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Abstract: I derive simple, flexible strategies for difference-in-differences settings where

the nature of the response variable may warrant a nonlinear model. In addition to covering the

case of common treatment timing, I allow for staggered interventions, with and without

covariates. Under an index version of parallel trends, I show that average treatment effects on

the treated (ATTs) are identified for each cohort and calendar time period in which a cohort

was subjected to the intervention. The pooled quasi-maximum likelihood estimators (QMLEs)

in the linear exponential family (LEF) extend the pooled ordinary least squares (POLS)

estimation in Wooldridge (2021). By using the conditional mean associated with the canonical

link function, imputation and estimation pooled across the entire sample produce identical

results. Moreover, using the canonical link results in very simple computation of the ATTs and

their standard errors. The leading cases are a logit functional form for binary and fractional

outcomes, combined with the Bernoulli quasi-log likelihood (QLL), and an exponential mean

combined with the Poisson QLL. A small simulation study shows the estimators work well

when the mean function is correctly specified; they also have some resiliency to

misspecification.

Keywords: Difference-in-differences; staggered intervention; nonlinear model; logit

model; Poisson regression
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1. Introduction

Difference-in-differences methods have become very popular for intervention analysis,

with recent emphasis on estimating average treatment effects when the intervention is

implemented as a staggered rollout. In Wooldridge (2005), I studied properties of the fixed

effects and related estimators that allow heterogeneous slopes, including the case of

time-varying treatment interventions. But the analysis was incomplete, failing to investigate

situations where allowing for effects to vary by treatment intensity identifies interesting

average treatment effects. Work by de Chaisemartin and D’Haultfœuille (2020) and

Goodman-Bacon (2021) showed that the common practice of assuming a constant treatment

effect and using two-way fixed effects (TWFE) can lead to an estimated effect that is difficult

to interpret. Sun and Abraham (2021) study the properties of event study estimators and

propose an estimator that allows for heterogeneous treatment effects. Borusyak, Jaravel, and

Spiess (2021) [BJS (2021)] derive imputation estimators, based on two-way fixed effects, to

obtain heterogenous treatment effects. Callaway and Sant’Anna (2021) [CS (2021)] apply

treatment effects estimators to long differences, using both never treated and already treated

units as control groups. The recent survey by de Chaisemartin and D’Haultfœuille (2022)

provides a nice discussion of these papers, and more.

In Wooldridge (2021), I argued that for staggered interventions under the commonly

imposed assumptions of no anticipation and parallel trends, one can recover average treatment

effects on the treated (ATTs) that vary by cohort and calendar time using linear models and

standard regression techniques. Moreover, using an expanded equation with cohort and

calendar time interactions, pooled ordinary least squares (POLS), random effects, and TWFE

pooled across all of the data are equivalent. I also showed that the natural imputation approach
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leads to the same ATT estimates. Covariates are allowed so that the parallel trends assumption

only needs to hold after conditioning on covariates. The conclusion is that there is nothing

inherently wrong with two-way fixed effects estimation: One simply needs to apply the method

to a suitably flexible equation. Nevertheless, consistent estimation of the ATTs by POLS

(TWFE) requires that the parallel trends assumption applies to changes over time in the mean

of the outcomes; in this paper, I refer to this as the linear parallel trends (LPT) assumption and

define it formally in the sections that follow.

In the current paper, I allow for a version of the parallel trends assumption that may be

more attractive when the outcome variable, Yt, is limited in range. For example, when Yt is

binary, the usual parallel trends assumption is potentially suspect. If Yt is a fractional response,

the PT assumption is also questionable – especially when that outcome regularly takes on

values near or at the endpoints of zero or one. Another common situation where the linear PT

assumption might fail is when Yt is a count variable or a corner solution outcome that can take

on the value zero with some regularity. A perhaps better assumption is that PT holds in the

ratio of means, which is implied by an exponential conditional mean function.

In the two-period case, Roth and Sant’Anna (2021) study the problem of invariance of the

parallel trends assumption to strictly monotonic transformations of the outcome variable. They

show that invariance requires a strong form of parallel trends stated in terms of the cumulative

distribution function for the potential outcome in the untreated state. Even in their T  2

setting without covariates, the Roth-Sant’Anna setting does not apply to the models I study

here. Rather than studying transformations of Yt0, the outcome in the untreated state, I

propose nonlinear conditional mean functions that satisfy a kind of PT assumption. As is well

known, the mean of the transformation and the transformation of the mean are not the same for
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nonlinear functions. To appreciate the difference, when the potential outcome in the untreated

state, Yt0, is binary, the Roth-Sant’Anna result is that parallel trends either holds for any

coding of the variable as a,b, a  b, or not at all. By contrast, in Section 2 I present an

example where the PT assumption fails for EYt0|D, where D is the treatment indicator, but

is satisfied for a strictly increasing transformation, G−1EYt0|D. For the common choices

of G, G−1Yt0 is not even defined. For a nonnegative variable Yt0 with

PYt0  0  1, I argue that the PT assumption can hold for logEYt0|D but not for

EYt0|D. With a corner at zero, logYt0 is not well defined, and so it cannot be under

consideration in the Roth-Sant’Anna setting. In this paper I recognize that, in most cases, we

have an outcome variable of interest – such as an employment indicator, the fraction of

workers participating in a pension plan, the number of murders at the county level, or the

amount of a new fertilizer used by a farmer – and we would like to estimate ATTs in terms of

this outcome. We are not interested in some possibly strange transformation of the outcome

variable. Because of the special features of Yt0, it may be more realistic to impose the PT

assumption on a transformation of EYt0|D; but the goal of estimating ATTs in terms of the

potential outcomes Yt1 and Yt0 does not change.

When T  2 and Yt is continuous, the analysis here is less general than that in Athey and

Imbens (2006) [AI (2006)]. AI (2006) allow for an unknown function assumed to be strictly

increasing in unobserved heterogeneity, and they derive an estimator of the average treatment

effect on the treated (ATT) using estimated cumulative distribution functions. Unfortunately,

point identification is lost when the response variable has discreteness unless additional

assumptions are imposed. Moreover, it is not clear how to apply the AI (2006) approach to

staggered interventions and when one introduces covariates.
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From a practical perspective, my goal in this paper is to provide simple strategies that allow

empirical researchers to compare results from linear DiD analyses with sensible nonlinear

alternatives. I impose the minimal assumptions on distributions, requiring only specification of

a conditional mean function. All other conditional moments, for both the marginal and joint

distributions, are unrestricted. Using pooled quasi-maximum likelihood (QMLE) in the class of

linear exponential family (LEF) distributions ensures that the resulting estimators of the ATTs

do not rely on other distributional assumptions nor restrictions on serial dependence over time.

A special case is pooled OLS estimation of a linear equation that I proposed in Wooldridge

(2021). Consequently, in settings with limited dependent variables, the methods here allow one

to assess robustness of findings by combining a linear analysis with a suitable nonlinear

analysis.

It is important to remember that, in panel data settings with a small number of time periods,

fixed effects strategies do not generally produce reliable estimators of parameters or partial

effects. Including a full set of unit dummy variables usually results in an incidental parameters

problems unless the number of time periods is sufficiently large. The exceptions are rare: A

linear model estimated by fixed effects and an exponential model estimated by Poisson fixed

effects. In the former case, Wooldridge (2021) shows that a carefully formulated pooled OLS

regression and TWFE produce identical estimates. In the Poisson case, identification of ATTs

on the level of the outcome is generally not possible when FE estimation is used, and so the FE

Poisson estimator has limitations for estimating ATTs on levels. That TWFE coincides with

pooled OLS in the linear case suggests that pooled methods in nonlinear cases may have good

properties. This turns out to be true: I formally demonstrate that pooled QMLE in the LEF

identifies the ATTs under weak assumptions.
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The identification of the ATTs is based on random variables representing an underlying

population of units that we observe over time periods t ∈ 1,2, . . . ,T. When I describe

estimation, it is easiest to think of random sampling N units from the cross section. Based on

asymptotic analysis, inference is straightforward in a scenario where T is fixed and N grows

without bound. The estimation methods are valid in other situations – for example, with

clustering in the treatment assignment, with large-T panels, and even with spatial correlation –

but issues regarding calculation of standard errors and confidence intervals would have to be

treated in more detail. I do not present regularity conditions needed for pooled quasi-MLE

methods to have the usual asymptotic properties because the required moment and smoothness

assumptions are almost always satisfied in the difference-in-differences (DiD) setting.

The remainder of paper is organized as follows. I start with the two-period case in Section

2 in order to demonstrate identification in the simplest setting. Section 3 considers any number

of time periods with common intervention. I also show how to include covariates in the general

common timing case. Section 4 turns to the general case of staggered interventions, allowing

for covariates. Although I initially assume the existence of a never treated group, I show how

to relax that assumption in Section 8. In addition, I formally state an equivalence result

between imputation and pooled QMLE when using the canonical link in the LEF.

Section 5 discusses testing and correcting for violations of parallel trends. In Section 6, I

present findings from a small simulation study. In Section 7 I apply the results for Poisson

regression with an exponential mean function to the car thefts data, at the block level, in Di

Tella and Schargrodsky (2004). Section 8 discusses two extensions: How to allow for all units

being eventually treated and how to handle (staggered) exit from treatment. Section 9 contains

concluding remarks and suggests some directions for future research.
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2. The T  2 Case

To understand the nature of the parallel trends assumption I impose in the general

staggered case, it is helpful to begin with the T  2 case as in Heckman, Ichimura, and Todd

(1997), Abadie (2005), Athey and Imbens (2006), and Sant’Anna and Zhou (2020), among

others. The identification discussion is in terms of random variables representing a population.

Estimation can proceed under different sampling schemes, but it is easiest to think of obtaining

a random sample from the population, with unrestricted correlation allowed across the two

time periods.

Index the potential outcomes with a time subscript, t ∈ 1,2, where the first period is the

control period. The potential outcomes are denoted Yt0 and Yt1, where the value in 

indicates the state of the world (untreated or treated). The time-constant binary treatment

indicator is D, meaning treatment after the first period and prior to the second. Therefore,

Y10 and Y11 are the potential outcomes in the period before treatment status has been

assigned.

The parameter of interest is the average treatment effect on the treated (ATT) in the second

time period (t  2):

2  EY21 − Y20|D  1     (2.1)

There are two assumptions that serve to identify 2. The first is a no anticipation (NA)

assumption. The strongest form of the assumption says that Y11  Y10; this is the version

used by Heckman, Ichimura, and Todd (1997), Abadie (2005), and others. See also Abbring

and Van den Berg (2003) for a discussion of the no anticipation assumption in the context of

duration analysis.
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A weaker version of no anticipation is sufficient for the development here:

EY11 − Y10|D  1  0,     (2.2)

which means, on average, among the eventually treated group there are no anticipatory

changes that affect the potential outcomes prior to the intervention.

The second assumption imposed to identify 2 is the parallel trends (PT) assumption, also

called common trends. For the extension to the nonlinear case, it is useful to state the PT

assumption in the linear case in two parts:

EY10|D    D     (2.3)

EY20|D    D  2     (2.4)

In the absence of (2.4), (2.3) has no content because it is the same as simply defining

 ≡ EY10|D  0

 ≡ EY10|D  1 − EY10|D  0

However, combining (2.3) and (2.4) gives

EY20|D − EY10|D  EY20 − Y10|D

   D  2 −   D  2

    (2.5)

In other words, on average, the trend Y20 − Y10 in the control state does not differ across

the control and treated groups – a substantive restriction. I will call (2.5) the linear parallel

trends (LPT) assumption. The representation in (2.3) with  unrestricted recognizes that the

average level of the outcome in the first period can systematically change with D, allowing for

the kind of selection that is not possible if we were to observe only a single time period. The

LPT assumption rules out the possibility that selection into treatment is based on the trend in

the untreated state. If an administrator is choosing participants in a job training program, the
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PT assumption allows that selection may be based on differences in pre-treatment earnings but

not on how the earnings are trending in the absence of the intervention.

When Yt0 is limited in some important way – for example, it is binary, a fraction, or is

restricted to be nonnegative – the LPT assumption can be unrealistic. Instead, assume that for a

known, strictly increasing, continuously differentiable function G,

EY10|D  G  D     (2.6)

EY20|D  G  D  2     (2.7)

The key restriction is that G is strictly increasing. For simple use of standard asymptotic

analysis, we add that G is sufficiently smooth. Just as when G is the identify function,

(2.6) imposes no restriction in isolation because it simply implies, definitionally,

  G−1EY10|D  0 and   G−1EY10|D  1 − G−1EY10|D  0. The key is

that the same function G appears in (2.7). Combining (2.6) and (2.7) gives

G−1EY20|D − G−1EY10|D  2,     (2.8)

which shows that the PT assumption applies to a nonlinear transformation of the means

EYt0|D. Equivalently, the linear PT assumption holds for the indices inside the function

G.

As an example of where we can derive (2.6) and (2.7) from a more primitive model,

suppose Yt0 is binary and generated by a latent variable, Yt∗0:

Yt0  1Yt∗0  0, t  1,2

where 1 is the indicator function and

Y1
∗0    D  U1

Y2
∗0    D  2  U2
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Assume further that

U1, U2 are continuous and independent of D

U1, U2 are identically distributed with CDF F

We do not restrict the dependence between U1 and U2 so that general serial correlation is

allowed. Then, for t  1, 2 with 1 ≡ 0, we have

EYt0|D  PYt0  1|D  P  D  t  Ut  0|D

 1 − F−  D  t ≡ G  D  t,

which is exactly as in (2.6) and (2.7). The usual linear PT assumption holds for the underlying

latent variable,

EY1
∗0|D    D

EY2
∗0|D    D  2,

    (2.9)

    (2.10)

but PT generally fails for EYt0|D.

As a second leading example, suppose that Yt0 ≥ 0 (without a natural upper bound).

Yt0 could be a continuous variable, a count variable, or even a mixed variable with a corner

at zero. Assume that (2.6) and (2.7) hold with G  exp:

EYt0|D  exp  D

EY20|D  exp  D  2

    (2.11)

    (2.12)

These equations imply that the parallel trends assumption is in terms of the growth in the mean

in the untreated state, not the change in the mean. In particular,

EY20|D
EY10|D

 exp2     (2.13)

does not depend on D. Equivalently, the difference in logs of the mean is

logEY20|D − logEY10|D  2
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In this T  2 setting we can never determine the function G, if any, such that

assumptions (2.6) and (2.7) hold. For example, if PT holds for G logistic then the linear PT

assumption will fail. We have to take a stand on which function G is most realistic. As we

will see, our choice of G definitely affects how we estimate the ATT, 2. Whether the

estimates are sensitive to the choice of G is something one would explore in an application.

2.1. Identification and Estimation

We can easily see that, under no anticipation (NA) (2.2) and the PT assumption in (2.6) and

(2.7), the ATT 2 is identified. To see how, write

2  EY21|D  1 − EY20|D  1     (2.14)

Now, because Y2  Y21 when D  1, we can always estimate

EY21|D  1  EY2|D  1 using the sample average of the treated units in t  2. Given a

random sample of size N,

Ȳ12 ≡ N1
−1∑

i1

N

Yi2 
N1

N

−1
N−1∑

i1

N

DiYi2
p
→ EY2|D  1

where N1  ∑ i1
N Di is the number of treated units. [Naturally, we assume 0  PD  1  1

so that there are some treated and some control units.]

The second part of (2.13), EY20|D  1, is the one that requires use of (2.2), (2.6), and

(2.7). By (2.7) we have

EY20|D  1  G    2

and, given that G is assumed known, identification of EY20|D  1 rests on identifying ,

, and 2. From (2.6),

EY1|D  0  EY10|D  0  G,
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and so

  G−1EY1|D  0

Because EY1|D  0 is the mean of the observed outcomes for the control units in the first

period,  is identified.

For , we use (2.2) along with (2.6):

EY1|D  1  EY11|D  1  EY10|D  1  G  

where the first equality holds because Y1  Y11 when D  1 and the second is the NA

assumption. Therefore, we can write

    G−1EY1|D  1

or

  G−1EY1|D  1 − 

Because  is identified and EY1|D  1 is the mean of the observed outcomes for the treated

units in the first period,  is also identified.

Given a random sample at time t  1, EY1|D  0 and EY1|D  1 are consistently

estimable by using the sample averages over the control and treated units, respectively:

Ȳ01 ≡ N0
−1∑

i1

N

1 − Di  Yi1
p
→ EY1|D  0

Ȳ11 ≡ N1
−1∑

i1

N

Di  Yi1
p
→ EY1|D  1

where Ȳ01 is the average for the control group in t  1 and Ȳ11 is the average for the

(eventually) treated group in t  1. Therefore, by Slutsky’s Theorem,

̂  G−1Ȳ01
p
→ 
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and

̂  G−1Ȳ11 − ̂
p
→ .

Of course, because we can estimate population means under different sampling schemes,  and

 are identified much more generally.

All that is left is to identify and estimate is 2. From (2.7),

EY2|D  0  EY20|D  0  G  2

and so

2  G−1EY2|D  0 −      (2.15)

Because  is identified from t  1 and EY2|D  0 is identified using the control units in

  2, 2 is identified. The natural estimator is

̂2  G−1Ȳ02 − ̂     (2.16)

and, again by the law of large numbers and Slutsky’s Theorem, ̂2
p
→ 2.

Putting together all of the estimators, a consistent estimator of 2 is

̂2  Ȳ12 − G ̂  ̂  ̂2

 Ȳ12 − GG−1Ȳ11  G−1Ȳ02 − G−1Ȳ01,     (2.17)

where the last expression shows that ̂2 is a particular nonlinear transformation of the sample

averages for the four different groups.

When G is the identify function – the linear DiD case – the estimator is

̂2  Ȳ12 − Ȳ11 − Ȳ02 − Ȳ01

 Ȳ12 − Ȳ02 − Ȳ11 − Ȳ01,

    (2.18)

which is the basic DiD estimator. Clearly, (2.17) will generally change as the choice of G
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changes. For example, when G  exp,

̂2  Ȳ12 − explogȲ11  logȲ02 − logȲ01

 Ȳ12 − Ȳ11 
Ȳ02

Ȳ01
    (2.19)

The term Ȳ02/Ȳ01 measures the growth from t  1 to t  2 in the average of the control group.

Therefore, the second term in (2.19) can be viewed as starting with the average of the treated

group in the first period, Ȳ11, and adjusting it using the growth in the control unit average from

t  1 to t  2. This imputed value is used as the comparison for the average outcome for the

treated units in the second period, Ȳ12.

We can define another parameter, hidden in the analysis so far, that may be of interest.

Using the assumption that G is strictly increasing, define

2 ≡ G−1EY21|D  1 − G−1EY20|D  1

 G−1EY21|D  1 −     2,

    (2.20)

which is equivalent to defining 2 such that

2  G    2  2 − G    2

Whereas 2 is the ATT in the second time period defined in terms of the means, 2 is a

treatment effect obtained by applying G−1 to the potential outcome means. In the case of the

exponential model,

2  logEY21|D  1 − logEY20|D  1,

thereby providing an (approximate) proportional effect. When Gz  expz/1  expz, 2

is the change in the log-odds of the expected values for the treated subpopulation. Generally, a

consistent estimator of 2 is
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̂2  G−1Ȳ12 − ̂  ̂  ̂2

 G−1Ȳ12 − G−1Ȳ01  G−1Ȳ11 − G−1Ȳ01  G−1Ȳ02 − G−1Ȳ01

 G−1Ȳ12 − G−1Ȳ02 − G−1Ȳ11 − G−1Ȳ01,

which is a kind of DiD estimator but where the means are transformed. This formula assumes

that the inverse function G−1 is well-defined at all sample averages. For example, when

G  exp,

̂2  logȲ12 − logȲ02 − logȲ11 − logȲ01

provided each average is positive. As we see more generally below, ̂2 can be obtained by a

pooled estimation method for certain choices of G and estimation methods.

In the binary case with pooled cross sections, the difference between (2.17) and (2.18) is at

the heart of Puhani’s (2012) investigation of the proper way to define average treatment effects

in binary response models with T  2. In this simple DiD setting, the Ai and Norton (2003)

effect of the interaction is always (2.18) – for any strictly increasing function G – whereas

Puhani effectively argued for (2.17). Puhani’s conclusion is not based on estimation of the

ATT but we now see that, with 2 clearly defined, Puhani’s definition is the correct one for

identifying when the parallel trends assumption is stated in terms of the underlying index

function.

For later reference, it is useful to return to the linear case and show how (2.18) can be

obtained from an imputation approach. Define a second period dummy variable f2t  1 if

t  2, zero otherwise. Also, define the time-varying treatment indicator

Wit  Di  f2it, t  1,2,     (2.21)

so that Wi2  1 means unit i is treated in period two (withWi1 ≡ 0 for all i). In the imputation
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step, obtain ̂, ̂, ̂2 from the OLS regression using only untreated observations:

Yit on 1, Di, f2t, t  1,2; i  1, . . . ,N if Wit  0     (2.22)

Then impute a treatment effect for the treated units in t  2:

TEi2 ≡ Yi2 − ̂ − ̂ − ̂2 if Di  1

Next, average across the treated units in the second time period to get

Ȳ12 − ̂  ̂  ̂2  Ȳ12 − Ȳ11 − Ȳ02 − Ȳ01,

the estimator in (2.18).

Alternatively, it follows from Wooldridge (2021) that ̂2 is obtained as the coefficient on

Wit in the POLS regression

Yit on 1, Di, f2t, Wit, t  1,2; i  1, . . . ,N     (2.23)

Often the regression is written with Di  f2t in place of Wit; later, explicitly usingWit pays

dividends for simplifying the calculation of estimates and standard errors.

A simple imputation strategy also applies in the general case. Further, for certain

combinations of G and the objective function used to estimate the parameters, methods that

pool across all observations are available. Rather than cover the equivalences in the T  2

case, I now turn to the general common timing case.

3. Common Timing with General T

3.1. No Covariates

Now consider the case where there are a total of T ≥ 2 total time periods, indexed from

t  1, . . . ,T. An intervention occurs at t  q and stays in effect through period T. Because there

are only two groups to consider – the control group and the (eventually) treated group – it
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suffices to denote the potential outcomes as Yt0 and Yt1.

The treatment effects of interest are the ATTs in the treated time periods:

r  EYr1 − Yr0|D  1, r  q,q  1, . . . ,T     (3.1)

Again, we can identify the r under two population assumptions.

Assumption NAC (No Anticipation, Common): For 1 ≤ t ≤ q − 1,

EYt1 − Yt0|D  1  0.      (3.2)

A version of NAC that is easier to work with but (technically) more restrictive is

Yt  Yt0  Yt1, 1 ≤ t ≤ q − 1,

which means that, for each population unit, the potential outcomes are the same prior to the

intervention.

In cases where anticipation is a concern, one can modify the assumption and estimation

methods to allow for anticipation in periods near the intervention period. There are two ways

to think about this, with the first requiring no change in notation. We simply allow the time

spaces between the index t ∈ 1,2, . . . ,T to vary, and so the jump from q − 1 to q could

indicate, say, a three-year period. Probably a bit more natural is to replace q − 1 with, say,

p ≤ q − 1, and allow violation of NAC for p ≤ t ≤ q − 1. In terms of estimation, this simply

means that we would drop periods t ∈ p,p  1, . . . ,q − 1 in any analysis that follows. As we

will see shortly, we could get by with imposing NAC only for t  1 and dropping periods

2, . . . ,q − 1. Naturally, this could be very costly in terms of precision when pre-treatment

periods are dropped unnecessarily. To keep the notation and discussion relatively simple, I use

the NAC assumption as stated above and one can think of varying lengths of time between

periods.
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Generally, we can write the observed outcomes as

Yt  1 − DYt0  D  Yt1, t  1, . . . ,T     (3.3)

For now, we observe the treatment status, D, the sequence of observed outcomes,

Yt : t  1,2, . . . ,T, and we know the data of the intervention, q.

In the linear case, the parallel trends assumption can be written as

EYt0|D    D  t, t  1,2, . . . ,T

where 1 ≡ 0 is a normalization without loss of generality; see, for example, Wooldridge

(2021). It follows that

EYt0|D − EYt−10|D  t − t−1, t  2, . . . ,T,

and so the change in the mean outcome in the untreated state does not differ across the control

and treatment groups. As discussed in Section 2, this PT assumption may not be natural when

Yt0 is discrete (such as binary or a count) or its range is limited in some substantive way

(such as being in the unit interval). The next assumption is the parallel trends assumption with

a general index function.

Assumption IPTC (Index Parallel Trends, Common): For a known, strictly increasing,

continuously differentiable function G and parameters , , and 2, ..., T,

EYt0|D  G  D  t, t  1,2, . . . ,T,     (3.4)

where 1 ≡ 0. 

The binary response example in Section 2 extends immediately to the general case of

common intervention. Namely, let

Yt0  1Yt∗0  0
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Yt∗0    D  t  Ut, t  1, . . . ,T

where the Ut, t  1, . . . ,T are independent of D, identically distributed across t, have zero

mean, and have continuous cumulative distribution function F. Then

EYt0|D  PYt0  1|D  P  D  t  Ut  0|D

 1 − F−  D  t ≡ G  D  t

Notice how the usual PT assumption for a linear model holds for the latent variable Yt∗0:

EYt∗0|D    D  t

The exponential mean example also immediately extends. If

EYt0|D  exp  D  t     (3.5)

(again with 1  0) then for t  2, . . . ,T, the ratio

EYt0|D
EY10|D

 expt     (3.6)

does not depend on D.

The general restriction is that, for the chosen, invertible function G,

G−1EYt0|D − G−1EY10|D  t, t  2, . . . ,T.     (3.7)

When Gz  expz/1  expz, G−1 is the log-odds transformation of the conditional

mean (which applies to fractional as well as binary responses).

Given Assumption IPTC and the fact that Yt  Yt1 when D  1, we can write the ATTs

as

r  EYr|D  1 − EYr0|D  1  EYr|D  1 − G    r, r  q, . . . ,T     (3.8)

As usual, the first term is always identified, and consistently estimated using the sample

average of the treated units in time t  r:
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Ȳ1r  N1
−1∑

i1

N

DiYir
p
→ EYr|D  1     (3.9)

For the second term, it suffices to consistently estimate , , and r, r  q, . . . ,T.

As in the T  2 case,  and  are identified using observables when t  1 because

  G−1EY1|D  0

  G−1EY1|D  1 − 

Then, r, r  q, . . . ,T are identified by the PT assumption (3.4) because

EYr|D  0  G  r, r  q, . . . ,T

or

r  G−1EYr|D  0 − , r  q, . . . ,T     (3.10)

The means EYr|D  0 are consistently estimated using the average of the period r outcomes

for the control units:

Ȳ0r ≡ N0
−1∑

i1

N

1 − DiYir     (3.11)

The previous argument that shows identification of , , 2, ..., T only uses the PT

assumption along with no anticipation in t  1. In fact, we only need to identify , , and r,

r  q, . . . ,T, which means, technically, we can drop the NA and PT assumptions for periods

t ∈ 2, . . . ,q − 1. But that is the same as just entirely ignoring those time periods in

estimation. We can always make that choice at the cost of precision. By convention, I assume

that one wants to include all the listed periods in the analysis; if not, one simply thinks of q − 1

as the latest period before the intervention where NA and PT are assumed to hold. By allowing
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uneven spacing between time periods we need not even change notation; we simply allow an

extended gap between the periods labeled q − 1 and q.

Given the NA and PT assumptions, rather than separately estimating the parameters it is

more efficient (and convenient) to estimate the parameters at once using all untreated

observations. To this end, define the time-varying treatment indicator as

Wit  Di  fqt   fTt ≡ Di  pt,     (3.12)

where f2t, ..., fTT is a set of mutually exclusive time dummies and pt  fqt   fTt is a

post-treatment period indicator. In the common timing setting, Wit : t  1,2, . . . ,T can have

only two patterns: all zeros or q − 1 zeros followed by T − q  1 ones. Using the NA and PT

assumptions it is easy to see that

EYit|Di,Wit  0  G  Di  t, t  1, . . . ,q − 1

 G  t, t  q, . . . ,T

    (3.13)

    (3.14)

Therefore, the parameters can be estimated using a pooled estimation method on the untreated

observations, Wit  0, to obtain ̂, ̂, and ̂t, t  2, . . . ,T. Given consistent parameter

estimators, consistent estimators of the ATTs are

̂r  Ȳ1r − G ̂  ̂  ̂r , r  q, . . . ,T     (3.15)

This estimator can be viewed as an imputation estimator, where we use the untreated

observations to obtain ̂, ̂, and ̂r and then impute Yir0 as

Ŷir0  G ̂  ̂  ̂r     (3.16)

In terms of specific estimation methods, it is natural to use a quasi-MLE approach using a

log likelihood in the linear exponential family; see Gourieroux, Monfort, and Trognon (1984)

for the cross-sectional case and Wooldridge (2010, Section 13.11.4) for a discussion of pooled
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estimation with panel data. When Gz  z, it is natural to choose the normal log likelihood,

which then leads to the pooled OLS estimators in Wooldridge (2021). For common nonlinear

choices of G, the normal QMLE is not very attractive because it has essentially no chance of

being efficient – even if we make the assumption of no serial correlation across t. If Yit is a

binary or fractional response, the logit and probit functions are leading contenders for G,

and then it is natural to use the Bernoulli quasi-log likelihood function (QLLF). For the latter

case, see Papke and Wooldridge (1996, 2008). Because the Bernoulli distribution is in the

linear exponential family (LEF), the pooled QMLE is fully robust for estimating

,,2, . . . ,Tprovided the mean is correctly specified, which holds under Assumptions

NAC and IPTC. Estimation and inference are straightforward; see, for example, Wooldridge

(2010, Section 13.11.4).

For obtaining estimators using the imputation approach, the choice of G, subject to

being logically consistent with the nature of Yit, is largely a matter of taste. For example, in the

binary or fractional case, one would rarely have a compelling argument to choose logit over

probit or vice versa. Nevertheless, in the current setting, there are some practical advantages to

choosing G−1 to be the canonical link function associated with the chosen density in the

LEF. With such a choice, there is a simple equivalence between imputation and pooled QMLE

estimation, something pointed out in Wooldridge (2021) for the linear case.

The idea is that we postulate that the conditional mean function holds for all draws,

untreated and treated. That is, we act as if

EYit|Di,Wit  G  Di  2f2t   TfTt
 qWit  fqt   TWit  fTt ,

    (3.17)

where q, ..., T is a set of additional parameters. As in the T  2 case, usingWit  fst rather
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than Di  fst is convenient for obtaining the ̂r along with valid standard errors. If G is mean

function associated with the canonical link for the chosen LEF density, the pooled QMLE,

obtained using all observations, produces exactly the same estimates of , , and the t as the

pooled QMLE restricted toWit  0. Moreover, if one computes the average partial effects

(APEs) of Wt using (3.17) and then evaluates these at D  1 and frt  1 with fst  0 for s ≠ r,

the result is the estimates in (3.15). In other words, given the pooled QMLE estimators,

denoted with a “,” it can be shown that ̃  ̂, ̃  ̂, ̃r  ̂r, and

̂r  G ̃  ̃  ̃r  ̃r − G ̃  ̃  ̃r , r  q, . . . ,T     (3.18)

This follows because because ̃r is such that Ȳ1r  G ̃  ̃  ̃r  ̃r , r  q, . . . ,T. A more

general result with staggered entry and covariates is stated and discussed in Section 4.

The pooled method is convenient because popular software packages, such as Stata,

produce average partial effects for different settings of the covariates and provides valid

standard errors in the presence of serial correlation and misspecification of the chosen LEF

density. In this simple case, the delta method is applied to (3.18) along with clustering. This

equivalence means that, when G−1 is the canonical link, the function EYit|Di,Wit is only

assumed correct whenWit  0 – keeping with the spirit of estimators of ATTs when the LPT

assumption is imposed. I will show a more general equivalence in the staggered case with

covariates.

The virtues of the canonical link function have appeared previously in the causal effects

literature. Wooldridge (2007) emphasizes its role in obtaining doubly robust estimators of

average treatment effects that combine regression adjustment – generally interpreted as

quasi-MLE in the LEF – and inverse propensity score weighting. Extending the case of linear
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regression, Negi and Wooldridge (2021) show that using the canonical link in the LEF

preserves consistency of ATE estimators under general conditional mean misspecification with

randomized controlled trials. The most relevant combinations of canonical link mean functions

and LEF densities are given in Table 3.1.

Table 3.1. Canonical Link and Log Likelihood Pairings

Conditional Mean LEF Density Comments

Linear Normal Any Response. Leads to Pooled OLS

Logistic Bernoulli Binary or Fractional Response

Logistic Binomial Nonnegative Response with Known Upper Bound

Logistic Multinomial Multinomial or Multiple Fractional Response

Exponential Poisson Nonnegative Response, No Natural Upper Bound

Anticipating the general recommendations below, in applying DiD to limited dependent

variables it will make sense to compare DiD estimates from linear regression to a nonlinear

method that exploits the special nature of Yit – provided, of course, that the ATTs are properly

computed for the nonlinear model.

3.2. Adding Covariates

It is straightforward to modify the index PT assumption to allow for covariates. First, we

specify the no anticipation assumption conditional on the covariates.

Assumption CNAC (Conditional NA, Common): For a 1  K vector of time-constant

covariates X,

EYt1|D  1,X  EYt0|D  0,X, t ∈ 1, . . . ,q − 1.      (3.19)

With the addition of covariates, we assume that the pre-intervention ATTs are zero for each

subpopulation indexed by X.

Assumption CIPTC (Conditional IPT, Common): For a 1  K vector of time-constant
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covariates X and a function G satisfying the requirements in Assumption IPTC,

EYt0|D,X  G  D  X  D  X  t  Xt, t  1,2, . . . ,T,     (3.20)

where D is the binary treatment indicator and where we take 1 ≡ 0, 1 ≡ 0 as normalizations

to define  and . 

Unlike in the case without covariates, when t  1 the conditional mean in (3.20) now

imposes functional form restrictions (unless X includes mutually exclusive and exhaustive

binary indicators that partition the population). For flexibility, we can choose X to be functions

of underlying control variables, such as in the common practice of including squares and

interactions of underlying variables. Once we settle on the functional form

EY10|D,X  G  D  X  D  X,

the substantive restriction imposed on the linear index in (3.20) is that the coefficients on terms

involving D are time invariant. In the linear case the restriction becomes

EYt0|D,X − EY10|D,X  t  Xt, t ∈ 2, . . . ,T,     (3.21)

which does not depend on D. Wooldridge (2021) used this assumption to derive POLS

estimators of the r.

Assumption CIPTC allows parallel trends to be violated for EYt0|D,X provided it holds

for the index. With G  exp,

EYt0|D,X
EY10|D,X

 expt  Xt, t  2, . . . ,T,

which implies that the growth in EYt0|D,X can depend on t and X in a fairly flexible way,

but not on D.

Generally, we can exploit the conditional index PT assumption to identify the r, which are
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still given by (3.1). Nothing changes for estimating EYr1|D  1 because Yr  Yr1 for

D  1. For EYr0|D  1, we first apply iterated expectations:

EYr0|D  1  EEYr0|D  1,X|D  1

Next, by CIPTC,

EYr0|D  1,X  G    r  X    r     (3.22)

and so

EYr0|D  1  EG    r  X    r|D  1, r  q, . . . ,T     (3.23)

Given that G is assumed known and we observe X, (3.23) shows that EYr0|D  1 is

identified if the parameters

,,r,,,r

are identified. Provided the distribution of X is not degenerate, , , , and  are identified

using t  1. The argument is a simple extension from the earlier one. First,

EY1|D  0,X  EY10|D  0,X  G  X

and, by CNAC with t  1,

EY1|D  1,X  EY11|D  1,X  EY10|D  1,X

 G    X  

Combined, we simply have

EY1|D,X  G  D  X  D  X,     (3.24)

where all variables are observed and G is a known, strictly increasing smooth function. With

a random sample for t  1 (or some other sampling scheme that permits consistent estimation),

we can consistently estimate all parameters in (3.24) under weak regularity conditions.
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With ,,, identified, all that remains for r is identification of r and r. But, under

CIPTC,

EYr|D  0,X  EYt0|D,X  G  r  X  r,     (3.25)

which shows that   r and   r are identified using the period r observed outcomes for the

control group (D  0). Given identification of  and  from t  1, r and r are identified.

Notice how we need not even obtain s, s  q (pre-intervention periods).

With the parameters in (3.22) identified, (3.23) is obtained by averaging over the

distribution of X given D  1. Technically, because we have a parametric function G, we

do not need an overlap assumption. Nevertheless, the problems with extrapolation in treatment

effects estimation are well-known. In practice, we should ensure the support condition

SuppX|D  1 ⊂ SuppX|D  0

or, equivalently, PD  1|X  x  1 for all x ∈ SuppX. The support condition ensures that

when we average over the treated units we are averaging over covariate values that are used in

obtaining estimators of the parameters, particularly r and r.

As before, with multiple pre-treatment periods, operationalizing the previous identification

argument discards useful information in t ∈ 2, . . . ,q − 1 and is generally inefficient. Instead,

we can use all untreated observations across all time periods by noting that, for a random draw

i from the population,

EYit|Di,Xi,Wit  0  G  Di  Xi  Di  Xi

 2f2t   TfTt  f2t  Xi2   fTt  XiT

    (3.26)

where, again,Wit is the time-varying treatment indicator and the fst are time dummies.

Equation (3.26) follows because Wit  0 if and only if t ≤ q − 1 or q ≤ t ≤ T and Di  0.
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Given (3.26) and a random sample of size N, the parameters ,,,,2, . . . ,T,2, . . . ,T

can be jointly estimated using any number of methods that identify parameters in conditional

mean functions.

For the reasons discussed previously – robustness, familiarity, ease of estimation, and

convenient inference – pooled QMLE using QLLFs in the LEF are attractive, with the

canonical link function providing extra computational benefits. Nevertheless, one may use any

N -consistent, asymptotically normal estimation method. In fact, other modeling approaches

are allowed. For example, if Yit is a corner solution response, we could use for the function

G that which is derived from the standard (homoskedastic) Tobit model. I do not pursue

such possibilities here, preferring to specify only the conditional mean.

Given the parameter estimators, the r are consistently estimated (with fixed T, N → ) by

̂r  Ȳ1r − N1
−1∑

i1

N

Di  G ̂  ̂  ̂r  Xi̂  ̂  ̂r , r  q, . . . ,T.     (3.27)

Moreover, by applying Wooldridge (2010, Problem 12.17), a standard error for ̂r can be

obtained. In order to combine or test joint hypotheses about the r, an asymptotic variance for

̂, T − q  1 vector of ATT estimators, can be obtained. Alternatively, the panel bootstrap can

be used. Even in fairly large sample sizes the bootstrap should be computionally feasible

because pooled QMLEs in the LEF are not computationally time consuming.

In the linear case, (3.27) becomes

̂r  Ȳ1r − ̂  ̂  ̂r  X̄1̂  ̂  ̂r

where X̄1  N1
−1∑ i

Di  Xi is the average of the treated subsample. Equation (3.27) extends

the observation in Wooldridge (2021) for the linear case that ̂r can be viewed as an imputation
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estimator. For each treated unit i in a treated time period r, define an imputed treatment effect

as

TEir  Yir − G ̂  ̂  ̂r  Xi̂  ̂  ̂r ,     (3.28)

where the second part is how Yir0 is imputed for a treated unit. Then we can write

̂r  N1
−1∑

i1

N

Di  TEir     (3.29)

As in the T  2 case without covariates, one can use a pooled QMLE using all of the data.

Specifically, act as if the following conditional mean function holds for treated as well as

untreated observations:

EYit|Di,Xi,Wit  G  Di  Xi  Di  Xi

 2f2t   TfTt  f2t  Xi2   fTt  XiT
 qWit  fqt   TWit  fTt

 Wit  fqt  Ẋiq   Wit  fTt  ẊiT ,

    (3.30)

where the conditioning onWit is redundant but useful for understanding the flexibility of the

approach and also in obtaining proper standard errors. In forming the interactionsWit  frt  Ẋ,

the controls Ẋ have been demeaned using EX|D  1. The reason for demeaning the

covariates is so that the r have a useful meaning. In particular,

r  G−1EYr1|D  1 − G−1EYr0|D  1,

which is a treatment effect that we discussed earlier in the T  2 case. It may be just as

interesting to have an ATT stated, say, in terms of a percentage difference as on the level when

Yit ≥ 0.

To obtain the parameter estimates, decorated with “” and including the ̃r, and the
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estimated ATTs in each treated period, use pooled QMLE with covariates Ẋi  Xi − X̄1.

Extending regression terminology, across all t and i use pooled QMLE of

Yit on 1, Di, Xi, Di  Xi, f2t, ..., fTt, f2t  Xi, ..., fTt  Xi,

Wit  fqt, ..., Wit  fTt, Wit  fqt  Ẋi, ..., Wit  fTt  Ẋi

Then, ̃r is the average partial effect of W for the subpopulation D  1, frt  1 (setting all

other time dummies to zero):

̃r  N1
−1∑

i1

N

Di G ̃  ̃  ̃r  Xi̃  ̃  ̃r  ̃r  Ẋi̃r − G ̃  ̃  ̃r  Xi̃  ̃  ̃r     (3.3

In Section 4, I will show that, when G−1 is the canonical link, all of the estimated

coefficients in common with the imputation methods are the same. Moreover,

Ȳ1r  N1
−1∑

i1

N

DiG ̃  ̃  ̃r  Xi̃  ̃  ̃r  ̃r  Ẋi̃r ,

which means (3.31) is the same as (3.27).

A practical benefit of using (3.31) to obtain ̃r is that commonly used software packages –

including Stata – provide a valid standard error for using the delta method. One can condition

on the covariates or account for sampling variation in the Xi. The online appendix shows Stata

commands for obtaining both ̃r and its standard error.

Another potential benefit from using QMLE pooled across all observations is that it

permits estimation of an average treatment effect (ATE) in each time period, not just an ATT.

In particular, the estimated ATE in period r ∈ q, . . . ,T would be

̃r,ate  N−1∑
i1

N

G ̃  ̃Di  Xi̃  Di  Xi̃  ̃r  Xi̃r  ̂r  Ẋi̃r

− G ̃  ̃Di  Xi̃  Di  Xi̃  ̃r  Xi̃r ,

    (3.32)
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which is obtained by computing the APE with respect toW for time period r. Here we average

across both the treated and control units. The quantity ̂r,ate is easily estimated using standard

software packages and standard errors are obtained using the delta method. The difference with

the ATT is that we average across treated and control units in time period r, not just the treated

units.

In order for (3.32) to consistently estimate

r,ate  EYr1 − Yr0, r  q, . . . ,T,

we have to strengthen the no anticipation and parallel trends assumption. In the latter case we

would assume that the CIPT assumption holds in the treated state, Yt1, in addition to the

control state. I omit the details because the focus is usually on the ATTs.

4. Staggered Interventions

I now consider the case of staggered interventions, where different units are subjected to a

treatment or intervention in different periods. This rolling out of the treatment generates

different treatment cohorts.

4.1. Potential Outcomes and Parameters of Interest

The first intervention occurs at time q ∈ 2, . . . ,T and then some additional units are

treated for the first time in subsequent periods. As in Wooldridge (2021), I treat the staggered

intervention as effectively being different treatment intensities. In any post-intervention period,

units treated initially at time t  q will have been exposed to the intervention longer than units

first treated in later periods. Initially, I focus on the case where there is a never treated group,

so that at t  T there are still units not subjected to the intervention. In Section 8 I discuss

relaxing this restriction.
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As in Athey and Imbens (2022) and Wooldridge (2021), the potential outcomes are denoted

Ytg, g ∈ q, . . . ,T,, t ∈ 1,2, . . . ,T,     (4.1)

where g indicates the first time subjected to the intervention – it can be thought of as a “group”

or “cohort” – and t is calendar time. The case g   indicates the potential outcome in the

never treated state. In other words, Yt is the potential outcome at time t when a unit is not

subjected to the intervention over the observed stretch of time. Listing potential outcomes that

vary only by cohort and calendar time reflects the assumption of no reversibility with

staggered entry.

The ATTs of interest are

gr  EYrg − Yr|Dg  1, r  g, . . . ,T; g  q, . . . ,T,     (4.2)

where the Dg : g  q, . . . ,T are group or cohort indicators expressing the first period a unit

is subjected to the intervention. For now, we assume there is a group with D  1, which

indicates never being treated over the observed time period. For each (eventually) treated

cohort g, gr, r  g, . . . ,T are the ATTs in all subsequent time periods.

We present the assumptions conditional on covariates, with a special case being when X is

null.

Assumption CNAS (Conditional No Anticipation, Staggered): For g ∈ q, . . . ,T,

t ∈ 1, . . . ,g − 1, and covariates X,

EYtg|Dg  1,X  EYt|Dg  1,X.      (4.3)

Assumption CIPTS (Conditional Index PT, Staggered): For t  1,2, . . . ,T,

EYt|Dq, . . . ,DT,Xi   G  ∑
gq

T

gDg  X ∑
gq

T

Dg  Xg  t  Xt     (4.4)
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with 1 ≡ 0, 1 ≡ 0. 

When Gz  z is the identify function, CIPTS implies, with D  Dq, . . . ,DT,

EYt|D,X − EY1|D,X  t  Xt,

which allows the trend to depend on the covariates but not on the treatment cohort. This is the

conditional parallel trends assumption used in Wooldridge (2021). When t  1 and without

covariates, (4.4) imposes no restrictions. With covariates, a functional form assumption is

maintained:

EY1|Dq, . . . ,DT,X  G  ∑
gq

T

gDg  X ∑
gq

T

Dg  Xg

For t ≥ 2, (4.4) imposes that the change in the index does not depend on Dq, . . . ,DT.

The ATTs can be written as

gr  EYr|Dg  1 − E G   g  r  X   g  r Dg  1 ,     (4.5)

which shows the gr are identified if the parameters in the linear index are identified.

For a unit i, the time-varying treatment indicator,Wit, now can be written as

Wit  Diq  pqt   DiT  fTt

 Diq  fqt   fTt   DiT  pTt

    (4.6)

where

pgt  fgt   fTt

is an indicator for the post treatment period if a unit is initially treated in period g. It is easy to

see that Wit  Dig  fst  Dig  fst for all s  g, . . . ,T (that is, time periods where cohort g is

subjected to the intervention). The conditionWit  0 means that if unit i is in cohort g then
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t  g. For a never treated unit,Wit  0, t  1, . . . ,T.

The identification argument for the parameters extends the common timing case.

Assumptions CNAS and CIPTS imply

EY1|Dq, . . . ,DT,X  G  ∑
gq

T

gDg  Xi ∑
gq

T

Dg  Xg ,     (4.7)

and so, with strictly increasing G, population units in each treatment cohort, and no perfect

collinearity in X in the population, , q, ..., T, , and q, ..., T are all identified using the

first time period only. The CIPTS assumption implies that, for r ≥ q,

EYr|Dq  0, . . . ,DT  0|X  G  r  X  r,     (4.8)

which verifies one can use the never treated units starting with the first intervention period to

identify r and r, r  q, ..., T. With a never treated group, we need not use any of the

eventually treated units in treated time periods – a feature of the CS (2021) approach. Using all

control combinations i, t to estimate all parameters uses all of the conditional mean

implications of the no anticipation and parallel trends assumption.

As in the common timing case, all parameters, including the s, s for s  q, can be

estimated at once using pooled estimation on the untreated observations. In particular,

assumptions CNAS and CIPTS imply that

EYt|Dq, . . . ,DT,X,Wt  0  G  ∑
gq

T

gDg  X ∑
gq

T

Dg  Xg

 ∑
s2

T

sfst ∑
s2

T

fst  Xs

    (4.9)

Implicitly, all of the valid control observations are used in each time period, which makes this
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approach generally more efficient than other approaches, such as Callaway and Sant’Anna

(2021), that use long differences relative to a particular control group.

The above discussion essentially proves the following result.

Theorem 4.1: Assume that Assumptions CNAS and CIPTS hold for a strictly increasing

function G. Assume that g ≡ PDg  1  0, g ∈ q,q  1, . . . ,T,. If X has a

nondegenerate distribution then ,q, . . . ,T,,q, . . . ,T,2, . . . ,T,2, . . . ,T are

identified and so are the ATTs. 

The following procedure uses all conditional mean implications of Assumptions CNAS and

CIPTS to estimate the parameters in the in equation (4.4).

Procedure 4.1 (Imputation Estimation):

1. For the chosen function G, use the Wit  0 observations to estimate the parameters

,q, . . . ,T,,q, . . . ,T,2, . . . ,T,2, . . . ,T

by pooled QMLE in the LEF. The explanatory variables are

1, Diq, . . . , DiT, Xi, Diq  Xi, . . . , DiT  Xi,

f2t, . . . , fTt, f2t  Xi, . . . , fTt  Xi

2. For cohort g ∈ q, . . . ,T, impute Yir for Wir  1:

Ŷigr ≡ G ̂  ̂g  Xi̂  Xi̂g  ̂r  Xi̂r , r  g, . . . ,T     (4.10)

3. For r  g, . . . ,T, obtain the imputation estimator of gr:

̂gr  Ng−1∑
i1

N

Dig Yir − Ŷigr

 Ȳgr − Ng−1∑
i1

N

DigG ̂  ̂g  Xi̂  Xi̂g  ̂r  Xi̂r .      (4.11)
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Procedure 4.1 extends the linear imputation estimators studied in Wooldridge (2021). With

random sampling across i (and treating T as fixed), one can apply the delta method to obtain

standard errors of the ̂gr, and even an estimator of the asymptotic variance of the vector of all

estimators, ̂. The panel bootstrap – where units are resampled – is also valid and allows for

any kind of serial dependence and model misspecification.

For robustness and simplicity, I recommend using pooled QMLE with a likelihood function

in the LEF. By appropriately choosing the LLF, the pooled QMLE should also have satisfying

efficiency properties. Nevertheless, the estimators from Procedure 4.1 are generally inefficient

– for a couple of reasons. First, the variances associated with the chosen LLF might differ from

the actual conditional variances, VarYit|Diq, . . . ,DiT,Xi,Wit  0. Probably more importantly,

the pooled method ignores serial correlation in estimation. To exploit serial correlation along

with a particular conditional variance function, one could use a nonlinear generalized least

squares approach of the type described in Wooldridge (2010, Section 12.9.2).

Rather than use an LLF in the LEF, one could use other models and estimation methods.

For example, if Yit is a corner solution, one could use a Tobit model in step (1), estimating the

parameters by by pooled (quasi-) MLE. In equation (4.10), the function G would be

replaced with the mean function for the Tobit model; see, for example, Wooldridge

(2010,Section 17.2).

As an alternative to the imputation approach, and to simplify calculation of standard errors,

a pooled estimation method is convenient. The pooled estimation is nominally based on a

conditional expectation for any time period t (and random draw i):
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EYit|Diq, . . . ,DiT,Xi,Wi  G  ∑
gq

T

gDig  Xi ∑
gq

T

Dig  Xig

∑
s2

T

sfst ∑
s2

T

fst  Xis

 ∑
gq

T

∑
sg

T

gsWit  Dig  fst

∑
gq

T

∑
sg

T

Wit  Dig  fst  Ẋiggs

    (4.12)

where

Ẋig  Xi − EXi|Dig  1

are the cohort-specific means of the covariates. The reason for centering the covariates in the

quadruple interaction term is that it makes the gs easier to interpret. One might want to center

Xi in the other interactions in order to, say, obtain more easily interpretable coefficients on the

Dig, but these coefficients are not measuring treatment effects. Including Wit in the triple and

quadruple interactions does not change the estimated coefficients but its presence is useful for

emphasizing the flexibility in the pattern of treatment effects and for computing standard errors

of the ATTs. Alternatively, for each i, t we can define treatment indicators

Witgs  Dig  fst, g  q, . . . ,T; s  g, . . . ,T

and write the conditional mean as
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EYit|Diq, . . . ,DiT,Xi,Wi  G  ∑
gq

T

gDig  Xi ∑
gq

T

Dig  Xig

∑
s2

T

sfst ∑
s2

T

fst  Xis

 ∑
gq

T

∑
sg

T

gsWitgs

∑
gq

T

∑
sg

T

Witgs  Ẋiggs

    (4.13)

In other words, one defines a different treatment indicator for each g, s pair with

s ∈ g, . . . ,G, g ∈ q, . . . ,T.

If we only maintain Assumptions CNAS and CIPTS then mean function in (4.12) might be

misspecified whenWit  1 for some t. If we strengthen these assumptions – for example,

CIPTS would apply to the potential outcomes Ytg as well as to Yt – then we can identify

the ATTs defined in (4.5) with pooled estimation across all observations.

Procedure 4.2 (Pooled Estimation):

1. Using all of the data, use pooled QMLE in the LEF to estimate

,q, . . . ,T,,q, . . . ,T,2, . . . ,T,2, . . . ,T,

qq,q,q1, . . . ,qT,q1,q1, . . . ,q1,T, . . . ,TT,

qq,q,q1, . . . ,qT,q1,q1, . . . ,q1,T, . . . ,TT

The explanatory variables are

39



1, Diq, . . . , DiT, Xi, Diq  Xi, . . . , DiT  Xi,

f2t, . . . , fTt, f2t  Xi, . . . , fTt  Xi,

Wit  Diq  fqt, Wit  Diq  fq  1t, ..., Wit  Diq  fTt

Wit  Di,q1  fq  1t, ..., Wit  Di,q1  fq  1t, ..., Wit  DiT  fTt

Wit  Diq  fqt  Ẋiq, Wit  Diq  fq  1t  Ẋiq, ..., Wit  Diq  fTt  Ẋiq

Wit  Di,q1  fq  1t  Ẋi,q1, ..., Wit  Di,q1  fq  1t  Ẋi,q1, ..., Wit  DiT  fTt  ẊiT

    (4.14)

where now Ẋig  Xi − X̄g are centered around cohort sample averages.

2. For ̃gr, obtain the average partial effect with respect to the binary variableWt, evaluated

at Dg  1, frt  1, and all other cohort and time dummies set to zero. Average across the

subsample with Dig  1 to get

̃gr  Ng−1∑
i1

N

Dig G ̃  ̃g  Xi̃  Xi̃g  ̂r  Xi̃r  ̃gr  Ẋiggr

G ̃  ̃g  Xi̃  Xi̃g  ̂r  Xi̃r .

    (4.15)

Alternatively, with the equation written as in (4.13), obtain the APEs of each indicatorWitgr

and average across the subpopulation Witgr  1. 

This procedure has some benefits compared with Procedure 4.1. First, most econometric

software packages support pooled quasi-MLE in the LEF – often under the label of

“generalized linear models” – along with cluster-robust standard errors for average partial

effects. Moreover, often a simple option can be used to obtain standard errors that account for

sampling variation in the X̄g. Second, the estimates ̂gr are provided, and these are often of

interest themselves. Generally, we can think of ̃gr as estimating

G−1EYrg|Dg  1 − G−1EYr|Dg  1,     (4.16)

which is a treatment effect defined in terms of the linear index. We also obtain the ̃gr, which

allows us to study whether and how the treatment effects vary with observed covariates. One
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can easily test whether such variables need to be interacted with the treatment indicators as

allowed in the most general specification.

Another benefit of the pooled method is that one can, if desired, obtain overall average

treatment effects for each treated period. Now, instead of setting a specific cohort dummy to

unity (and setting the rest to zero), and averaging over the subsample with Dig  1, one

computes the average partial effect with respect toWt across the entire sample with frt  1 for

the chosen time period, r (and fst  0 for s ≠ r). The approach identifies the ATEs only if we

strengthen the parallel trends assumption. In effect, we would need conditional PT to hold,

with the same function G, for each Ytg, g ∈ q,q  1, . . . ,T in addition to g  . Ideally,

one obtains separate estimates of gr and then aggregates them in a desirable way, such as by

treatment cohort, intensity of treatment, or even into a single, average effect. Obtaining

analytical standard errors can be tricky in general, but the panel bootstrap can be applied to

functions such as gg  g,g1   gT/T − g  1.

4.2. Equivalence Between Imputation and Pooled Estimation

For general choices of G, the ̃gr in (4.15) differ from the ̂gr in (4.11), with the latter

requiring fewer assumptions for consistency. Nevertheless, in some popular cases the

estimators are numerically the same. Wooldridge (2021) showed the estimators are the same in

the linear case. It turns out that an extension of the equivalence result holds when G−1 is

chosen to be the canonical link function in the linear exponential family, as discussed

previously. I now formally state a result, which is proven in the appendix.

Proposition 4.1. (Equivalence of Imputation and Pooled QMLE): In the staggered

intervention setting without reversibility, suppose that G−1 is the canonical link function

associated with the chosen LEF density. If the solution to the pooled QMLE is unique, the
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estimates of common parameters are the same in the imputation estimates and the estimated

ATTs are the same as the imputation estimates: ̃gr  ̂gr, r  g, . . . ,T; g  q, . . . ,T. 

This is a useful result, as it shows that, for estimating the ATTs, we can use a pooled

QMLE in the LEF without adding additional assumptions and consistently estimate the ATTs.

In addition, we can, if desired, estimate ATEs for each period – as described earlier. It is also

worth noting that including covariates X can help with precision of the estimates if those

covariates are useful predictors of Yt. This is particularly true if the PT assumption holds

without conditioning on X, so that one could use the pooled estimator without the covariates.

Including X, by effectively reducing the noise, can lead to more precise estimates of the gr.

One might argue that the canonical link requirement is restrictive, but it actually serves a

practical function. Namely, it limits the kinds of nonlinear models and estimation methods

used by an empirical researcher. If a researcher goes beyond a linear model then, for the vast

majority of cases, the mean function will be logistic or exponential. The method of estimation

is set as the pooled QMLE using the paired log likelihood, as described in Table 3.1.
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4.3. Examples

When Yit ∈ 0,1, including the binary case, a logistic function and estimation by pooled

Bernoulli QMLE is most convenient because estimation and standard errors can be done using

the pooled QMLE. The mean function is specified as

EYit|Diq, . . . ,DiT,Xi    ∑
gq

T

gDig  Xi ∑
gq

T

Dig  Xig

∑
s2

T

sfst ∑
s2

T

fst  Xis

∑
gq

T

∑
sg

T

gsWit  Dig  fst

∑
gq

T

∑
sg

T

Wit  Dig  fst  Ẋiggs ,

    (4.17)

where the centering of the covariates – in practice, replacing the means EX|Dg  1 with X̄g

– ensures the estimates ̂gr can be interpreted as the ATT on the log-odds ratio; see (4.16). Any

statistical package that does pooled logit, or fractional logit, and allows calculation of average

partial effects and their standard errors can be used for proper inference. The APE is computed

with respect toW and then one sets the appropriate cohort/year dummy combinations to unit

with the others set to zero.

If Yit has a bound that can possibly change over i and t, say Yit ∈ 0,Bit , then the mean

function in (4.17) simply gets multiplied by Bit and so do the calculations of the APEs. This

can be accomplished by choosing the binomial QLLF with a logit link function and total

number of “trials” equal to Bit. Note that Yit need not be an integer.

When Yit ≥ 0 without a natural upper bound, the exponential mean makes sense as an

alternative to a linear mean:

43



EYit|Diq, . . . ,DiT,Xi  exp  ∑
gq

T

gDig  Xi ∑
gq

T

Dig  Xig

∑
s2

T

sfst ∑
s2

T

fst  Xis

∑
gq

T

∑
sg

T

gsWit  Dig  fst

∑
gq

T

∑
sg

T

Wit  Dig  fst  Ẋiggs ,

    (4.18)

This mean function should be coupled with the Poisson QLL in pooled QMLE estimation.

Because log is the canonical link function for the Poisson log likelihood, the estimates of

parameters and APEs from the estimation pooled across all of the data are identical to the

imputation estimates.

Other than the linear case, where pooled OLS and TWFE are equivalent, the exponential is

the one other case where a viable TWFE estimator is available that does not suffer from the

incidental parameters problem. Namely, the fixed effects Poisson estimator, with time

dummies included, can be used to estimate the parameters s, s, gs, and gs without imposing

any distributional assumptions or serial independence assumptions; see Wooldridge (1999).

How does this compare with the pooled Poisson QMLE estimation of (4.18)? Using thousands

of simulated data sets, it appears that without covariates, the estimates of s and gs are

numerically the same. Therefore, the FE Poisson estimator offers no advantages. With

covariates the approaches are different. An important issue is how one would turn the FE

Poisson estimates into ATTs on the levels – that is, how would one estimate the gr. An even

more difficult challenge is to obtain valid inference on the ̂gr after Poisson FE estimation.

Possibly the results in Martin (2017) can be modiefied for the case of ATTs in staggered
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interventions.

In the previous examples, and many others, one may want to impose restrictions on the

parameters. To achieve some flexibility without estimate a separate coefficient for each pair

g, r, one could replace Wit  Dig  frt with indicators for amount of time subjected to the

intervention. The implicit assumption is that cohort and calendar time matter only insofar as

they imply different exposure lengths. Including T − q  1 “intensity” indicators, say Zith,

h ∈ 1,2, . . . ,T − q  1, can greatly conserve on estimated parameters with many

post-intervention periods. These also can be interacted with the covariates in the nonlinear

model. In the extreme case, one simply includesWit by itself, possibly interacted with

covariates, and then computes the APE with respect toWit averaged over the Wit  1

subsample. As in the case of a linear model, restricting the general model in this way may

produce misleading estimates of the ATTs.

5. Testing and Correcting for Violation of Parallel Trends

Because of its important role in identifying the ATTs, it is desirable to have simple tests of

the parallel trends assumption. As a robustness check, it is helpful to combine nonlinear

models with simple models that allow heterogenous trends in the never treated state.

5.1. Testing the Parallel Trends Assumption

In the linear case, Wooldridge (2021) has shown that tests of the PT assumption are easily

carried out in the context of pooled OLS estimation – a special case of the pooled QMLE

approach in Section 4.1. Moreover, the tests are the same whether based only on the Wit  0

observations or on pooled OLS using all observations – provided full flexibility is allowed in

the treatment indicators, as in Section 4.1. The algebraic equivalence of the tests holds in the

nonlinear case provided the canonical link function is used in the linear exponential family. If
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one uses a different mean function or different objective function, the test should be carried out

using only the Wit  0 observations (although it seems unlikely the difference would be

important in practice).

There are two approaches that apply to the general index case covered in this paper. In the

common timing case, the first adds the interactions Di  fst for s  2, . . . ,q − 1 and does a joint

test in these terms. If q  2 (only one pre-treatment period), there is nothing to test. If q  3,

one adds Di  f2t and does a cluster robust t test. With q  3, there are multiple restrictions to

test. In the general nonlinear case, one can implement the test as a cluster-robust Wald test.

This is analogous to the kind of “event study” tests that are common when including treatment

indicators that vary only by the number of periods away from treatment, both and after an

intervention.

In the general staggered case, the dummies Dig  fst are included for g  q, q  1, ..., T and

for s  2, . . . ,g − 1. In other words, for each cohort, include indicators for the

pre-intervention periods. One carried out a cluster-robust Wald statistic of joint significance of

these pre-intervention indicators. This can result in many restrictions to test. For example, with

T  6 and q  4, one would add Di4  f2t, Di4  f3t, Di5  f2t, Di5  f3t, Di5  f4t, Di6  f2t,

Di6  f3t, Di6  f4t, and Di6  f5t – or nine dummy variables. This is in addition to the six

dummies indicating legitimate treated observations. The event-study-type test is a

cluster-robust joint test that the nine coefficients on the pre-intervention treatment indicators

are all zero.

Another attractive approach, which conserves on degrees of freedom, is to add the

cohort-specific linear trends, Diq  t, Di,q1  t, . . . , DiT  t. This test will have as many degrees

of freedom as there are treatment cohorts. In the common timing case, the significance of the
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single term Di  t can be tested using a cluster-robust t statistic. With many pre-treatment

periods one could add more functions of time, such as Dig  t2, but it seems that if important

differences in trends are present, a linear trend will pick those up in most cases.

Generally, there is a tradeoff between the event-study-type test and the heterogenous trend

test because the later has fewer degrees of freedom but does not look in all directions where PT

might be violated. Incidentally, if one has controls Xi, they should be included flexibly as in

(4.12). Also, a full set of time dummies should be included, and interacted with the Xi, if

possible. This allows for an unrestricted aggregate trend that may also differ by observed

heterogeneity, Xi, in the never treated state, Yit.

5.2. Correcting for Violation of Parallel Trends

As discussed in Wooldridge (2021), the event-study-type test is inappropriate as a

correction for pre-trends, as it would require that violation of parallel trends disappears just

when we need it to. By contrast, the assumption that each cohort has a separate linear trend in

the absence of the intervention is a reasonable – albeit not completely general – model of

heterogenous trends. As discussed in Wooldridge (2021), in the T  3 case with intervention

only in the final period, including Di  t in the POLS estimation produces the

difference-in-difference-in-differences estimator of the singe ATT, 3.

Including heterogeneous trends, even linear ones, can be costly in terms of precision.

Because of the nature of the staggered intervention, where treatment dummiesWit  Dig  fst

are included in a flexible way, the treatment dummies are collinear with the heterogenous

trends Dig  t (but not perfectly so with at least two pre-treatment periods). Of course,

multicollinearity does not cause inconsistency but it can result in a severe loss of precision.

Using a pre-test for heterogeneous trends is not ideal, but one also does not want to
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unnecessarily control for irrelevant variables that induce large standard errors.

As in the case without heterogeneous trends, the simplest analysis is obtained using pooled

OLS, pooled logit (or fractional logit), and pooled Poisson estimation (with an exponential

mean function). Then, the imputation and pooled estimators are identical, and the pooled

method is very convenient for obtaining valid standard errors (at a minimum, clustering at the

unit level). In equation (4.12), one simply adds the terms

Diq  t, Di,q1  t, ..., DiT  t

When using the pooled QMLE with a canonical link function, and computing the ATTs using

standard software for marginal effects, one must be careful to evaluate the linear trend, t, at the

appropriate period. Specifically, for rg, Dg  1, Dh  0 for h ≠ g, fr  1, fs  0 for s ≠ r,

and t  r.

6. Simulations

I now report on Monte Carlo simulations when Yit is binary or nonnegative with mass at

zero. The simulations were performed in Stata 17 and the code is available upon request from

the author.

6.1. Binary Response with Common Timing

In this case the potential outcomes, Yt0 and Yt1, are binary. There are T  6 time

periods with a common intervention time at q  4. In generating the data, the difference in the

means of the underlying latent variables, EYt∗1 − EYt∗0, changes across t  4, 5, and 6.

[Because of the nonlinearity of the model, the ATTs defined in terms of Yt0 and Yt1 would

change over time even if EYt∗1 − EYt∗0 were constant across t.] The single

(time-constant) covariate, X, is generated as the average, over the six time periods, of
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independent exponential random variables with unit means. Treatment status, D, follows a

logit:

D  1−0.5  X − 1  V  0,     (6.1)

where V is independent of X with a logistic distribution. This mechanism is used for all

simulations and implies PD  1 ≈ 0.383. For the first simulation, the potential outcomes are

generated as

Yt0  1X − 1/2 − 2D  X − 1  D/4  Ut0  0, t  1, . . . ,T,     (6.2)

where the Ut0 follow logistic distributions with a common effect C and independent

idiosyncratic shocks. This mechanism ensures the potential outcome Yt0 is correlated with X

as well as with treatment status, D, and that Ut0 has substantial serial correlation. In the

treated state, Yt1  Yt0 for t ≤ 3 to ensure no anticipation. Then

Yt1  10.5  X − 1 − 2D  0.2  f5t  0.3  f6t  Ut1  0, t  4, . . . ,T,     (6.3)

where Ut1 depends on the same heterogeneity as Ut0 with separate independent shocks

and also has a logistic distribution. This formulation implies that the index inside the logit

function has a time-varying treatment effect, although that effect does not vary with X. The

treatment effects on the binary outcomes do vary with X because of the nonlinearity. The

parallel trends assumption, conditional on X, is in force for the linear index.

The data generating mechanism implies T−1∑ t1
T PYt0  1 ≈ 0.315,

T−1∑ t1
T PYt1  1 ≈ 0.405, and so there is reasonable balance in both potential outcomes

between zero and one. The ATTs – the target parameters – are obtained by averaging across

the 1,000 Monte Carlo replications. The logit conditional mean is estimated using pooled logit

and the linear mean is estimated using pooled OLS. The R-squared from the linear POLS
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estimation is about 0.205, which seems realistic given that D, year dummies, and the covariate

are controlled for flexibly.

The method proposed by Callaway and Sant’Anna (2021), where the comparison group is

the never treated group (the default in Stata), is also included in the simulation . The two tests

for pre-trends are computed for the pooled logit and pooled OLS estimation. The findings are

reported in Table 6.1.

Table 6.1: Binary Response, Common Timing, Logistic Errors

1,000 Replications Sample ATT Logit (Pooled Bernoulli) Linear (Pooled OLS) CS (2021)

N  500 Mean Mean SD Mean SD Mean SD

4 0. 061 0. 060 0. 022 0. 062 0. 037 0. 061 0. 042

5 0. 094 0. 093 0. 024 0. 094 0. 037 0. 093 0. 044

6 0. 113 0. 113 0. 026 0. 113 0. 038 0. 112 0. 044

Event Study Rejection Rate (2 df) —– 0. 060 0. 051 —–

Heterogeneous Trend Test (1 df) —– 0. 053 0. 042 —–

In this first scenario, the relative performance of the estimators is clear. Even with only 500

cross-sectional units, all three approaches show little bias when compared with the sample

ATTs (which are averaged across the 1,000 simulations and should be close to the population

ATTs). In terms of precision, the correctly specified logit is much preferred, having Monte

Carlo standard deviations no more than 69% of the linear model SDs. Not surprisingly, the CS

(2021) estimators, which use only the single period prior to the intervention as the control

period, are the least precise. Given that the logit model is correctly specified we hope that the

parallel trends tests in the logit estimation have rejection frequencies close to the nominal size,

0.05, and that is the case. Because the linear model is misspecified, we might expect that the

parallel trends tests should reject, but they also reject right around a 5% rate. In this scenario,

that is not a bad thing because the linear model estimates show essentially no bias.
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In other scenarios, the approaches based on the linear PT assumption can be badly biased.

Table 6.2 reports on a simulation where the potential outcomes are generated as

Yt0  10.4  f4t  0.5  f5t  0.6  f6t  X − 1/2 − 2D  Ut0  0, t  1, . . . ,T

Yt1  10.9  f4t  1.1  f5t  1.3  f6t  X − 1/2 − 2D  Ut1  0, t  4, . . . ,T

    (6.4)

    (6.5)

The ATTs in this case are time varying and increasing. Again, the index satisfies the

conditional PT assumption. In this case the average response probabilities are slightly larger

than before: T−1∑ t1
T PYt0  1 ≈ 0.384 and T−1∑ t1

T PYt1  1 ≈ 0.459.

The simulation findings are striking. As it should, the pooled logit estimation is essentially

unbiased. (Simulation results for the probit estimator show a slight downward bias, but well

within the acceptable range.) Unfortunately, not only are the pooled OLS and CS (2021)

estimates badly biased, they are, on average, actually negative, whereas the true ATTs are

positive and practically large. To compound matters, the tests of parallel trends have no power

for detecting the misspecification apparent in using linear methods. A topic for future research

is to obtain diagnostics that would allow one to reject the misspecified linear model so that one

is led to a nonlinear model.

Table 6.2: Binary Response, Common Timing, Logistic Errors

1,000 Replications Sample ATT Logit (Pooled Bernoulli) Linear (Pooled OLS) CS (2021)

N  500 Mean Mean SD Mean SD Mean SD

4 0. 079 0. 078 0. 028 −0. 049 0. 036 −0. 049 0. 043

5 0. 114 0. 114 0. 031 −0. 037 0. 038 −0. 037 0. 045

6 0. 159 0. 158 0. 038 −0. 012 0. 042 −0. 013 0. 047

Event Study Rejection Rate (2 df) —– 0. 043 0. 055 —

Heterogeneous Trend Test (1 df) —– 0. 054 0. 042 —

In a third scenario, the errors Ut0 and Ut1 are generated to have Uniform−2,2

distributions, where each depends on the common heterogeneity, C, as before. The potential
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outcomes are generated as in (6.3) and (6.4). Now, T−1∑ t1
T PYt0  1 ≈ 0.319 and

T−1∑ t1
T PYt1  1 ≈ 0.397. When the support in the uniform distribution is sufficiently

wide, the linear model is essentially correctly specified. Therefore, we might expect the the

linear model to perform relatively well in this setting. The findings are reported in Table 6.3.

Table 6.3: Binary Response, Common Timing, Uniform Errors

1,000 Replications Sample ATT Logit (Pooled Bernoulli) Linear (Pooled OLS) CS (2021)

N  500 Mean Mean SD Mean SD Mean SD

4 0. 112 0. 111 0. 026 0. 111 0. 039 0. 111 0. 044

5 0. 159 0. 159 0. 029 0. 159 0. 041 0. 159 0. 047

6 0. 184 0. 183 0. 031 0. 183 0. 042 0. 182 0. 047

Event Study Rejection Rate (2 df) —– 0. 038 0. 046 —

Heterogeneous Trend Test (1 df) —– 0. 053 0. 049 —

Interestingly, while all methods show little bias, the logit estimator is substantially more

efficient than the linear model or CS estimates. Evidently, the ramp function is well

approximated by the logistic function, leading to better precision (and essentially no bias). As

before, the parallel trends tests reject right around 5% of the time even though, technically,

both the linear and logit models are misspecified. And, again, this is a good outcome because

the methods are doing very well for uncovering the ATTs.

In the final simulation for the binary response case, the potential outcomes are generated as

in (6.4) and (6.5) with the errors having Uniform−2,2 distributions. The summary statistics

in this simulation do not seem unusual: T−1∑ t1
T PYt0  1 ≈ 0.374,

T−1∑ t1
T PYt1  1 ≈ 0.449, and the R-squared from the pooled LPM estimation is about

0.207. Because D is generated as before, PD  1 ≈ 0.383. And yet, as shown in Table 6.4,

the logit model now fares considerably worse than the linear model and CS approach,
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exhibiting a severe upward bias in each of the three ATTs. Both the linear regression and CS

estimates have slight downward biases.

Table 6.4: Binary Response, Common Timing, Uniform Errors

1,000 Replications Sample ATT Logit (Pooled Bernoulli) Linear (Pooled OLS) CS (2021)

N  500 Mean Mean SD Mean SD Mean SD

4 0. 126 0. 199 0. 032 0. 112 0. 042 0. 111 0. 047

5 0. 150 0. 243 0. 034 0. 135 0. 043 0. 135 0. 048

6 0. 175 0. 287 0. 035 0. 159 0. 043 0. 158 0. 048

Event Study Rejection Rate (2 df) —– 0. 032 0. 048 —–

Heterogeneous Trend Test (1 df) —– 0. 054 0. 050 —–

Simulations are necessarily special and not always realistic. For example, a uniform

distribution for the composite error term, where the response probability can reach zero and

one, does not seem particularly plausible. The purpose of the small study here is to show that

one can obtain very different estimates depending on functional form. With at least one

continuous covariate one can at least explore goodness-of-fit as a possible way of choosing

among different conditional mean models. Unfortunately, the parallel trends tests do not

provide guidance in the simulation settings reported in Tables 6.2 and 6.4.

In some sense, the simulations over many different scenarios can be viewed as exploring

the limits of the bounds on the treatment effects of the kind derived in Athey and Imbens

(2006) when T  2. In empirical practice, one can try a linear analysis along with a sensible

nonlinear model, such as logit, and hopefully draw robust conclusions.

6.2. Count Outcome with Staggered Intervention

I now present simulations for nonnegative outcomes with mass at zero. In the first case,

Yt has a Poisson distribution conditional on unobserved heterogeneity. In particular,
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Yt∗  2  0.2  f2t  0.3  f3t  0.4  f4t  0.5  f5t  0.6  f6t

 X/5 − D4  D5  D6  C

Yt  PoissonexpYt∗

where X is generated as before and C  Normal0,1. The distribution of Yt∗ conditional

only on the cohort indicators is a mixture of a Poisson and lognormal random variable. The

outcomes in the treated stages are generated as

Yt4  PoissonexpYt∗  X − 1/5  0.4  f4t  0.8  f5t  f6t, t ≥ 4

Yt5  PoissonexpYt∗  X − 1/5  0.6  f5t  f6t, t ≥ 5

Yt6  PoissonexpYt∗  X − 1/5  0.4  f6t, t  6

The treatment cohorts are generated using an ordered probit, resulting in the following

(approximate) shares:

PD  1 ≈ 0.356, PD4  1 ≈ 0.291

PD5  1 ≈ 0.226, PD6  1 ≈ 0.127

The population R-squared in the pooled OLS estimation is about 0.126 and

PYt  0 ≈ 0.058 (so zero is not a dominant outcome). The results are reported in Table

6.5.
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Table 6.5: Count Outcome, Staggered Intervention

1,000 Replications Sample ATT Exponential (Pooled Poisson) Linear (Pooled OLS) CS (2021)

N  500 Mean Mean SD Mean SD Mean SD

44 4. 10 4. 09 0. 58 2. 67 0. 81 2. 75 0. 91

45 11. 15 11. 14 1. 38 8. 24 1. 78 8. 36 1. 75

46 17. 27 17. 26 2. 04 11. 92 2. 68 12. 87 2. 56

55 8. 18 8. 18 1. 38 5. 80 1. 75 6. 72 1. 65

56 18. 53 18. 54 2. 84 13. 50 3. 44 15. 44 3. 21

66 6. 34 6. 33 1. 36 1. 59 2. 24 4. 62 2. 08

Event Study Rejection Rate (9 df) — 0. 089 0. 995 —

Heterogeneous Trend Test (3 df) — 0. 064 0. 999 —

The clear-cut winner in this simulation is the exponential mean function (which is correctly

specified) estimated using pooled Poisson regression (where the Poisson distribution is

misspecified). The pooled QMLE is essentially unbiased whereas the pooled OLS estimators

have severe downward biases. The CS estimators show less bias but are still very different, on

average, from the sample ATTs. Moreover, the precision of the Poisson regression estimates is

much better than either POLS or CS.

Compared with the binary case, the outcomes of the parallel trends tests are much more

promising. The event-study-type test rejects in the linear case 99.5% of the time, and the

heterogeneous trends test rejects in 999 out of 1,000 replications. Therefore, one would

conclude that the PT assumption is violated in the linear model. Because the observed Yit is a

count variable, the hope is that one would turn to pooled Poisson regression with an

exponential mean. The PT tests for the exponential model reject only 8.9% and 6.4% of the

time, with the test using the three heterogeneous linear trends having particularly good size

properties.

In the final simulation, I generate Yit as a corner solution outcome: PYit  0  0
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with Yit continuous over strictly positive values. Unobserved heterogeneity is allowed by

setting

Yt∗  0.2  X/5 − D4  D5  D6  C,

where C  Normal0,1. The corner solution outcome is generated with idiosyncratic

variation over time as

Yt  Rt  expYt∗,

where the Rt are independent Poisson1 random variables. In other words, Yt is the

product of a Poisson random variable with unit mean and a random variable with a lognormal

distribution conditional on X. The other cohort potential outcomes, with no anticipation

imposed, are generated to have their own multiplicative idiosyncratic shocks as

Yt4  Rt4  expYt∗  X − 1/5  1.2  f4t  1.6f5t  f6t, t ≥ 4

Yt5  Rt5  expYt∗  X − 1/5  1.2  f5t  1.8  f6t, t ≥ 5

Yt6  Rt6  expYt∗  X − 1/5  f6t, t  6

where the Rtg are mutually independent and distributed as Poisson1. The R-squared from

the POLS regression is about 0.083. The proportion of zero outcomes in the population is

fairly large, PYit  0 ≈ 0.368. The shares of the treatment cohorts are virtually the same

as in Table 6.5. The simulation results are shown in Table 6.6.
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Table 6.6: Corner Solution Outcome, Staggered Intervention

1,000 Replications Sample ATT Exponential (Pooled Poisson) Linear (Pooled OLS) CS (2021)

N  500 Mean Mean SD Mean SD Mean SD

44 2. 14 2. 13 0. 52 2. 14 0. 54 2. 15 0. 74

45 3. 62 3. 61 0. 77 3. 61 0. 80 3. 61 0. 91

46 1. 59 1. 58 0. 43 1. 59 0. 57 1. 60 0. 69

55 2. 28 2. 28 0. 63 2. 28 0. 68 2. 26 0. 99

56 4. 90 4. 89 1. 13 4. 91 1. 23 4. 91 1. 33

66 1. 87 1. 83 0. 75 1. 87 0. 97 1. 90 1. 53

Event Study Rejection Rate (9 df) — 0. 159 0. 044 —

Heterogeneous Trend Test (3 df) — 0. 090 0. 046 —

Interestingly, even though a zero outcome is much more likely compared with the

simulation for count data in Table 6.5, the POLS estimation of the linear model [and CS

(2021)] show no evidence of bias. (This may be partly due to the treatment effects being much

smaller in magnitude.) The exponential mean is correctly specified so the absence of bias for

the Poisson QMLE is not surprising. Because the outcome variable is not close to having a

Poisson distribution, and fairly strong serial correlation is present, there is no guarantee that the

Poisson QMLE using the exponential mean is efficient. Nevertheless, in this scenario the

Poisson QMLE is the most precise of the three estimators. For example, for 46, the POLS and

CS (2021) SDs relative to the pooled QMLE are about 1.33 and 1.60, respectively. As before,

CS (2021) is the least precise by some margin because it uses only the never treated group as

the control group for each cohort and time period.

The linear model is not systematically rejected using the PT tests – a sensible outcome

because the POLS estimators show essentially no bias. The event-study-type test for pooled

Poisson appears to reject somewhat too often: 15.9% for a nominal 5% test and the

heterogeneous trend test rejects slightly too often. The findings suggest that, with this kind of
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data generating mechanism, one would expect the linear and exponential models to produce

similar estimates, with the precision of the pooled Poisson estimator probably being better.

Because the observed outcome is nonnegative with a corner at zero, the exponential mean

model estimated by Poisson QMLE suggest itself a priori as an attractive alternative or

supplement to the linear model.

Other simulation scenarios suggest themselves. For example, one could generate the corner

solutions to follow, say, Tobit models, or two-part models. Then, the exponential mean would

also be misspecified. Preliminary simulations show that both linear and exponential model can

well approximate the ATTs even with more than 50% of the outcomes at the corner.

7. Empirical Application

I apply nonlinear DiD to the data in Di Tella and Schargrodsky (2004), who study an

intervention in July 1994 where more police were assigned to certain blocks in Buenos Aires,

Argentina after a terrorist attack on the main Jewish Center in Buenos Aires. Of 876 blocks, 37

were provided with extra police to protect Jewish centers. While the number of treated units is

relatively small, it is still more than in policy interventions using, say, the 50 states in the

United States.

The data are reported monthly, running from April through December of 1994. Because the

terrorist attack occurred midway through July, a case can be made for dropping July and using

April, May, and June as the pre-intervention months and August through December as the

post-intervention months. I take that approach here.

The outcome variable, thefts, is reported monthly, measured as the weekly average number

of automobile thefts. More than 78% of the outcomes are zero, with increments of 0.25 up

through the maximum of 2.5. Di Tella and Schargrodsky (2004) used a standard linear DiD
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analysis with several robustness checks, such as including covariates and looking at spillover

effects (for which they find no evidence). Here I estimate a linear model and an exponential

model allowing for five different treatment effects by month.

Without covariates, the linear estimation is a standard DiD where thefts is averaged over

the three pre-intervention months, and this is subtracted from the outcome in a particular

treated month. This adjusted outcome is averaged across the treated and control blocks. As a

comparison, I use an exponential model – which has a different underlying PT assumption –

estimated by pooled Poisson regression. Also, the Callaway and Sant’Anna (2021) estimates

are reported in the case of estimating separate effects. Without covariates and with common

timing, the CS (2021) estimates are 2  2 DiDs using June as the only control period and using

each of August through December as treated periods. In other words, the data on April and

May are ignored. The estimates without covariates are given in Table 7.1.

Table 7.1: No Covariates

(1) (2) (3) (4) (5)

(Linear)

Single Effect
(Exponential)

Single Effect
(Linear)

Separate Effects
(Exponential)

Separate Effects
(CS, 2021)

Separate Effects


0.030
−0. 087

0.033
−0. 089 — — —

8 — —
0.041
−0. 081

0.046
−0. 084

0.056
−0. 116

9 — —
0.030
−0. 103

0.032
−0. 103

0.048
−0. 137

10 — —
0.047
−0. 065

0.050
−0. 067

0.062
−0. 099

11 — —
0.031
−0. 091

0.033
−0. 092

0.049
−0. 126

12 — —
0.031
−0. 096

0.035
−0. 098

0.049
−0. 131

Event Study p-value (2 df) 0. 652 0. 650 0. 530 0. 489 —

Heterogeneous Trend Test (1 df) 0. 818 0. 812 0. 576 0. 523 —
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Column (1) effectively reproduces the constant effect specification of Di Tella and

Schargrodsky (2004) when July is not included. It implies that the presence of more police

reduced car thefts by about 0.087 per month, on average – a nontrivial effect compared with

the overall average. The estimate from the exponential mean in column (2) is obtained by

mimicking the linear analysis, where the time-varying treatment indicator is included along

with the indicator of being a treated unit and a single post-intervention period. The estimate

from the exponential model is practically the same, and even slightly less precise.

Columns (3), (4), and (5) show estimates allowing for a different TE in each month. Again,

there are no practical differences between the linear and exponential estimates, with the latter

having slightly larger standard errors. The parallel trends test have large p-values, providing no

evidence against the PT assumption in the linear or exponential means. The CS (2021)

estimates are uniformly larger in magnitude and also less precise. Using only a single

pre-treatment period when two more are available is difficult to justify, especially when there

is no evidence against parallel trends.

Table 7.2 includes three binary covariates in additive form. These are binary indicators of

whether the block houses a bank, public building, or gas station. In the case of a single effect,

these covariates are only interacted with the treatment variable,Wit  Di  postt. In columns

(3) and (4), they are included in a fully flexible way, as described in equation (3.30).
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Table 7.2: With Covariates

(1) (2) (3) (4) (5)

(Linear)

Single Effect
(Exponential)

Single Effect
(Linear)

Separate Effects
(Exponential)

Separate Effects
(CS, 2021)

Separate Effects


0.030
−0. 087

0.035
−0. 087 — — —

8 — —
0.042
−0. 085

0.046
−0. 090

0.056
−0. 119

9 — —
0.030
−0. 105

0.031
−0. 104

0.047
−0. 138

10 — —
0.047
−0. 064

0.050
−0. 066

0.062
−0. 098

11 — —
0.031
−0. 091

0.033
−0. 095

0.049
−0. 125

12 — —
0.032
−0. 097

0.037
−0. 104

0.050
−0. 131

Event Study p-value (2 df) 0. 652 0. 650 0. 542 0. 518 —

Heterogeneous Trend Test (1 df) 0. 818 0. 812 0. 609 0. 571 —

Including the controls has very little impact on the estimates or standard errors for pooled

estimation of the linear and exponential models. These estimators are more precise than the CS

estimators, which show a similar pattern but are somewhat larger in magnitude. One advantage

of the linear and exponential regressions is that one can see the coefficients on the interactions

Wit  Di  frt  Ẋi1 to determine whether there are moderating effects. It turns out that the

presence of a bank on a block drives the treatment effects to essentially zero, a finding that

may be explainable by the idea that car thieves may already think the police presence and other

security is high near blocks that house a bank. One caution is that the estimated effects are

based on relatively few observations. The full set of results and Stata code are available on

request from the author.

In this application – which has a common intervention timing – the exponential model

reaffirms the linear model estimates. In my view, this is not a bad thing. It demonstrates

resiliency to the parallel trends assumption in that imposing it on two fairly different functional
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forms leads to very similar estimates. The simulations in Section 6 demonstrate that in some

cases one will get very similar estimates (on average) and, at least in principle, it is possible to

obtain very different estimates.

8. Extensions

I now discuss some extensions that are straightforward to implement in the current

framework.

8.1. All Units Eventually Treated

The discussion in the previous sections assumed the existence of a never treated group.

This is not necessary, as the methods go through with little change if all units are treated by

t  T. As discussed in Wooldridge (2021) in the linear without an never treated group, initially

the ATTs are defined relative to the potential outcome YtT, which means the average gain

EYtg − YtT|Dg  1 for g  T is is for being first treated in period g rather than the last

period. If the PT assumption is stated for YtT rather than Yt, all of the previous methods

go through. Clearly we cannot estimate a treatment effect for the final treated cohort because

there is no control group at time t  T for g  T. If we thinking about the potential outcome

Yt makes sense, even though we never observe this potential outcome, for t  T the no

anticipation assumption implies EYtT − Yt|Dg  1  0 for g  T. Therefore,

EYtg − YtT|Dg  1  EYtT − Yt|Dg  1 for g  T and t ∈ g,g  1, . . . ,T − 1,

and one can interpret the ATTs just as when there is a never treated group. For g  T and

t  T, we are identifying EYTg − YTT|Dg  1.

As a practical matter, in Procedure 4.2 one drops any term involving DiT because

Dig  Di,g1   DiT  1; consequently, the terms involving DiT are perfectly collinearity

with other variables in the regression – as makes logical sense. In effect, DiT  1 acts as a

62



control group in each of the treated periods.

8.2. A Strategy with Exit

It is also possible to extend the pooled estimation methods to the case where the

intervention turns off for at least some units, possibly in a staggered way. I discuss the linear

case in Wooldridge (2021). The idea is to expand the notation of a cohort to be indexed by the

first and last treatment dates, with the assumption that the intervention is in force over the

entire interval. For example, with T  6 and the first intervention at q  4, the first treated

cohort can be treated for all three periods, the two periods, or only one period. The cohort first

treated at g  5 can be treated for one or two periods. And the final treated cohort is treated for

the one period.

We can represent this situation generally by defining a set of cohort dummies Dg,h for

g ≤ h ≤ T, where g is the first period of treatment and h is the last period. The case h   is

allowed and represents the case of treatment through time T. Initially, assume a never treated

group as indicated by D  1. The potential outcomes are now Ytg,h and the ATTs of

interest are

ghr ≡ EYrg,h − Yr|Dg,h  1, r  g,g  1, . . . ,T

where Yr is the PO in the never treated state. Note that ATTs are defined even when r  h

– that is, after the intervention has been removed. Estimating these ATTs allows one to

determine whether an intervention has lasting effects even after it has been removed.

Estimation is straightforward. In place of the interactions Dg  frt, r  g, . . . ,T, one includes

Dg,h  frt for g ≤ h and r  g, . . . ,T. Even with a modest number of treated periods this can

result in many ATTs, especially if there is exit for each treated cohort. As before, imposing
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restrictions on the parameters of the mean functions, or aggregating the estimated effects, is

easy in principle. If there is no never treated group but there is a group treated only in t  T,

this group plays the role of the control group – just as when there is no exit.

In order to obtain valid standard errors for the ̂ghr, it is easiest to define treatment

indicatorsWt,g,h,r ≡ Dg,hfrt, r  g, . . . ,T, and then obtain the APEs with respect to each of

these, averaging over the subsample corresponding toWt,g,h,r  1.

9. Concluding Remarks and Future Directions

I have proposed a simple yet flexible framework for estimating average treatment effects in

staggered DiD settings when the (conditional) parallel trends assumption holds for a known,

strictly increasing transformation of the conditional mean of the response variable. I argued

that logit, fractional logit, and Poisson regression (with an exponential mean) are particularly

attractive pooled quasi-MLEs. One can estimate a full set of ATTs indexed by cohort/calendar

time or impose restrictions. Or, the estimated effects can be aggregated in various ways.

Covariates are easily accommodated.

One can use an imputation approach, based on first estimating the nonlinear model using

the control observations, or a pooled method. In the leading cases mentioned above, the two

methods are the same, with the pooled method being more convenient for obtaining standard

errors and conducting inference.

I also proposed simple tests of the conditional PT assumption. In the context of the

equation with fully heterogeneous treatment effects, using only the control units or pooling

across all observations leads to the same test – provided the canonical link function is used.

This is true for an event-study type test that includes pre-treatment indicators as well as a test

(with fewer degrees of freedom) that includes cohort-specific trends. I argue that the later
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approach also leads to a sensible correction when PT is thought to be violated.

The simulations show that the nonlinear methods have essentially no bias when the

conditional mean is correctly specified, and seem to work well under certain misspecifications.

The possibility of using data-driven methods to choose among different transformation

functions, G, should be further explored, although there is a limit to what the data can tell

us. In simple cases – such as T  2 without covariates – the data are silent on the choice of

G. When we have multiple pre-treatment periods, covariates, or both, model selection tests

of the kind discussed in Rahmani and Wooldridge (2019) might be useful. However, as

discussed in Section 4, restricting oneself to canonical link functions based on the nature of Yit

is attractive.

As discussed in Section 8, it is essentially trivial to handle the situation where all units are

treated by time period T. Moreover, with enough units in the treatment cohorts, one can handle

staggered exit by defining a richer set of cohort dummy variables. How this method works

when the cohort cells might be small remains to be seen – especially if used with nonlinear

models.

Several additional directions suggest themselves. For example, sometimes the intervention

has more than two levels (control and treatment). Allowing for multiple treatment levels seems

relatively straightforward, provided one has enough data. Now one has to allow for multiple

treatment levels as well as different treatment cohorts. Mechanically, it is easy to replace the

binary indicator, Wit in (4.12), with a set of indicators for the different treatment levels. This

would not be completely general because, in principle, one can define cohorts based on first

period treated and first treatment level, but seems like a sensible way to allow cohort

heterogeneity with multiple treatment levels. One could even replace the binary treatment with
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a continuous treatment and estimate the average partial effects with respect toWt across

different treatment levels and averaging by cohort and time period. One word of caution: In the

linear case, it seems unlikely that such strategies are the same as applying TWFE to an

expanded equation – a desirable feature as discussed in Wooldridge (2021). I leave for the

future an analysis of the precise treatment effects being recovered.

Another important practical extension is to replace the time constant covariates, Xi, with

time varying covariates, Xit. To use time-varying covariates in the current setting, at a

minimum they should not be influenced by the policy intervention. In panel data jargon, they

should be “strictly exogenous.” Then, the conditional expectation in (4.13) can be understood

to be conditional on the entire history of the covariates, Xi  Xi1, . . . ,XiT. The PT

assumption is conditional on this history. In principle, with a large enough cross section, one

could include the entire history in the conditional mean at time t – reminiscent of the

Chamberlain (1980) device. It would be natural to conserve on degrees of freedom and replace

Xi with Xit, or maybe also include the unit-specific time averages, X̄i  T−1∑s1
T Xis, as in the

so-called Mundlak (1978) device. The gr would be estimated as the APEs with respect to the

indicatorsWitgr averaged over the subpopulationsWitgr  1.

Finally, the basic approach here should extend to repeated cross sections – as in Abadie

(2005) and Callaway and Sant’Anna (2021) – but the details need to be worked out. For the

identification derivations in Section 4 to extend to the case of repeated cross sections, the

covariates X, being time-constant, are assumed to be determined prior to the intervention –

even though for some units the data are collected after the intervention. For example, in

studying the effects of a staggered rollout of a job training program on older adults, where a

new random sample is obtained each year, X would include variables that are determined prior
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to the intervention – such as family background variables and highest grade achieved by age

25. Strictly speaking, a stationarity assumption would be imposed on the distribution of X so

that sample in each time period are draw from the same distribution; Abadie (2005) and CS

(2021) use assumptions that imply such a stationarity condition. In calculating the treatment

effects, one would compute these as APEs with respect toWgr  1, where Wgr is a treatment

indicator defined for being in treatment cohort g and time period r, averaged over the

subsample withWgr  1.
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Appendix A. Proof of Proposition 4.1

For this appendix, the notation is easier if when variables are lower case. Plus, that

emphasizes the results are algebraic in nature; they hold for any outcome of data provided

there is no perfect collinearity.

The following proposition is useful for establishing the equivalence between the pooled

QMLE formulation of the estimators in Section 4 and their imputation counterparts.

Proposition A.1: Consider a panel data set yit,hit,mit,wit : t  1, . . . ,T; i  1, . . . ,N

where hit is 1  K, mit is 1  L, and wit is a binary indicator. Further, assume that witmit  mit

for all i and t [so that 1 − witmit  0]. For a strictly increasing function G defined on R,

let ̃ and ̃ be unique solutions to the equations

∑
i1

N

∑
t1

T

hit
′ yit − G hit̃  mit̃  0

∑
i1

N

∑
t1

T

mit
′ yit − G hit̃  mit̃  0

    (a.1)

    (a.2)

Let ̂ be the unique solution to the equations

∑
i1

N

∑
t1

T

1 − withit′ yit − G hit̂  0     (a.3)

If for some L  K matrix A, withit  mitA for all i, t then

̂  ̃.      (a.4)

Proof: Because 1 − wit mit  0, conditions (a.1) and (a.2) can be written as

∑
i1

N

∑
t1

T

1 − withit′ yit − G hit̃ ∑
i1

N

∑
t1

T

withit
′ yit − G hit̃  mit̃  0     (a.5)
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∑
i1

N

∑
t1

T

witmit
′ yit − G hit̃  mit̃  0     (a.6)

Because wit2  wit, we can substitute withit  witmitA and use algebra to write the FOCs as

∑
i1

N

∑
t1

T

1 − withit′ yit − G hit̃  A′∑
i1

N

∑
t1

T

witmit
′ yit − G hit̃  mit̃  0     (a.7)

∑
i1

N

∑
t1

T

witmit
′ yit − G hit̃  mit̃  0     (a.8)

Plugging (a.8) into (a.7) gives

∑
i1

N

∑
t1

T

1 − withit′ yit − G hit̃  0,

which is the same set of equations as (a.3) and implies ̃  ̂ by uniqueness. 

To use Proposition A.1 to prove Proposition 4.1, in the general setting with covariates,

choose

hit  1,diq, . . . ,diT, f2t, . . . , fTt,xi,diq  xi, . . . ,diT  xi, f2t  xi, . . . , fTt  xi

and

mit  diqfqt, . . . ,diqfTt, . . . ,diTfTt,diqfqt  ẋiq, . . . ,diqfTt  ẋiq, . . . ,diTfTt  ẋiT

The equations in (a.1) and (a.2) are known to hold for the first order conditions of the pooled

QMLE in the LEF when G−1 is the canonical link function; in fact, this is one common

characterization of the canonical link. By definition of wit, witdigfrt  digfrt, and so

witmit  mit. Moreover, as described in Wooldridge (2021) in the linear case, withit  mitA

for a suitably chosen matrix A. It follows that ̂, from the pooled estimation using all of the

data, equals ̃, the pooled QMLE from the wit  0 estimation.
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The imputation estimate, ̂gr, is

̂gr  Ng−1∑
i1

N

dig yir − G ̂  ̂g  xi̂  xi̂g  ̂r  xi̂r

 Ng−1∑
i1

N

dig yir − G ̃  ̃g  xi̃  xi̃g  ̃r  xi̃r .

For the pooled estimation, the APE with respect to wt – that is, setting it to zero and one – and

evaluating at frt  1, fst  0 for s ≠ r, and averaging over the dig  1 subsample, is

̃gr  Ng−1∑
i1

N

dig G ̃  ̃g  xi̃  xi̃g  ̃r  xi̃r  ̃gr  ẋig̃gr

G ̃  ̃g  xi̃  xi̃g  ̃r  xi̃r .

It is clear that ̃gr  ̂gr if

Ng−1∑
i1

N

digyir  Ng−1∑
i1

N

digG ̃  ̃g  xi̃  xi̃g  ̃r  xi̃r  ̃gr  ẋig̃gr .

But this holds by the FOC for the pooled estimation problem. In particular, the FOC with

respect to gr is

0 ∑
i1

N

∑
t1

T

digfrt yit − G ̃ ∑
hq

T

̃hdih  xi̃ ∑
gq

T

dih  xi̃h

∑
s2

T

̃sfst ∑
s2

T

fst  xi̃s

 ∑
hq

T

∑
sh

T

̃hsdih  fst ∑
hq

T

∑
sh

T

dih  fst  ẋih̃hs

or

∑
i1

N

digyir ∑
i1

N

digG ̃  ̃g  xi̃  xi̃g  ̃r  xi̃r  ̃gr  ẋig̃gr .
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Dividing by N1 gives the result and Proposition 4.1 is proven. 

This result applies to estimation of event study-style equations, where digfst for s  g are

included in hit. By definition of wit, witdigfst  0 (and so these are trivial linear combinations

of mit). The result also extends to the when cohort specific trends, dig  t, are included, and

even with the terms dig  t  xi. The equivalence now follows from the fact that dig  t, which is

included in the vector hit, is such that wit  dig  t is a linear combination of dig  fgt, . . . ,

dig  fTt, which are all in mit. (The coefficients in the linear combination are g, g  1, ..., T.)

Similarly, wit  dig  t  xi is a linear combination of dig  fgt  ẋig, . . . , dig  fT  ẋig.
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