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Abstract

In applications of Dynamic Factor Models to Structural Macroeconomic
Analysis, r, the number of static factors, is typically larger than q, the
number of shocks driving the macro economy, so that the spectral density
matrix of the factors is singular. Singularity is an important advantage with
respect to standard Structural VARs, because it ensures that generically the
Structural Shocks are fundamental and the factors have a finite VAR rep-
resentation in the Structural Shocks. However, a serious difficulty with this
approach is that singular VARs are not necessarily unique. We show that,
despite this, the Structural Shocks and the corresponding Impulse-Response
Functions are approximated consistently using a non-singular VAR.
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1 Introduction

1.1 Preliminaries

The High-Dimensional Dynamic Factor Model has been widely used in the last
two decades in the analysis and prediction of macroeconomic time series. A brief
summary of the model, in the version adopted here, is the following:
(a) {xit} and {ξit} are sequences of stochastic processes indexed by i ∈ N,
(b) {Ft} is an r-dimensional weakly-stationary stochastic process with rational
spectral density h(θ) of rank q ≤ r,
(c) G(L) is a rational r× q matrix with no poles of modulus less or equal to unity,
such that G(e−iθ)G′(eiθ) = h(θ), {wt} is a q-dimensional orthonormal white noise,
and Λi, i ∈ N, an r-dimensional vector.

We assume that:

xit = χit + ξit = ΛiFt + ξit (1)
Ft = G(L)wt, (2)

for all i ∈ N, t ∈ Z. The variables ξit and χit are called the idiosyncratic and
common components of xit, respectively; Ft and wt are called the vector of static
common factors and dynamic common factors respectively.

Moreover:

(i) The idiosyncratic components are orthogonal to the dynamic factors at all
leads and lags, i.e. ξit ⊥ ws for all t, s ∈ Z and i ∈ N. As a consequence,
ξit ⊥ χjs for all t, s ∈ Z, i, j ∈ N.

(ii) The n-dimensional process {(ξ1t ξ2t · · · ξnt)
′} is weakly stationary for all

n ∈ N. This and the previous assumption imply that {(x1t x2t · · · xnt)
′} is

weakly stationary for all n ∈ N.

(iii) The idiosyncratic components are weakly correlated, which, by definition,
means that the first eigenvalue of the covariance matrix of {(ξ1t ξ2t · · · ξnt)′}
is bounded as n → ∞.

(iv) The common components are pervasive, which, by definition, means that the
first r eigenvalues of the covariance matrix of {(χ1t χ2t · · · χnt)

′} diverge as
n → ∞. As shown in Chamberlain (1983), this assumption and (iii) are
equivalent to the statement that, as n → ∞, the first r eigenvalues of the
covariance matrix of {(x1t x2t · · · xnt)

′} diverge whereas the (r+1)-th stays
bounded.

Starting with the observed sample {xit, i = 1, . . . , n, t = 1, . . . , T}, the stan-
dard estimator of each common component χjt is based on the first r sample
principal components. The latter are obtained using the n× n sample covariance
matrix of the x’s. Consistency (convergence in probability), as both n and T tend
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to infinity, of these principal-component estimators has been proved, under addi-
tional technical assumptions not specified here, in several papers, see in particular
Stock and Watson (2002), Bai and Ng (2002), Forni et al. (2009).

In the present paper we assume that the population covariances of the vector
process {(x1t x2t · · · xnt)

′}, as well as the integers r and q, are known. The same
approach is taken e.g. in Chamberlain (1983), Forni and Lippi (2001), Anderson
and Deistler (2008), Hallin and Lippi (2013), Forni et al. (2015), Lippi et al.
(2023). Based on such covariances, we construct unfeasible principal-component
estimators of the common components χit and use them throughout the paper.
The line of reasoning of the present paper is used as guidance in Forni et al. (2023),
where feasible estimators, based on sample covariances and estimated r and q, are
employed.

The estimator of the common components is obtained as follows. Let P̂t be
the r-dimensional vector whose coordinates are the first r population principal
components of xnt = (x1t · · · xnt)

′:

P̂t = Ŵxnt,

where Ŵ is the r × n matrix whose rows are the eigenvectors corresponding to
the first r eigenvalues of the population covariance matrix of xnt, normalized such
that the covariance matrix of

{
P̂t

}
is the identity. Then, given m, the (unfeasible)

principal-component estimator of the m-dimensional vector χχχmt = (χ1t · · · χmt)
′

is
χ̂χχmt = Ŵ ′

[m]P̂t = Ŵ ′
[m]Ŵxnt,

where Ŵ[m] is the r×m matrix obtained by truncating Ŵ at the m-th column. It
is easily seen that χ̂jt, the j-th coordinate of χ̂χχmt, is the projection of χjt on the
r-dimensional linear space spanned by P̂nt.

Assuming that, as n → ∞ , the first r eigenvalues of the covariance matrix of
the x’s diverge whereas the (r+1)-th stays bounded, see (iv) above, χ̂χχmt converges
to χχχmt, as n → ∞, in mean square, see Chamberlain (1983), Forni and Lippi
(2001). Using (1),

χ̂χχmt = Ŵ ′
[m]Ŵxnt = Ŵ ′

[m]Ŵχχχnt + Ŵ ′
[m]Ŵξξξnt. (3)

Using (1) and (2),

Ŵ ′
[m]Ŵχχχnt = Ŵ ′

[m]ŴΛ[n]G(L)wt = D̂[m](L)wt, (4)

where Λ[n] = (Λ′
1 · · · Λ′

n)
′ and D̂[m](L) = Ŵ ′

[m]ŴΛ[n]G(L) is m × q with rational
entries. As χ̂χχmt converges to χχχmt in mean square, orthogonality of the two addenda
on the right in (3), see (i) above, implies that in mean square

D̂[m](L)wt → χχχmt, Ŵ ′
[m]Ŵξξξnt → 0. (5)
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1.2 The contribution of the present paper

Assuming that the observable variables xit are macroeconomic indicators, the id-
iosyncratic components can be interpreted as variable-specific causes of variation
plus measurement errors, whereas the common components are the “true” vari-
ables, driven by the macroeconomic shocks. Given a vector of interest xmt, based
on the interpretation above, several papers have explored the possibility of replac-
ing xmt with χχχmt, or augmenting xmt with factors, for macroeconomic analysis, see
in particular the Structural Dynamic Factor Model studied in Stock and Watson
(2005), Bai and Ng (2007) and Forni et al. (2009), and the Factor Augmented
VAR in Bernanke et al. (2005).

In addition to cleaning the variables from measurement errors, using the χ’s
instead of the x’s has another important advantage, namely that the fundamental-
ness problem, a serious issue in a VAR model for the x’s, has a solution. For, using
(1) and (2), we find that χχχmt = D[m](L)wt, where D[m](L) is m× q with rational
entries. Moreover, as motivated in several papers, see Barigozzi et al. (2021) for
detailed references, we can assume r > q, i.e. that the number of static factors is
greater than the number of dynamic factors, so that the stochastic process {Ft}
is singular.

We assume that m, the dimension of the vector of interest χχχmt, fulfills r ≥
m > q, so that {χχχmt} is singular.

Now, leaving details to Section 2:

(I) Anderson and Deistler (2008) show that singularity and rationality of D[m](L)
imply that χχχmt has a finite-length VAR representation for generic values of
the parameters of the entries of D[m](L) and that D[m](0)wt is the innovation
of χχχmt.

(II) Thus generically, the white-noise vector wt is fundamental for χχχmt.

On the other hand, what is available is not χχχmt but the approximation χ̂χχmt,
and therefore a VAR for χ̂χχmt. If {χχχmt} were non-singular, it would be fairly
trivial to prove that the VAR polynomial matrix for χ̂χχmt consistently approximates
the VAR polynomial matrix for χχχmt. However, singularity implies that the VAR
representation of χχχmt is not necessarily unique, since the regressors can be linearly
dependent, see Section 2 for an illustration. This has been pointed out firstly in
Anderson and Deistler (2008) and thoroughly analyzed in Filler (2010), Deistler
et al. (2010), Anderson et al. (2012). As a consequence, the VAR polynomial
matrix of χ̂χχmt does not necessarily converge to a VAR polynomial matrix for χχχmt.

This difficulty, which has been overlooked so far in the papers using the Struc-
tural Dynamic Factor Model or the Factor Augmented VAR (see in particular
the above mentioned papers: Stock and Watson (2005), Bai and Ng (2007), Forni
et al. (2009), Bernanke et al. (2005)), is solved here, though only for the unfeasible
estimator χ̂χχmt defined above, which is based on population covariances. In Sec-
tion 3 we prove that, even if the VAR polynomial matrix does not converge, the
residual of the VAR for χ̂χχmt converges in mean square to the innovation of χχχmt.
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In Section 4 we prove that the Moving-Average representation of χ̂χχmt converges
to that of χχχmt. In Section 5 we prove consistency of the Structural Shocks and
Impulse-Response Functions identified with a recursive scheme.

As mentioned above, the integers r and q and the unfeasible estimators of χχχmt,
its Structural Shocks and Impulse-Response Functions, are replaced in Forni et al.
(2023) by feasible estimators, based on sample covariances. Using the results of
the present paper, consistency and rates of convergence in probability, as n and
T tend to infinity, of the Structural Shocks and Impulse-Response Functions are
obtained.

2 Existence but non-uniqueness of VARs in the
singular case

The results of the present paper depend on some properties of the vectors χχχmt and
χ̂χχmt, not on the factor model (1)–(2) per se. We adopt therefore a more general
setting and notation.

All the stochastic processes considered are weakly stationary of constant rank,
this meaning that they have a spectral density matrix of the same rank a.e. in
[−π, π], see Rozanov (1967), pp. 39-43. The rank of a process with rational
spectral density is of course constant. An s-dimensional constant-rank stochastic
process is (dynamically) singular if its rank is less than s, non-singular if its rank is
s. If the process {yt} is singular, its covariance matrix is not necessarily singular,
see the process (11) with b1 ̸= b2. If the covariance matrix of {yt} is singular then
of course {yt} is (dynamically) singular.

Let {χt} be an m-dimensional weakly stationary process fulfilling the ARMA
equation:

H(L)χt = K(L)wt, (6)

where:

(a) {wt} is a q-dimensional orthonormal white-noise process with m ≥ q, K(L)
is an m× q polynomial matrix

(b) H(L) is an m×m polynomial matrix, with H(0) = Im, fulfilling the stability
condition, i.e. detH(z) = 0 implies |z| > 1, Thus χt has the Moving Average
representation

χt = B(L)wt = H(L)−1K(L)wt. (7)

Assumption 1. We suppose that m > q, so that {χt} is singular.

Anderson and Deistler (2008) show that:
(A) Under Assumption 1, supposing that the coefficients of the polynomial entries
of K(L) vary independently of one another, for generic values of such parameters
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the matrix K(L) is zeroless, that is, K(z) has full rank q for all z ∈ C. To illustrate
this statement, consider the simplest example, in which m = 2, q = 1 and

K(L) =

(
1− b1L
1− b2L

)
.

We see that if b1 ̸= b2, the rank of K(z) is one, the maximum, for all z ∈ C. Thus
K(L) is zeroless except for the lower-dimensional, negligible, set b1 = b2. If we
consider instead the non-singular matrix

K̃(L) =

(
1− b1L 1− b3L
1− b2L 1− b4L

)
,

zerolessness implies that b1b4 − b2b3 = 0 and b1 + b4 − b2 − b3 = 0. Thus K̃(L) is
zeroless only for a lower-dimensional set.
(B) If K(L) is zeroless, there exists an m ×m (finite) polynomial matrix K†(L)
such that (i) K†(L) is stable and K†(0) = Im, (ii) K†(L)K(L) = K(0). We say
that K†(L) is a left inverse of K(L). Setting A(L) = K†(L)H(L) = Im − A1L −
· · · − AhL

p, χt has the finite-length VAR representation

(Im − A1L− · · · − AhL
p)χt = A(L)χt = K0wt, (8)

where K0 = K(0) = B(0) has rank q. Setting εt = K0wt, because (7) implies that
εt is orthogonal to χt−j for all j ∈ N, then

χt = (A1χt−1 + · · ·+ Apχt−p) + εt = Pt + εt (9)

is the unique decomposition of χt into the projection of χt on its whole past and
its innovation εt.

The results (A) and (B) say that generically: (I) The polynomial K(L) in (6)
has a finite left inverse, so that, most importantly, (II) the white noise vector wt

in (6) is fundamental for χt. Of course neither (I) nor (II) hold generically for
non-singular ARMAs.

Observation 1. The assumption in point (A) above, that “the coefficients of the
polynomial entries of K(L) vary independently of one another” is obviously false
in some important cases. It immediately comes to mind the case

∆Xt = K(L)wt, (10)

where K(L) has rational entries and Xt is cointegrated for all values of the coef-
ficients of K(L), so that generically K(z) has a zero at z = 1. A discussion of
cointegration for singular vectors is outside of the scope of the present paper. Let
us mention however Deistler and Wagner (2017), Barigozzi et al. (2020, 2021),
in which the results in Anderson and Deistler (2008) are adapted to cointegrated
singular vectors. In particular, Barigozzi et al. (2020) show that generically singu-
lar cointegrated vectors with representation (10) have a VAR representation in the
levels (precisely, an Error Correction representation) with a finite-degree matrix
polynomial. See also Forni et al. (2023), in which the consequences of the failure
of the independent-coefficients assumption is discussed in general.
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These important features of singular ARMAs do not come without a difficulty.
Let us firstly recall that in the non-singular case, i.e. when m = q and the
spectral density of χt is non-singular almost everywhere in [−π, π], no more than
one VAR representation (finite or infinite) may exist. On the contrary, when χt

is singular, as firstly pointed out in Anderson and Deistler (2008), representation
(8) is not necessarily unique, that is, there may exist a stable polynomial matrix
A′(L) = I ′m − A′L− · · · − A′

p′L
p′ ̸= A(L), such that

χt = (A′
1χt−1 + · · ·+ A′

p′χt−p′) + ε′t = P ′
t + ε′t,

where ε′t is orthogonal to χt−j for all j ∈ N. Uniqueness of the orthogonal projec-
tion of χt on the linear space spanned by χt−j, j ∈ N, implies that P ′

t = Pt, and
ε′t = εt, so that the alternative representation becomes

χt = (A′
1χt−1 + · · ·+ A′

p′χt−p′) + εt = Pt + εt.

As an example consider the singular ARMA:

χ1t = (1 + b1L)wt

χ2t = (1 + b2L)wt.
(11)

where wt is a scalar white noise. We have b2χ1t−1 − b1χ2t−1 = (b2 − b1)wt−1. If
b1 ̸= b2, thus generically, replacing wt−1 in (11) with (b2− b1)

−1(b2χ1t−1− b1χ2t−1),
we obtain a VAR(1) for χt. But the variables χ1t−1 and χ2t−1 fulfill the exact
dynamic relationship (1 + b2L)χ1t−1 = (1 + b1L)χ2t−1, so that e.g.

χ1t−1 = (1 + b1L)χ2t−1 − b2χ1t−2,

which can be used to obtain an alternative VAR(2) representation.
Note that in example (11), as χ1t and χ2t are linearly independent, there is

only one VAR(1) representation, thus there is uniqueness if p is minimum. But
with slightly more complex models, even assuming that p in (8) is minimum, i.e.
that if p′ < p then no autoregressive representation of length p′ exists, we see that
(8) is not necessarily unique. For this purpose let us simplify (6) by assuming that
H(L) = Im, so that

χt = B0wt + . . .+Bkwt−k, k > 0. (12)

Suppose that: (I) χt has the VAR representation (8), (II) the mp stochastic vari-
ables χi,t−j, i = 1, . . . ,m, j = 1, . . . p, are linearly independent, so that (8) is
unique among the VAR representations of length p′ ≤ p. The space spanned by
the variables χi,t−j, i = 1, . . . ,m, j = 1, . . . p, call it Sχ, has dimension mp. Then
consider the space Sw spanned by wi,t−j, i = 1, . . . , q, j = 1, . . . , p + k, whose
dimension is q(p+ k). By (12) Sχ ⊆ Sw, so that mp ≤ q(p+ k), that is

p ≤ kq

m− q
. (13)
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Now suppose for example that m = 3, k = 3 and q = 1. In this case, by (13),
p ≤ 3/2, so that uniqueness implies that p = 1. Combining (12) for k = 3 and (8)
for p = 1, we have

(I3 − A1L)χt = (I3 − A1L)(B0 +B1L+B2L
2 +B3L

3)wt = B0wt.

Multiplying by w′
t−j, j = 1, . . . , 4, and taking expected values:

A1B3 = 0, A1B2 = B3, A1B1 = B2, A1B0 = B1. (14)

Suppose that B1, B2 and B3 are linearly independent. Then the last three equa-
tions in (14) say that Range(A1) has dimension 3, and therefore that Null(A1) has
dimension 0. This implies, by the first equation in (14), that B3 = 0, which is
contradictory with linear independence of B1, B2 and B3. But such independence
is generic, so that generically no VAR of order 1 exists for χt, which implies that
the minimum-length VAR is not unique.

What happens in the example just considered is that the variables χj,t−1, j =
1, 2, 3 are not sufficient for a VAR, whereas the variables χj,t−k, j = 1, 2, 3, k = 1, 2,
are sufficient but linearly dependent. Hence the necessity of a VAR(2) but the non-
uniqueness. Following Deistler et al. (2011) we might select a basis in the space
spanned by χj,t−k, j = 1, 2, 3, k = 1, 2, and obtain a unique representation. This
line of reasoning is not pursued in the present paper and we stick to the standard
VAR specification, in which entire blocks of lagged χ’s are added or removed.

It is important to point out that, as both the examples show, the mere choice
of a p greater than the minimum integer for which a VAR exists causes non-
uniqueness.

Based on Assumption 1, (A), (B) and the above considerations on uniqueness
of VAR representations in the singular case:

Assumption 2. We assume that stable autoregressive representations of the form
(8) exist for χt and denote by p̃ the minimum order of their autoregressive poly-
nomials.

Then we consider the approximation

χ̂t = B̂(L)wt + µ̂t, (15)

where χ̂t, the m × q matrix B̂(L) and the m-dimensional vector µ̂t depend on
n ∈ N.

Assumption 3.

(i) For all n ∈ N, the m-dimensional vector process {µ̂t} is weakly stationary
with constant rank,

(ii) For all n ∈ N and k ∈ Z, wt ⊥ µ̂t−k.

(iii) As n → ∞, χ̂t → χt in mean square, so that, by (ii), µ̂t → 0 and B̂(L)wt →
χt in mean square.
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Note that we are not assuming that {µ̂t} has rational spectral density. As
a consequence the spectral density of {χ̂t} is not assumed to be rational. Defi-
nition (15) and Assumption 3 are obviously fulfilled by the principal-component
unfeasible estimator χ̂χχmt defined in the Introduction, with

B̂(L)wt = Ŵ ′
[m]Ŵ[n]ΛΛΛ[n]G(L)wt, µ̂t = Ŵ ′

[m]Ŵ[n]ξξξnt,

see equations (3) and (4).
For j ≥ 1, we define

Zt,j = (χ′
t, χ′

t−1, . . . , χ′
t−j+1)

′, Ẑt,j = (χ̂′
t, χ̂′

t−1, . . . , χ̂′
t−j+1)

′.

Assumption 4. The m-dimensional process {µ̂t} is non-singular for all n ∈ N.
This implies that for all n ∈ N and j ≥ 1, the covariance matrix of

{
Ẑt,j

}
is

non-singular.

To prove the implication, by Assumption 3(ii),

f̂(θ) = f̂1(θ) + f̂2(θ),

where f , f1 and f2 are the spectral densities of χ̂t, B̂(L)wt and µ̂t, respectively.
Now, singularity of {Ẑt,j} means that there exist 1×m matrices gh, h = 0, · · · , j−1,
not all zero, such that g0χ̂t+ · · ·+ gj−1χ̂t−j+1 = 0, that is, g(L)χ̂t = 0, where g(L)
is the non-zero 1×m polynomial matrix g0 + · · ·+ gj−1L

j−1. This implies that

g(e−iθ)f(θ)g′(eiθ) = g(e−iθ)f1(θ)g
′(eiθ) + g(e−iθ)f2(θ)g

′(eiθ) = 0, (16)

for θ a.e. in [−π, π]. Because {µ̂t} is non-singular for all n ∈ N, f2(θ) is positive
definite for θ a.e. in [−π, π]. Thus (16) is possible only for g(L) = 0.

Lastly, consider a VAR for χ̂t,

χ̂t = Â1χ̂t−1 + · · ·+ Âp̂χ̂t−p̂ + ϵ̂t = P̂t + ϵ̂t, (17)

that is the projection of χ̂t on the space spanned by χ̂i,t−k, i = 1, . . . ,m and
k = 1, . . . , p̂, not on the whole past of χ̂t. As a consequence, in general ϵ̂t is
neither the innovation of χ̂t nor a white-noise vector. By Assumption 4, given p̂,
the matrices Âs, s = 1, . . . , p̂, are unique.

Like the population covariances and the integers r and q, p̃ is supposed to be
known and p̂ is any integer independent of n, fulfilling the inequality in Assumption
5 below. Problems arising when r, q and p̃ are estimated are dealt with in Forni
et al. (2023).

Assumption 5. The order of the VAR in (17) is not less than the minimum p̃
(as defined in Assumption 2), i.e. p̂ ≥ p̃.
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3 Consistency of P̂t and ϵ̂t

By Assumption 5 the representation of Pt in (9) can be conveniently rewritten up
to the lag p̂ :

Pt = A1χt−1 + · · ·+ Ap̂χt−p̂.

As this representation is not necessarily unique, asking if Âj converges to Aj

or not does not make sense. However, Pt and εt are unique and the following
Proposition 1 states that even if the matrices Âj do not converge, P̂t and ε̂t
converge to Pt and εt in mean square.

Observation 2. The following considerations and example should convince the
reader that Proposition 1 is not trivial. Let Yn, Xi and Xin, i = 1, . . . , s, n ∈ N,
be stochastic variables. Suppose that (i) as n → ∞, Yn → Y and Xin → Xi, i =
1, . . . , s, in mean square, (ii) the vector (X1 · · · Xs) has non-singular covariance
matrix. Then it is fairly obvious that the projection of Yn on the variables Xin,
i = 1, . . . , s, converges in mean square to the projection of Y on the variables Xi:

Proj(Yn|X1n, . . . , Xsn) → Proj(Y |X1, . . . , Xs). (18)

However, if the covariance matrix of (X1 · · · Xs) is singular, then (18) does not
necessarily hold. An elementary example is the following. Suppose that Yn = Y ,
that Xn → 0 in mean square and Xn ̸= 0 for all n ∈ N. Then

proj(Y |Xn) =
σY Xn

σ2
Xn

Xn = ρY Xn

Xn

σXn

, (19)

where ρY Xn is the correlation σY Xn/(σY σXn). Now suppose that Xn = αn(Y +Z),
where αn ̸= 0, αn → 0 and Y ⊥ Z. We have

ρY Xn =
σY√

σ2
Y + σ2

Z

,

so that the projection in (19) does not tend to zero, whereas the projection of
Y on 0, which is the limit of Xn, is 0. We see that in this case the additional
assumption that ρY Xn → 0 is necessary. In Proposition 1 the regressors may tend
to singularity. This is why Assumption 3(ii) is crucial at the end the proof.

Proposition 1. Under Assumptions 1 through 5,

P̂t = Â1χ̂t−1 + · · ·+ Âp̂χ̂t−p̂ → Pt = A1χt−1 + · · ·+ Ap̂χt−p̂, ϵ̂t → ϵt.

Proof. As p̂ does not change, we simplify Zt,p̂ and Ẑt,p̂ into Zt and Ẑt, respectively.
Let d be the static rank of Zt, i.e. the rank of the covariance matrix of {Zt}.
Without loss of generality, suppose that the first d coordinates of Zt, gathered
in the d-dimensional vector Ω1t, form a basis in the space spanned by Zt, which
is denoted by HZ,t. Then orthonormalize by the Gram-Schmidt procedure such
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basis. The i-th recursive projection produces a non-zero residual for i = 1, . . . , d.
Call ηt such residuals after normalization. Starting with the (d+1)-th, we regress
the Z’s only on ηt and obtain a zero residual:

Zt =

(
Ω1t

Ω2t

)
=

(
Md×d 0d×(mp̂−d)

N(mp̂−d)×d 0(mp̂−d)×(mp̂−d)

)(
ηt
0(mp̂−d)×1

)
. (20)

Of course ηt is an orthonormal basis in HZ,t. The matrix M is lower triangular
and non-singular. The lower-right matrix is set to zero for convenience. Then
apply the the Gram-Schmidt procedure to Ẑt.

Ẑt =

(
Ω̂1t

Ω̂2t

)
=

(
M̂d×d 0d×(mp̂−d)

N̂(mp̂−d)×d Q̂(mp̂−d)×(mp̂−d)

)(
η̂t
ϑ̂t

)
, (21)

where, as
{
Ẑt

}
is non-singular by Assumption 4, (η̂t, ϑ̂t) is an orthonormal basis

in
{
HẐ,t

}
. By Assumption 3(iii), Ẑt → Zt in mean square, so that the covariance

matrices of {Ẑt}, Ω̂1t, Ω̂2t, converge to the covariance matrices of Zt, Ω1t, Ω2t,
respectively. We have:
(a) The entries of M̂ are well defined continuous functions of the entries of the
covariance matrix E(Ω̂1tΩ̂

′
1t). Thus M̂ → M and η̂t = M̂−1Ω̂1t → M−1Ω1t = ηt.

(b) N̂ = E(Ω̂2tΩ̂
′
1t)M̂

′−1
→ E(Ω2tΩ

′
1t)M

′−1
= N , so that N̂ η̂t → Nηt.

(c) From
Ω̂2t − Ω2t =

[
N̂ η̂t −Nηt

]
+ Q̂ϑ̂t

we have
Q̂ϑ̂t =

[
Ω̂2t − Ω2t

]
−
[
N̂ η̂t −Nηt

]
→ 0. (22)

Orthonormality of ϑ̂t implies that Q̂ → 0.
The projections of χ̂t and χt on Ẑt−1 and Zt−1, respectively, are

χ̂t = P(χ̂t| Ẑt−1) + ε̂t = P(χ̂t| η̂t−1) + P(χ̂t| ϑ̂t−1) + ε̂t

= α̂η̂t−1 + β̂ϑ̂t−1 + ε̂t

χt = αηt−1 + εt,

where ε̂t is orthogonal to η̂t−1 and to ϑ̂t−1. We have

(χ̂t − χt)− (α̂η̂t−1 − αηt−1) = β̂ϑ̂t−1 + (ε̂t − εt) . (23)

Because η̂t−1 → ηt−1, see (a) above, α̂ = E(χ̂tη̂
′
t−1) → E(χtη

′
t−1) = α and the

left-hand side of (23) tends to zero, so that

β̂ϑ̂t−1 + (ε̂t − εt) → 0,
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that is
Trace E(β̂ϑ̂t−1ϑ̂

′
t−1β̂

′) + Trace E((ε̂t − εt)(ε̂t − εt)
′)

+ 2Trace E
(
(ε̂t − εt)ϑ̂

′
t−1β̂

′
)
→ 0.

(24)

We have

E
(
(ε̂t − εt)ϑ̂

′
t−1β̂

′
)
= E

(
ε̂tϑ̂

′
t−1β̂

′
)
− E

(
εtϑ̂

′
t−1β̂

′
)
= −E

(
εtϑ̂

′
t−1β̂

′
)
.

Inverting the matrix in (21):

β̂ϑ̂t−1 = β̂
(
−Q̂−1N̂M̂−1 Q̂−1

)
Ẑt−1 = γ̂Ẑt−1,

say. Using (15) and the definition of Ẑt,

γ̂Ẑt−1 = δ̂1(L)wt−1 + δ̂2(L)µ̂t−1 = Ĝt−1 + Ĥt−1,

say. Because wt is white noise, εt = B0wt is orthogonal to Ĝt−1. By Assumption
3(ii), εt is also orthogonal to Ĥt−1. Thus the last term on the left in (24) is zero
and

α̂η̂t−1 + β̂ϑ̂t−1 → αηt−1, ε̂t → εt,

which concludes the proof.

4 Consistency of the Moving-Average representa-
tion of χ̂t

Let us start by inverting the VAR representations A(L)χt = εt and its empirical
counterpart Â(L)χ̂t = ε̂t:

χt = A1χt−1 + · · ·+ Ap̂χt−p̂ + εt

χ̂t = Â1χt−1 + · · ·+ Âp̂χt−p̂ + ε̂t.
(25)

Iterate (25) h times:

χt = [εt + B1εt−1 + · · ·+ Bhεt−h] +
[
Ah+1,1χt−h−1 + · · ·+Ah+1,p̂χt−(h+p̂)

]
= [εt + B1εt−1 + · · ·+ Bhεt−h] +Hh+1Zt−h−1

= [εt + B1εt−1 + · · ·+ Bhεt−h] + αh+1ηt−h−1 (26)

χ̂t =
[
ε̂t + B̂1ε̂t−1 + · · ·+ B̂hε̂t−h

]
+
[
Âh+1,1χ̂t−h−1 + · · ·+ Âh+1,p̂χ̂t−(h+p̂)

]
(27)

=
[
ε̂t + B̂1ε̂t−1 + · · ·+ B̂hε̂t−h

]
+ Ĥh+1Ẑt−h−1

=
[
ε̂t + B̂1ε̂t−1 + · · ·+ B̂hε̂t−h

]
+ α̂h+1η̂t−h−1 + β̂h+1ϑ̂t−h−1. (28)

We know that A(L) is not necessarily unique, so that the matrices Bj are not
necessarily unique. However the term Bjεt−j is uniquely defined as the projection
of χt on the linear space spanned by the coordinates of εt−j. We now prove that
B̂j ε̂t−j converges to Bjεt−j in mean square.
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Proposition 2. Under Assumptions 1 through 5, for all h ≥ 0,

α̂h+1η̂t−h−1 → αh+1ηt−h−1, B̂hε̂t−h → Bhεt−h. (29)

Proof. We have proved in Proposition 1 that, setting B0 = B̂0 = Im,

α̂1η̂t−1 → α1ηt−1, B̂0ε̂t → B0εt.

Thus the statement in (29) is true for h = 0. Now suppose that h > 0 and that
for j < h,

α̂j+1η̂t−j−1 → αj+1ηt−j−1, B̂j ε̂t−j → Bjεt−j. (30)

Let us prove that this implies that (29) is true. Multiply both sides of (28) by
η̂′t−h−1:

α̂h+1 = E
(
χ̂tη̂

′
t−h−1

)
−

h−1∑
j=0

E
([

B̂j ε̂t−j

]
η̂′t−h−1

)
. (31)

As χ̂t, η̂t−h−1 and B̂j ε̂t−j, for j < h, converge to χt, ηt−h−1 and Bjεt−j, respectively
(the last by the inductive assumption),

α̂h+1 → E
(
χtη

′
t−h−1

)
−

h−1∑
j=0

E
(
[Bjεt−j] η

′
t−h−1

)
= αh+1.

Because, again, η̂t−h−1 → ηt−h−1, the convergence on the left in (29) is proved by
induction. To prove the convergence on the right, using (26) and (28),

(χ̂t − χt)−
h−1∑
j=0

(
B̂j ε̂t−j − Bjεt−j

)
− (α̂h+1η̂t−h−1 − αh+1ηt−h−1)

=
(
B̂pε̂t−h − Bpεt−h

)
+ β̂h+1ϑ̂t−h−1 (32)

Each of the three vectors on the right tends to zero, so that

Trace E
(
(B̂pε̂t−h − Bhεt−h)(B̂hε̂t−h − Bhεt−h)

′
)
+ Trace E

(
β̂h+1ϑ̂t−h−1ϑ̂

′
t−h−1β̂

′
h+1

)
+ 2Trace E

(
(B̂pε̂t−h − Bpεt−h)ϑ̂

′
t−h−1β̂

′
h+1

)
→ 0.

Regarding the third term above, note that([
B̂hε̂t−h

]
η̂′t−h−1

)
= 0.

For, ε̂t−h is the residual of the VAR for χ̂t−h and is therefore orthogonal to all the
χ̂’s in the second term on the right in (27) and therefore to the η̂’s and ϑ̂’s in (28).
Thus

E
(
(B̂pε̂t−h − Bpεt−h)ϑ̂

′
t−h−1β̂

′
h+1

)
= −E

(
Bhεt−hϑ̂

′
t−h−1β̂

′
h+1

)
.

The argument used at the end of the proof of Proposition 1 shows that this co-
variance is zero and the second convergence in (29) is proved.
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5 Consistency of the Impulse-Response Functions
under recursive identification

The orthonormal white noise wt in representation (6)-(7) is of course identified only
up to an orthogonal matrix. Suppose now that, based on economic theory, we want
to identify a q-dimensional orthonormal vector of shocks, call it ut, recursively, that
is, possibly by reordering the variables χit, imposing that the contemporaneous
effect of uit on χjt is zero if j < i and non-zero if j = i, for i = 2, . . . , q. This is
equivalent to:

Assumption 6. We have:

(ε1t ε2t · · · εqt)
′ = Mut,

where M is the unique q × q lower-triangular matrix, with positive entries on the
main diagonal, such that MM′ is equal to the covariance matrix of (ε1t ε2t · · · εqt)′.

The matrix M can be obtained by applying the Gram-Schmidt procedure to
εt:

εt = C0κt =

(
M 0
N 0

)(
ut

0

)
. (33)

Doing the same for ε̂t, we obtain:

ε̂t = Ĉ0κ̂t =

(
M̂ 0

N̂ Q̂

)(
ût

v̂t

)
, (34)

where κ̂t is orthonormal, ût is q-dimensional, v̂t is (m− q)-dimensional, M̂ and Q̂
are lower-triangular, q×q and (m−q)× (m−q), respectively. Because ε̂t → εt, by
the same arguments used to obtain (a), (b) and (c) in the proof of Proposition 1:
(A) M̂ → M and ût → ut.
(B) N̂ → N , so that N̂ ût → Nut.
(C) Q̂v̂t → 0, so that, as v̂t is orthonormal, Q̂ → 0 and

Ĉ0 → C0. (35)

Lastly, define

Ĉj = B̂j Ĉ0 =
(
Ĉ11,h Ĉ12,h
Ĉ21,h Ĉ22,h

)
, Ch = BjC0 =

(
C11,h 0
C21,h 0

)
, (36)

Proposition 3. Under Assumptions 1 through 6, for all h ≥ 0,

Ĉh → Ch.

Proof. By Proposition 2,

B̂hε̂t−h =

(
Ĉ11,h Ĉ12,h
Ĉ21,h Ĉ22,h

)(
ût−h

v̂t−h

)
→ Bpεt−h =

(
C11,h 0
C21,h 0

)(
ut−h

0

)
. (37)
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Thus: (
Ĉ11,hût−h − C11,hut−h

)
+ Ĉ12,hv̂t−h → 0.

Multiplying by û′
t−h and taking expected values:(

Ĉ11,h − C11,hÎq
)
→ 0,

where Îq = E(ut−hû
′
t−h). As Îq → Iq,

Ĉ11,h → C11,h,

Ĉ11,hût−h → C11,hut−h, so that Ĉ12,hv̂t−h → 0. As v̂t−h is orthonormal,

Ĉ12,h → 0.

In the same way we prove that

Ĉ21,h → C21,h, Ĉ22,h → 0

and the proposition is proved.

6 Conclusions
The m-dimensional stationary vector χt is consistently approximated by χ̂t. We
assume that χt is singular and has an ARMA representation, whereas χ̂t is non-
singular. Generically, χt has a finite but not unique finite VAR representation.
As a consequence, the question whether the VAR polynomial for χ̂t converges
is meaningless. However, we prove that the residual of the VAR polynomial for
χ̂t converges to the innovation of χt and that the Impulse-Response Functions
of χ̂t, identified with a recursive scheme, converge to the corresponding Impulse-
Response Functions of χt. Our proofs can be easily adapted to other identification
schemes.

Though our results hold for any singular vector χt and estimator χ̂t, fulfiling
Assumptions 1 through 6, the paper has its main motivation in the factor-model
based vector χχχmt and the estimators of its Structural Shocks and Impulse-Response
Functions. In the present paper such estimators are constructed using the un-
feasible estimator χ̂χχmt and are therefore themselves unfeasible. The analysis of
the present paper has been used in Forni et al. (2023) as guidance to prove the
consistency of feasible estimators of the Structural Shocks and Impulse-Response
Functions of χχχmt.
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