair-wise constraints and PAM are satisfied. That is, if (i, j) are

matched at period t, j∗t (i) = j, then

vk,t =
(
√
vi,t+1 +

√
vj,N+1)2

2
,∀k ∈ {i, j}

Moreover, we choose j∗τ (k) so that if (i, j) are matched on period τ, they cannot be

connected at period τ + 1. This thus guarantees that at each period τ, each agent is

connected to 2N−τ agents. Since such construction guarantees each agent k is connected

to 2N agents at period 1, vk,1 must be the same for all agents, and

vk,1 =
(
√
vk,t+1 +

√
vj∗t (k),t+1)2

2
=

1

2

N {
Σ2N

k

√
vk,N+1

}2

= v1.

Lemma 9. Under Condition 1 and 2, there can be at most two different values of

vN+1;and (2) if max{vkN+1} > min{vkN+1}, there can be at most one core agent when

κt = 0.

Proof. First of all, at period N, the FOC of 8 yields

Fα(α, V ) = 2V {W ′(α2V )α−W ′((1− α)2V )(1− α)}

Hence, under Condition 1, at α = 1,Fα(1, V ) < 0, which means that the solution must

be interior.

For Result (1), observe that any vN+1 must satisfy the FOC from the static problem

√
vk,N+1

(
W ′
N+1(vk,N+1)

)
= λ

√
2Nv1, (A.9)
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where λ is Lagrange multiplier of the constraint A.8. Let z(v) =
√
vW ′

N+1(v). Since

z′(v) = 1
2

W ′N+1(v)
√
v

+
√
vW ′′

N+1(v) =
W ′N+1(v)
√
v

(1
2

+ v
W ′′N+1(v)

W ′N+1(v)
) =

W ′N+1(v)
√
v

(1
2
− vc(v)). Under the

assumption that c(v) is monotonic in v, if there exists v̂ ∈ [0, 2Nv1] such that v̂c(v̂) = 1
2
,

then z′(v) < 0 for v < v̂, and z′(v) > 0 for any v > v̂. Hence, there can be at most two

roots. If such v̂ doesn’t exist, then z(v) is monotonic and can only be one root.

For Result (2), let vcN+1 = max{vkN+1} and v0
N+1 = min{vkN+1}. This statement

holds automatically when N = 1. We now show this holds when N ≥ 2. Let v1
N =

(
√
vcN+1+

√
v0N+1)2

2
, we have xN(v1

N) > 1
2
. Suppose that there are k > 1, the same outcome

is achieved setting v2
N =

(
√
vcN+1+

√
vcN+1)2

2
> v1

N , and let xN(v2
N) = 1

2
, which violates that

xN(vN) increases in vN .

A.2.5 Proof For Proposition 3

Proof. We now show that

A.2.6 Proof For Lemma 5

Let gt(v) be the set of solutions that satisfies FOC. We now show that if gt(v) violates

the condition, there exists a network ĝt such that Ωt(v|gt) < Ωt(v|ĝt) for any κt > 0.

Given that the constraint yields (
√
vi,t+2 +

√
vj,t+2)2 = 2vi,t+1, we thus have,

Ωt(v|gt) = −κt
1

2

{[√
vi,t+2 +

√
vj,t+2

]2
+
[√
vi,t+2 +

√
vj,t+2

]2}
+ Σk (−κt+1vk,t+2 +Wt+2(vk,t+2))

≤ −κt
1

2

[√v1,t+2 +
√
v4,t+2

]2︸ ︷︷ ︸
v1,t+1

+
[√
v2,t+2 +

√
v3,t+2

]2︸ ︷︷ ︸
v2,t+1

+ Σk (−κt+1vk,t+2 +Wt+2(vk,t+2))

= Ωt(v|ĝt)

The first inequality uses the fact that f(vi, vj) ≡
[√
vi +
√
vj
]2 and f12(vi, vj) > 0; hence

NAM sorting minimizes the flow payoff. The last equality uses the fact that

vt =
(√

v1,t+1 +
√
v2,t+1

)2
=

1

4

[√
v1,t+2 +

√
v4,t+2 +

√
v2,t+2 +

√
v3,t+2

]2
.

In other words, different matching plan at period t+1 only affects changes the flow payoff

at period t. Hence, if the condition is violated, then there exists ĝt+2 that are identical
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with gt+2 from period t+ 2 onward but its matching plan satisfies negative sorting.

A.2.7 Proof for Lemma 2

Proof. For periodN+1, the payoff can be rewritten asWN+1(v) = maxcN+1
−γN+1(cN+1)v−

φ(cN+1), where γN+1(cN+1) decrease in cN+1 ∈ {0, 1}, and thus if ci,N+1 > cj,N+1, then

it must be the case that vi,N+1 > vj,N+1. Define ci,N = ci,N+1 + cjt(i),N+1 ∈ {0, 1, 2},the
value of γN(c) is given by Equation 10, which decreases in c.

For t = N − 1, let

ci,N−1 =
{
ci,N , cjN (i),N

}
=
{{
ci,N+1, cjN (i),N+1

}
,
{
cjN−1(i),N+1, cjN (jN−1(i))N+1

}}
.

We now show that {(1, 1), (0, 0)} is dominated by {(1, 0), (1, 0)} . This is because

that if γN+1(ci,N+1) = 1 and γN+1(cj,N+1) = 0, then it must be the case that vi,N+1 >

vj,N+1. Hence, {(1, 1), (0, 0)} implies that {(v4,N+1, v3,N+1), (v2,N+1, v1,N+1)} and v4,N+1 ≥
v3,N+1 > v2,N+1 ≥ v1,N+1, which thus violated Lemma 5. Hence, for any cN−1 ∈
{0, 1, 2, 3, 4},the connections are unique, where ci,N−1 =

{
b ci,N−1

2
c, d ci,N−1

2
e
}

and thus

cN−1 is sufficient statics. Lastly, since γN(c) decrease in c, γN−1(c) thus also increases in

c.

By backward induction, assume that ci,t =
{
b ci,t

2
c, d ci,t

2
e
}
and let γt+1(c) denote its

corresponding risk-capacity, which decrease in c and the value function yields

Wt(v) = max
c
γt(c)v + φ(c),

and hence if ci,t > cj,t, then it must be the case that vi,t > vj,t.

Suppose that at period t,ci,t = (m,n) where m− n ≥ 2,then at period t+ 2, we thus

have ck,t+2 such that

c4,t+2 = dm
2
e ≥ c3,t+2 = bm

2
c > c2,t+2 = dn

2
e ≥ c1,t+2 = bn

2
c.

Given that γt+2(c) increases in c, this implies that v4,t+2 ≥ v3,t+2 > v2,t+2 ≥ v1,t+2 is

satisfied and thus Lemma 5 is violated. This network is thus dominated by rematching

agent 1 and 4 at period t + 1. Hence, the optimal core access within any pair must be

evenly distributed.
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Lastly, since γt+1(c) is decreasing in c and, under the optimal access, γt(c) = 1
2
H(κt +

γt+1(b c
2
c), κt + γt+1(d c

2
e)) is thus increasing in c at period t. This thus establishes that

Lemma 2 must hold for any t.

A.2.8 Proof for Proposition 4

Proof. Since Lemma 2 has shown that, given any ci,t, the optimal connections must

distributed core access evenly within any pair, we thus have ci,t+1 = b ci,t
2
c and cj,t+1 =

d cj,t
2
e with each pair, where by definition ci,t = cj,t. Given Proposition 2, we thus have

vi,t = vj,t and, within the pair, Equation 9 is thus reduced to

vi,t+1 =

(
κt + γt+1(cj,t+1)

(κt + γt+1(ci,t+1)) + (κt + γt+1(cj,t+1))

)2

(2vi,t) .

A.2.9 Proof of Proposition 5

We first show that γ∗t (c|δ, η, κ) = κγ∗t (c|δ, η, 1) is a homogeneous function of κ. This holds for

N + 1, as γN+1(1) = ηκ and γN+1(0) = κ. Given the expression of γ∗t (c|δ, η, κ) from equation

14, we thus have

γ∗t (c|δ, η, κ) =
1

2
H
{
κ(δ + γ∗t+1(b c

2
c|δ, η, 1)), κ(δ + γ∗t+1(d c

2
e|δ, η, 1))

}
= κ

1

2

{
H
(
δ + γ∗t+1(b c

2
c|δ, η, 1)

)
,
(
δ + γ∗t+1(d c

2
e|δ, η, 1)

)}
.

Hence, Equation (15) can be rewritten as Π = κv1 maxc

{
−γ̂1(c)− c

2N

(
φ
κv1

)}
, where

γ̂1(c) = γ∗t (c|δ, η, 1). By comparative statics, c∗
(

φ
κv1

)
increases in φ

κv1
.

We now show that if δ = 0, γt(c) = 0 ∀t, c ≥ 1. As γN+1(1) = 0 and γN+1(0) = κ, we

thus have γN(1) = 1
2
H(δ + γN+1(1), δ + γN+1(1)) = 0 if δ = 0. Assume that γt+1(1)→ 0,

then γt(1) = 1
2
H(δ + γ0

t+1, δ + γ1
t+1) → 0 ∀t by backward induction. Now we show that

this property also holds for any c > 1. Assume that γt+1(c) = 0 holds for any (t, c); we

thus have γt(c) = 1
2
H(δ + γt+1(

⌊
c
2

⌋
), δ + γt+1(

⌈
c
2

⌉
)) = 0,∀(t, c).

As δ → ∞, αt(c) → 1
2
. Hence, regardless of the core access, the allocation is always

symmetric, and thus vi,t+1 = 1
2
vi,t for all i, t ≤ N.Hence,

∑
t≤N
´
vi,tdi = δ

(
1
2

+
(

1
2

)2
+ ..

(
1
2

)N)
=
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δ
(

1−
(

1
2

)N)
, and thus

Π0 = max
c
−
{
κ
[(

1− 2−N
)
δv1 + (1− 2−Nc)2−Nv1

]
+ 2−Ncφ

}
.

Therefore, c = 2N iff
(

1
2

)N
v0 > φ.
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