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Abstract

We analyze the dynamic problem of decision makers with quasi-hyperbolic dis-

counting and random shocks to temptation. We show that this problem is equivalent

to that of a standard consumer-saver who assigns biased weights to future shocks.

This equivalence provides a straightforward methodology for characterizing the Markov

equilibrium with hyperbolic agents. Through this equivalent problem, we provide con-

ditions for the existence and uniqueness of the equilibrium. If the weights constitute

a probability measure, the decision maker can be interpreted as optimistically biased,

ensuring a unique equilibrium with continuous decision rules and implying no value for

commitment devices. Otherwise, there is intertemporal “conflict” between present and

future selves: if the conflict is limited, uniqueness is guaranteed.
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1 Introduction

Self-control problems, usually represented by preferences with hyperbolic discounting, have

long been recognized in numerous economic and social choices (see, e.g., Strotz, 1955; Phelps

and Pollak, 1968). They affect many aspects of life, from seemingly mundane everyday

struggles such as “the diet starts tomorrow” to significant economic decisions like retire-

ment saving. Beyond individual behavior, the outcomes of many political decisions resemble

those of individuals with time-inconsistent preferences, even when all parties participating

in decision-making are endowed with standard time-consistent preferences. These issues are

of paramount importance as a rationalization for many corrective policies, forming the basis

for minimum savings requirements (Amador, Werning, and Angeletos, 2006) and giving rise

to the need for fiscal rules (Halac and Yared, 2014, 2018).

Although widely recognized as a relevant feature of economic choices, models capturing

such behavior are difficult to work with. Textbook dynamic-programming tools typically

break down, and these settings are plagued with multiplicity of equilibria and discontinuous

decision rules (see Krusell and Smith, 2003; Chatterjee and Eyigungor, 2016; Cao and Wern-

ing, 2018). The difficulties arise from strategic incentives inherent in these intrapersonal

games: if my future self is going to squander the money, I may prefer to spend it now to

prevent that outcome. Many efforts have been devoted to tackle the intractability. One

approach is to assume näıveté over sophistication: if agents are unaware of their future self-

control problems, the strategic responses that generate technical difficulties are eliminated.

Another approach is the elegant instantaneous gratification developed by Harris and Laibson

(2013), where present self is in control only for a split second. However, these workarounds

are not well-suited in many important settings, where successive decision makers are strategic

and in power for some duration.1

We propose a new methodology to analyze a broad class of hyperbolic models with taste

shocks, drawing on tools from the mechanism-design literature. We show that the hyperbolic

agent’s problem is equivalent to that of a consumer-saver who discounts exponentially but

forms optimistically biased “expectations” of future shocks. This equivalence yields three

main insights. First, it establishes a connection between present bias and optimism bias,

two literatures that have largely developed independently. We show that these behavioral

phenomena are equivalent under certain conditions. Second, while the original problem is

1In political-economy applications that map to hyperbolic discounting, decision makers typically remain
in power for nontrivial duration. The instantaneous-gratification model assumes instant transition and is
at odds with observed tenures. It can also lead to extreme predictions. For example, default risk is central
to both household and sovereign decisions. Felli, Piguillem, and Shi (2025) show that with short-term
debt the instantaneous-gratification model implies a de facto borrowing limit, so default risk never arises in
equilibrium.
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elusive, the transformed problem facilitates a sharp characterization of equilibrium proper-

ties, such as existence, uniqueness, and continuity. Third, the equivalence offers insights for

the demand for commitment devices.

To fix ideas, we consider a present–future selves model of consumption–saving and study

the Markov equilibrium of the intrapersonal game. As in Harris and Laibson (2013), the

present self loses control to the future self stochastically, but with two differences: time

can be either discrete or continuous, and when the temptation arrives, a taste shock is also

realized. These shocks embody the random gratification we emphasize, a feature common in

such models. In a nutshell, this is essentially the β-δ framework with stochastic taste shocks.

As in the mechanism-design literature, we apply the generalized envelope theorem of

Milgrom and Segal (2002) and Sinander (2022) to any candidate equilibrium. This allows us

to express the continuation value function when the agent is out of control in terms of value

function of the agent in control. We show that the mapping between the two is linear and

involves only the underlying shock distribution and the present bias parameter. Using this

mapping, we can eliminate the equation keeping track of the continuation value and collapse

the usual dual Bellman equations into a single equation resembling a standard recursive

consumption-savings problem.

In the transformed problem, although the decision maker discounts future geometrically,

present bias is not lost: it is instead captured by a distorted distribution of future shocks,

which is dominated by the true one, implying an optimistic bias. Intuitively, the optimisti-

cally biased agent forms rosy expectations of the future, believing that rainy days are unlikely

tomorrow, and thus convinces herself to spend more today. Sophistication, the present

self’s awareness of future lack of self-control, in the original problem is not lost either: it

is reflected by the lack of expectations updating in the transformed problem. This failure

to learn precisely captures the present self’s awareness that her future selves will remain

optimistically biased and continue to take biased actions.

We have thus far discussed expectations in a loose way, because the distorted distribution

of shocks may not be a well-defined probability measure, in the sense that it may imply neg-

ative weights for some taste shocks. Technically, our optimistic agent computes expectations

using a signed measure rather than a standard probability measure. While this adds some

technical difficulties, it also provides a deeper and sharper understanding of the underlying

mechanisms at play.

The distorted distribution introduces a notion of conflict, which we distinguish from

disagreement. The present self always disagrees with her future selves about desirable

actions, but they may not necessarily be in conflict with each other—actions that improve

a future agent’s value may also improve the present self’s value. However, when a negative
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weight is assigned to a future state, any value-improving action by and for this future type

reduces the present self’s value. As a result, the agent in control does not want the future

self to maximize. It is in this sense that we say that conflict arises. The negative weights also

reflect strategic complementarities in these games that can generate equilibrium multiplicity:

if I am going to act irresponsibly tomorrow, I should behave badly today.

When the distorted distribution features negative weights, characterizing the solution is

more complex. Even though the equilibrium outcome can be written as the solution to a

recursive optimization problem, the associated Bellman operator between current and future

value functions is not guaranteed to be monotone, so the standard tools no longer apply.

Nevertheless, we provide sufficient conditions under which, although monotonicity may be

lost, the mapping remains contractive, thereby yielding a unique equilibrium. This holds as

long as the cumulative negative weights are not too large, that is, conflict is limited.

In the complete absence of conflicts, the transformed problem is effectively a standard

consumption-savings problem. In this case, the monotonicity of the Bellman operator is

restored, and textbook dynamic-programming tools are back in business, delivering the ex-

istence, uniqueness, continuity of the equilibrium. We also establish necessary and sufficient

conditions under which all weights are positive: the true shock distribution is sufficiently

fat-tailed relative to the degree of present bias. While random shocks generally act as a

smoothing force, this no-conflict condition formalizes how much dispersion is required to

smooth equilibrium outcomes.

We also show that intertemporal conflict, rather than mere disagreement, drives the

demand for commitment. To assess the value of commitment, consider a delegation problem

in which the agent losing control delegates decisions to her future self of unknown type.

Recall that when there is no conflict, although the present self disagrees with her future

self about the precise desirable action, any value-improving action for the future self still

improves the present self’s value. The present self therefore would not wish to constrain

future decisions and prefers full flexibility to respond to shocks. That is, they agree to

disagree. Hence, the conventional wisdom that hyperbolic discounting necessarily entails a

demand for commitment need not hold, and the use of commitment devices may not provide

as clear an empirical identification for hyperbolic preference.

The transformation used to study dynamic intrapersonal games can have broader appli-

cability. For instance, the equivalence extends to situations of future bias, mapping to a

pessimistic agent. While our analysis is largely in discrete time, the same transformation

and equivalence hold in continuous time. In the same way the lack of monotonicity precludes

the use of Blackwell’s sufficient conditions in discrete time, the comparison principle is also

lost in continuous time. Nevertheless, we present a modified comparison principle that is
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applicable to these settings. The conditions for the existence of a unique (viscosity) solution

are analogous to those in discrete time. In both settings, the transformation lends itself to

robust efficient numerical tools for quantitative applications.

1.1 Literature

Since the seminal work of Strotz (1955), a large literature has sought to understand the

subject. Early important contributions date back to quasi-hyperbolic setting of Phelps and

Pollak (1968) and the highly influential work of Laibson (1997). Yet, the technical difficulties

to analyze these types of settings have slowed down the progress.

Many complications related to the subject were pointed out early on, as in Krusell and

Smith (2003), and others surfaced later, as in Chatterjee and Eyigungor (2016) and Cao

and Werning (2018). Although some have been resolved in particular settings, they remain

unresolved in more complicated and empirically relevant contexts. Nowadays, aside from the

simple, yet restrictive, approach by Harris and Laibson (2013), there is no clear systematic

way to approach these problems. In some cases, this simple approach has offered very

interesting results, as in Maxted, Laibson, and Moll (2024) and Maxted (2025). Another

approach is to change the game-theoretical framework altogether, as in Bassetto, Huo, and

Ŕıos-Rull (2024), but it is applicable under very specific conditions. As a result, other than

the time-consistent preference for commitment of Gul and Pesendorfer (2001, 2004), even in

the most recent studies, the workaround is to assume that agents are unsophisticated, as in

Choukhmane and Palmer (2024) and Choukhmane (forthcoming), thereby abstracting from

strategic behavior in individual decision making.

At the same time, other literatures, such as dynamic mechanism design, have been pro-

gressing and generating new tools to overcome technical difficulties, as seen in Amador et al.

(2006), Amador and Bagwell (2013), Halac and Yared (2014, 2018, 2022), etc. In this re-

gard, new theoretical results that are crucial as inputs in mechanism design, like those by

Milgrom and Segal (2002) and Sinander (2022), lay the groundwork for bridging the gap for

the hyperbolic-discounting toolkit. Our transformation, which recasts the problem as choice

under a distorted distribution, resembles the robust-control approach of Hansen and Sargent

(2001, 2008), both enabling sharp characterizations of equilibrium.

Models with hyperbolic discounting are especially relevant in political economy, where

it is possible to show that the usual dynamic “political friction” is isomorphic to quasi-

hyperbolic discounting (see, for instance, Piguillem and Riboni, 2020). There is a large body

of literature building on the seminal works by Alesina and Tabellini (1990) and Persson

and Svensson (1989), and more recently Battaglini and Coate (2008). This body of work
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mostly focuses on debt patterns, but the same arguments apply to every dynamic decision,

including the highly relevant climate policies. Initially, the findings by Barro (1979) seemed

to indicate that such friction was not present, since the U.S. economy appeared to follow

an optimal path. However, the work by Roubini and Sachs (1989) presented suggestive

evidence that it is indeed the case. Apart from some attempts to disentangle whether the

friction was driven by ideological reasons or the “tragedy of the commons,” Pettersson-

Lidbom (2001), the quantification of the friction itself has been elusive. For this reason,

much of the work has moved to theoretical grounds, designing rules to prevent inefficient

outcomes, e.g., Azzimonti, Battaglini, and Coate (2016) and Cunha and Ornelas (2017), or

developing models that generate patterns consistent with the data, e.g., Müller, Storesletten,

and Zilibotti (2016). Yet, a precise, agreed-upon measure does not exist.

Finally, the explicit link that we uncover between hyperbolic discounting and biased

expectations relates to the behavioral literature addressing non-bayesian updating, as in

Epstein (2006) and Epstein, Noor, and Sandroni (2008), projection bias, as in Loewenstein,

O’Donoghue, and Rabin (2003), and strategic ignorance and self-confidence, as in Carrillo

and Mariotti (2000) and Bénabou and Tirole (2002).

2 A random gratification model

2.1 Environment

Time is discrete and infinite, t ∈ {0, 1, 2, · · · }. In each period, there is an agent in control of

decisions, who receives an exogenous source of income y and faces a consumption choice c.

The agent can save and borrow through a risk-free bond b at an interest rate r, subject to

an exogenous ad hoc borrowing limit b > −y/r.
The agent attributes a value to her consumption needs, which we denote as her “taste”

type θ. Specifically, the agent derives a utility from consumption:

θu(c),

where u(·) is strictly increasing and strictly concave, with first-order and second-order deriva-

tives satisfying u′(·) > 0 and u′′(·) < 0. A high taste state is thus associated with a higher

marginal utility from consumption, representing a “rainy day” when the agent needs to incur

a high level of consumption.

Present-future selves. The agent loses control with probability λ ∈ (0, 1] each period.

A new agent then takes control and draws a new taste, which is i.i.d. across agents. The
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Figure 1: Present-future selves

Time t
0 t1

self-0

t1 t2

self-1

t2 t3

self-2

Notes: The figure shows an example timeline, where self-0 is in control for 2 periods, self-1 in control for 4
periods, and self 2 for 1 period.

taste is drawn from a set Θ ≡ [θ, θ̄] according to a cumulative distribution function F (·),
with an expected value E [θ] = 1. The distribution function F (θ) admits a differentiable and

bounded density f(θ).2

All agents, whether in control or not, discount the future exponentially with a discount

factor δ < 1. However, the present self discounts the utilities of future selves by an additional

factor β ∈ (0, 1]. We refer to β as the present-bias parameter.

The environment encompasses a deterministic present-biased model as a limiting case:

the transition from present to future selves occurs every period, and the taste for consumption

is constant, i.e., λ = 1 and θ = θ̄ = 1. While we interpret the present-future selves as an

intrapersonal self-control issue and focus on household consumption-savings problem, the

interpretation extends to present-future governments in dynamic political economy.

Hyperbolic agent’s problem. We consider a Markov equilibrium of a game between

present self and future selves. That is, agents’ decisions depend only on the current state,

{θ, b}, and do not depend on the history of past realizations or on time. The Markov

equilibrium follows the standard approach commonly used in the literature. Alternative

concepts include subgame perfect equilibrium and “organizational” equilibrium as discussed

by Bassetto et al. (2024). The problem of the agent in control is:

w(θ, b) = sup
c,b′

{
θu(c) + δ

[
(1− λ)w(θ, b′) + λβE[v(θ′, b′)]

]}
(P )

2In the context of government debt choice, shifts in preferences may reflect changes in the constituency’s
views on the social value of spending. Such evolving opinions could, in turn, influence the country’s fiscal
policy stance. Another interpretation is that preferences vary in response to business cycles. For instance,
Amador et al. (2006) show that under exponential utility, income shocks are equivalent to taste shocks.
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subject to

c+ b′ ≤ y + (1 + r)b (1)

b′ ≥ b (2)

v(θ, b) = θu(c(θ, b)) + δ
[
(1− λ)v(θ, b′(θ, b)) + λE[v(θ′, b′(θ, b))]

]
. (3)

To understand problem (P ), we first note that, as long as λ = 0, it represents a stan-

dard consumption-savings problem, subject to the budget constraint (1) and the borrowing

constraint (2). However, when λ > 0, the present bias starts to play a role. The last term

in (P ) captures the effect of random control: with probability λ the present self loses con-

trol and is replaced by her future self, whose choices lead to a continuation value assessed

as βE[v(θ′, b′)]. Here, two features are noteworthy. First, the future self’s taste is not yet

known, requiring an expectation over future types θ′ ∈ Θ. Second, and more importantly,

the present self discounts the unbiased continuation value by the additional factor β. Nev-

ertheless, the present self has the discretion to decide her consumption and savings while in

control. We denote these decisions by the functions {c(θ, b), b′(θ, b)}.
For a given state {θ, b}, the unbiased continuation value v(θ, b) follows the companion

“accounting” equation (3). One key difference between (P ) and (3) is the bias factor β in the

former equation: once the present self is out of control, all future allocations are uniformly

discounted by β. Having accounted for this bias, all future allocations are geometrically

discounted by a discount factor δ. Equation (3) also captures that the present self takes as

given that her future selves will follow their own optimal choices {c(θ, b), b′(θ, b)}. Sophisti-
cation is properly captured here. The present self is aware of future self-control problems:

when she is no longer in control, her future selves will exhibit the same biases as she did.

We focus our analysis on cases where 0 < β ≤ 1, leaving aside the case with extreme

myopia, β = 0. When β = 0, the present self behaves as a time-consistent agent who assigns

a geometric discount factor δ(1− λ) to the future. In this case, the problem coincides with

the consumption-savings problem of a time-consistent agent. Thus, the bulk of knowledge

from that literature can be applied immediately. Furthermore, in Section 4.2 we discuss the

consequences of future bias, i.e. β > 1.

Definition 1 (Markov Equilibrium). A Markov equilibrium is a collection of value functions

and decision functions

{w(θ, b), v(θ, b), c(θ, b), b′(θ, b)}θ∈Θ,b≥b

that solve problem (P ).
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2.2 Maintained assumptions

We introduce the following assumptions, which will be maintained for the remainder of this

paper. The first assumption concerns the asset position.

Assumption 1 (Boundedness). The borrowing limit satisfies b > −y
r
and there is a maxi-

mum allowed level of assets b̄ <∞, so that b ∈ [b, b̄].

This assumption guarantees the boundedness of the problem. While the assumption

may appear restrictive, it is imposed only for technical convenience. It is not essential for

the main results to hold and can therefore be relaxed. Doing so, however, would introduce

additional complexity in notation and definitions, with little gain in understanding our main

conceptual contributions.3 As an alternative, we can assume that u(·) is bounded or that

consumption is bounded above and below from zero.4 Moreover, it is possible to provide

conditions under which the assumption is without loss of generality: as long as the interest

rate is sufficiently low relative to the discount factor and the lowest type θ, the upper bound

on the asset position b̄ never binds in equilibrium.

Assumption 2 (Distribution). The density function f(·) is differentiable and satisfies |f(θ)| <
f̄ and |f ′(θ)| < f̄ for all θ ∈ Θ, where f̄ <∞.

The assumption requires the distribution of taste types to be smooth, which in turn

guarantees that the adjusted weights that we introduce in the next section are bounded. In

essence, the assumption only requires some dispersion in the taste shocks and thus rules out

deterministic hyperbolic models. This is a mild condition and is satisfied by all commonly

used distribution functions.

3 Transformation

In this section, we show that the Markov equilibrium can be equivalently represented as the

recursive problem of an agent who assigns biased weights to future taste shocks.

3.1 Mapping to a recursive problem

We start by establishing a useful relation in the following lemma.

3See Alvarez and Stokey (1998) and Rincón-Zapatero and Rodŕıguez-Palmero (2003) for existence and
uniqueness results of dynamic programming in environments with unbounded returns.

4We rule out pathological equilibria in which the present self consumes zero, anticipating that future
selves will consume zero. When the utility of zero consumption is negative infinity—for example, under a
log utility function—such pathological cases can indeed be the basis of an equilibrium. We disregard these
cases as in Harris and Laibson (2013) and Cao and Werning (2016).
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Lemma 1 (Value functions). In any Markov Equilibrium, for all b ∈ [b, b̄], the value func-

tions are absolutely continuous in θ and, for almost all θ ∈ Θ, satisfy

βv (θ, b) = w (θ, b)− (1− β)θwθ (θ, b) . (4)

Proof. See Appendix A.1.

The relation in Lemma 1 follows from the linearity of the value functions in the (exoge-

nous) state θ and the parameter β. The key step is to appeal to the Envelope Theorem

in the sequential representation of problem (P ). It may appear surprising to many readers

that only Assumption 1 is required since the classical Envelope Theorem relies on the dif-

ferentiability of the optimized indirect value function. However, the modern version of the

Envelope Theorem does not rely on it, as shown by Milgrom and Segal (2002) and Sinander

(2022), and holds for arbitrary choice sets. For this reason, the relationship in Lemma 1

holds almost everywhere. When it fails, it does so only in a set of measure zero. What is

needed is that the partial derivative of the utility function with respect to θ exists, and that

the family {θu(ct)}∀ct is absolutely equicontinuous in θ. The first condition is obvious given

the linearity, while Assumption 1 ensures that the second condition is also met.5 As pointed

out by the latter paper, this assumption can be relaxed, so it is by no means necessary

for Lemma 1. We have chosen to work with bounded payoffs to emphasize our conceptual

contribution and to avoid dealing with technical complications, which, despite generalizing

the results, would add little to the substance of the insights.

Another key feature of problem (P ) is that the constraint set does not directly depend

on θ. Departures from this independence would not invalidate the lemma per se, but they

could introduce additional terms to the relationship. Such type-dependent constraint sets

arise, for instance, when either the interest rate, the borrowing constraint, or both depend

directly on θ. Nevertheless, in applications to government debt, Felli et al. (2025) extend

this result to an environment with sovereign default, where both the interest rate and the

borrowing limit endogenously depend on θ.

Lemma 1 allows us to reduce the complexity of problem (P ). Specifically, we can replace

the hard-to-handle continuation value function v(θ, b) using the relation in equation (4)

and subsequently drop the companion equation (3). This substitution introduces the term

wθ(θ, b), which can be further eliminated through integration by parts. This step is possible

because Lemma 1 also implies that w(θ, b) is absolutely continuous in θ. It is in this process

5Our assumption, i.e., bounded payoffs, is strong and can be significantly relaxed. It makes sure that the
environment also satisfies the conditions for Theorem 2 of Milgrom and Segal (2002) and, more specifically,
corresponds in essence to Example 1 in Sinander (2022). For a definition of absolute equicontinuity see
Definition 1 in the latter.
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that a distorted “distribution” appears, as we present in the following proposition.

Proposition 1 (Equivalence). The collection {w(θ, b), c(θ, b), b′(θ, b)} is part of a Markov

Equilibrium if and only if it solves the following recursive problem:

w(θ, b) = sup
c,b′

{
θu(c) + δ

[
(1− λ)w(θ, b′) + λ

∫ θ̄

θ

w(θ′, b′)dG(θ′)

]}
, (P̂ )

subject to the budget constraint (1) and the borrowing limit (2), where the recursive agent

assigns the following cumulative weights to the taste shocks:

G (θ) =

F (θ) + (1− β) θf (θ) , for θ ∈
[
θ, θ̄
)

1, for θ = θ̄.
(5)

Proof. See Appendix A.2.

Behind the equivalence result in Proposition 1 is the mapping in the continuation value

functions. Specifically, when the agent loses control, her expected continuation value can be

expressed as follows:

β

∫ θ̄

θ

v (θ, b) dF (θ) =

∫ θ̄

θ

w (θ, b) dG(θ). (6)

The equivalence suggests that the Markov equilibrium can instead be characterized by

problem (P̂ ), which involves a single Bellman equation and a single value function as in

standard consumption-savings problems. However, this equivalence does not necessarily im-

ply that the equilibrium features are the same as those in the standard consumption-savings

model. The key distinction lies in the adjusted function G(θ), which may not constitute a

well-defined probability measure. For this reason, we will refer to it as a weighting function

rather than a distribution function.

3.2 Properties of the biased weights

We now study the properties of the weighting function G(θ) and compare it to the true

distribution of the taste shocks.

A story of biased expectations. One interpretation of Proposition 1 is that the Markov

Equilibrium of an agent with hyperbolic discounting is equivalent to that of an agent with

exponential discounting but biased expectations about future shocks. This bias is persistent:

even after observing shock realizations, she does not update or correct her expectation ac-
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cordingly. Although the agent appears to discount the future in a time-consistent manner,

she updates her expectations inconsistently.

To see the biases in expectations more clearly, a quick inspection of equation (5) re-

veals that the transformation tends to shift weights downward, and some straightforward

calculations show that:

Corollary 1 (Optimism). The equivalent agent is optimistically biased about the future:

(i) F (·) dominates G(·): F (θ) ≤ G(θ), ∀θ ∈ Θ, with strict inequality for some θ ∈ Θ.

(ii) The adjusted weights imply a weighted average
∫ θ̄

θ
θdG (θ) = β.

Proof. See Appendix A.3.

Corollary 1 states that the equivalent agent assigns more weights to shocks with lower

future spending needs, resulting in an expected value of
∫ θ̄

θ
θdG (θ) = β, which is below the

true expected value E[θ] = 1. We say that the equivalent agent is optimistic: she acts as

if her future consumption needs would be lower than those implied by the true distribution

F (θ). Intuitively, as the agent anticipates lower consumption needs in the future, believing

that the odds of “rainy days” when she would need to spend a lot of money are lower, she

justifiably spends more and saves less today. From this perspective, present-biased agents

are behaviorally equivalent to agents who display an optimistic bias about the future. In

other words, myopia can serve as a microfoundation for optimism, and, conversely, optimism

can provide a foundation for myopia.

Sophistication, the present self’s awareness of future lack of self-control, in the original

problem is reflected by no updating of expectations in the transformed problem. The opti-

mistic agent forms a biased expectation and does not learn about the true distribution of

shocks, even after disproportionately many occurrences of high taste events. This persistent

bias in expectations precisely captures the present self’s awareness that her future selves will

remain optimistically biased and continue to take biased actions.

The transformation of the hyperbolic agent’s problem bears resemblance to the robust

control approach introduced by Hansen and Sargent (2001, 2008). Their framework refor-

mulates the problem of a decision maker concerned about model misspecification to one in

which the decision maker behaves as if she distorts probabilities to guard against poten-

tial misspecification. This probability distortion captures a form of pessimism or caution,

by evaluating actions as if adverse scenarios were more likely to occur than suggested by

the benchmark model. In a similar vein, our transformation reinterprets the hyperbolic

agent’s intertemporal inconsistencies as optimistic biases in the probability assessment of
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future events. Thus, just as robust control captures concerns about misspecification through

distorted beliefs, our approach recasts present bias in terms of biased expectations.

Our interpretation of “expectation” thus far has been in a general sense, not strictly

confined to the conventional definition in probability theory. The weights assigned to the

taste states are given by:

dG (θ) =


(1− β)θf(θ), for θ = θ

[(2− β) f (θ) + (1− β) θf ′ (θ)] dθ, for θ ∈
(
θ, θ̄
)

−(1− β)θ̄f(θ̄), for θ = θ̄.

(7)

The weights in equation (7) capture how the transformation in equation (5) tends to shift

the weights downward. At the bottom of the taste distribution, since there is no type below

θ, a positive mass of size (1 − β)θf(θ) can accumulate here. At the top, a mass of size

(1− β) θ̄f
(
θ̄
)
might be taken away. In the interior, the adjusted weights depend on how

the density changes as taste increases. Thus, the weights may include negative values in

the interior or at the top of the taste distribution. In this sense, G(θ) is not a probability

measure but rather a signed measure.

We characterize conditions under which G(θ) indeed constitutes a well-defined probability

measure, i.e., the weights in equation (7) are positive for all possible taste states. We establish

a necessary and sufficient condition for these scenarios below.

Condition 1 (No conflict). The taste distribution satisfies:

(i) The speed at which the density decreases is bounded below:

θf ′ (θ)

f (θ)
≥ −2− β

1− β
, ∀θ ∈ Θ. (8)

(ii) The taste distribution is unbounded at the top:

θ̄ = ∞ and lim
θ→∞

θf(θ) = 0.

Condition 1 characterizes all cases in which G(θ) constitutes a well-defined probability

measure. It consists of two items. Item (i) guarantees that the weight in the interior of the

taste distribution is positive: as long as the density does not decrease too fast, as in (8), the

adjusted weights are positive. Item (ii) guarantees that the weight at the top is positive.

At the top, a mass of size (1− β) θ̄f
(
θ̄
)
might be taken away. To guarantee this mass is

zero, if θ̄ is bounded, it requires that the density f
(
θ̄
)
= 0, which would be a problem since
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Figure 2: A Pareto distribution example

(a) Cumulative weights
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(b) Weights
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Notes: F (θ) is a Pareto distribution with parameter ζ = 2 for θ ∈ [0.5,∞). For a given value of β, panel

(a) plots the adjusted cumulative weights G(θ;β), while panel (b) plots the weights dG(θ;β) at mass points

and the density g(θ;β) = G′(θ;β) at non-mass points.

(8) will be violated at θ̄. Hence, only when the taste distribution is unbounded, θ̄ = ∞, a

negative mass at the top is avoided.6 Revisiting Corollary 1, we can now say that the true

distribution F (·) first-order stochastic dominates the biased distribution G(·).
Condition 1 essentially requires that the distribution be sufficiently fat-tailed relative

to the degree of present bias. A broad class of fat-tailed distributions would satisfy this

condition. We provide such an example below.

Example 1 (Pareto distribution). Suppose θ follows a Pareto distribution with a tail param-

eter ζ > 1 for θ ∈ Θ = [θ,∞). The lower bound θ = ζ−1
ζ

such that the mean is normalized

to 1. Condition 1 holds if the tail parameter satisfies ζ ≤ 1
1−β

.

The Pareto distribution exhibits a constant speed of decline in the density, θf ′ (θ) /f (θ) =

−ζ − 1, ∀θ ∈ Θ. The bound in (8) is satisfied when ζ ≤ 1
1−β

. To illustrate how present bias

translates into a biased expectation, Figure 2 is constructed with ζ = 2, considering varying

degrees of bias β ≥ 1/2. Panel (a) shows that the adjusted cumulative weight G(θ; β) always

lies above the true one F (θ), and hence is first-order stochastic dominated by the latter. As

the bias becomes more severe, that is, as β decreases, G(θ; β) shifts further upward. Panel

(b) depicts the weights, which move downward everywhere relative to the true density, except

at the lower bound where a mass accumulates. When β = 0.5, the optimistic bias is at the

extreme of Condition 1: the agent behaves as if she assigns the entire weight to the lowest

possible future spending need and expects that event to occur with certainty.

6There is no distribution with finite θ̄ that simultaneously satisfies (i) and f(θ̄) = 0. We thank Manuel
Amador for this observation, who also provided us with a proof, which is available upon request.
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Figure 3: A uniform distribution example

(a) Cumulative weights
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Notes: F (θ) is uniform distribution over the domain [0.5, 1.5]. For a given value of β, panel (a) plots the

adjusted cumulative weights G(θ;β), while panel (b) plots the weights dG(θ;β) at mass points and the

density g(θ;β) = G′(θ;β) at non-mass points.

A story of disagreement and conflict. The discrepancies between the adjusted weights

and the true distribution have two additional implications. Bear in mind that for the agent

in control, the expected continuation value upon losing control can be transformed according

to equation (6).

First, there is disagreement between present and future selves. Specifically, the present

self evaluates the continuation value βv(θ, b) in a different way than the future type θ,

who values its decisions according to w(θ, b). Through the lens of Lemma 1, the fact that

βv(θ, b) ̸= w(θ, b) translates to the gap in the weights: F (θ) ̸= G(θ) almost everywhere, even

when the present self is still assigning a positive density dG(θ) ≥ 0 to that event.

Second, there can be conflict between present and future selves. A conflict arises when-

ever the adjusted weight is negative. What does a negative weight mean? A negative weight

dG(θ) < 0 implies that an increase in the value obtained by a future θ-self, w(θ, b), reduces

the present self’s continuation value. It further implies that the desired actions of the future

θ-self make a negative contribution to the expected continuation value of the present self. As

a result, the present self does not want the future self to maximize its value and, if possible,

would prevent that type from doing it. This manipulation of future actions could occur, for

instance, through the use of commitment devices.

Disagreement and conflict have a key difference. Present bias always leads to disagree-

ment, as the present and future selves disagree on the desired actions to be taken. However,

if there is no conflict, dG(θ) ≥ 0, the present self would agree to let future selves optimize at

their discretion: they agree to disagree. In contrast, when there is conflict, the present self

will actively seek to control the actions of future selves. We show later that this distinction

plays an important role in determining the efficiency properties of the equilibrium.
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We conclude the discussion with an example where Condition 1 fails, leading to conflicts.

Example 2 (Uniform distribution). Suppose θ ∼ U
(
θ, θ̄
)
, where θ + θ̄ = 2.

In Example 2, the uniform distribution features a constant density, θf ′ (θ) /f (θ) = 0,

∀θ ∈ Θ, thus satisfying (i) of Condition 1. However, given that the type distribution is

bounded at the top, item (ii) of Condition 1 fails, leading to a negative adjusted weight at

the top. That is, there is conflict at the top. In Figure 3, we provide an illustration by

setting θ = 0.5 for β ∈ {0.8, 0.6}. In panel (a), the cumulative weights are above the true

cumulative density function before reaching the top of the taste distribution and jump down

to 1 at the top, implying a negative weight there. In panel (b), as present bias becomes more

severe, that is, as β decreases, the negative mass increases, leading to a bigger conflict.

4 Equilibrium characterization

We now proceed to analyze the properties of the equilibrium. Working directly with the

original problem (P ) can be cumbersome and may require imposing numerous assumptions.

Instead, with problem (P̂ ), one can appeal to a wide range of tools readily available for

studying recursive problems.

We first establish the existence of equilibrium in general. In problem (P̂ ), since the

adjusted weights always sum up to one,
∫
Θ
dG(θ) = 1, and the discount factor δ < 1, a quick

observation of the Bellman operator makes clear that it exhibits discounting. One must then

be tempted to appeal to Blackwell’s sufficient conditions and argue that it is a contraction.

However, whenever there are negative weights, the operator is no longer guaranteed to be

monotone, and thus one of Blackwell’s sufficient conditions is not satisfied.7 Nonetheless,

the failure of monotonicity does not necessarily preclude the existence or uniqueness of

equilibrium. In the subsequent analysis, we show that problem (P̂ ) admits a solution, thereby

guaranteeing the existence of a Markov equilibrium.

Proposition 2 (Existence). There exists at least one solution {w(θ, b), c(θ, b), b′(θ, b)}θ∈Θ,b≥b

to problem (P̂ ).

Proof. See Appendix A.5.

Proposition 2 establishes that the existence of a Markov equilibrium is not a concern. Its

existence is guaranteed under fairly weak conditions. Here, we appeal to the Schauder Fixed-

Point Theorem adapted to bounded and continuous functions. By contrast, the potential

7It is well established that numerical solutions of quasi-hyperbolic discounting problems can often en-
counter convergence problems (see Chatterjee and Eyigungor, 2016). These issues could originate from the
lack of monotonicity, which is straightforward to see in problem (P̂ ), but difficult to grasp in problem (P ).
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multiplicity of equilibria presents a more substantive challenge. To address this, we next

analyze economies with limited conflict and those without conflict.

4.1 Limited conflict

Although problem (P̂ ) has a standard structure, some complications may arise. Indeed, in

general, the Bellman operator of a deterministic present-biased consumer is not a contraction

mapping, and only in the narrow limit when β → 1 it is guaranteed to be contractive (see

Harris and Laibson, 2001, 2003). In our random environment, the conditions for contrac-

tion and uniqueness can be relaxed. We provide sufficient conditions—the conflict between

present and future selves is limited—for the equilibrium to be unique. Loosely speaking,

limited conflict requires that the total measure of negative weights is not too large relative

to the degree of present bias.

One obvious starting point is to consider economies when there is no conflict between

present and future selves at all. The problem (P̂ ) becomes a standard time-consistent

consumption-savings problem and shares all of its standard properties. We can apply text-

book dynamic programming methods, specifically Blackwell’s sufficient conditions for con-

traction mapping, which not only delivers the existence of its solution but also the uniqueness.

As discussed earlier, when conflict is present, the operator can be non-monotone. To under-

stand the uniqueness properties, we need to resort to other tools. One could conjecture that

by limiting the amount of conflict the uniqueness could be restored. This conjecture turns

out to be true, and we establish sufficient conditions under which it holds.

For convenience, we separate the type set into two subsets: a set of positive measures

Θ+ = {θ ∈ Θ : dG(θ) ≥ 0} and a set of negative measures Θ− = {θ ∈ Θ : dG(θ) < 0}. By

the Jordan Decomposition Theorem these two sets exist and the decomposition is unique.

We then let G+ =
∫
Θ+ dG(θ) denote the measure of the positive set and G− = −

∫
Θ− dG(θ)

the measure of the negative set such that G+ −G− = 1.

Condition 2 (Limited conflict). The cumulative negative weights are limited:

G− <
1− δ

2λδ
. (9)

Naturally, Condition 2 is a weaker condition than Condition 1, as the latter would imply

that G− = 0. Moreover, in the condition specified in (9), the dependency on β is implicit

in the ranges where negative weights can arise. For instance, in Examples 1 and 2, this

condition would translate into a lower bound on β. In the first example, G− = 0 as long as

β ≥ (ζ − 1)/ζ. In the second example, G− = (1 − β)θ̄f(θ̄) > 0. Hence, the normalization
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E(θ) = 1 implies that the inequality (9) is satisfied as long as

(1− β)
θ̄

2(θ̄ − 1)
<

1− δ

2λδ
,

which is satisfied for a wide range of parameters, including the possibility of the whole range

β ∈ (0, 1]. With a more severe present bias, it requires a heavier time discounting, a larger

shock dispersion, or a lower arrival probability of temptation. Then, we have

Proposition 3 (Uniqueness: limited conflict). If Condition 2 is satisfied, then there exists

a unique solution {w(θ, b), c(θ, b), b′(θ, b)}θ∈Θ,b≥b to problem (P̂ ).

Proof. See Appendix A.6.

The proof of Proposition 3 relies on the Contraction Mapping Theorem, which is standard

and can be found in many places, e.g. Stokey, Lucas, and Prescott (1989).8 There are two

main complications for its direct application. First, the appealing properties of probability

measures can no longer be taken for granted with our weighting function, which is a signed

measure, but Lemma A1 in the appendix makes sure that the continuity and boundedness of

the operator is preserved, as long as the signed measure is finite. Second, given the operator

may not be monotone, additional conditions need to be imposed on negative measures to

guarantee it is contractive.

To see the role of Condition 2 more clearly, we rewrite inequality (9) as:

δ

[
1− λ+ λ

∫
θ∈Θ

|g(θ)|dθ
]
< 1.

Here, the total variation of the signed measure G(θ) is
∫
θ∈Θ |g(θ)|dθ = G+ +G− = 1+ 2G−.

The cumulative negative weights drive how much monotonicity may be lost. They also

reflect strategic complementarities in this type of games: if I am going to act irresponsibly

tomorrow, I should behave badly today. In this sense, the good value tomorrow has a

negative impact today. If G− = 0, then as any other probability measure its total variation

is 1, and problem (P̂ ) is always contractive. When G− > 0, the total variation is larger than

1, generating an expansive force. Hence, for the mapping to remain contractive, this force

must be counterbalanced by either a lower discount factor or a lower arrival probability of

temptation.

We conclude this discussion by noting that, beyond its theoretical advantages, the trans-

formed problem offers numerical benefits. The original problem is difficult to work with in

8In particular, see Theorems 9.6, 9.7 and 9.8 in Chapter 9. Since G(·) is not necessarily a probability
measure, Lemma 9.5 must be substituted by our Lemma A1 in Appendix A.4.
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quantitative analysis; as Chatterjee and Eyigungor (2016) show, numerical algorithms with

the inevitable discretization often fail to find an equilibrium, even when an equilibrium is

known analytically. By contrast, our transformed problem is robust in finding an equilibrium

with the same efficiency required to find a solution in standard consumption-savings models.

Hence, it provides a powerful tool for quantitative analysis.

4.2 Future bias

So far we have focused on the case with β < 1, leading to a present bias. It is straightforward

to extend Lemma 1 and Proposition 1 to the case in which β > 1. This would capture the

situations where agents have a future bias, potentially leading to excessive savings or starting

an activity too early. Although present bias preferences are more prevalent in the literature

than future bias, experimental evidence shows that the latter are also present (see for example

Benhabib, Bisin, and Schotter, 2010; Takeuchi, 2011).

In this case, our expectation interpretation is reversed to that of a pessimistic agent.

Intuitively, as the agent anticipates higher consumption needs in the future, believing that

the odds of “rainy days” when she would need to incur high spending are higher, she spends

less and saves more today. That is, future-biased agents are behaviorally equivalent to agents

who display a pessimistic bias about the future.

Although most results on equilibrium characterization continue to hold, additional tech-

nical assumptions may be required to ensure the existence of a well-defined solution. For

instance, whenever δβ > 1, even when the utility function is bounded and the state space is

compact, the value function may be unbounded. Nevertheless, aside from these additional

required assumptions, it is straightforward to show that the limited-conflict Condition 2 for

Proposition 3 would remain unaffected. A quick observation of equation (7) reveals that

when β > 1, any negative measure on the boundaries must occur at the bottom rather

than the top. For example, returning to the uniform distribution example, this condition is

satisfied whenever (β − 1) θ
2(1−θ)

< 1−δ
2λδ

. Therefore, for any combination of parameters λ, δ, θ,

as long as β is not too large, this condition holds, and the equilibrium is unique.

To describe situations without conflict, the inequality (8) in Condition 1 must be reversed

to rule out interior negative weights, provided that β < 2. This limits the speed at which

the density increases. Accordingly, it is satisfied by any decreasing density. For example,

under the exponential distribution, since θ = 0, the adjusted weights would constitute a

well-defined distribution function. We emphasize that this brief discussion is not intended

as a thorough analysis, but rather as illustrative of potential outcomes. We leave a detailed

analysis for future research.
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4.3 No conflict and value of commitment

We now turn to the analysis of economies without conflict. Recall that Condition 1, which en-

sures the absence of conflict, is stronger than Condition 2. Naturally, a unique equilibrium

exists. Furthermore, the problem (P̂ ) resembles a standard time-consistent consumption-

savings problem and shares all of its standard properties. We can apply textbook dynamic

programming methods, specifically Blackwell’s sufficient conditions for contraction mapping,

which delivers not only the existence and uniqueness of a solution, but also additional regu-

larity properties.

We first show that the equilibrium is continuous. That is, the consumption and saving

decisions are continuously increasing in the asset position.

Proposition 4 (Continuity: no conflict). If Condition 1 is satisfied, then the equilibrium

value function w(θ, b) is strictly increasing and strictly concave for all θ ∈ Θ; the decision

functions {c(θ, b), b′(θ, b)} are continuous and increasing in b.

Proof. The proof is standard and therefore omitted.

The continuity of the decision functions in Proposition 4 contrasts with jumps observed

in deterministic taste models (see, for example Krusell and Smith, 2003; Chatterjee and

Eyigungor, 2016). It is intuitive that such jumps, if they occur, result from agents’ desire

to manipulate future outcomes. In the absence of conflict—and thus no incentive for future

manipulation—agents would smooth their consumption. It is also natural that taste shocks

play a role in smoothing agents’ decisions. The no-conflict Condition 1 guarantees that these

shocks are large enough to yield smooth behavior.

Value of commitment. Another implication of no conflict is that agents place no value

on commitment devices. This is by no means obvious. On the one hand, since economies

without conflict are well-behaved, one might conclude that no intervention is necessary.

On the other hand, although conflict is absent, disagreement between present and future

selves still persists. The former may therefore have incentives to manipulate the latter.

This also contrasts with the common wisdom that the inherent time inconsistency leads

to a willingness to pay for assets serving as commitment devices, such as illiquid assets

(mortgages, 401k plans, and IRAs) that lock resources away from future selves.

To formalize this insight, we appeal to the optimal delegation approach: a principal

delegates decisions to an informed but biased agent (see Amador et al., 2006; Amador and

Bagwell, 2013). In our setting, the agent in control is privately informed about her type θ,

which is unobservable to or unverifiable by the principal. Otherwise, first-best allocations
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that fully correct for the bias would be attainable. Hence, the proposed allocations must

be incentive-compatible. Moreover, since contingent transfers are unavailable to provide

incentives, the principal instead restricts the agent’s action set. This leads to a trade-off

between flexibility and commitment : whether to grant the agent the flexibility to respond to

shocks or to impose commitment by limiting the action set.

We implement this approach by considering an “Overlapping Principals” problem, where

each agent plays the dual role of agent and principal. The agent in control must abide by the

rules set by the previous principal and, upon losing control, designs a mechanism that binds

the next agent. As in the Markov equilibrium, the principal can only choose mechanisms,

A = {c(θ, b), b′(θ, b)}θ∈Θ,b≥b, that depend on the payoff-relevant state {θ, b}. That is, the

exiting agent, leaving asset b to the next agent and acting as the principal, chooses a static

incentive-compatible mechanism A to maximize the ex-ante expected continuation value

β
∫ θ̄

θ
v (θ, b;A) dF (θ). Further details on the setup are provided in Appendix A.7.

As shown by Amador et al. (2006), the restriction to static mechanisms is without loss

of generality when λ = 1 so that the taste type is i.i.d. over time. However, when λ < 1 and

tastes are persistent, introducing history dependence could improve outcomes (see Halac

and Yared, 2014). To implement such contract, one would need to resort to equilibrium

concepts weaker than Markov. For this reason, we see our welfare criterion as choosing the

best Markov Equilibrium.

The equivalence transformation is also instrumental in analyzing the solution to the

delegation problem. Specifically, the relationship established in Lemma 1 for equilibrium

allocations extends to any incentive-compatible allocation, as we formalize in Lemma A2 in

the appendix. This is because the envelope condition used to establish this relationship also

holds under incentive-compatible mechanisms. Consequently, we obtain the same mapping

between the continuation values as given in equation (6):

β

∫ θ̄

θ

v (θ, b;A) dF (θ) =

∫ θ̄

θ

w (θ, b;A) dG(θ). (10)

When there is no conflict, all weights dG(θ) are positive. Any optimizing future action

makes a positive contribution to the continuation value. In this case, the agent does not wish

to put any restriction on her future choice set. Hence, flexibility dominates commitment:

full flexibility and no commitment are optimal. We formalize these insights in the following

proposition.

Proposition 5 (Efficiency: no conflict). If Condition 1 is satisfied, the equilibrium is con-

strained efficient. In other words, the agents do not value commitment devices, nor would

they want to blind themselves to any information about their tastes.
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Figure 4: Commitment vs. flexibility
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Notes: In each panel, the red solid line represents the equilibrium consumption c(θ, b) absent any rules, while

the black line depicts the first-best choices cP (θ, b). In panel (a), the blue densely dotted line represents the

optimal incentive-compatible allocation: it features a threshold type θ∗ above which all types are bunched.

Proof. See Appendix A.7.

A common approach to identifying present bias and sophistication is to look at the

willingness to pay for commitment devices, such as illiquid assets (Kocherlakota, 2001). The

no-commitment result in Proposition 5 suggests that the use of commitment devices may not

provide as clear an identification. It also suggests that even if we do not find clear evidence of

willingness to pay for commitment or the use of commitment devices, it does not necessarily

invalidate myopia, nor does it necessarily imply näıveté over sophistication.

To prevent conflict from arising, Condition 1 requires that the density does not decrease

too fast relative to the degree of present bias and that the taste type is unbounded. When

either condition fails, conflict will be present. For example, if the density does not decrease

too fast but the taste type is bounded, as in Example 2, the adjusted weight becomes negative

only at the upper bound. This “conflict at the top” scenario relates our results to the

minimum savings rules prescribed by Amador et al. (2006) and the conditions under which

such rules are optimal. The transformation in (10) helps to understand why. Given that

conflict is present, commitment holds value relative to full flexibility. Specifically, because

the conflict arises at the very top and a negative weight is assigned there, any action that

improves the value obtained by this type makes a negative contribution to the expected

continuation value. It is therefore beneficial to restrict the choices of this type, either by

capping their spending or, equivalently, by imposing a minimum savings requirement, as

illustrated in panel (a) of Figure 4.
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Value of information. To understand the value of information, consider that, instead of

constraining her future choices, the agent now can blind certain information from her future

selves. When there is no conflict, the agent does not value commitment and prefers her future

self to respond optimally to the information available about future states. It follows that

the agent values information, as she would not choose to withhold any of it. This implies

that full information is optimal.

Another immediate implication is that, from the perspective of the equivalent optimisti-

cally biased agent, she would not wish to alter her future belief, which in this case is a

well-defined expectation with positive weights everywhere. In other words, it is optimal for

the agent to stay optimistic and not learn. This result aligns with situations in which strate-

gic ignorance and self-confidence are not desirable, as discussed by Carrillo and Mariotti

(2000) and Bénabou and Tirole (2002).9

5 Continuous-time approach

In this section, we analyze the continuous-time limit of the discrete-time model presented in

Section 2. The continuous-time approach often aligns closely with its discrete-time counter-

part, with no substantive differences in many instances. In this case, we show that while the

transformation and the conditions for existence and uniqueness are analogous to those in

discrete time, we can also show that decision functions are uniquely determined at each debt

level. Moreover, continuous time allows for the possibility of applying alternative numerical

methodologies that often work better in applied settings.

The environment is identical to the one laid out in Section 2, with the following two

mappings of parameters. First, the discount rate is redefined as ρ = − log(δ) ∈ (0,∞).

Second, the transition of the present self to a future self occurs at a Poisson arrival rate

λ̃ = − log(1 − λ) ∈ (0,∞).10 For simplicity, the maintained assumptions, Assumptions 1

and 2, remain in force here.

5.1 Transformation

Markov equilibrium in continuous time. The agent’s value function when in control,

w(θ, b), together with the companion value function v(θ, b), satisfy the following Hamilton-

9While our setup and information structure differ from those in Bénabou and Tirole (2002), Condition 1(i)
coincides with one of the two cases in Proposition 4 of Bénabou and Tirole (2002).

10As λ̃ → ∞, with θ → 1 and θ̄ → 1, the model converges to the instantaneous gratification limit by Harris
and Laibson (2013).
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Jacobi-Bellman (HJB) equations: ∀θ ∈ Θ, b ∈ [b, b̄],

ρw(θ, b) = sup
c≥0

{
θu(c) + (y + rb− c)wb(θ, b) + λ̃ (βE[v(θ′, b)]− w(θ, b))

}
(11)

ρv(θ, b) = θu(c(θ, b)) + (y + rb− c(θ, b))vb(θ, b) + λ̃ (E[v(θ′, b)]− v(θ, b)) . (12)

Parallel to problem (P ), the current agent’s decision function is denoted by c(θ, b), and she

evaluates the continuation value given future agents’ decisions.

The following proposition presents the continuous-time analogue of the equivalence result

in Proposition 1.

Proposition 6 (Equivalence: continuous time). The value function w(θ, b) and decision

function c(θ, b) are part of a Markov Equilibrium if and only if they solve the recursive

problem: ∀θ ∈ Θ, b ∈ [b, b̄],

ρw(θ, b) = sup
c≥0

{
θu(c) + (y + rb− c)wb(θ, b) + λ̃

(∫ θ̄

θ

w(θ′, b)dG(θ′)− w(θ, b)

)}
. (13)

Proof. See Appendix A.8.

Given the similarities between the continuous- and discrete-time versions of the equilib-

rium, it is clear that the economics behind it is the same as previously discussed. One may

wonder, though, if the continuous-time setting is helpful in providing a sharper characteri-

zation. To answer this question, we study the viscosity solution to the HJB equation (13),

which is a partial differential equation. These types of solution coincide almost everywhere

with the classical solution and are instrumental in handling potential kinks. For this reason,

they have become widely used in settings with idiosyncratic income risk. In addition, when

they exist, they are mostly unique. Last but not least, the first-order necessary condition in

equation (13) generates:

θu′(c(θ, b)) = wb(θ, b), a.e.

Since the marginal utility u′(·) is continuous, the properties of w directly translate into those

of c(θ, b). To begin with, it is immediate that there is a unique solution for each combination

of states, something that we were not able to establish in the discrete-time setting whenever

conflict arises G− > 0. In addition, the continuity of wb is passed on directly to c(θ, b).

5.2 Characterization

Before proceeding, we introduce the following definition.
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Definition 2 (Viscosity solution). For any set Ω ∈ R2, let C(Ω) be the set of continuous

functions and C1(Ω) the set of continuously differentiable functions. Then,

(i) A function w ∈ C(Ω) is a viscosity subsolution if for any ϕ ∈ C1(Ω) and any (θ, b) ∈ Ω

where (w − ϕ) attains a local maximum, then:

(ρ+ λ̃)w(θ, b) ≤ max
c≥0

{
θu(c) + (y + rb− c)ϕb(θ, b) + λ̃

∫
w(θ′, b)dG(θ′)

}
.

(ii) A function w ∈ C(Ω) is a viscosity supersolution if for any ϕ ∈ C1(Ω) and any (θ, b) ∈ Ω

where (w − ϕ) attains a local minimum, then:

(ρ+ λ̃)w(θ, b) ≥ max
c≥0

{
θu(c) + (y + rb− c)ϕb(θ, b) + λ̃

∫
w(θ′, b)dG(θ′)

}
.

In the standard definition, w is a viscosity solution, if it is both a viscosity subsolution

and a viscosity supersolution.11 In general to single out the appropriate solution to a problem

a border or boundary condition is necessary. However, in problems with state constraints,

e.g., a borrowing limit, the border values can be difficult to identify. Fortunately, in problems

with such constraints, a slight modification to the definition is enough to ensure that one

is pinning down the right solution and also to obtain uniqueness. See Soner (1986) and

Capuzzo-Dolcetta and Lions (1990) for the earlier treatments of viscosity solutions with

state constraints.

To be precise, define Ω̄ = [θ, θ]× [b, b̄], and let Ω be the interior of Ω̄. Since our problem

has the state constraints b ∈ [b, b̄], w ∈ C(Ω̄) is a Constrained Viscosity Solution to

problem (13) if it is a viscosity subsolution on Ω̄ and a viscosity supersolution on Ω (only in

the interior).

We also introduce a condition to limit the extent of conflicts.

Condition 3 (Limited conflict: continuous time). The cumulative negative weights are lim-

ited:

G− <
ρ

2λ̃
. (14)

Condition 3 is analogous to Condition 2 for generating uniqueness in discrete time. In

both cases, we face the same problem and departure from the standard one: lack of mono-

tonicity of the operator. Monotonicity is a key element in Blackwell’s sufficient conditions,

and it is also extremely useful for establishing uniqueness of viscosity solutions, by appealing

11See Fleming and Soner (2006), Chapter 2, for an extensive discussion and alternative (equivalent) defi-
nitions.
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to the Comparison Theorem, as it implies an ordering of solutions. Quasi-hyperbolic dis-

counting renders most operators non-monotone. The total variation, G+ + G−, determines

how much monotonicity is lost. As long as the agent is not too forward looking relative to

the extent of conflict, that is ρ is large relative to G−, the sophisticated strategic behavior

does not generate major complications.

Analogously to the discrete-time setting, where we lost Blackwell’s sufficient conditions,

in the continuous-time environment we lose the comparison principle due to the potential

negative weights. As a result, we provide conditions for uniqueness relying on a modified

version of the comparison principle in the following proposition.

Proposition 7 (Uniqueness: continuous time). If Condition 3 is satisfied, there exists at

most one Constrained Viscosity Solution to problem (13).

Proof. See Appendix A.9.

We have purposely avoided many technical complications by restricting the analysis to

bounded assets and consumption. This is without loss of generality. We can easily extend the

proofs to the case in which both assets and the utility function are unbounded. This would

require bounding the speed at which the utility can grow.12 These additional technicalities

are common in the standard problem. By incorporating them in our analysis we would have

added clutter with little gains in economic insights.

6 Conclusion

In this paper, we offer a new method to study Markov equilibria with quasi-hyperbolic dis-

counting. These settings are of great interest in the consumption-savings literature, where

hyperbolic preferences are considered a leading candidate for rationalizing many puzzling

behaviors. Beyond that, such settings also arise naturally in dynamic games with heteroge-

neous decision makers and social interactions. Nevertheless, whether behavioral or micro-

founded, these environments are technically challenging and have generated a large literature

approaching the problem from different directions.

Our approach embeds several interesting features. First, it reduces the problem to a

standard recursive maximization problem. This opens the door to using a wide range of

existing tools that were previously not applicable in such settings. Second, it does not

require specific knowledge of either discrete- or continuous-time settings. It works equally

well in both cases. The applied economist can directly use their favorite toolbox. Finally,

12See, for instance, Theorem 9.1 in Fleming and Soner (2006), where a proof with bounded and unbounded
sets is provided.
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the transformed problem is informative about the efficiency and potential corrective policies

that could be implemented. Usually, hyperbolic discounting is viewed as synonymous with

corrective policies, either by governments or through self-generated commitment devices. We

show that this is not necessarily the case.

Our method can have broader applicability. Our proofs rely on readily available tools with

small modifications. The conditions we provide for existence and uniqueness are sufficient,

but by no means necessary. It would be interesting to explore, focusing on the implications

of signed measures for economics, whether these conditions can be related. Future work can

also extend the method to similar dynamic games beyond the quasi-hyperbolic setting here.
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A Proofs

A.1 Proof of Lemma 1

We introduce and work with the sequential representation of (P ). Consider an agent that

comes into control with an initial asset b0 ∈
[
b, b̄
]
. Call the sequence

˜
b = {bt}∞t=0 a plan. Let

Π(b0) =
{
{bt}∞t=0 : bt ≤ y + (1 + r)bt−1 and b ≤ bt ≤ b̄,∀t = 1, 2, · · ·

}
be the set of feasible plans from b0. Let U(bt, bt+1) ≡ u (y + (1 + r)bt − bt+1). The agent’s

problem can then be written in sequential form as

w (θ, b0) = sup

˜
b∈Π(b0)

{
∞∑
t=0

(δ(1− λ))t (θU(bt, bt+1) + βδλE [v (θ′, bt+1)])

}
.

Or, in a more compact fashion:

w(θ, b0) = sup

˜
b∈Π(b0)

{θψ0(
˜
b) + ψ1(

˜
b)} ,

where ψ0(
˜
b) ≡

∑∞
t=0 (δ(1− λ))t U(bt, bt+1) and ψ1(

˜
b) ≡

∑∞
t=0 (δ(1− λ))t βδλE [v (θ′, bt+1)].

13

This problem is akin to a standard optimization problem with payoff R(θ,
˜
b) = θψ0(

˜
b) +

ψ1(
˜
b). The partial ∂R(θ,

˜
b)/∂θ = ψ0(

˜
b) always exists. Since u(·) is continuous and, by

Assumption 1, evaluated in a compact set, it is bounded. Thus, for δ < 1, ψ0(
˜
b) is bounded

too. Hence, the problem satisfies the basic assumptions in Sinander (2022): the Envelope

Theorem and its converse hold. Thus, the value functions are absolutely continuous and

yield

wθ (θ, b0) = ψ0(
˜
b∗) =

∞∑
t=0

(δ(1− λ))t U(b∗t , b
∗
t+1) =

∞∑
t=0

(δ(1− λ))tu (c∗t ) , (15)

where the superscript ∗ indicates that the variables are evaluated at the optimal choices.

In any equilibrium, the following equations also hold:

w (θ, b0) =
∞∑
t=0

(δ(1− λ))t
(
θu (c∗t ) + βδλE

[
v
(
θ′, b∗t+1

)])
(16)

v (θ, b0) =
∞∑
t=0

(δ(1− λ))t
(
θu (c∗t ) + δλE

[
v
(
θ′, b∗t+1

)])
. (17)

13The Principle of Optimality delivers the equivalence between the sequential and recursive problems (see
Stokey et al., 1989, Chapter 4). The required conditions are satisfied: (i) Π(b0) is nonempty, for all b0 ∈

[
b, b̄
]
;

(ii) limT→∞
∑T

t=0 (δ(1− λ))
t
(θU(bt, bt+1) + βδλE [v (θ′, bt+1)]) exists, for all b0 ∈

[
b, b̄
]
and

˜
b ∈ Π(b0).
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Combining equations (16)-(17), we obtain that the equilibrium value functions satisfy

w (θ, b0)− βv (θ, b0) = (1− β)θ
∞∑
t=0

(δ(1− λ))tu (c∗t ) .

Since the summation in the last expression above is equal to wθ (θ, b0), according to equation

(15), we obtain the relation in (4). □

A.2 Proof of Proposition 1

Only if. Suppose first a Markov Equilibrium {v(θ, b), w(θ, b), c(θ, b), b′(θ, b)} exists. By

Lemma 1 we can use the relation in equation (4) to write:

βE [v (θ, b)] =

∫ θ̄

θ

[w (θ, b)− (1− β) θwθ (θ, b)] dF (θ) .

Since F (θ) is differentiable and w(θ, b) absolutely continuous, the integral above exists.

Integrating by parts:∫ θ̄

θ

θwθ (θ, b) dF (θ) =

∫ θ̄

θ

θf (θ) dw (θ, b)

= θ̄f
(
θ̄
)
w
(
θ̄, b
)
− θf (θ)w (θ, b)−

∫ θ̄

θ

w (θ, b) d [θf (θ)] .

Using the last equation in the first:

βE [v (θ, b)] =

∫ θ̄

θ

w (θ, b) d [F (θ) + (1− β)θf (θ)] + (1− β)
[
θf (θ)w (θ, b)− θ̄f

(
θ̄
)
w
(
θ̄, b
)]

=

∫ θ̄

θ

w (θ, b) dG (θ) . (18)

In the last step we have collected all the terms multiplying w(θ, b) into dG(θ). It is straight-

forward then that problems (P ) and (P̂ ) share the same objective function. Since the

constraint sets are identical and c(θ, b) and b′(θ, b) are a solution to problem (P ), it must

that c(θ, b) and b′(θ, b) are also a solution to problem (P̂ ).

If. Now suppose {w(θ, b), c(θ, b), b′(θ, b)} is a solution to problem (P̂ ). In the solution,

the value function w(θ, b) must be differentiable almost everywhere with respect to θ, since

the assumptions of Theorem 2 in Milgrom and Segal (2002) are satisfied. We define v(θ, b)

according to equation (4), which together with the solution constitutes an equilibrium. □
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A.3 Proof of Corollary 1

Since F (θ) is continuously differentiable, G (θ) is also continuously differentiable for θ ∈(
θ, θ̄
)
. However, there are potentially mass points at the ends of the distribution. In par-

ticular, the weight assigned to θ̄ is −(1 − β)θ̄f
(
θ̄
)
, which is strictly negative if f(θ̄) > 0.

Taking into account the potential accumulation points in the borders, the weighted value

can be computed as:∫ θ̄

θ

θdG (θ) = θ × (1− β)θf (θ) +

∫ θ̄−

θ+

θdG (θ)− θ̄ × (1− β)θ̄f
(
θ̄
)
.

Using integration by parts:∫ θ̄−

θ+

θdG (θ) = 1 + (1− β)

∫ θ̄−

θ+

θd [θf (θ)]

= 1 + (1− β)

[
θ2f (θ) |θ̄−θ+ −

∫ θ̄−

θ+

θf (θ) dθ

]
= β + θ × (1− β) θf (θ) |θ̄−θ+ .

Replacing this result in the first equation makes
∫ θ̄

θ
θdG (θ) equal to β.

A.4 Some stepping-stone results

We write down the Bellman operator for problem (P̂ ). To keep the notation compact, let

Γ(b) = {b′ : b′ ≤ y + (1 + r)b and b′ ∈ [b, b̄]}

and define the operator T as:

(Tw)(θ, b) = sup
b′∈Γ(b)

{
θU(b, b′) + δ

[
(1− λ)w(θ, b′) + λ

∫ θ̄

θ

w(θ′, b′)dG(θ′)

]}
.

Let X be a bounded subset of R2, and let C(X) be the space of bounded continuous

functions on X. Then we have,

Lemma A1 (Self-mapping). The operator T maps C(X) into itself.

Proof. We first show that the integral involving G(·) does not affect the basic properties of

functions in C(X). Define the operator Mw as:

Mw(b) =

∫
Θ

w(θ, b)dG(θ)
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We show that Mw is bounded if w is bounded. Suppose w is bounded by some constant

w̄ <∞. To show that we can find a constant B <∞ such that ∥Mw∥ ≤ B for all b ∈ [b, b̄]:

∥Mw∥ =

∥∥∥∥∫
Θ

w(θ, b)dG(θ)

∥∥∥∥
=

∥∥∥∥∥w(θ, b)(1− β)θf (θ)− w(θ̄, b)(1− β)θ̄f
(
θ̄
)
+

∫ θ̄−

θ+

w(θ, b)dG (θ)

∥∥∥∥∥
≤ ∥w(θ, b)(1− β)θf (θ)∥+

∥∥w(θ̄, b)(1− β)θ̄f
(
θ̄
)∥∥+ ∥∥∥∥∥

∫ θ̄−

θ+

w(θ, b)dG (θ)

∥∥∥∥∥
≤ (1− β)

[
θf (θ) + θ̄f

(
θ̄
)]
w̄ +

∥∥∥∥∥
∫ θ̄−

θ+

w(θ, b) [(2− β)f (θ) + (1− β)θf ′ (θ)] dθ

∥∥∥∥∥
≤ (1− β)

[
θf (θ) + θ̄f

(
θ̄
)]
w̄ +

∫ θ̄−

θ+

∥w(θ, b)∥ [(2− β)f (θ) + (1− β)θ ∥f ′ (θ)∥] dθ

≤ (1− β)
[
θf (θ) + θ̄f

(
θ̄
)]
w̄ +

[
2− β + (1− β)f̄

]
w̄

=
[
2− β + (1− β)

(
θf (θ) + θ̄f

(
θ̄
)
+ f̄
)]
w̄.

The first line follows from the definition of the operator. The second line uses the expression

for dG(θ) in (7); the third by the distance properties; and the fourth due to the bound of w.

The fifth and sixth lines are due to the bounds of w and f ′ and true density integration to

one. Hence, B =
[
2− β + (1− β)

(
θf (θ) + θ̄f

(
θ̄
)
+ f̄
)]
w̄ is a bound for Mw.

For the continuity of the operator, choose a convergent sequence bn → b, let dn(θ) =

w(θ, b)− w(θ, bn) and recall that w is bounded by W . Then

|Mw(b)−Mw(bn)| =
∣∣∣∣∫

Θ

dn(θ)dG(θ)

∣∣∣∣
=

∣∣∣∣∣(1− β)
[
dn(θ)θf (θ)− dn(θ̄)θ̄f

(
θ̄
)]

+

∫ θ̄−

θ+

dn(θ)dG (θ)

∣∣∣∣∣
≤ (1− β)

[
|dn(θ)| θf (θ) +

∣∣dn(θ̄)∣∣ θ̄f (θ̄)]+
∣∣∣∣∣
∫ θ̄−

θ+

dn(θ)dG (θ)

∣∣∣∣∣ .
Because w is continuous, both |d(θ)| and |d(θ)| vanish as n→ ∞. Similarly each term inside

the integral converges pointwise to the zero function. Since each term in the sequence is

bounded by the constant 2W , the Lebesgue Dominated Convergence Theorem implies:

lim
n→∞

∫ θ̄−

θ+

dn(θ)dG (θ) =

∫ θ̄−

θ+

lim
n→∞

dn(θ)dG (θ) = 0
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Thus, the integral term also vanishes. Hence, Mw is continuous.

Now consider the operator T . Note that the constraint set Γ(b) is a continuous compact

value correspondence for each b. Hence, for any w ∈ C(X), by the Theorem of Maximum a

solution exists, so we can replace the sup with a max. Furthermore, (Tw)(θ, b) is continuous

in both θ and b. For further reference, bear in mind that this also implies that the operator

T is continuous.

Lemma A1 states that even though our weighting function may not constitute a prob-

ability measure, it still retains the essential properties to apply fixed point theorems and

potentially also the Contraction Mapping Theorem. In particular, it preserves continuity

and boundedness. The fact that the density is bounded and differentiable in Assumption 2

ensures that nothing pathological happens.

Before proceeding, it is useful to observe that the range of admissible solutions is limited

by the resources. Thus, the set in which the value function lies can be narrowed. However,

determining this set would depend on the cardinality of u(·). Without loss of generality,

suppose that u : [b, b̄] → R+. Define u = u(y + rb) and ū = u(y + (1 + r)b̄). Then it is

straightforward to show that

w = θ
u

1− βδ
≤ w(θ, b) ≤ θ̄

ū

1− δ
= w̄, ∀θ, b.

Let W ⊂ C(X) be the space of continuous functions w : [θ, θ̄]× [b, b̄] → [w, w̄].

A.5 Proof of Proposition 2

To prove existence, we first introduce the definition of equicontinuity (see Stokey et al.,

1989, page 520) and the Schauder Fixed-Point Theorem adapted to bounded and continuous

functions (see Stokey et al., 1989, Theorem 17.4).

Definition A1 (Equicontinuity). A subset W of C(X) is equicontinuous if for every ε > 0

there exists δ > 0 such that

|x− y| < δ implies |w(x)− w(y)| < ε, for all w ∈ W.

Theorem A1 (Schauder Fixed-Point Theorem). Let X be a bounded subset of Rn, and let

C(X) be the space of bounded continuous functions on X. Let W ⊂ C(X) be nonempty,

closed, bounded and convex. If the mapping T : W → W is continuous and the family T (W )

is equicontinuous, then T has a fixed point in W .
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We proceed in the following steps. We first show that W is a closed, convex subset of

C(X). Second, the operator T is continuous by Lemma A1. Third, we show that the family

of functions generated by the operator T (W ) is equicontinuous. To this end, we use the

Heine–Cantor Theorem which states that the continuous function evaluated in a compact

set is also uniformly continuous. By the self-mapping of Lemma A1, Tw is continuous, and

Assumption 1 ensures that (θ, b) lie in a compact set, therefore Tw is uniformly continuous.

Thus, the family T (W ) is equicontinuous. We then use Schauder Fixed-Point Theorem. □

The existence result relies on the Schauder Fixed-point Theorem. Assumption 1 plays

an important role in ensuring boundedness and simplifying the proof. The cardinality as-

sumption, on the other hand, is inconsequential. It just make sure that T : W → W . If for

instance u : [b, b̄] → R−, we could redefine w = θ̄ u
1−δ

and w̄ = θ ū
1−βδ

, and everything goes

through without changes. If instead the u changes signs, since it is bounded below by b, it is

always possible to add a positive constant without altering the properties of the equilibrium.

A.6 Proof of Proposition 3

Consider any two functions h, j ∈ C(X). Define the metric:

d(h, j) = sup
θ,b

|h(θ, b)− j(θ, b)|.

For any θ, b, we obtain the following:

h(θ, b)− j(θ, b) ≤ sup
θ,b

|h(θ, b)− j(θ, b)| = d(h, j) (19)

h(θ, b)− j(θ, b) ≥ − sup
θ,b

|h(θ, b)− j(θ, b)| = −d(h, j). (20)

Use inequality (19) and integrate over Θ+:∫
Θ+

h(θ, b)dG(θ) ≤
∫
Θ+

j(θ, b)dG(θ) + d(h, j)

∫
Θ+

dG(θ′), ∀b.

Similarly, use inequality (20) and integrate over Θ−:∫
Θ−

h(θ, b)dG(θ) ≤
∫
Θ−

j(θ, b)dG(θ)− d(h, j)

∫
Θ−

dG(θ), ∀b.

Add up the inequalities above and recall that G+ =
∫
Θ+ dG(θ) and G

− = −
∫
Θ− dG(θ):∫

h(θ, b)dG(θ) ≤
∫
j(θ, b)dG(θ) + d(h, j)

(
G+ +G−) , ∀b. (21)
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Since G+ −G− = 1, the last term G+ +G− = 1 + 2G−.

Assess inequality (21) at b′ and multiply it by λδ > 0, combine with h(θ, b′) ≤ j(θ, b′) +

d(h, j), and add θU(b, b′):

θU(b, b′) + δ

(
(1− λ)h(θ, b′) + λ

∫
h(θ′, b′)dG(θ′)

)
≤ θU(b, b′) + δ

(
(1− λ) j(θ, b′) + λ

∫
j(θ′, b′)dG(θ′)

)
+ γd(h, j), ∀θ, b, b′,

where

γ = δ
(
1− λ+ λ(1 + 2G−)

)
= δ

(
1 + 2λG−) .

Since the inequality above holds for all b′, we obtain

sup
b′

{
θU(b, b′) + δ

(
(1− λ)h(θ, b′) + λ

∫
h(θ′, b′)dG(θ′)

)}
≤ sup

b′

{
θU(b, b′) + δ

(
(1− λ) j(θ, b′) + λ

∫
j(θ′, b′)dG(θ′)

)}
+ γd(h, j).

That is,

(Th)(θ, b) ≤ (Tj)(θ, b) + γd(h, j).

Reversing the order of h and j, we get

|(Th)(θ, b)− (Tj)(θ, b)| ≤ γd(h, j), ∀θ, b.

Since it is for all θ and b, we can take the supremum:

d(Th, T j) ≤ γd(h, j).

Condition 2 guarantees that γ = δ (1 + 2λG−) < 1, making sure that it is a contraction.

Lemma A1 shows that the operator T maps bounded and continuous function into itself.

Since it is a contraction, by the Contraction Mapping Theorem there exists a unique solution.

A.7 Proof of Proposition 5

We propose a welfare criterion that ranks Markov perfect equilibria. We show that it is

equivalent to the solution of a planner who maximizes ex-ante welfare before observing the

realization of θ. We consider an “Overlapping Principals” problem, in which each agent is

not only an agent but also acts as a principal designing rules governing the behavior of future

agents. That is, when in control, every agent is committed to respecting the rules imposed
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by the previous one, but she sets rules that would restrict the actions of future agents.

Furthermore, to retain the recursive Markovian structure we assume that the principal can

choose rules depending only on the payoff relevant states and, thus, there is no record keeping.

To be precise, we consider incentive-compatible direct mechanisms. A mechanism A =

{c(θ, b), b′(θ, b)}θ∈Θ,b≥b specifies a feasible consumption and savings choice depending on the

type θ and the current stock of savings. This rule starts to operate when the agent comes

into control and stays in place while she retains control. The agent reports her type every

period and proposes a mechanism A′ that binds the next agent, if she were to lose control.14

Let w̃(θ̃, θ, b;A) be the payoff of a type-θ agent who reports type θ̃, given debt level b and

mechanism A. Let w(θ, b;A) = w̃(θ, θ, b;A). Then,

w̃(θ̃, θ, b;A) = max
A′

{
θu(c(θ̃, b)) + δ

[
(1− λ)w(θ, b′(θ̃, b);A) + λβE[v(θ′, b′(θ̃, b);A′)]

]}
(22)

with the companion value:

v(θ, b;A) = θu(c(θ, b)) + δ
[
(1− λ)v(θ, b′(θ, b);A) + λE[v(θ′, b′(θ, b);A′∗)]

]
,

where A′∗, the proposed mechanism, solves the problem in (22).

Truth telling implies w (θ, b;A) = maxθ̃ w̃
(
θ̃, θ, b;A

)
. In equation (22), the agent antic-

ipates that if she were to stay in control, she would report again her true type, hence the

continuation value in this case w(θ, b′(θ̃, b);A) already imposes truth telling. If she were to

lose control, because the next type θ′ is i.i.d. from θ, the optimal continuation mechanism is

independent of the current taste θ. Thus when the current self loses control, her incentives

are aligned with the previous self, given any state she is in. As a result, the maximization

problem reduces to:

max
A

βE[v(θ′, b;A)].

Discussion. This proposed welfare criterion is de facto choosing the best Markov equilib-

rium. One way to see this problem is as choosing the best static mechanism. If λ = 1, the

restriction to history independence would be irrelevant, since as shown by Amador et al.

(2006), the best unrestricted mechanism is static. If λ < 1, the restriction to history inde-

pendence would imply that the best Markov equilibrium could be improve in a more general

setting where contracts with history dependency are allowed, as in Halac and Yared (2014).

Under any incentive-compatible allocation A, the envelope condition (15) holds too.

14Because events are deterministic while the present agent is in control, it is irrelevant whether she sets
the rules for the next agent before or upon losing control, so long as this occurs before the realization of the
new type and the new rule only binds the future agent.
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Hence the relation in Lemma 1 under any equilibrium choices extends to incentive-compatible

direct mechanisms:

Lemma A2 (Value functions: IC). Under any incentive-compatible allocation A, the relation

in equation (4) holds too: at any b ∈ [b, b̄], for almost all θ ∈ Θ,

βv (θ, b;A) = w (θ, b;A)− (1− β)θwθ (θ, b;A) . (23)

Proof. The proof follows the same steps as Lemma 1 and is omitted for brevity.

Lemma A2 suggests that it is equivalent to look at the transformed continuation value:

β

∫ θ̄

θ

v (θ, b;A) dF (θ) =

∫ θ̄

θ

w (θ, b;A) dG(θ), ∀b

To see that leaving the agent unconstrained is optimal, guess that the incentive compat-

ibility constraints are not binding. Then for each b, we choose allocation for each type:

max
{c(θ),b′(θ)}

∫ θ̄

θ

w (θ, b;A) dG(θ)

= max
{c(θ),b′(θ)}

∫ θ̄

θ

[
θu(c(θ)) + δ

(
(1− λ)w(θ, b′(θ);A) + λ

∫ θ̄

θ

w(θ′, b′(θ);A)dG(θ′)

)]
dG(θ)

=

∫ θ̄

θ

[
max
{c,b′}

{
θu(c) + δ

(
(1− λ)w(θ, b′;A) + λ

∫ θ̄

θ

w(θ′, b′;A)dG(θ′)

)}]
dG(θ)

=

∫ θ̄

θ

[
max
{c,b′}

{
θu(c) + δ

(
(1− λ)w(θ, b′;A) + λβ

∫ θ̄

θ

v(θ′, b′;A)dF (θ′)

)}]
dG(θ).

The first equality follows from the definition of w, the second from the fact that all weights

dG(θ) are positive, and the last equality is due again to Lemma A2. It follows then that the

optimal allocations coincide with the unconstrained optimal choice of each agent, confirming

the conjecture that the IC constraints are not binding and the proposition’s statement.

A.8 Proof of Proposition 6

We omit most of the details because the proof follows the same steps as Lemma 1 and

Proposition 1. Replacing summations over time with integrals, and following the same steps

that all the results also hold in continuous time, and thus implies equation (6). Substituting

it into the HJB equation (11), we obtain the transformed HJB equation (13).
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A.9 Proof of Proposition 7

We provide two proofs. The first proof assumes that the solution is differentiable everywhere

and sidesteps potential issues of boundary of the state space. This highly simplifies the proof

and highlights the role played by Condition 3. The second proof is lengthy, since it must deal

with points of non-differentiability and boundary of the state space, but it closely follows

the standard approach in the literature.

Proof with differentiability. Suppose by contradiction that there exist two viscosity

solutions. Let w1 and w2 denote the two solutions. By definition, each is both a subsolution

and supersolution. Then

M = max
Ω̄

|w1 − w2| = max{max
Ω̄

(w1 − w2),max
Ω̄

(w2 − w1)} > 0.

There are two possibilities: M = maxΩ̄(w1 − w2) or M = maxΩ̄(w2 − w1). We show that

each case leads to a contradiction.

Case 1: M = maxΩ̄(w1−w2). Suppose it is attained at, say, (θ∗, b∗) ∈ Ω in the interior.

Since w1−w2 attains local maximum at interior (θ∗, b∗) and since w1 and w2 are differentiable,

then w1b(θ
∗, b∗) = w2b(θ

∗, b∗).

We use the fact tha w1 is a subsolution and w2 is a supersolution. Since w1 is a subsolu-

tion, set ϕ = w1. Similarly, because w2 is a supersolution, set ϕ = w2. Thus,

(ρ+ λ̃)w1(θ
∗, b∗) ≤ max

c≥0

{
θ∗u(c) + (y + rb∗ − c)w1b(θ

∗, b∗) + λ̃

∫ θ̄

θ

w1(θ
′, b∗)dG(θ′)

}

(ρ+ λ̃)w2(θ
∗, b∗) ≥ max

c≥0

{
θ∗u(c) + (y + rb∗ − c)w2b(θ

∗, b∗) + λ̃

∫ θ̄

θ

w2(θ
′, b∗)dG(θ′)

}
.

Subtracting the second from the first, and since w1b(θ
∗, b∗) = w2b(θ

∗, b∗):

(ρ+ λ̃)(w1(θ
∗, b∗)− w2(θ

∗, b∗)) ≤ λ̃

∫ θ̄

θ

[w1(θ
′, b∗)− w2(θ

′, b∗)]dG(θ′).

Notice that on the right-hand side of the last equation, due to the possibility that dG(θ) < 0,

we lose the usual monotonicity and in turn the standard Comparison Theorem. Nevertheless,

with this modified approach we have |w1 −w2| ≤M , so we can still obtain an upper bound:

∫ θ̄

θ

[w1(θ
′, b∗)− w2(θ

′, b∗)]dG(θ′) ≤
∫ θ̄

θ

|w1(θ
′, b∗)− w2(θ

′, b∗)| · |g(θ′)|dθ′ ≤M(G+ +G−).
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Therefore,

(ρ+ λ̃)M ≤ λ̃M(G+ +G−).

Since G+ −G− = 1, this gives:

ρM ≤ λ̃M · 2G−.

Since M > 0, then ρ ≤ 2λ̃G−. This contradicts (14) in Condition 3.

Case 2: M = maxΩ̄(w2 − w1). We now use the fact that w2 is subsolution and w1 is

supersolution. We repeat the steps in the previous case and again arrive to a contradiction.

It must be that maxΩ̄(w2 − w1) = 0 and uniqueness follows.

Proof without differentiability. Because the solution may have countably many points

of non-differentiability, and because at the boundary of Ω̄ the solution does not need to be a

supersolution, the previous intuitive proof may fail. Hence, we prove this proposition follow-

ing closely the steps in Capuzzo-Dolcetta and Lions (1990). This allows for a straightforward

comparison with the literature and highlights the main difference. We start by proving a

result analogous to their Theorem III.1. For any function ϕ, define ϕ+ = max{ϕ, 0}, then:
Suppose there are two Constrained Viscosity Solutions U, V ∈ C(Ω̄). As before, there are

two possibilities: maxΩ̄(U−V ) ≥ maxΩ̄(V −U), ensuring that maxΩ̄ |U−V | = maxΩ̄(U−V )

or maxΩ̄(V −U) ≥ maxΩ̄(U − V ), ensuring maxΩ̄ |U − V | = maxΩ̄(V −U). In the following

theorem, we consider the first case and it extends to the second case.

Theorem A2 (Modified Comparison). Let Ω̄ = [θ, θ̄]× [b, b̄], define:

H(θ, b, p) = max
c≥0

{θu(c) + (y + rb− c)p} .

And assume:

(H1) |H(θ, b, p)−H(θ′, b′, p)| ≤ ω(|(θ, b)− (θ′, b′)|(1 + |p|)) for some modulus ω.

(H2) |H(θ, b, p)−H(θ, b, q)| ≤ µ(|p− q|) for some modulus µ.

Let U ∈ C(Ω̄) be a viscosity subsolution of

(ρ+ λ̃)U = H(θ, b, Ub) + χ(θ, b) + λ̃

∫ θ̄

θ

U(θ′, b)dG(θ′) (24)

in Ω̄, where χ ∈ C(Ω̄), and V ∈ C(Ω̄) be a viscosity supersolution of (13) in Ω. Suppose

maxΩ̄(U − V ) ≥ maxΩ̄(V − U). Then:

max
Ω̄

(U − V )+ ≤ 1

ρ− 2λ̃G−
max
Ω̄

χ+.
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Remark. This theorem immediately delivers the result in Proposition 7. First, since we

are restricting the state space to be compact, the assumptions on the utility function directly

imply (H1) and (H2). In addition, the result is true for any continuous χ. Thus, by taking

χ ≡ 0, it implies U ≤ V everywhere and further U = V .

Proof of Theorem A2. Suppose, by contradiction, that

max
Ω̄

(U − V )+ >
1

ρ− 2λ̃G−
max
Ω̄

χ+.

Define M := maxΩ̄(U − V )+ > 0. If the maximum is attained in the interior of Ω̄, i.e., in

Ω, standard viscosity solution techniques apply (see, for instance, Theorem 9.1 in Chapter

II of Fleming and Soner (2006)). Therefore, in this proof we consider

M = (U − V )+(θ∗, b∗) = (U − V )(θ∗, b∗) for some (θ∗, b∗) ∈ ∂Ω.

To reproduce the arguments for the case in which the maximum is attained in Ω rather than

on ∂Ω, it suffices to set ζ ≡ 0 in what follows.

Step 1: Doubling of variables sequence. Consider the auxiliary function:

Φε(θ, b, θ
′, b′) = U(θ, b)− V (θ′, b′)− 1

ε2
|(θ, b)− (θ′, b′)− εT (θ′, b′)|2,

where T (θ′, b′) = ζ(θ′, b′)n(θ′, b′) is defined as follows.15 For ε0 small enough, define a closed

neighborhood of ∂Ω: Γ0 = {(θ′, b′) : dist((θ′, b′), ∂Ω) ≤ ε0}.

(i) ζ ≡ 1 if (θ′, b′) ∈ Γ0, ζ ∈ C1(Ω̄); ζ ≡ 0 if (θ′, b′) ∈ Ω̄− Γ0.

(ii) n(θ′, b′) = −∇d(θ′, b′) is the inward unit normal, where d(θ′, b′) = dist((θ′, b′), ∂Ω). We

take ε0 small enough so that d is differentiable on Γ0.

Step 2: Sequence analysis. Start by setting a lower bound on the maximum. Since

χ+ ≥ 0 and ρ ≥ 2λ̃G−, it must be that M > 0, and by continuity of U :

max
Ω̄×Ω̄

Φε ≥ Φε((θ
∗, b∗), (θ∗, b∗)− εn(θ∗, b∗)) ≥M − ω(ε),

where ω is the modulus of continuity of V .

15For example, T in our rectangular domain would be: At a boundary point like (θ̄, b′), we have n(θ̄, b′) =
(−1, 0) (pointing inward). So near this boundary: T (θ̄, b′) = ζ(θ̄, b′)(−1, 0) = (−1, 0). This means (θ̄, b′) +
εT (θ̄, b′) = (θ̄ − ε, b′), which is pushed inside Ω.
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Let ((θε, bε), (θ
′
ε, b

′
ε)) ∈ Ω̄× Ω̄ be a maximum point of Φε. Note that

max
Ω̄×Ω̄

Φε ≤M − 1

ε2
|(θε, bε)− (θ′ε, b

′
ε)− εT (θ′ε, b

′
ε)|2 + ω(|(θε, bε)− (θ′ε, b

′
ε)|).

Combining the last two inequalities we obtain:

1

ε2
|(θε, bε)− (θ′ε, b

′
ε)− εT (θ′ε, b

′
ε)|2 ≤ ω(|(θε, bε)− (θ′ε, b

′
ε)|) + ω(ε). (25)

Claim 1. |(θε, bε)− (θ′ε, b
′
ε)− εT (θ′ε, b

′
ε)| ≤ εδ(ε), where δ(ε) → 0 as ε→ 0.

Proof. We first show that

|(θε, bε)− (θ′ε, b
′
ε)| ≤ Cε,

for some constant C. Equation (25) immediately implies |(θε, bε) − (θ′ε, b
′
ε) − εT (θ′ε, b

′
ε)| ≤

C1ε, for some C1 when ε is small enough such that
√
ω(|(θε, bε)− (θ′ε, b

′
ε)|) + ω(ε) ≤ C1.

Therefore, |(θε, bε)− (θ′ε, b
′
ε)| ≤ |(θε, bε)− (θ′ε, b

′
ε)−εT (θ′ε, b′ε)|+ε|T (θ′ε, b′ε)| ≤ C1ε+C2ε = Cε.

Combining |(θε, bε)− (θ′ε, b
′
ε)| ≤ Cε and (25), we obtain the result.

Claim 2. (θ′ε, b
′
ε) ∈ Ω (interior) for ε small enough.

Proof. Suppose by contradiction that (θ′ε, b
′
ε) ∈ ∂Ω. Then, T (θ′ε, b

′
ε) = n(θ′ε, b

′
ε) since ζ = 1

near ∂Ω. It follows that (θ′ε, b
′
ε) + εn(θ′ε, b

′
ε) is at distance ε inside Ω. Since n is the unit

inward, it must be that |(θε, bε)− (θ′ε, b
′
ε)− εT (θ′ε, b

′
ε)| ≥ ε. However, for ε small enough such

that δ(ε) < 1, this is in contradiction with Claim 1.

Step 3: Applying viscosity solution properties. Recall that U and V are not required

to be differentiable. To this end, as is standard in the literature, we replace Ub and Vb with

alternative functions pε and qε, respectively. These functions are such that if Ub and Vb exist

they would equal pε and qε, but the latter ones always exist even when the former are not

well defined. Since (θ′ε, b
′
ε) ∈ Ω and ((θε, bε), (θ

′
ε, b

′
ε)) maximizes Φε, we can compute the

gradients. With respect to (θ′, b′) so that ∇(θ′,b′)Φε = 0 at (θ′ε, b
′
ε) generates:

∇V (θ′ε, b
′
ε) =

2

ε2
(I − ε∇T (θ′ε, b′ε))[(θε, bε)− (θ′ε, b

′
ε)− εT (θ′ε, b

′
ε)],

where I is the identity matrix. In particular, the b-component:16

qε := Vb(θ
′
ε, b

′
ε) =

2

ε2
(1−ε∇bTb(θ

′
ε, b

′
ε))[bε−b′ε−εTb(θ′ε, b′ε)]−

2

ε2
ε∇bTθ(θ

′
ε, b

′
ε)[θε−θ′ε−εTθ(θ′ε, b′ε)].

16The Tθ derivatives appear because T (θ, b) is a vector-valued function of both θ and b, so when differen-
tiating the squared norm with respect to b, we include how both components of T change with b.
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Similarly,

pε := Ub(θε, bε) =
2

ε2
[bε − b′ε − εTb(θ

′
ε, b

′
ε)].

Thus, in what follows we replace Ub and Vb (which may not exist) with pε and qε (that

are always well defined). Since U is a viscosity subsolution at (θε, bε):

(ρ+ λ̃)U(θε, bε) ≤ H(θε, bε, pε) + χ(θε, bε) + λ̃

∫ θ̄

θ

U(θ′, bε)dG(θ
′). (26)

Since V is a viscosity supersolution at (θ′ε, b
′
ε) ∈ Ω:

(ρ+ λ̃)V (θ′ε, b
′
ε) ≥ H(θ′ε, b

′
ε, qε) + λ̃

∫ θ̄

θ

V (θ′, b′ε)dG(θ
′). (27)

Step 4: Combining the inequalities. Subtracting (27) from (26):

(ρ+ λ̃)[U(θε, bε)− V (θ′ε, b
′
ε)]

≤ λ̃

∫ θ̄

θ

[U(θ′, bε)− V (θ′, b′ε)] dG(θ
′) +H(θε, bε, pε)−H(θ′ε, b

′
ε, qε) + χ(θ′ε, b

′
ε).

So far, we have followed the standard procedure. The last term is particular to our

setting. The boundedness assumption highly simplifies the proof. Since f is bounded, and

so is g, and U, V are continuous functions on the compact set Ω̄, they are also Lipschitz

continuous, then:∫ θ̄

θ

[U(θ′, bε)− V (θ′, b′ε)] dG(θ
′) ≤

∫ θ̄

θ

|U(θ′, bε)− V (θ′, b′ε)||g(θ′)|dθ′

≤
∫ θ̄

θ

[|U(θ′, bε)− U(θ′, b′ε)|+ |U(θ′, b′ε)− V (θ′, b′ε)|] |g(θ′)|dθ′

≤M(G+ +G−) +

∫ θ̄

θ

|U(θ′, bε)− U(θ′, b′ε)||g(θ′)|dθ′

≤M(G+ +G−) +

∫ θ̄

θ

L2(θ
′)|bε − b′ε||g(θ′)|dθ′.

The second inequality follows from the triangle inequality, the third from the definition of

|U(θ′, b′ε) − V (θ′, b′ε)| ≤ M , the fourth from the Lipschitz continuity of U , with L2(θ) being

the local Lipschitz constant.

Step 5: Bound on Hamiltonian difference. Bounding H(θε, bε, pε)−H(θ′ε, b
′
ε, qε).

43



Case 1: If (θ′ε, b
′
ε) /∈ Γ0 (away from boundary), then T (θ′ε, b

′
ε) = 0, so

pε = qε =
2

ε2
(bε − b′ε).

Using (H1):

|H(θε, bε, pε)−H(θ′ε, b
′
ε, pε)| ≤ ω(Cε(1 + |pε|)).

From inequality (25) and the definition of pε, it is clear that |pε| ≤ η(ε) = ω(|(θε, bε) −
(θ′ε, b

′
ε)|) + ω(ε) as the sequence converges to the boundary. Thus, we get a bound that goes

to zero as ε→ 0

Case 2: If (θ′ε, b
′
ε) ∈ Γ0 (near boundary), we have

|pε − qε| ≤
∣∣∣∣ 2ε2 ε∇T (θ′ε, b′ε)[(θε, bε)− (θ′ε, b

′
ε)− εT (θ′ε, b

′
ε)]

∣∣∣∣ ≤ Cδ(ε).

The second inequality follows from Claim 1 and δ(ε) → 0.

Using (H1) and (H2):

|H(θε, bε, pε)−H(θ′ε, b
′
ε, qε)| ≤ |H(θε, bε, pε)−H(θ′ε, b

′
ε, pε)|+ |H(θ′ε, b

′
ε, pε)−H(θ′ε, b

′
ε, qε)|

≤ ω(|(θε, bε)− (θ′ε, b
′
ε)|(1 + |pε|)) + µ(|pε − qε|)

≤ ω(Cε(1 + |pε|)) + µ(Cδ(ε)).

Combining all bounds:

(ρ+ λ̃)[U(θε, bε)− V (θ′ε, b
′
ε)] ≤ λ̃M(G+ +G−) + κ(ε) + χ(θ′ε, b

′
ε),

where κ(ε) =
∫ θ̄

θ
L2(θ

′)|bε − b′ε||g(θ′)|dθ′ + ω(Cε(1 + |pε|)) + µ(Cδ(ε)) → 0 as ε → 0. As a

result, taking ε→ 0, we have (θε, bε), (θ
′
ε, b

′
ε) → (θ∗, b∗), which implies:

(ρ+λ̃)M = (ρ+λ̃)[U(θ∗, b∗)−V (θ∗, b∗)] ≤ λ̃M(G++G−)+χ(θ∗, b∗) ≤ λ̃M(G++G−)+max
Ω̄

χ+.

Then, using G+ −G− = 1 we obtain:

ρM ≤ 2λ̃MG− +max
Ω̄

χ+ ⇒ M(ρ− 2λ̃G−) ≤ max
Ω̄

χ+.

As long as Condition 3 is satisfied, this is in contradiction with the initial assumption. □
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