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Abstract

In developed government bond markets, even simple diversification strategies are shown

to offer significant benefits due to imperfectly correlated term-structure dynamics. We

derive a stochastic discount factor to price this asset class by projecting returns onto

the unconditional mean-variance efficient portfolio. The resulting market price of risk

varies substantially over time, peaking during crises and periods of inflation rate dis-

persion. International bond returns exhibit a strong factor structure, but common

sources of return variation show little connection to priced risks. Hedging unpriced

risks from naive or factor-based strategies enhances Sharpe ratios significantly, even

when portfolio weight limits are imposed.
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1 Introduction

Sovereign bond markets represent one of the largest and most liquid asset class globally,

second in size only to public equity markets. Yet there is little existing academic work

that analyzes how internationally diversified government bond portfolios are priced, what

their risk-return characteristics are, or how efficient alternative portfolio construction and

trading strategies are. In fact, models of sovereign bond pricing are almost exclusively cast in

single-country settings. Similarly, the existing literature on active government bond portfolio

management largely focuses on the optimal choice of duration or on the relative mispricing

within a fixed-income market, while allocation across bond markets is usually not discussed

(see, for example, the relevant chapters in Bodie, Kane, and Marcus, 2020). In contrast

to the single-country focus of the academic literature, the availability of globally diversified

government bond funds and exchange-traded funds (ETFs) has increased over the past years

and the demand for these products is on the rise.1

In this paper, we depart from the traditional single-country focus and take a multi-market

perspective to investigate the risk factors driving multi-country currency-hedged government

bond portfolios.2 We derive several key results. First, to our knowledge, we are first to pro-

vide stylized facts on internationally diversified developed markets government bond port-

folios. Our main sample comprises ten major developed sovereign debt markets, denoted

as G10∗, collectively representing approximately 70% of the global market capitalization for

local-currency debt. In particular, we show that substantial diversification benefits arise

1The ratio of total net assets of global versus domestic fixed-income funds in the U.S. has approximately
doubled over the past three decades. Using data from Morningstar, Figure A1 in the Appendix plots this
ratio and shows that it increased from about 7.5% in 1995 to almost 15% in 2022. This ratio is only a lower
bound for the actual international diversification of U.S. bond investors, as they are likely to also achieve
diversification by combining domestic bond funds from different countries in their own portfolios.

2The exact definition of currency-hedged bond returns is provided in Section 3.1.
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even from naive diversification strategies, such as GDP-weighted portfolios, simply due to

imperfectly correlated term-structure movements in the different markets.

Second, we construct the unconditional mean-variance efficient (UMVE) portfolio from

the G10∗ markets, thus providing a stochastic discount factor (SDF). We find that the

UMVE portfolio can be obtained using expected return forecasts based on forward spreads

and real yields and a time-varying covariance matrix, estimated with a shrinkage method.

The resulting SDF is shown to price the individual G10∗ bond markets as well as those of a

sample of additional markets and various dynamic trading strategies.

Third, we analyze the properties of the UMVE portfolio. We find that optimally investing

in international government bonds improves the Sharpe ratio substantially, from an average

of 0.46 for individual markets to a value that exceeds 1. We also show that the expected

Sharpe ratio of the UMVE exhibits substantial time-variation. Specifically, it increases

around the financial crisis in 2008, during the European sovereign debt crisis between 2010

and 2012 and during the COVID-19 crisis. The highest expected Sharpe ratio is observed in

the fourth quarter of 2022, when concerns about inflation and tightening monetary policies

raised investors’ marginal utility of wealth. These are all periods during which the SDF

implies a high market price of risk in international government bond markets. Importantly,

we document that the expected Sharpe ratio of the UMVE portfolio is significantly related

to the dispersion of inflation rates across developed sovereign bond markets: the higher

the cross-sectional standard deviation of inflation rates, the higher is the expected Sharpe

ratio of the UMVE portfolio. In addition, the Sharpe ratio is negatively related to financial

intermediaries’ capital ratios and to an index of global economic policy uncertainty.

Fourth, the analysis reveals that there is very little relation between common sources of

variation in international bond market returns and priced risks. To this end, we perform a
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principal component analysis (PCA) and first show that the G10∗ government bond returns

display a strong factor structure, with the first 3 principal components (PCs) explaining

86% of the variance. However, these common sources of variation represent mostly unpriced

risks, since the first 10 PCs only explain around 22% of the UMVE return variation.

Finally, we provide relevant insights for bond investors. We find that strategies such

as naive diversification or various carry, value, and momentum strategies all exhibit large

amounts of unpriced risks. By constructing portfolios that hedge out such unpriced compo-

nents from bond strategies, Sharpe ratios improve substantially. For instance, applying such

a hedging strategy to a naively diversified (1/N) portfolio, the Sharpe ratio almost doubles.

We observe similar improvements for other popular factor strategies, such as carry or value.

Furthermore, we find that, for practical implementation, the estimation of expected returns

is essential, while estimation of variances matters to a lesser degree.

Implementing bond portfolio strategies that hedge out unpriced risks is associated with

substantial time-variation and large absolute values of the portfolio weights for different

markets. To shed light on the feasibility of such strategies, we provide sensitivity analyses

and impose restrictions on the absolute values of portfolio weights. We find that portfolio

performance is remarkably robust to imposing such limits. Only when we impose a long-only

restriction on the portfolio strategies, some of them drop in performance. But this appears

excessively restrictive, since bond futures exist in all markets in our sample except for one,

which makes shorting a particular market easy for professional market participants.

Our paper is related to several strands of literature. First, it intersects with the work

on return prediction in single domestic government bond markets. A large literature has

emerged since Fama and Bliss (1987), who document the empirical failure of the expecta-

tions hypothesis, as returns are predictable using maturity-specific forward rates. Cochrane
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and Piazzesi (2005) make fuller use of the forward curve for return prediction. They pro-

vide evidence that a common risk factor prices bonds of various maturities. Ludvigson

and Ng (2009) show that macroeconomic and financial variables substantially improve the

predictability of bond risk premia. Cieslak and Povala (2015) emphasize the importance of

inflation to predict government bond returns. In their empirical specification, cycles of yields

in excess of trend inflation contain information on future returns.

Second, a small number of papers analyze international bond return predictability and

yield curve fluctuation across different markets (e.g., Jotikasthira, Le, and Lundblad, 2015;

Bekaert and Ermolov, 2023). Ilmanen (1995) analyzes bond predictability in six countries

and finds that expected bond returns are high when the term spread and the real bond

yield are high. Dahlquist and Hasseltoft (2013) construct local and global Cochrane-Piazzesi

factors and find that both predict international bond returns. Brooks and Moskowitz (2019)

instead find that carry and value predict excess returns on government bonds. More recently,

Lustig, Stathopoulos, and Verdelhan (2019) find that the predictability of long-term foreign

bonds of developed countries decreases as the bonds’ maturity increases. They conclude

that, at the long end of the yield curve, local currency term premia and currency premia

move in different directions and, therefore, offset each other.

Third, our paper relates to the literature that derives the SDF from the mean variance

efficient portfolio, as developed by Hansen and Richard (1987), Ferson and Siegel (2001),

Ferson and Siegel (2003), Ferson and Siegel (2009), and, more recently, Chernov, Lochstoer,

and Lundeby (2022), Maurer, Tô, and Tran (2021) and Chernov, Dahlquist, and Lochstoer

(2023). Our analysis also derives the unconditional mean variance efficient portfolio, but we

analyze a previously unexplored yet important class of assets, namely international govern-

ment bonds.
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In summary, our paper is related to strands of literature that either take a single-country

perspective on government bond markets, or focus on other asset classes, such as the stock

market or currency markets. We differ from all these papers, since we analyze the pricing

of developed countries’ government bonds in a portfolio context. We derive the UMVE

portfolio for this asset class out-of-sample, provide insights about its average realized Sharpe

ratio, the time-series properties of the resulting expected risk premia, and on how common

sources of return variation in international bond portfolios are related to priced risks.

The paper proceeds as follows. Section 2 discusses the theoretical foundations. Section 3

describes the empirical strategy and provides stylized evidence. Section 4 presents all the

empirical findings. Section 5 explores the implications for bond portfolio strategies. Section 6

includes robustness checks. Section 7 concludes.

2 A Linear Factor Model

This section derives the theoretical foundations for the empirical strategy that will be imple-

mented in the remainder of the paper. Specifically, we derive an SDF that prices international

bond markets both conditionally and unconditionally via the UMVE portfolio. Moreover,

the UMVE portfolio derived below prices not only individual markets, but also all admissible

dynamic trading strategies constructed from these individual markets.

The foundations of the role of conditioning information in dynamic asset pricing models

have been described by Hansen and Richard (1987), Ferson and Siegel (2001), and more

recently by Chernov et al. (2022), on which we draw in the following description of the

approach.

The UMVE portfolio is defined by a dynamic trading strategy in the N assets with excess
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returns rxUt+1 = (wU
t )>rxt+1. Its weights wU

t are a function of the time-t covariance matrix

Vt(rxt+1) and expected excess returns Et(rxt+1):

wU
t =

V−1
t (rxt+1)Et(rxt+1)

1 + Et(rxt+1)>V−1
t (rxt+1)Et(rxt+1)

. (1)

While any portfolio that has weights proportional to V−1
t (rxt+1)Et(rxt+1) is condition-

ally mean-variance efficient, only scaling by the term (1+Et(rxt+1)>V−1
t (rxt+1)Et(rxt+1))−1

provides the UMVE portfolio. As has been shown by Hansen and Richard (1987), the un-

conditionally efficient portfolio must be conditionally efficient, while the converse needs not

be true.

The UMVE prices all individual assets and any combination of them, including dynamic

trading strategies. Specifically, we can write both conditional and unconditional linear factor

pricing models in terms of the UMVE. The unconditional relationship is:

E(rxpt+1) = βp E(rxUt+1) , (2)

where the unconditional beta βp = Cov(rxpt+1, rx
U
t+1)V−1(rxUt+1). This relationship holds for

any asset or strategy p.

Similarly, the conditional version of the asset pricing model is given by

Et(rxpt+1) = βpt Et(rxUt+1) , (3)

with a conditional beta βpt = Covt(rx
p
t+1, rx

U
t+1)V−1

t (rxUt+1).
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Finally, the UMVE-implied SDF is

Mt+1 = 1−
(
rxUt+1 − E(rxUt+1)

)
, (4)

and it satisfies

Et(Mt+1rx
p
t+1) = 0 (5)

for all dynamic trading strategies p in the basis assets. It is important to point out that this

SDF Mt+1, defined in Equation (4), is estimated from the UMVE portfolio returns. Thus,

it can be interpreted as an unconditional linear projection of the true SDF onto the payoff

space of all possible trading strategies that can be constructed from the N basis assets.

3 Empirical Strategy and Stylized Facts

Empirical implementation of the approach described in Section 2 to construct the UMVE

portfolio requires the estimation of i) expected returns and ii) the conditional variance. To

determine the weights of the UMVE portfolio at any time t, we will use only information avail-

able at that point in time, while returns are observed out-of-sample, in the subsequent period.

The estimation of conditional covariances faces substantial challenges in a high-dimensional

asset space, such as in the equity market. Indeed, the estimated covariance matrix might

not have full rank or even exhibit negative eigenvalues. Therefore, the low-dimensional asset

space resulting from our focus on a small cross-section of 10 major government bond markets

provides an important advantage when estimating the variance-covariance matrix.

The remainder of this section explains how bond excess returns are defined and presents

stylized evidence for the markets in our sample. Furthermore, it describes how expected
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excess returns and their conditional covariances are estimated and reports the data sources.

3.1 Bond Excess Returns

To analyze the pricing of internationally diversified bond portfolios, we consider a portfolio

strategy, where each month investments in local currency bonds are financed via short-

term local-currency loans. We hereby represent each country’s bond market by a synthetic

10-year zero-coupon bond, obtained from the appropriate zero-coupon bond curve.3 The

corresponding holding period excess return, rxit+1, is therefore given by

rxit+1 := rx
(10Y )
i,t→t+1M =

(
P

(10Y−1M)
i,t+1M

P
(10Y )
i,t

− 1

P
(1M)
i,t

)
Si,t+1M

Si,t
, (6)

where P
(10Y )
i,t and P

(1M)
i,t are the local currency prices of a 10-year government bond and of a

1-month government bill at time t for country i, respectively, and Si,t is the exchange rate of

country i, expressed as the price of the foreign currency in units of the home currency, which

we interpret to be the U.S. dollar. We calculate time series of excess returns as defined in

Equation (6) at monthly frequency, using data from the last day of each month.

Note that the excess return rxit+1, defined in Equation (6), can also be interpreted as the

dynacy-hedged return resulting from a long position in the foreign dynacy bond plus a short

position in a 1-month currency forward.4 This strategy is therefore also consistent with the

definition of hedged bond returns used by Koijen, Moskowitz, Pedersen, and Vrugt (2018)

and Du and Huber (2023).5 Campbell, Serfaty-de Medeiros, and Viceira (2010) find that

3This maturity is frequently used by practitioners and in the academic literature to represent government
bond markets (see, e.g., Jordà, Knoll, Kuvshinov, Schularick, and Taylor, 2019; Lustig et al., 2019).

4For a detailed derivation for the equivalence of our returns and forward-hedged returns, we refer to the
Appendix, Table B1.

5We show in Table B2 in the Appendix that one-month changes in exchange rates do not explain excess
returns rxit+1 as defined in Equation (6). Adjusted R2’s of regressions of excess returns on one-month
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investors holding international bonds should hedge their currency risk. Consistent with this

conclusion, Sialm and Zhu (2022) provide empirical evidence analyzing mutual fund data

and find that around 90% of U.S. international fixed-income funds use currency forwards to

manage their foreign exchange exposure (although they tend to hedge only partially). They

also show that hedging out foreign exchange risk does not decrease the funds’ abnormal

returns, but reduces their return variability.

In our main empirical analysis we focus on government bond markets of the following

countries, which we refer to as G10∗: Australia, Canada, Germany, Japan, New Zealand,

Norway, Sweden, Switzerland, the United Kingdom, and the United States. The currencies

of these countries are the ones which are frequently considered in the foreign exchange

literature, which refers to them as “G10 currencies” (see, for example, Lustig et al. (2019)

and Chernov et al. (2023)). Government bonds of these countries are typically issued in local

markets and denominated in local currencies (Chen, Ganum, Liu, Martinez, and Peria, 2019).

In fact, 99.8% of the outstanding long-term central government debt of the countries in our

main sample is denominated in domestic currency, according to the Bank for International

Settlements (BIS).6 We therefore focus on local currency bonds in our analysis. We represent

the Eurozone by the German government bond market, which is arguably its safest and most

liquid national bond market. All countries in the main sample have liquid government bond

markets and they cover about 68% of the global local-currency long-term debt in the BIS

statistic, as of the end of 2020. As we use only German bonds to represent the Eurozone,

changes in exchange rates are essentially equal to zero. This interpretation of the excess returns rxit+1

mirrors a standard approach used by international bond fund managers when hedging foreign exchange
fluctuations. For example, the Bloomberg Global Aggregate Index publishes hedged returns, where rolling
positions in one-month forward contracts are reset at the end of each month, and no adjustments to the
hedge is made during the month.

6Data source: BIS, http://www.bis.org/statistics/c4.pdf. The percentage does not include New Zealand,
where data are unavailable in the BIS statistic.
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and since Euro area government bonds tend to be highly correlated, our implicit coverage of

world government bond markets is plausibly even larger. A further advantage of our sample

is that the issuing countries are very unlikely to default, such that the government bonds in

our sample can be considered as practically default-risk free assets.

3.2 Data

To calculate bond excess returns, as defined in Equation (6), we collect daily data from

Bloomberg on long-term and short-term zero-coupon yields for the period from January 1995

to December 2022 for the G10∗ countries.7 For some analyses, we expand the set of countries

and thus we also obtain data on zero-coupon yields and exchange rates for additional markets.

For this extended sample, we select all OECD member countries which do not belong to the

G10∗ and for which data availability for the zero-yield curve from Bloomberg is adequate.

This process defines a sample of 20 countries. In addition we consider Hong Kong and

Singapore for which sufficiently long time series of zero yield curves are also available and

which have liquid and sizable government bond and foreign exchange markets. The final list

of extended countries is composed of: Austria, Belgium, Finland, France, Greece, Ireland,

Italy, the Netherlands, Portugal, Slovakia, Slovenia and Spain, which belong to the Euro area

as of 2022, and Chile, Denmark, Colombia, Czech Republic, Hong Kong, Hungary, Israel,

Mexico, Singapore, and Turkey, which are countries outside the Euro area.

We also use several macro data sources. From Datastream, we collect monthly data on

consumer price indices (CPIs), unemployment rates, and quarterly data on gross domes-

tic product (GDP) for each country in our sample.8 We then compute the cross-sectional

7Since Bloomberg does not provide data on the 1-month yield for all countries in our sample, we approx-
imate it using the 3-month yield, which is consistently available.

8For the GDP data, to move from quarterly to monthly frequency, we assign the same value for all three

11



standard deviation of these variables as a measure of dispersion across macroeconomic di-

mensions. As proxies for the return and volatility of the stock market, we collect data for the

MSCI World Index and for the VIX Index from Bloomberg. The Global Economic Policy

Uncertainty Index (EPU) is obtained from the website of Scott Baker, Nick Bloom, and

Steven Davis. This index is based on Baker, Bloom, and Davis (2016) and measures global

policy-related economic uncertainty. We also obtain data on the intermediary capital ratio,

defined by He, Kelly, and Manela (2017) as the aggregate value of market equity divided by

the aggregate value of total assets (i.e, aggregate market equity plus book debt) computed

for the largest financial intermediaries in the U.S. These data are available from the authors’

websites.9

3.3 Stylized Facts

We first provide empirical facts about the risk-return characteristics of government bond

markets and dynamic government bond portfolio strategies. Using Equation (6), we calcu-

late annualized average excess returns, standard deviations, and Sharpe ratios for the G10∗

countries. Table 1 provides descriptive statistics for annualized one-month holding period

excess returns of 10-year government bonds by country of issuance. Although all countries

can be considered as very close to default free, investors earned attractive returns over the

sample period. In fact, Sharpe ratios are above 0.4 in all markets except New Zealand. The

high average returns over the sample period partially reflect a worldwide downwards trend

in bond yields, which persisted until March 2022.

Table 2 compares risk-return characteristics from individual bond markets with those that

can be obtained from naively diversified static portfolios and from simple dynamic portfo-

months of each quarter.
9Table C2 in Appendix C provides descriptive statistics for the above macro and market variables.
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lio strategies. Comparing Panel A of Table 2, which denotes the benchmark case with no

diversification, to Panel B, which displays simple diversification strategies, it becomes clear

that international diversification matters for bond investors. By definition, naive (1/N) di-

versification across markets achieves an average excess return identical to the cross-sectional

average of the single-countries in the sample, which equals 3.3% p.a. The individual coun-

tries’ average standard deviation equals 7.4%. By diversifying, investors could have lowered

the standard deviation of their portfolio considerably by almost 20% to 6.1%, thereby achiev-

ing a substantially higher Sharpe ratio: While the individual countries’ average Sharpe ratio

equals 0.46 in our sample, naive diversification across the 10 markets increases the Sharpe

ratio by almost 20% to 0.54. A GDP-weighted strategy yields a marginally worse risk-return

trade-off, with a Sharpe ratio of 0.53. Panel C of Table 2 explores whether simple portfolio

strategies already realize most of the benefits of internationally diversified bond portfolios,

or whether conditional strategies, which should be easily accessible to bond portfolio man-

agers, lead to further improvements. To this end, we investigate long-short portfolios sorted

on carry, value and momentum. Returns to these strategies have been shown to contribute

significantly to portfolio performance in different asset classes, such as equity, currencies, and

fixed income (e.g., Fama and French, 2012; Asness, Moskowitz, and Pedersen, 2013; Koijen

et al., 2018). We therefore use the following characteristics to construct simple dynamic

portfolio strategies: the slope of the yield curve, i.e. the difference between the 10-year

yield and the local 1-month yield (carry), the real bond yield, i.e. the difference between

the 10-year yield and inflation (value), and momentum, i.e. the cumulative return over 12

months skipping the most recent one (momentum). We document that all long-short bond

portfolios achieve positive performance. The Sharpe ratios for carry, value and momentum

are 0.81, 0.55, and 0.28, respectively. Interestingly, the carry strategy outperforms all others
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substantially. This evidence is consistent with the literature highlighting that returns from

carry generate positive alpha for a host of asset classes (Koijen et al., 2018).

Figure 1 illustrates time variation in returns and risk for the bond portfolio strategies.

Specifically, Panels A and B display the extent to which average excess returns fluctuate

over time by plotting moving averages over 36 months for the returns of the naive and the

GDP-weighted portfolios, as well as the factor portfolios carry, value, and momentum from

Table 2 (Panel C). The considerable heterogeneity in the performance dynamics of these

bond portfolio strategies further supports the conjecture that investors might be able to

benefit from conditional strategies. Figure 1, Panels C and D instead show the time series

of the standard deviations of these five portfolios, where the estimation procedure used to

compute the covariances is explained in detail in Section 3.4.2. While it can be seen that all

portfolios show considerable fluctuations in their standard deviations over time, the factor

strategies appear to exhibit lower risk levels on average. Motivated by these findings, we

proceed to analyze the properties of the UMVE portfolio, using the parsimonious theoretical

framework described in Section 2. To this end, we first explain how the two inputs for its

estimation, namely expected returns and conditional variance are derived.

3.4 Estimation of Expected Bond Returns and Covariances

3.4.1 Expected Returns

To forecast expected excess returns Et(rxit+1) one month ahead, we rely on forward spread

and value signals. These are two well established predictive variables, for which there is

a large empirical literature, both as potential predictors of excess returns in local bond

markets as well as of other asset classes. Specifically, we run the following pooled ordinary

least squares (OLS) regression, using expanding time windows, with standard errors clustered
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at the country level:

Et(rxit+1) = γt ForwardSpreadi,t + δt V aluei,t , (7)

where we define the explanatory variables as follows:

ForwardSpreadi,t =
P

(10Y−1M)
i,t

P
(10Y )
i,t

− 1

P
(1M)
i,t

. (8)

Many papers, starting with Fama and Bliss (1987) and Campbell and Shiller (1991), doc-

ument the empirical failure of the expectations hypothesis and that forward rates predict

future bond returns: steep yield curves signal high subsequent holding period returns. More

recently, Koijen et al. (2018) provide evidence that similar carry measures predict returns

cross-sectionally and in the time series for different asset classes. Their definition of global

bond carry is a slightly modified version of the Fama and Bliss (1987) forward spread. Link-

ing carry concepts from the currency and bond markets, Andrews, Colacito, Croce, and

Gavazzoni (2023) show that sorting countries on the slope of their yield curves constitutes

a profitable trading strategy, in particular since 2008 when returns from the traditional

currency carry have weakened.

Next we define value by the real bond yield:

V aluei,t = Y
(10Y )
i,t − πi,t , (9)

where πi,t = ln(CPIi,t/CPIi,t−12M) and CPI is a country’s consumer price index. Inflation

has been considered an important driver of bond holding period returns, both in academic

research as well as among practitioners. Campbell and Ammer (1993) show that unexpected
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excess bond returns must be associated with changes in expected inflation rates, future

real interest rates, or future excess bond returns. Because bond payoffs are fixed, changes

in expected inflation rates impact nominal bond returns even if expected real returns are

constant. More recently, Cieslak and Povala (2015) find that a cycle factor that captures

deviations of observed bond yields from those fitted on the basis of current and past inflation

predicts excess returns of long-term yields.

It is plausible that sophisticated investors were aware of the relation between the above

predictive variables and bond returns throughout our sample period. As discussed above,

the shape of the yield curve has already been identified as a determinant of bond risk premia

by Fama and Bliss (1987) and Campbell and Ammer (1993), who split the bond yield into

expected real rates and other components, thus emphasizing the role of value measures as

defined in Equation (9) above. Also, Ilmanen (1995) considers both the term spread and

the real bond yield as instruments to explain bond excess returns. To ensure that we use

only information up to time t to form expectations about returns ending in period t + 1,

we re-estimate the coefficients in Equation (7) every month using an expanding sample. For

the regression, we require a minimum of 60 months of data, and thus we obtain expected

returns starting with January 2001.

Figure 2 shows the time series of the estimated coefficients γ̂t and δ̂t, while Table 3 reports

their descriptive statistics. Even though there is some time variation in the estimates, they

appear to be quite stable. Consistent with the literature, both the forward spread and

bond value have positive coefficients, but only the former has, on average, a statistically

significant relation with expected returns. In Table 3, the average t-stats are 2.65 and 1.35

for the forward spread and bond value, respectively. Despite weak statistical significance of

value for forecasting bond returns, it will turn out to be, jointly with the forward spread, an
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economically relevant signal in constructing the UMVE portfolio, as reported in Section 4.2.

3.4.2 Covariances

We estimate the covariance matrix using a three-step procedure. First, we compute monthly

bond returns at daily frequency. We require a high frequency of observations in this stage

as this allows us to estimate a covariance matrix Σ̂t for each month, thus capturing time

variation. Second, given the low number of observations within a single month, we apply the

quadratic shrinkage method of Ledoit and Wolf (2022), obtaining Σ̃t. Finally, we calculate an

exponentially weighted average of the shrunk covariance matrices, to arrive at the estimate

of the covariance matrix Vt:

Vt = (1− λ)Σ̃t + λVt−1 , (10)

where we set λ=0.94.10

3.4.3 Unbiasedness

As a sanity test, we first check if the main objects that we use for constructing the UMVE

portfolio are unbiased. In particular, we regress (i) realized excess returns rxit+1 on ex-

pected excess returns Et(rxit+1), (ii) squared returns in excess of expected values, (rxit+1 −

Et(rxit+1))2, on estimated variances, σ2
t (rx

i
t+1), which are the diagonal elements of the ma-

trix Vt, and (iii) products of returns (rxit+1 − Et(rxit+1)) · (rxjt+1 − Et(rxjt+1)) on estimated

covariances covt(rx
i
t+1, rx

j
t+1), which are the off-diagonal elements of Vt.

Table 4 shows that the regression of realized returns on predicted returns produces a

coefficient close to 1 (the estimated coefficient is equal to 0.90). The conditional variance also

10We set V1 equal to Σ̃1.
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appears consistently estimated, as indicated by the coefficient of 0.95. Similar conclusions

obtain for the estimated covariance, where the regression coefficient almost exactly equals

1.00. Thus, according to Table 4, the predictive regressions are unbiased, as in none of the

cases the coefficients are statistically significantly different from 1.11

4 Empirical Evidence

After defining the set of the test assets, this section provides the main results of the asset

pricing tests to evaluate the linear factor model, discusses the implications, and analyzes the

properties of the UMVE portfolio returns.

4.1 Test Assets

Following Hansen and Richard (1987), one can evaluate the conditional linear beta pricing

relationship from Equation (3) by testing the unconditional linear beta pricing relation spec-

ified in Equation (2) for a comprehensive set of dynamic trading strategies as test assets.

Therefore, in addition to individual countries’ bond returns, we include 14 trading strategies

in our set of test assets. Specifically, we define the return of a dynamic portfolio strategy P ,

rxPt+1, as

rxPt+1 =
Nt∑
i=1

wPi,trx
i
t+1 , (11)

where wPi,t is the weight of country i in strategy P and Nt is the number of countries at

time t. In addition to the naive 1/N and the GDP-weighted portfolios, we use bond carry,

11This is also true when predicting returns and covariances of trading strategies, as shown in Table D1 in
the Appendix.
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value and momentum as trading signals, which we define as follows:

Carry difference between the 10-year yield and the local 1-month yield

Carryi,t = Y
(10Y )
i,t − Y (1M)

i,t ,

V alue real bond yield, as defined in Equation (9)

V aluei,t = Y
(10Y )
i,t − πi,t,

Momentum cumulative return over 12 months, skipping the last month

Mom12i,t =
11∏
k=1

(
P

(10Y −1M)
i,t−k

P
(10Y )
i,t−k−1

Si,t−k

Si,t−k−1

)
− 1,

ShortTermMom return over the last month

Mom1i,t =
P

(10Y −1M)
i,t

P
(10Y )
i,t−1

Si,t

Si,t−1
− 1.

Table 5 lists the different trading strategies and provides the details of the respective portfolio

constructions.

4.2 Regression Tests of the UMVE Portfolio

To analyze whether the UMVE portfolio prices international government bonds, we test

Equation (2) and run traditional regression tests of the following form:

rxit+1 = αi + βirx
U
t+1 + εi,t+1, (12)

where rxit+1 denotes the excess returns of test asset i (where i denotes the country or the

trading strategy, respectively) and rxUt+1 is the UMVE portfolio’s excess return as defined in

Section 2.

Table 6 shows the results of the hypothesis test for the G10∗ markets. Specifically, it
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shows for each country the annualized Sharpe ratio (SR), the mean excess returns (Mean),

and the t-test of the mean excess returns (t mean). It further reports the alphas (Alpha)

from country regressions defined in Equation (12), their t-statistics (t alpha), and the associ-

ated adjusted R2 (adj.R2). While Sharpe ratios range from 0.26 to 0.70 and mean annualized

excess returns range between 2.20% and 4.01%, alphas are small and not significantly dif-

ferent from zero. The alpha for Germany has the largest t-statistic, with a value of 1.28.

Japan exhibits the largest adjusted R2: the UMVE portfolio excess returns explain 16% of

Japanese bond excess returns. Overall, results confirm the validity of the UMVE portfolio,

as it is able to individually price government bond markets without bias. However, the rela-

tively low R2s suggest that only a part of bond return variations is priced. This observation

is consistent with the finding of Chernov et al. (2023) for currencies.

Table 7 reports the results for portfolio strategies. The Sharpe ratios of the 14 portfolio

strategies range from -0.34 to 0.79. All alphas with respect to the UMVE portfolio are

statistically insignificant. The UMVE portfolio prices a relatively large share of the variation

in the cross-sectional carry and time series value strategies, as expressed by the R2 of 15%.

The other R2s are relatively low, similar in magnitude to those of Table 6. This suggests

again that a substantial fraction of the variation of the returns is unpriced.

Table 8 reports the results of the Gibbons, Ross, and Shanken (1989) (GRS) test. The

first column shows the Sharpe ratio of the UMVE portfolio, constructed from the full esti-

mation model defined in Equation (7) (top row), and of restricted UMVE portfolios, which

use the forward spread only (middle row) or value only (bottom row) as predictor variable.

As can be seen, the UMVE portfolio based on the full model prices bond markets substan-

tially better than the UMVE portfolio obtained from the restricted models. This indicates

that, while the bond value variable exhibits poor statistical significance when we look at its
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effect in the forecasting regression (see Table 3), it is an important variable, jointly with the

forward spread, when it comes to pricing the cross-section of bond returns. We also observe

that the Sharpe ratio of the optimal UMVE portfolio is much higher than the Sharpe ratios

of the individual bond markets and those of bond strategies. In Table 8, the column headed

All strategies (GRS Tests) shows the key result, namely that the p-value of the test whether

the alphas from regressing each portfolio strategy on the UMVE portfolio are jointly equal

to zero. The GRS test fails to reject the null with a p-value equal to 0.402. Overall, we

conclude that the full estimation model represents a valid SDF. In the spirit of Chernov

et al. (2023), we also apply the GRS test to UMVE candidate portfolios constructed on the

basis of the forward spread or value only as predictor variable. We test these versions of the

UMVE portfolio on different strategies. Results are shown in the middle and bottom rows

of Table 8. Although these restricted models price some trading strategies, they lack the

ability to price all strategies jointly.

4.3 Pricing Other Countries

Since a global SDF should not only price the assets from which it has been constructed, we

go beyond the original set of the G10∗ markets, and implement tests using a wider universe

of bond markets. Specifically, we test if the UMVE portfolio prices single-country bonds

and strategies based on an extended set of countries, which are not used to construct the

UMVE portfolio. We therefore run regression tests, as specified in Section 4.2, using the

excess returns of other countries’ bond markets and the trading strategies associated with

most of these markets12 as the dependent variable in Equation (12).

12To guarantee a balanced panel and data availability from January 2001 (starting date of the UMVE)
for the trading strategies, we use only data on the following markets to construct the alternative countries’
portfolio strategies: Austria, Belgium, Denmark, Finland, France, Hong Kong, Ireland, Italy, Netherlands,
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We report the results in Table 9. While, on average, alphas are larger in magnitude

compared to the results for the main markets (see Table 6), all but one are not statistically

significant at the 5% level. This is confirmed both for markets pegged to the Euro and,

importantly, also for other markets. The only exception is Italy, which exhibits a t-value of

1.99. This might reflect the different behavior of Italian bonds during and after the European

sovereign debt crisis, when their status as a safe asset was in doubt. The picture does not

materially change when we consider bond strategies constructed from this set of bonds.

Table 10 shows that most alphas are insignificant (at the 5% level), with the exception of

cross-sectional carry and cross-sectional 12-month momentum. In summary, there is little

evidence of market segmentation, as the UMVE portfolio constructed from the main bond

markets does not generally lead to large pricing errors even in a broader asset universe.

4.4 Unpriced Return Components

Our results so far confirm that the UMVE portfolio prices both individual countries’ bond

excess returns and the excess returns obtained from portfolio strategies. However, the share

of variation in returns explained by the UMVE, as expressed by the regressions R2s, is

relatively low. We therefore construct bond portfolios which hedge out the unpriced sources

of common variation in returns. The recent literature explores the properties of hedged

and unhedged portfolios and their asset pricing implications (e.g., Daniel, Mota, Rottke,

and Santos, 2020; Lopez-Lira and Roussanov, 2023). These papers find that Sharpe ratios

improve substantially when hedging unpriced components of risk. We compute for each

strategy the conditional beta βPt with respect to the UMVE portfolio as follows:

Portugal, Singapore, and Spain.

22



βPt =
(wP

t )>Vt(rxt+1)wU
t

(wU
t )>Vt(rxt+1)wU

t

, (13)

where wP
t is a vector of strategy weights, as defined in Table 5, and wU

t is the vector with

the weights of the UMVE portfolio.

We define the hedged portfolio, HDP , as a portfolio with excess returns given by βPt rx
U
t+1,

i.e. as a portfolio which only has systematic factor exposure. The unpriced component is

captured by the hedging portfolio, HGP , with returns equal to the return difference between

the original strategy portfolio, P , and the hedged portfolio, HDP . In particular:

rxHGPt+1 = rxPt+1 − βPt rxUt+1. (14)

The weights of the hedged portfolios are given by wHDP
t = βPt ·wU

t . Figures E1, E2 and

E3 in Appendix E plot the time series of portfolio weights of the respective hedged trading

strategy.

Figure 3 displays the annualized Sharpe ratios of the original portfolios, of the hedging

portfolios and of the hedged portfolios. The Sharpe ratios of the hedging portfolios are

close to zero, and always lower than those of the original strategies. This accords well

with the notion that risks which are not related to the SDF should not be associated with

risk premia. We also observe that for most strategies the Sharpe ratios of the hedged

portfolios are all significantly larger than those of the hedging and the original portfolio

strategies, respectively. This is consistent with Daniel et al. (2020), who conclude that the

risk-adjusted portfolio return can be improved by eliminating unpriced risks. Indeed, while

the risk-adjusted portfolio returns for the original strategies are in the range of -0.34 to 0.79,
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those of the hedged portfolios range between 0.15 and 1.07.

To gain additional insight into the structure of bond returns and their relation to the

UMVE portfolio, we perform a Principal Components Analysis (PCA) of bond excess returns.

Figure 4 displays the loadings of the first three principal components (PCs). Consistent with

the literature on interest rates, the first PC is a level factor, as all countries load positively

on it. The second PC seems to be an Australasia vs. rest of the world factor. Australia

and New Zealand have indeed positive loadings, while the remaining countries have negative

ones. With respect to the third PC, we cannot see a clear, intuitive interpretation.

Figure 5 documents how much of the variation in the UMVE portfolio returns is explained

by the PCs. Panel B of Figure 5 reports the R2 of these regressions. The first bar shows

the results from regressing the UMVE on the first PC only, the second one uses the first two

PCs as regressors and similar interpretations apply for the other bars. Interestingly, the first

three PCs explain less than 10% of the variation in the UMVE excess returns. This is despite

the fact that these three PCs jointly explain around 86% of the variation in bond returns, as

documented in Panel A of Figure 5. Even when all PCs are considered, the R2 only increases

to 22%. This implies that the UMVE is not spanned by the PCs, since a significant fraction

of its variation remains unexplained. Panel C of Figure 5 shows the alphas from a regression

of bond returns on the PCs, as well as their confidence intervals. It can be seen that the

resulting alphas are all positive and statistically significant. Thus, PCs extracted from bond

returns do not adequately explain the UMVE portfolio returns.

Overall, this evidence suggests that there is an important timing component in the UMVE

portfolio, which is not reflected in the PCs of bond returns. The latter are, indeed, essentially

a linear combination of individual bond returns weighted by constant loadings, and as such

cannot capture the dynamic nature of the UMVE portfolio. Such a timing component is
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likely to be even more strongly reflected in trading strategies. We therefore turn our attention

to dynamic trading strategies next.

Figure 6 shows the PC loadings of the (dynamic) bond trading strategies. These loadings

do not imply a straightforward economic interpretation of the PCs, except for the first PC,

which again seems to reflect a level factor. As displayed in Panel A of Figure 7, the first

three PCs explain 82% of the variation in portfolio strategies. However, even though these

three PCs capture the time variation of strategy returns quite well, they only explain a

small share of priced risks, i.e. 11%, as documented in Panel B of Figure 7. If we use all

PCs, the R2 increases to 34%. As was the case for individual bonds, we document that

the factors explaining the variation in the returns on trading strategies are not important

drivers of the variation in the UMVE portfolio returns. However, consistent with the fact that

trading strategies better capture the dynamic nature of the UMVE, the principal components

obtained from these portfolios explain a higher fraction of the UMVE portfolio returns than

the ones obtained from the set of individual bond markets.

4.5 Sharpe Ratio Decomposition

Section 4.4 documents that the Sharpe ratios of almost all traditional trading strategies can

be substantially improved by hedging out risk components unrelated to UMVE portfolio

returns. This section analyzes whether the hedging performance of the UMVE-based SDF is

mainly due to capturing the cross-sectional and time series variation of the various markets’

expected returns, or mainly due to correctly capturing the time-varying return dependence,

or whether both are of similar importance.

To this end, we successively shut off elements in the estimation of the UMVE portfolio

(i.e., expected returns, variances, correlations) and only let the others vary. Comparing
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hedging strategies based on the restricted UMVE portfolios helps to identify the sources of the

Sharpe ratio improvements. Specifically, our approach considers the following alternatives:

First, we fix expected returns at the historical average across all markets over the estimation

window, but use the estimates for the conditional variance from the full model (as described

in Section 3.4.2). Thus, we shut off any cross-sectional variation in conditional expected

returns when constructing the UMVE portfolio. Second, we use estimates for expected

returns for each market from the full model (as described in Section 3.4.1), but employ

a covariance matrix Vσ̄
t where we set each market’s variance equal to the cross-sectional

average. Thus, here we shut off any cross-sectional variation in conditional variances when

constructing the UMVE portfolio. Third, we again estimate expected returns based on the

full model (as described in Section 3.4.1), but use a covariance matrix Vρ̄
t where we set all

correlations equal to the average estimated pairwise correlation. Thus, here we shut off any

cross-sectional variation in conditional correlations. Note that all three described estimates

are out-of-sample since the values at which a component of the estimation is fixed only

depends on past returns. We describe our approach in more detail in Appendix F.

We refer to the hedged portfolios resulting from the three restricted SDF estimations

as Hedged: Constant Expected Returns, Hedged: Constant Sigma and Hedged: Constant

Correlation. Figure 8 shows the annualized Sharpe ratios for these portfolios. To facilitate

easier interpretation, the first bar reports the Sharpe ratios for the hedged portfolios when

using the unrestricted UMVE portfolio returns, which are the same as those in Figure 3. As

can be seen from Figure 8, only the portfolios Hedged: Constant Correlation have Sharpe

ratios close to the ones obtained from the hedged strategies that make full use of the estimated

parameters, as is done in Figure 3. In contrast, Sharpe ratios are much lower when using an

SDF that is estimated from the UMVE portfolios that assume constant expected returns or
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constant standard deviations across markets. When comparing the second (green) and third

(turquoise) bars in the charts for the different strategies, we see that modelling the cross-

section of expected returns is more important in defining the UMVE portfolio than estimating

the cross-section of variances. Indeed, the hedged portfolios when using UMVE portfolio

estimations based on constant variances have higher Sharpe ratios on average than in the

case where UMVE portfolios are constructed based on constant expected returns, indicating

that shutting off cross-sectional variation in expected returns worsens the performance of

the resulting SDF more than shutting off cross-sectional variation in variances.13

4.6 UMVE Portfolio Characteristics

This section reports important properties of the UMVE portfolio shown to price bond mar-

kets. In particular, we provide descriptive statistics and analyze its time-varying risk-return

characteristics. To this purpose, we scale the UMVE portfolio, so that its returns have the

same average volatility as the 1/N portfolio, i.e. a portfolio that allocates capital equally

across all bond markets.

Table 11 summarizes descriptive statistics. Specifically, it shows that the UMVE portfolio

returns an impressive average annualized excess return of 6.9% with a volatility of 6.1%. This

implies a Sharpe ratio of 1.1. The maximum drawdown is 8.6% over the entire period from

January 2001 to December 2022. The second set of rows shows the optimal portfolio weights

13The analysis in this subsection eliminates various sources of cross-sectional differences in the parameters
that determine the UMVE portfolio. For completeness, the Appendix G reports results of an alternative ex-
ercise, which eliminates various sources of time series differences instead. Specifically, we i) use the in-sample
country-specific average excess returns, but let the conditional variance be estimated as in Section 3.4.2 and
ii) we let expected returns be estimated as in Section 3.4.1, but use the in-sample estimated covariance matrix,
by computing the arithmetic average of all monthly shrunk covariance matrices. The detailed description of
this approach as well as the results are available in the Appendix G. Overall, the outcome is consistent with
the conclusions of this subsection in the sense that capturing time series differences in expected returns is
more important than capturing time series differences in covariances.

27



averaged across time. It can be seen that individual positions are quite large: the average

absolute weight is about four times that of the 1/N portfolio. The dynamics of the portfolio

composition are illustrated in Figure 9, which plots the weights of the constituents of the

UMVE portfolio over time. There is considerable time-variation in the portfolio composition,

which is consistent with Green and Hollifield (1992), who argue that the presence of a

dominant factor can lead to extreme weights of assets in mean-variance efficient portfolios.

The sensitivity of results with respect to restrictions on portfolio turnover is discussed in

Section 5.

Figure 10 plots the UMVE’s annualized expected Sharpe ratio over time. The Figure

illustrates that the market price of risk exhibits significant time-variation. The highest

expected Sharpe ratio is approximately 3 and it reaches a minimum of approximately 0.66.

We observe relatively high Sharpe ratios in periods of crises, as reflected by the peaks around

the financial crisis 2008, the European sovereign debt crisis from 2010 to 2012, and the recent

COVID-19 crisis. The highest values correspond to the fourth quarter of 2022. During that

year, average inflation rates reached a record high, triggered also by Russia’s invasion of

Ukraine in late February 2022. This suggests that the unprecedented sharp increase in

yields led by aggressive monetary policy tightening and increases in inflation expectations

raised investors’ marginal value of wealth. In accordance with this observation, the difference

in the average expected Sharpe ratio between recession and non-recession periods, as defined

by the NBER for the U.S. and the Eurostat Business Cycle Clock for the Euro area, is

positive and statistically significant.14 Overall, this suggests that the estimated price of risk

is high when the current macroeconomic situation is bleak, consistent with the intuition

14We regress the UMVE expected Sharpe ratio on a constant, plus a recession dummy (equal to 1 for
recession periods as defined by the NBER and the Eurostat Business Cycle Clock, 0 otherwise) and document
a positive coefficient of 0.260 which is statistically significant at the 5% level, using Newey and West (1994)
standard errors.
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that investors have high marginal utility in times of crisis and, as a result, require more

compensation for foregoing consumption by investing in a risky bond portfolio.

Figure 10 suggests that the market price of risk in international government bond portfo-

lios is related to the macro economy. This is consistent with a large literature that links risk

premia in single government bond markets to macro variables.15 Important macro variables

that have been found to affect bond risk premia include output growth, unemployment and

inflation (e.g., Ludvigson and Ng (2009)). We therefore wish to shed light on how the po-

tential benefits from internationally diversified government bond portfolios depend on these

macro variables. Of course, if changes in the macro-economy are exactly the same across

the G10∗ countries, then macro-driven term-structure changes should also be identical and

allocating assets across different countries’ bond markets becomes irrelevant. Diversification

matters only when there is heterogeneity in the macro-economic dynamics. We therefore

include the cross-sectional standard deviation of the macro variables (GDP SD, Unempl SD,

Infla SD) to explain the dynamics of the UMVE portfolio’s expected Sharpe ratio. In addi-

tion, we control for global equity returns (MSCIRet) and a measure of overall risk, captured

by the VIX index, which has been shown by Miranda-Agrippino and Rey (2020) to correlate

with the global cycle. We also include the risk bearing capacity of large U.S. institutions,

measured by their capital ratio (CapitalRatio) as defined in He et al. (2017). Finally, we

control for global economic policy uncertainty (GlobEPU ), based on Baker et al. (2016).

The measure is computed as the GDP-weighted average of countries’ Economic Policy Un-

certainty (EPU) indices.

Table 12 reports the regression results. It can be seen that the dispersion in inflation is

the most important economic variable, which robustly explains a significant fraction in the

15For recent examples, see Moench and Soofi-Siavash (2022), Fang, Liu, and Roussanov (2022), or Cieslak
and Pflueger (2023).
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market price of risk in bond markets. Specifically, higher cross-sectional standard deviation

of inflation is associated with a higher expected Sharpe ratio. This highlights the significant

role of inflation across markets, which affects both interest rate movements and risk factors.

The MSCI World Index and the VIX also contribute positively to the dependent variable,

although to a lesser extent. When the global stock market realizes positive returns, bond re-

turns may decline contemporaneously, but risk-adjusted expected bond returns increase. We

also find that increases in the VIX, which usually coincide with bad times, lead to increases

in the price of risk. The intermediary capital ratio has a negative and statistically significant

effect (only at the 10% level) on the UMVE expected Sharpe ratio. As the capital ratio is a

sensible proxy for financial institutions’ risk-taking capacity, a low value may indicate lower

ability and willingness to make risky investments and thus a higher market price of risk. It

is also consistent with investors being less optimistic about macro-economic conditions, as

indicated by the large and negative correlation of -0.62 between the capital ratio measure

and the recession dummy. Table 12 also shows that the Global EPU Index is negatively

and statistically significantly related to the UMVE expected Sharpe ratio. At first sight,

this result may appear surprising, especially in light of the higher expected Sharpe ratios

in recessions, as described above. However, securities prices are forward looking and reflect

investors’ expectations about future macro-economic developments. When an economy is al-

ready known to be in a recession, investors are likely to expect the macro-economic situation

to improve in the future. Thus, to transfer wealth from the poor current recession state to a

possibly improved future via a risky bond investment may require a high Sharpe ratio. By

contrast, the Global EPU Index is not a recession proxy, and can instead be interpreted as

a forward looking measure of uncertainty (Brexit referendum, Trump election, etc.). When

this index is high, investors may find government bond investments more attractive than
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investments in other risky assets, such as stocks, consistent with a flight to quality and the

negative regression coefficient reported in Table 12.

5 Implications for Bond Portfolio Strategies

In this section we discuss implications of our findings for bond portfolio management. We

start by illustrating the time-varying expected risk premia of traditional bond portfolio

strategies. We then provide information about the time-varying composition of the UMVE

portfolio, and to what extent extreme long and short positions, as shown in Table 11, are

required to obtain the attractive risk-return relation of the UMVE.

Once the portfolio projection of the SDF is known, one can calculate the expected risk

premium of various bond strategies in real time. Specifically, for each bond strategy consid-

ered by an investor, she can obtain the expected Sharpe ratio based on estimates of expected

excess returns and the covariance matrix. Figure 11 illustrates the cross-sectional and the

time variation of expected Sharpe ratios for the trading strategies described in Section 4.1.

Positive (negative) values are shown in green (red) color; darker areas indicate larger absolute

values. First, Figure 11 reveals considerable heterogeneity: simple diversification (naive and

GDP-weighted), and carry strategies have almost always positive expected Sharpe ratios,

while momentum strategies show notable fluctuations between positive and negative values.

The attractiveness of value strategies appears to vary at lower frequency.

While a real-time assessment of the risk-return properties of a given trading strategy, as

illustrated in Figure 11, may be useful for investors, it does not speak to the overall opti-

mal portfolio. We thus turn to the analysis of the practical implementability of the UMVE

portfolio. We have shown that hedged portfolio strategies lead to economically attractive
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risk-return ratios which, in most cases, beat the original trading strategies by a wide margin.

It is therefore natural to ask whether these strategies would be implementable in practice.

Such a practical implementation may face two challenges. First, the hedged portfolio strate-

gies may require extreme position weights to achieve their high performance. To see how

sensitive the results are with regard to a portfolio manager’s ability to take extreme market

positions, we impose minimum and maximum weights for the hedged portfolio strategies

and compare the resulting Sharpe ratios with the ones of the original strategies. A second

potential concern relates to the feasibility of taking short positions. In principle, short po-

sitions should be easily achievable, since long-term government bond futures are available

in all markets of our main sample with the exception of Norway.16 However, many asset

managers, such as conventional mutual fund managers, face legal or investor-imposed short-

selling constraints. We therefore also analyze strategies with minimum weights of zero in each

market as a robustness check. Specifically, we implement the following two lower and upper

bounds on portfolio weights: First, we restrict portfolio weights for each country between 0%

and 20% and second, we consider a restricted strategy with portfolio weights in the range

between -20% to +20%. We report the results in Figure 12. Remarkably, even when we

apply such relatively conservative weight restrictions, the hedged strategies beat the original

trading strategies with Sharpe ratios close to those achieved by the unrestricted portfolios.

However, it appears that a considerable part of the performance comes from short positions:

While 11 out of 14 long-only strategies still outperform their unhedged counterparts, their

16Koijen et al. (2018) include the same ten bond markets as our paper but calculate synthetic bond
futures returns because of liquidity concerns and data availability. For markets where they have access to
bond futures prices, they find correlations above 0.95 between actual and synthetic futures returns. Similarly,
we find correlations above 0.97 between excess returns that we calculate from yield curves and futures excess
returns for Australia, Canada, Germany, Sweden, Switzerland, the UK, and the U.S.A.. We find somewhat
lower correlations for futures markets that are less liquid (New Zealand 0.81, Japan 0.92). There is no
long-term government bond futures contract traded for Norway.
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Sharpe ratios tend to be far lower than those of portfolios that allow at least limited short

positions. The only exceptions are the momentum portfolios. Here, restricting investors

from taking short positions even turns out to be beneficial. Overall, the hedged portfolios

improve Sharpe ratios considerably, even when large portfolio weights are not allowed.

Finally, Table 11 shows that implementation of the UMVE requires high portfolio turnover

which might raise concerns about trading costs. Yet, this is not likely to be an important

issue for major government bond markets since they all feature derivatives markets. Trading

costs for bond futures are very low, typically in the order of magnitude of 1 basis point.

Transactions in the cash market tend to be slightly more expensive. Favero, Pagano, and

von Thadden (2010) quantify the median cost of trading German government bonds with 10

year maturity with 3 basis points. Using a range from 1 to 3 basis points, trading costs will

lower the return of the UMVE by only about 0.2% to 0.6% p.a.

6 Robustness

6.1 Estimation of Expected Returns: Alternative Specifications

In this subsection, we test alternative specifications of Equation (7). Specifically, we i) add

a constant, ii) add country fixed effects, and use alternative definitions of iii) the forward

spread and iv) the bond value variables.

Specifically, for the alternative specification (iii) we compute the forward spread variable

defined over 1 year, as follows:

ForwardSpread∗t =
P

(9Y )
i,t

P
(10Y )
i,t

− 1

P
(1Y )
i,t

, (15)
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and not over 1 month, as defined in Equation (8).

The alternative bond value variable used for the alternative specification (iv) is based

on trend inflation, as defined by Cieslak and Povala (2015), instead of historical inflation.

Specifically, we compute:

V alue∗t = Y
(10Y )
i,t − τCPIt

τCPIt =
(1− v)

(1− vM)

M−1∑
i=0

viπt−i ,
(16)

where πt = ln(CPIt/CPIt−12M) is the annual inflation in month t, M = 120 is the number

of months considered for measuring inflation, and v is a parameter calibrated to inflation

survey data which we set equal to 0.987, as in Cieslak and Povala (2015).17 Trend inflation,

as defined above, has been shown to forecast future inflation and to predict bond excess

returns (see Cieslak and Povala (2015) and the literature cited there).

Results from these alternative specifications are summarized in Appendix D, Table D2.

Overall, we find a slight weakening of evidence for the validity of the resulting alternative

SDFs, thus providing further support for the original model specification.

6.2 Estimation of Expected Returns: Including Additional Pre-

dictive Variables

We explore the robustness of our findings with respect to the model of expected returns. In

particular, we consider momentum and currency trend variables and credit risk as additional

17We obtain time series for All Items CPI from the OECD Main Economic Indicators database, available
via Archival Fred at the website of the Federal Reserve Bank of St. Louis. We use vintage data to construct
inflation rates in order to analyze portfolios constructed with information available at the time. To further
allow for a publication lag, we lag inflation rates by two months except for Australia and New Zealand, for
which we apply additional lags to account for the quarterly frequency of the data.
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candidate explanatory variables.

6.2.1 Momentum and Currency Trend Signals

In addition to the variables used in Equation (7), we include long-term and short-term

momentum, as well as currency trend signals when modelling expected returns. Specifically,

we estimate the following out-of-sample regressions:

Et(rxit+1) = ψ1,tForwardSpread
i
t+ψ2,tV alue

i
t+ψ3,tLTMomi

t+ψ4,tSTMomi
t+ψ4,tFXTrend

i
t ,

(17)

where the definitions of ForwardSpread and V alue are unchanged from Section 3.4.1.

LTMom is defined as the cumulative return from t − 12 to t − 1. STMom is defined as

the most recent return. FXTrend is defined, similarly to Chernov et al. (2023), as a simple

currency trend signal: Si,t/Si,t−12M − 1. We find that including these variables weakens the

results when compared to the model with carry and value only. Specifically, this alternative

model leads to noisier conditional expectations. More importantly, while a UMVE portfolio

constructed from three or more signals still seems to correctly price all trading strategies, its

Sharpe Ratio is lower than the one resulting from the UMVE that only relies on two signals.

We provide detailed results in the Appendix D (Panels A to D of Table D3 and Table D4).

6.2.2 Credit Risk

The G10∗ countries defined in Section 3.1 of this paper all have developed economies and are

economically and politically stable. We therefore interpret their bond markets as essentially

default-free. However, the literature discusses credit risk as a potentially important compo-

nent of the risk premium even for such countries (Longstaff, Pan, Pedersen, and Singleton,

35



2011; Augustin, Sokolovski, Subrahmanyam, and Tomio, 2022). Therefore, as an additional

robustness check, we include sovereign credit risk, which we measure using sovereign CDS

spreads, to estimate expected returns.

Specifically, we run out-of-sample regressions of the following form:

Et(rxit+1) = θ1,tForwardSpread
i
t + θ2,tV alue

i
t + θ3,t∆CreditRisk

i
t , (18)

where ∆CreditRiskit is computed as CDSi,t−CDSi,t−1M , with CDSi,t and CDSi,t−1M being

the monthly average CDS spread levels (in basis points) at time t and t− 1M , respectively.

We use data on 5-year USD-denominated sovereign CDS spreads from Markit and follow

Della Corte, Sarno, Schmeling, and Wagner (2022) for an accurate selection of the CDS

restructuring clauses.18 To obtain a balanced panel of liquid CDS contracts, we use data

starting from the end of 2003. However, we lack liquid data for Switzerland (up to 2005) and

the United Kingdom (up to 2008). To proxy for the missing CDS data, we use contracts of

comparable countries based on credit ratings and levels of investor protection.19 We provide

results in Panel E of Table D3 and in Table D4, fifth row. We find that adding CDS does

not improve the prediction of bond expected returns or variances.

18We focus on contracts denominated in USD and with 5-year maturity, as they are the most liquid
contracts in the sovereign CDS market.

19To identify comparable countries, we match credit ratings, using Thomson Reuters as data source for
Fitch Long Term Default Ratings. To match investor protection, we use La Porta, Lopez-de-Silanes, Shleifer,
and Vishny (1998) and select countries of the same legal origin and with a low number of deviations in all
sub-categories of shareholder rights, creditor rights, and rule of law. For these countries, we compute the
average CDS spreads and use them for the period for which the respective matched country has no liquid
CDS data. To avoid potential jumps between the two time series, we apply an adjustment factor to the
matched average CDS spread.
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6.3 Estimation of Expected Returns: Fixed Estimation Window

We further estimate Equation (7) using constant 5-year rolling windows, instead of expand-

ing windows. As expected, the time series of the estimated coefficients γ̂t and δ̂t exhibit more

fluctuation, as shown in Figure D1. However, we still obtain valid and unbiased estimates

of the expected returns, as documented in Table D5. Furthermore, results from the regres-

sion tests of the UMVE portfolio on the test assets (see Tables D6 and D7) document the

robustness of our findings.

6.4 Regression Test of the UMVE Portfolio: Other Maturities

We have so far provided evidence that the UMVE derived in Sections 2 and 3 prices individ-

ual bond markets and trading strategies well. These tests relied on holding-period returns

from positions in the countries’ 10-year bonds. To analyze whether the UMVE also prices

international bonds in different maturity buckets, we now test its validity using holding-

period returns from alternative long-term bond maturities. Specifically, we analyze whether

the UMVE also prices 5-year and 15-year maturities.

Results are reported in Table D8. One can see that none of the regressions yields a

statistically significant alpha at the conventional 5% level. This is true even at the shorter 5-

year maturity (except for Switzerland), for which one may expect that countries’ monetary

policies in the wake of the Great Financial Crisis and COVID-19 may have led to some

distortions or structural breaks, not captured by the 10-year return-based UMVE. Overall,

this evidence provides further support for the validity of the UMVE.
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6.5 Time Series of Expected UMVE Sharpe Ratio: Including

Credit risk

As a robustness check, we include a proxy of global sovereign credit risk to explain the

time series of the UMVE expected Sharpe Ratio. Specifically, we use GlobCDS, which we

construct as the GDP-weighted average of countries’ 5-year CDS spread changes. CDS

spread changes are constructed as described in detailed in Section 6.2.2. Table D9 shows the

regression output. Results confirm the importance of dispersion in inflation as a driver of

the price of risk. The GlobCDS variable is not statistically significant, which is in line with

our argument that credit risk does not play a significant role in the G10∗ markets.

6.6 Alternative Benchmark Portfolios

6.6.1 The Naive Portfolio

As shown above, the SDF projection on the UMVE portfolio is supported by standard

validation tests. However, one may ask whether a naive SDF, such as the one derived from a

projection on the 1/N portfolio, also leads to similar results as the projection on the UMVE

portfolio. In this respect, we perform regression tests as in Tables 6 and 7, but using the

naive 1/N portfolio returns to define the SDF. Results are reported in Tables D10 and D11.

Although the 1/N portfolio is able to correctly price some individual government bond and

portfolio strategy returns, we find that, on average, the t-statistics of the alphas are much

higher than those obtained when using the SDF from a projection on the UMVE portfolio

(see Tables 6 and 7). Importantly, for some test assets, the alphas resulting from the 1/N

portfolio are statistically significantly different from zero. We therefore conclude that the

SDF based on the naive portfolio strategy is dominated by the SDF derived in Section 2.
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6.6.2 The Minimum Entropy Approach

In our main analysis, we obtain real-time estimates of the UMVE-based SDF. This approach

derives a projected SDF from the unconditional mean-variance efficient portfolio. An alterna-

tive approach is based on minimum entropy, which takes into account higher moments of re-

turns. Following Sandulescu, Trojani, and Vedolin (2021), we provide an in-sample estimate

of the minimum entropy SDF for the international government bond markets. Specifically,

we obtain the minimum entropy SDF, M̃ , as

M̃t = R−1

λ̂∗,t
, (19)

where Rλ̂∗,t denotes the gross returns of the optimal growth portfolio. The latter is defined

as

Rλ̂∗,t =
N∑
i=1

λ̂∗i rx
i
t +R

(1M)
US , (20)

where λ̂∗i is the optimal portfolio weight for country i and R
(1M)
US is the gross return of 1-month

U.S. T-bills. We estimate the optimal portfolio weights from the solution to the following

set of empirical moment conditions:20

Ê[R−1

λ̂∗
rx] = 0 , (21)

where rx is the vector of excess returns of our test assets, i.e. the individual bond markets.

Following Sandulescu et al. (2021), we obtain the vector of portfolio weights λ̂∗, i.e. the

parameters to be estimated from Equation (21), using the method of moments.

20For details, see Equation (17) from Sandulescu et al. (2021).
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We report the results of the hypothesis test specified in Equation (12) in Tables D12 and

D13, while the results from the GRS test are reported in the bottom row of Table D4. Overall,

the optimal growth portfolio, which is constructed in-sample, explains a larger fraction of

the variation in bond returns and portfolio strategies than the UMVE portfolio, which is

constructed out-of-sample. However, the UMVE portfolio dominates with respect to pricing

international government bonds. As reported in Tables D12 and D13, with the exception

of cross-sectional carry and cross-sectional value, alphas of individual country and strategy

regressions are statistically indistinguishable from zero. However, using the GRS test we

reject the hypothesis that alphas are jointly equal to 0 when using the minimum entropy

SDF.

7 Conclusion

This paper investigates the pricing of currency-hedged government bonds and presents sev-

eral key findings. We document substantial diversification benefits for investors due to im-

perfectly correlated term-structure movements in the different markets, even when only con-

sidering developed markets and simple strategies, such as GDP-weighted or equally weighted

portfolios. We find that the unconditional mean-variance efficient portfolio of G10∗ govern-

ment bonds can be obtained using expected return forecasts based on forward spreads and

real yields and a time-varying covariance matrix, estimated with a shrinkage method. The

resulting SDF is shown to price the individual G10∗ bond markets as well as additional

markets and various dynamic trading strategies.

While the SDF derived in this paper is based on portfolios of bonds with 10-year maturi-

ties, we find that it also prices bonds in other maturity buckets well. To rule out that credit
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risks have significant effects on risk premia even though we focus on developed countries, we

extend the analysis to include CDS spreads as a robustness test. We find that adding CDS

does not further improve the prediction of expected returns or variances.

The UMVE portfolio is shown to have several interesting properties. First, we find

that optimally investing in international government bonds achieves a large improvement

in the Sharpe ratio, from the average individual market’s Sharpe ratio of approximately

0.46 to a value greater than 1. However, the UMVE exhibits substantial time-variation

in the implied market price of risk. Specifically, it increases around recessions and crises,

with the highest expected Sharpe ratio being observed in the fourth quarter of 2022, when

concerns about inflation and tightening monetary policies raised investors’ marginal utility

of wealth. The paper documents that the expected Sharpe ratio of the UMVE portfolio

is strongly positively related to the dispersion of inflation rates across developed sovereign

bond markets. In addition, expected Sharpe ratios are negatively related to intermediaries’

capital ratios and to an index of global economic policy uncertainty.

While bond returns exhibit a strong factor structure, with 86% of the variance being

explained by the first 3 principle components, there is very little relation between common

sources of variation in international bond market returns and priced risk. The first 10

principle components only explain around 22% of the UMVE portfolio return variation.

Consistent with this finding, portfolio strategies, such as equally weighting or various

factor-based portfolio strategies, such as carry, value, and momentum strategies, all exhibit

large amounts of unpriced risks. By constructing portfolios that hedge out such unpriced

components from bond strategies, Sharpe ratios improve substantially. Our analysis also

suggests that, for successful practical implementation, the estimation of expected returns is

essential, while estimation of variances matters to a lesser degree.
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To shed light on the feasibility of strategies that hedge out unpriced risks, we provide

sensitivity analyses and impose restrictions on the absolute values of portfolio weights. We

document that portfolio performance is remarkably robust to imposing such limits. Only

when long-only restrictions are imposed, the portfolio performance drops. However, bond

futures exist in almost all of the G10∗ markets, which should make shorting a particular

market easy for professional market participants.

Recognizing that the existing finance literature provides little theoretical and empirical

foundation on which international government bond portfolio strategies can be built, this

paper provides a first step to fill this gap. However, given the growing size and economic

importance of this asset class, this is likely to remain an active area of research. One obvious

extension is to analyze pricing kernels for a broader universe of bond markets which also

includes emerging markets, where default risks are likely to play a role.
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Table 1: Descriptive Statistics of Bond Returns

Mean Median Std. Dev. SR

Australia 3.906 3.501 9.007 0.434
Canada 4.364 3.240 7.498 0.582
Germany 4.105 6.814 6.861 0.598
Japan 3.646 2.796 5.103 0.715
New Zealand 2.791 4.571 8.515 0.328

Norway 3.226 3.135 7.352 0.439
Sweden 5.313 5.612 8.100 0.656
Switzerland 3.486 4.521 5.717 0.610
United Kingdom 3.401 3.158 8.136 0.418
United States 4.310 2.214 9.013 0.478

This table shows descriptive statistics of monthly 10-year govern-
ment bond excess returns (in % p.a.) and annualized Sharpe Ratios
(SR) by country of issuance. Statistics refer to the G10∗ countries.
Bond returns are in monthly frequency. Data are from January
1995 to December 2022 and measured in USD.
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Table 2: Stylized Evidence

Mean Median Std. Dev. SR

A. No diversification
Individual countries’ average 3.307 3.145 7.379 0.463

B. Simple strategies
Naive (1/N) 3.307 2.309 6.077 0.544
GDP-weighted 3.505 2.862 6.637 0.528

C. Conditional strategies
Carry 3.262 2.684 4.011 0.813
Value 2.170 1.291 3.913 0.555
Momentum 1.098 0.961 3.860 0.284

This table shows the mean return in % p.a., median return in % p.a., standard
deviation in % p.a., and annualized Sharpe Ratio (SR) of individual countries’
average as well as global bond portfolio strategies. The sample consists of Aus-
tralia, Canada, Germany, Japan, New Zealand, Norway, Sweden, Switzerland, the
United Kingdom, and the United States. Panel A shows results with no diversi-
fication. Panel B shows results of simple portfolio strategies. Panel C presents
conditional strategies, where portfolios are constructed using rank-weights follow-
ing Asness et al. (2013) and focusing on the following signals respectively: bond
carry, defined as the difference between 10-year yield and the local 1-month yield;
bond value, defined as the difference between the 10-year yield and inflation; and
bond momentum, defined as the cumulative return over 12 months skipping the
last month. Data are from December 1995 to December 2022.
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Table 3: Estimated Coefficients from Predictive Regressions

Statistic Mean Median Std. Dev. Pctl(10) Pctl(90)

γ̂t 1.489 1.568 0.269 1.115 1.800
t-stat γ̂t 2.655 2.643 0.692 1.702 3.546

δ̂t 0.058 0.054 0.014 0.043 0.077

t-stat δ̂t 1.355 1.318 0.243 1.106 1.640

This table reports descriptive statistics of the estimated coefficients from the
pooled regressions, as specified in Equation (7). γ̂t, δ̂t are the estimated
coefficients of the forward spread and value, respectively; t-stat is the t-
statistic of these variables.
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Table 4: Predictive Ability of Conditional Expectations, Variance and Covariance for Indi-
vidual Countries

rxit+1 (rxit+1 − Et(rxit+1))2 (rxit+1 − Et(rxit+1)) · (rxjt+1 − Et(rxjt+1))

Et(rxit+1) 0.903
(0.315)

σ2
t (rx

i
t+1) 0.952

(0.086)

covt(rx
i
t+1, rx

j
t+1) 0.999

(0.115)

Observations 2,640 2,640 11,880
Adjusted R2 0.010 0.057 0.055

This table shows estimates from regressions of realized returns, rxit+1, on expected returns, Et(rx
i
t+1), column (1), of

(rxit+1−Et(rx
i
t+1))2 on estimated variance, σ2

t (rxit+1), column (2), and of (rxit+1−Et(rx
i
t+1)) · (rxjt+1−Et(rx

j
t+1))

on estimated covariance, column (3). The estimation of the conditional means and the conditional covariances
follows Sections 3.4.1 and 3.4.2, respectively. Standard errors are clustered at the month level. Under the null
hypothesis that coefficients are different from 1, ***,**,* denote that estimates are statistically significant at the
1, 5, and 10 percent levels.
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Table 5: Trading Strategies

Acronym Name Description

1/N Naive equally-weighted average of countries’ bond returns
GDP-weighted GDP-weighted GDP-weighted average of countries’ bond returns

Average Carry Average Carry long (short) in all countries when the average bond
carry is positive (negative)

CS-Carry Cross-Sectional Carry rank weights (Asness et al., 2013) based on bond carry
TS-Carry Time Series Carry long (short) in countries with a positive (negative)

bond carry

Average Value Average Value long (short) in all countries when the average bond
value is positive (negative)

CS-Value Cross-Sectional Value rank weights based on bond value
TS-Value Time Series Value long (short) in countries with a positive (negative)

bond value

Average Mom12 Average Momentum 12
Months

long (short) in all countries when the average long-
term bond momentum is positive (negative)

CS-Mom12 Cross-Sectional Momen-
tum 12 Months

rank weights based on long-term bond momentum

TS-Mom12 Time Series Momentum 12
Months

long (short) in countries with a positive (negative)
long-term bond momentum

Average Mom1 Average Momentum 1
Month

long (short) in all countries when the average short-
term bond momentum is positive (negative)

CS-Mom1 Cross-Sectional Momen-
tum 1 Month

rank weights based on short-term bond momentum

TS-Mom1 Time Series Momentum 1
Month

long (short) in countries with a positive (negative)
short-term bond momentum
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Table 6: Testing the UMVE using Individual Country Bond Returns

SR Mean t mean Alpha t alpha adj.R2

Australia 0.263 2.200 1.238 1.043 0.558 0.010
Canada 0.463 3.209 2.179 1.028 0.714 0.075
Germany 0.502 3.480 2.363 1.654 1.282 0.049
Japan 0.704 2.351 3.316 0.758 1.099 0.158
New Zealand 0.285 2.293 1.341 0.975 0.558 0.019

Norway 0.383 2.746 1.805 1.573 1.041 0.017
Sweden 0.453 3.265 2.135 1.544 1.076 0.042
Switzerland 0.509 2.913 2.396 1.384 1.168 0.051
United Kingdom 0.313 2.533 1.474 0.948 0.577 0.026
United States 0.440 4.012 2.073 1.206 0.657 0.072

This table shows for individual countries the annualized Sharpe ratio (SR), mean
bond returns (Mean, in % p.a.), and the t-statistic for the mean bond returns
(t mean). It further shows the alpha from regressing individual countries’ bond
returns on the UMVE portfolio returns (Alpha, in % p.a.), the t-statistics for the
alpha (t alpha), and the adjusted R2 from this regression (adj.R2). The t-statistics
are heteroskedasticity robust. Data are from January 2001 to December 2022.
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Table 7: Testing the UMVE using Portfolio Strategies

SR Mean t mean Alpha t alpha adj.R2

1/N 0.477 2.900 2.246 1.211 0.996 0.056
GDP-weighted 0.498 3.349 2.343 1.151 0.876 0.079

Average Carry 0.617 3.730 2.906 1.581 1.317 0.096
CS-Carry 0.786 3.038 3.701 1.309 1.644 0.148
TS-Carry 0.518 2.782 2.437 1.078 1.011 0.074

Average Value 0.617 3.726 2.903 1.424 1.105 0.109
CS-Value 0.517 1.716 2.435 0.804 1.159 0.058
TS-Value 0.600 3.029 2.825 0.800 0.763 0.149

Average Mom12 0.507 3.080 2.388 1.181 0.926 0.074
CS-Mom12 0.248 0.819 1.167 0.622 0.799 -0.001
TS-Mom12 0.403 6.310 1.898 2.473 0.708 0.044

Average Mom1 0.070 0.428 0.329 0.934 0.728 0.002
CS-Mom1 -0.344 -1.180 -1.618 -1.501 -1.945 0.004
TS-Mom1 -0.001 -0.005 -0.005 0.456 0.466 0.003

This table shows for global bond portfolio strategies, as defined in Table 5, the annu-
alized Sharpe ratio (SR), mean bond returns (Mean, in % p.a.), and the t-statistic
for the mean bond returns (t mean). It further shows the alpha from regressing
portfolio returns on the UMVE portfolio returns (Alpha, in % p.a.), the t-statistics
for the alpha (t alpha), and the adjusted R2 from this regression (adj.R2). The
t-statistics are heteroskedasticity robust. Data are from January 2001 to December
2022.
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Table 8: Sharpe Ratio and GRS Test for the UMVE Portfolio Using Portfolio Strategies

SR GRS Tests – p-values

Model UMVE All strategies All Carry All Value All Carry
and Value

Optimal 1.135 0.402 0.205 0.392 0.256
Forward spread only 0.870 0.036 0.057 0.010 0.012
Value only 0.635 0.010 0.000 0.163 0.001

This table shows in column (1) the Sharpe ratio (SR) of the UMVE portfolio constructed using the
full estimation model, i.e. based on the forward spread and value as predictor variables (top row),
and of restricted UMVE portfolios constructed using the forward spread only (middle row) or using
the value only (bottom row) as predictor variable. Column (2) shows the p-value of the GRS test
if the alphas from regressing all global portfolio strategies on the respective UMVE portfolio are
jointly equal to zero. Column (3) shows the p-value of the GRS test if the alphas from regressing
global carry portfolio strategies on the respective UMVE portfolio are jointly equal to zero. Column
(4) shows the p-value of the GRS test if the alphas from regressing global value portfolio strategies
on the respective UMVE portfolio are jointly equal to zero. Column (5) shows the p-value of the
GRS test if the alphas from regressing global carry and value portfolio strategies on the respective
UMVE portfolio are jointly equal to zero. Data are from January 2001 until December 2022.
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Table 9: Testing the UMVE Portfolio Using Alternative Countries’ Bond Returns

SR Mean t mean Alpha t alpha adj.R2

Euro area
Austria 0.528 3.793 2.487 2.032 1.487 0.041
Belgium 0.540 4.178 2.541 2.279 1.526 0.042
Finland 0.495 3.544 2.331 1.742 1.273 0.045
France 0.549 3.955 2.587 2.341 1.686 0.034
Greece∗ 0.275 10.513 1.296 13.221 1.531 0.000
Ireland 0.465 5.145 2.188 3.607 1.403 0.011
Italy 0.533 5.162 2.510 4.058 1.991 0.006
Netherlands 0.513 3.670 2.415 1.888 1.402 0.044
Portugal 0.436 5.758 2.054 4.817 1.642 -0.000
Slovakia∗ 0.431 3.516 1.769 2.702 1.275 0.004
Slovenia∗ 0.322 3.267 1.372 2.820 1.111 -0.003
Spain 0.548 4.905 2.581 3.382 1.732 0.018

Other countries
Chile∗ 0.286 2.989 1.188 2.943 1.122 -0.005
Denmark 0.480 3.507 2.262 1.917 1.350 0.033
Colombia∗ 0.251 3.628 1.030 0.823 0.226 0.030
Czech Republic∗ 0.431 3.980 2.029 2.202 1.109 0.017
Hong Kong 0.449 4.427 2.113 2.016 0.963 0.038
Hungary∗ 0.231 3.536 1.080 2.337 0.693 0.001
Israel∗ 0.577 5.262 2.444 3.748 1.685 0.023
Mexico∗ 0.305 3.822 1.348 1.541 0.549 0.024
Poland 0.330 3.806 1.552 2.501 0.992 0.002
Singapore 0.461 3.456 2.173 1.030 0.645 0.067
Turkey∗ 0.348 12.138 1.468 5.287 0.642 0.035

This table shows for other countries, which we do not use for the estimation of the
UMVE portfolio, the annualized Sharpe ratio (SR), mean bond returns (Mean, in
% p.a.), and the t-statistic for the mean bond returns (t mean). It further shows the
alpha from regressing other countries’ bond returns on the UMVE portfolio returns
(Alpha, in % p.a.), the t-statistics for the alpha (t alpha), and the adjusted R2

from this regression (adj.R2). Data are from January 2001 until December 2022.
∗For these countries data are available for a shorter time period. Specifically, data
availability starts as follows: Chile: September 2005, Colombia: April 2006, Czech
Republic: December 2000, Greece: December 2000, Hungary: March 2001, Israel:
March 2005, Mexico: August 2003, Slovakia: April 2006, Slovenia: December 2004,
Turkey: April 2005.
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Table 10: Testing the UMVE Portfolio Using Alternative Countries’ Portfolio Strategies

SR Mean t mean Alpha t alpha adj.R2

1/N 0.622 4.292 2.930 2.592 1.885 0.041
GDP-weighted 0.612 4.342 2.884 2.776 1.952 0.033

Average Carry 0.622 4.292 2.930 2.592 1.885 0.041
CS-Carry 0.652 4.701 3.068 4.941 2.822 -0.002
TS-Carry 0.616 4.077 2.899 2.505 1.853 0.038

Average Value 0.699 4.798 3.289 1.657 1.131 0.155
CS-Value 0.409 2.805 1.927 2.722 1.666 -0.004
TS-Value 0.821 4.548 3.865 2.095 1.801 0.145

Average Mom12 0.726 4.978 3.418 2.688 1.850 0.089
CS-Mom12 0.544 3.376 2.563 4.169 2.823 0.011
TS-Mom12 0.533 4.903 2.508 1.744 0.866 0.089

Average Mom1 0.327 2.279 1.538 2.456 1.669 -0.003
CS-Mom1 -0.088 -0.492 -0.415 -0.152 -0.116 -0.002
TS-Mom1 0.201 1.204 0.947 1.389 1.149 -0.003

This table shows for global bond portfolio strategies, as defined in Table 5, of other
countries, which we do not use for the estimation of the UMVE portfolio, the annu-
alized Sharpe ratio (SR), mean bond returns (Mean, in % p.a.), and the t-statistic
for the mean bond returns (t mean). It further shows the alpha from regressing
portfolio strategies of other countries’ bond returns on the UMVE portfolio returns
(Alpha, in % p.a.), the t-statistics for the alpha (t alpha), and the adjusted R2 from
this regression (adj.R2). Data are from January 2001 until December 2022.
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Table 11: Descriptive Statistics for the UMVE Portfolio

UMVE

Mean (in %) 6.914
Median (in %) 6.429
Std. Dev. (in %) 6.092
Sharpe Ratio 1.135
Maximum Drawdown (in %) 8.674

wU,+
i,t (in %) 45.544

wU,−
i,t (in %) -38.008
|wU

i,t| (in %) 42.170∑
|wU

i,t −wU
i,t−1| 1.711

This table shows descriptive statistics for the UMVE portfolio. Re-
turns are scaled to have the same volatility as the naive portfolio.
Specifically, it shows the mean excess return (in % p.a.), median
excess return (in % p.a.), standard deviation (in % p.a.), Sharpe
ratio (annualized), and maximum drawdown (in %). The second set
of rows includes statistics of the UMVE portfolio weights averaged
across time and markets. It reports the average absolute portfolio
weight (in %), the average of positive weights (in %), the average of
negative weights (in %), and the average portfolio turnover. Data
are from January 2001 to December 2022.
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Table 12: Time Series Expected UMVE Sharpe Ratio and Macro and Market Variables

UMVE Expected Sharpe Ratio
(1) (2) (3)

GDP SD 0.005 0.009 0.043
(0.023) (0.024) (0.031)

Unempl SD −0.001 −0.007 −0.004
(0.005) (0.006) (0.006)

Infla SD 0.651∗∗∗ 0.603∗∗∗ 0.624∗∗∗

(0.094) (0.105) (0.103)

MSCIRet 0.722∗∗ 0.682∗

(0.316) (0.360)

VIX Index 0.009∗∗ 0.008∗

(0.004) (0.005)

CapitalRatio −2.692∗

(1.626)

GlobEPU −0.001∗∗

(0.0005)

Constant 0.554∗ 0.448 0.323
(0.335) (0.344) (0.492)

Observations 264 264 264
Adjusted R2 0.519 0.537 0.567

This table shows estimates from regressions of the UMVE expected Sharpe ratio on macro
and market variables. GDP SD, Unempl SD, and Infla SD are the cross-sectional standard
deviations of countries’ GDP, Unemployment, Inflation, respectively. MSCIRet is the return
on the MSCI World Index. VIX Index is an index of the implied volatility of the S&P 500
and is calculated from S&P 500 index options. CapitalRatio is the intermediary capital ratio
as defined by He et al. (2017) and GlobEPU is the Global Economic Policy Uncertainty
Index based on Baker et al. (2016). Newey-West standard errors with 6 lags are reported
in parenthesis (Newey and West, 1994). Data are from January 2001 to December 2022.
***,**,* denote that estimates are statistically significant at the 1, 5 and 10 percent levels.
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Figure 1: Time Variation in Returns and Standard Deviations
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Panel A shows annualized moving average returns over 36 months for the naive (1/N) and the GDP-weighted portfolios. Panel
B shows moving average returns over 36 months for the rank-weighted conditional portfolios (Asness et al., 2013). These are
constructed using bond carry, value, and momentum as signals. Bond carry is defined as the difference between 10-year yield and
the local 1-month yield. Bond value is defined as the difference between the 10-year yield and inflation. Bond momentum is defined
as the cumulative return over 12 months skipping the last month. Panels C and D plot standard deviations for the simple and
conditional strategies, respectively. Details on the covariance matrix estimation, based on Ledoit and Wolf (2022), which is used for
the standard deviations, are reported in Section 3.4.2. Bond data belong to the following countries: Australia, Canada, Germany,
Japan, New Zealand, Norway, Sweden, Switzerland, United Kingdom, United States. Data are from October 1998 to December
2022.
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Figure 2: Time Series of Estimated Coefficients from Predictive Regression

0

1

2

3

2000 2005 2010 2015 2020

γ̂

(A) forward spread 

0.0

0.1

0.2

2000 2005 2010 2015 2020

δ̂

(B) value 

This figure shows the time series of the estimated coefficients from pooled regressions of the forward spread (γ̂) and bond

value (δ̂) on bond excess returns using expanding rolling windows. Panel A displays the estimated coefficient of the forward
spread variable and Panel B of the bond value variable. The dotted lines and the shaded areas show the 90% and 95%
confidence intervals, respectively. Standard errors are clustered at the country level.
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Figure 3: Sharpe Ratio of Original, Hedging, and Hedged Strategies
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This figure shows the annualized Sharpe ratio of the original, hedging and hedged portfolio strategies. The
original portfolio strategies are defined in Table 5. The hedged portfolio is the portfolio with systematic
factor exposure, as defined in Section 4.4, while the hedging portfolio captures the unpriced source of common
variation in bond returns. Data are from January 2001 to December 2022.
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Figure 4: Principal Component Analysis of Returns: Loadings
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This figure shows loadings from Principal Component Analysis of bond returns. Bond returns refer to the
G10∗ countries. Panel A reports loadings for PC1, Panel B for PC2, and Panel C for PC3. Data are from
January 2001 to December 2022.
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Figure 5: Principal Component Analysis of Bond Returns and UMVE Returns
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This figure shows in Panel A the fraction of variance explained by the PCs of bond returns. Bond returns
refer to the G10∗ countries. Panel B shows the adjusted R2 from regressing the UMVE returns on the PCs
of bond returns. Panel C shows the alpha from these regressions, the black lines are the 95% confidence
intervals. Data are from January 2001 to December 2022.
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Figure 6: Principal Component Analysis of Strategies: Loadings
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This figure shows loadings from Principal Component Analysis of global bond strategy returns. The portfolio
strategies are defined in Table 5. Panel A reports loadings for PC1, Panel B for PC2, and Panel C for PC3.
Data are from January 2001 to December 2022.
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Figure 7: Principal Component Analysis of Strategies and UMVE Returns
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This figure shows in Panel A the fraction of variance explained by the PCs of global bond strategy returns.
The portfolio strategies are defined in Table 5. Panel B shows the adjusted R2 from regressing the UMVE
returns on the PCs. Panel C shows the alpha from these regressions, the black lines are the 95% confidence
intervals. Data are from January 2001 to December 2022.
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Figure 8: Sharpe Ratio Hedged Strategies Decomposition
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This figure shows, for each strategy, the annualized Sharpe ratio of the hedged portfolio (first bar), as
defined in Section 4.4, and three alternative hedged portfolios constructed from restricted UMVE versions.
We construct the restricted UMVE versions by successively shutting off one element in the estimation (i.e.,
expected returns, variances, correlations) and letting the others be estimated from the full model (as described
in Sections 3.4.2 and 3.4.1). Specifically, the restricted UMVE portfolios shut off any cross-sectional variation
in conditional expected returns, or in conditional variances, or in conditional correlations (as described in
Section 4.5). The hedged portfolios resulting from these restricted UMVE portfolios correspond to the
hedged portfolio with constant expected returns (Hedged: Constant Expected Returns), the hedged portfolio
with constant sigma (Hedged: Constant Sigma) and the hedged portfolio with constant correlation (Hedged:
Constant Correlation). Data are from January 2001 to December 2022.
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Figure 9: Times Series of Portfolio Weights
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This figure shows the time series of weights for the UMVE portfolio. The UMVE portfolio returns are scaled
to have the same volatility as that of the naive portfolio. Data are from January 2001 to December 2022.
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Figure 10: Properties of the UMVE Portfolio
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The figure shows the time series of the expected Sharpe ratio of the UMVE portfolio (annualized in %).
The shaded areas correspond to recession periods, as defined by the NBER for the USA and the Eurostat
Business Cycle Clock for the Euro area. The dotted-dash line indicates its mean value. Data are from
January 2001 to December 2022.
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Figure 11: Portfolio Strategies Heatmap
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This figure shows a heatmap of the portfolio strategies’ expected Sharpe ratio over time. The estimation of
the conditional means and the conditional covariances follows Sections 3.4.1 and 3.4.2. Detailed description
of the trading strategies is available in Table 5. Data are from January 2001 to December 2022.
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Figure 12: Portfolio Strategies with Weights Cutoffs
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This figure shows the annualized Sharpe ratio of the original, hedged portfolio strategies, and hedged portfolio
strategies with weight restrictions. Hedged weights 0 to +0.20 means that we force the weights of the hedged
portfolio to be positive (or zero) and the maximum country’s weight cannot excess 20% of the total portfolio.
Hedged weights -0.20 to +0.20 means that we force the weights of the hedged portfolio to be in the range
between -20% and +20%.
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Appendix for

“Pricing and Constructing International Government

Bond Portfolios”

Otto Randl, Giorgia Simion, and Josef Zechner

The Appendix contains:

• a figure showing the evolution of the ratio between total net assets of global bond funds

and domestic bond funds over time (Section A);

• derivation of the relationship between bond returns that are currency-hedged with

forward rates and with a long and short position in the same foreign market (Section B);

• descriptive statistics of the macro and market variables (Section C);

• additional robustness checks and validation tests of the UMVE portfolio (Section D);

• evolution over time of the hedged portfolio weights (Section E);

• description of the Sharpe ratio decomposition when eliminating cross-sectional varia-

tion in expected returns, variances, and correlations (Section F);

• description of the Sharpe ratio decomposition when eliminating time-series variation

in expected returns, and conditional variances (Section G).
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A Global versus Domestic Bond Funds

Figure A1: Global versus Domestic Bond Funds

5.0

7.5

10.0

12.5

15.0

17.5

2000 2010 2020

R
at

io
 (

in
 %

) 
G

lo
ba

l t
o 

D
om

es
tic

 B
on

d 
F

un
ds

 (
To

t N
et

 A
ss

et
s)

The figure shows the ratio (in %) between the total net assets of global bond funds and the total net
assets of domestic bond funds over time. Global bond funds are fixed-income funds that satisfy one of the
following criteria: i) the Morningstar Category includes “Global”, ii) the Prospectus Objective indicates a
global investment focus, iii) the Investment Area is “Global”. Domestic bond funds are fixed-income funds
whose Investment Area is “United States of America”. Data are yearly from 1995 to 2022. Data source is
Morningstar.
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B Bond Returns from Currency-Hedged Positions

Table B1: Bond Returns with Forwards

Transaction
Cash Flow in USD

t t+ 1M

1 Buy 1

P
(10Y )
i,t Si,t

10-year foreign bond -1
P

(10Y −1M)
i,t+1M Si,t+1M

P
(10Y )
i,t Si,t

2 Sell 1

P
(USD,1M)
i,t

1-month US T-bill +1 − 1

P
(USD,1M)
i,t

3 Sell forward 1

Si,t×P
(1M)
i,t

units of FC 0
Fi,t−Si,t+1M

Si,tP
(1M)
i,t

Net cash flow 0
P

(10Y −1M)
i,t+1M Si,t+1M

P
(10Y )
i,t Si,t

− 1

P
(USD,1M)
i,t

+
Fi,t−Si,t+1M

Si,tP
(1M)
i,t

In Table B1, the long position (1) in the foreign-currency 10-year bond leads to a cash outflow

of USD 1, which is financed by a short position (2) in USD-denominated T-bills. Currency

risk is hedged by selling forward foreign currency (3); the size of the forward contract is the

expected value of the bond position at t+1M under the expectation hypothesis (the original

foreign-currency amount increased by the foreign risk-free rate). As the combined cash flows

of (1), (2), and (3) sum up to 0 at time t, the total cash flow at t + 1M can be interpreted

as the excess return of the currency-hedged position, which we denote as rx
(10Y,FWD−HGD)
i,t→t+1M .

In Equation (B1), we apply Covered Interest Rate Parity (CIP) to show that the excess

return rx
(10Y,FWD−HGD)
i,t→t+1M exactly matches the excess return from Equation (6).
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rx
(10Y,FWD−HGD)
i,t→t+1M =

P
(10Y−1M)
i,t+1M Si,t+1M

P
(10Y )
i,t Si,t

− 1

P
(USD,1M)
i,t

+
Fi,t − Si,t+1M

Si,tP
(1M)
i,t

=
P

(10Y−1M)
i,t+1M Si,t+1M

P
(10Y )
i,t Si,t

− 1

P
(USD,1M)
i,t

+
Si,t

P
(1M)
i,t

P
(USD,1M)
i,t

− Si,t+1M

Si,tP
(1M)
i,t

=

(
P

(10Y−1M)
i,t+1M

P
(10Y )
i,t

− 1

P
(1M)
i,t

)
Si,t+1M

Si,t

= rxit+1

(B1)

Note that rxit+1 can be decomposed into rx
(10Y,LC)
i,t+1

(
1 + rFXi,t+1

)
= rx

(10Y,LC)
i,t+1 +rx

(10Y,LC)
i,t+1 rFXi,t+1,

where rx
(10Y,LC)
i,t+1 is the local-currency excess return of the 10-year bond and rFXi,t+1 is the per-

centage change in the exchange rate. The decomposition highlights that the remaining

influence of currency movements is small: the product of the two terms, rx
(10Y,LC)
i,t+1 and rFXi,t+1,

is typically close to zero.1 Table B2 shows empirically that this is indeed the case in our

sample, as currency-hedged returns can not be explained by changes in the exchange rate.

1The remaining quantity risk arises from the fact that at time t the price of the bond at t + 1M is not
known. As pointed out by Driessen, Melenberg, and Nijman (2003) and shown by our own analysis, this
quantity risk is negligible for currency-hedged excess returns.
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Table B2: Adjusted R2 from Regressing Bond Returns on one-month Changes in the Ex-
change Rate

adj.R2 (rxt+1,T bill) adj.R2 (rxt+1)

Australia 0.602 0.021
Canada 0.494 0.022
Germany 0.615 0.009
Japan 0.829 -0.003
New Zealand 0.665 0.000

Norway 0.672 0.007
Sweden 0.619 0.020
Switzerland 0.760 -0.001
United Kingdom 0.634 0.010

Mean 0.638 0.020

This table shows the adjusted R2 from regressing countries’ excess bond returns on one-
month change in exchange rate. Bond returns, rxt+1, are defined as in Equation (6).
Bond returns, rxt+1,T bill, are computed borrowing in the local currency (USD) and

investing in the foreign long-term bond, i.e.
(
P

(10Y−1M)
i,t+1M /P

(10Y )
i,t × Si,t+1M/Si,t

)
−(

1/P
(USD,1M)
i,t

)
.
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C Additional Descriptive Statistics

Table C1: Descriptive Statistics of the Forward Spread and Value
Characteristics

Mean Median Std. Dev. Pctl(10) Pctl(90)

A. Forward spread

Australia 1.262 1.280 0.274 -0.013 2.531
Canada 1.947 1.911 0.377 0.232 3.652
Germany 2.147 2.162 0.309 0.644 3.611
Japan 1.994 2.009 0.308 0.663 3.292
New Zealand 0.935 1.137 0.471 -1.433 2.795

Norway 1.264 1.366 0.394 -0.623 2.983
Sweden 1.998 1.985 0.299 0.714 3.446
Switzerland 1.900 1.753 0.259 0.729 3.128
United Kingdom 1.343 1.390 0.573 -1.279 4.050
United States 2.445 1.988 0.523 0.304 5.079

B. Value

Australia 2.193 2.056 2.211 -0.259 5.149
Canada 1.733 1.711 2.335 -0.544 4.610
Germany 1.290 1.702 2.574 -1.714 4.226
Japan 0.936 1.187 1.543 -0.859 2.714
New Zealand 2.785 3.060 2.348 -0.400 5.615

Norway 1.587 1.613 2.364 -1.518 4.739
Sweden 1.919 2.114 3.185 -1.436 5.583
Switzerland 1.243 1.273 1.456 -0.897 3.030
United Kingdom 1.503 1.833 2.788 -1.372 4.707
United States 1.321 1.514 2.199 -0.842 3.944

This table shows descriptive statistics of bond forward spread and bond value
characteristics (in % p.a.). Forward spread is defined in Section 3.4.1 as

P
(10Y−1M)
i,t /P

(10Y )
i,t − 1/P

(1M)
i,t , while bond value is the real bond yield, i.e.

Y
(10Y )
i,t − πi,t. Data are from January 1995 to December 2022.
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Table C2: Descriptive Statistics of Macro and Market Variables

Statistic N Mean Std. Dev. Pctl(10) Pctl(90)

GDP SD 264 11.965 1.399 9.986 13.981
Unempl SD 264 11.411 6.195 5.924 18.324
Infla SD 264 1.187 0.383 0.747 1.638

MSCIRet 264 0.006 0.046 -0.056 0.057
VIX Index 264 20.158 8.265 12.092 30.612

CapitalRatio 264 0.065 0.018 0.044 0.087
GlobEPU 264 147.377 76.413 68.987 267.881

This table shows descriptive statistics in monthly frequency of macro and
market variables. GDP SD, Unempl SD, and Infla SD are the cross-sectional
standard deviations of countries’ GDP, Unemployment, Inflation, respec-
tively. MSCIRet is the return on the MSCI World Index. VIX Index is an
index of the implied volatility of the S&P 500 and is calculated from S&P
500 index options. CapitalRatio is the intermediary capital ratio as defined
by He et al. (2017) and GlobEPU is the Global Economic Policy Uncer-
tainty Index based on Baker et al. (2016). Data are from January 2001 to
December 2022.
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D Alternative Specifications and Tests of the UMVE

Portfolio

Table D1: Predictive Ability of Conditional Expectations, Variance and Covariance for Port-
folio Strategies

rxit+1 (rxit+1 − Et(rxit+1))2 (rxit+1 − Et(rxit+1)) · (rxjt+1 − Et(rxjt+1))

Et(rxit+1) 1.031
(0.444)

σ2
t (rx

i
t+1) 0.852

(0.155)

covt(rx
i
t+1, rx

j
t+1) 0.854

(0.130)

Observations 3,696 3,696 24,024
Adjusted R2 0.027 0.284 0.242

This table shows estimates from regressions of realized return strategies, rxit+1, on expected return strategies, Et(rxit+1), column (1),

of (rxit+1−Et(rxit+1))2 on estimated variance for strategies, σ2
t (rxit+1), column (2), and of (rxit+1−Et(rxit+1)) · (rxjt+1−Et(rx

j
t+1))

on estimated covariance, column (3). The estimation of the conditional means and the conditional covariances follows Sections 3.4.1
and 3.4.2. A detailed description of the trading strategies is available in Table 5. Standard errors are clustered at the month level.
Under the null hypothesis that coefficients are different from 1, ***,**,* denote that estimates are statistically significant at the 1, 5,
and 10 percent levels.
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Table D2: Predictive Ability of Conditional Expectations and Variance: Alternative Speci-
fication of the Predictive Regression

Panel A: Constant

rxit+1 (rxit+1 − Et(rx
i
t+1))2 (rxit+1 − Et(rx

i
t+1)) · (rxjt+1 − Et(rx

j
t+1))

Et(rx
i
t+1) 0.801

(0.321)
σ2
t (rxit+1) 0.958

(0.087)

covt(rx
i
t+1, rx

j
t+1) 1.008

(0.117)

Observations 2,640 2,640 11,880
Adjusted R2 0.005 0.056 0.053

Panel B: Country Fixed Effects

rxit+1 (rxit+1 − Et(rx
i
t+1))2 (rxit+1 − Et(rx

i
t+1)) · (rxjt+1 − Et(rx

j
t+1))

Et(rx
i
t+1) 0.596

(0.263)
σ2
t (rxit+1) 0.969

(0.087)

covt(rx
i
t+1, rx

j
t+1) 1.018

(0.117)

Observations 2,640 2,640 11,880
Adjusted R2 0.002 0.057 0.054

Panel C: Fama-Bliss 1Y Forward Spread

rxit+1 (rxit+1 − Et(rx
i
t+1))2 (rxit+1 − Et(rx

i
t+1)) · (rxjt+1 − Et(rx

j
t+1))

Et(rx
i
t+1) 0.904

(0.320)
σ2
t (rxit+1) 0.953

(0.086)

covt(rx
i
t+1, rx

j
t+1) 1.000

(0.115)

Observations 2,640 2,640 11,880
Adjusted R2 0.009 0.057 0.055
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Continuation of Table D2

Panel D: Trend Inflation

rxit+1 (rxit+1 − Et(rx
i
t+1))2 (rxit+1 − Et(rx

i
t+1)) · (rxjt+1 − Et(rx

j
t+1))

Et(rx
i
t+1) 0.907

(0.313)
σ2
t (rxit+1) 0.949

(0.086)

covt(rx
i
t+1, rx

j
t+1) 0.995

(0.115)

Observations 2,640 2,640 11,880
Adjusted R2 0.012 0.056 0.054

This table shows estimates from regressions of realized returns, rxit+1, on expected returns, Et(rxit+1), column (1), of

(rxit+1 − Et(rxit+1))2 on estimated variance, σ2
t (rxit+1), column (2), and of (rxit+1 − Et(rxit+1)) · (rxjt+1 − Et(rx

j
t+1))

on estimated covariance, column (3). In Panel A expected returns are computed adding the constant to Equation (7).
In Panel B expected returns are computed adding country fixed effects to Equation (7). In Panel C expected returns

are computed following Equation (7) but using an alternative definition of forward spread: P
(9Y )
i,t /P

(10Y )
i,t − 1/P

(1Y )
i,t .

In Panel D expected returns are computed following Equation (7) but using an alternative definition of bond value:

Y
(10Y )
i,t − τCPI

t , where τCPI
t is trend inflation, as defined in Cieslak and Povala (2015). Standard errors are clustered

at the month level. Under the null hypothesis that coefficients are different from 1, ***,**,* denote that estimates are
statistically significant at the 1, 5, and 10 percent levels.
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Table D3: Predictive Ability of Conditional Expectations, Variance and Covariance: Alter-
native Predictable Variables

Panel A: Including Long-Term Momentum

rxit+1 (rxit+1 − Et(rx
i
t+1))2 (rxit+1 − Et(rx

i
t+1)) · (rxjt+1 − Et(rx

j
t+1))

Et(rx
i
t+1) 0.791

(0.297)
σ2
t (rxit+1) 0.959

(0.087)

covt(rx
i
t+1, rx

j
t+1) 1.008

(0.117)

Observations 2,640 2,640 11,880
Adjusted R2 0.004 0.058 0.055

Panel B: Including Short-Term Momentum

rxit+1 (rxit+1 − Et(rx
i
t+1))2 (rxit+1 − Et(rx

i
t+1)) · (rxjt+1 − Et(rx

j
t+1))

Et(rx
i
t+1) 0.818

(0.086)
σ2
t (rxit+1) 1.007

(0.116)

covt(rx
i
t+1, rx

j
t+1) 1.014

(0.116)

Observations 2,640 2,640 11,880
Adjusted R2 0.005 0.056 0.053

Panel C: Including Currency Trend Signal

rxit+1 (rxit+1 − Et(rx
i
t+1))2 (rxit+1 − Et(rx

i
t+1)) · (rxjt+1 − Et(rx

j
t+1))

Et(rx
i
t+1) 0.790

(0.329)
σ2
t (rxit+1) 0.959

(0.086)

covt(rx
i
t+1, rx

j
t+1) 1.008

(0.116)

Observations 2,640 2,640 11,880
Adjusted R2 0.005 0.058 0.056
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Continuation of Table D3

Panel D: Including Long-Term Momentum, Short-Term Momentum and Currency Trend Signal

rxit+1 (rxit+1 − Et(rx
i
t+1))2 (rxit+1 − Et(rx

i
t+1)) · (rxjt+1 − Et(rx

j
t+1))

Et(rx
i
t+1) 0.595

(0.306)
σ2
t (rxit+1) 0.969

(0.089)

covt(rx
i
t+1, rx

j
t+1) 1.022

(0.120)

Observations 2,640 2,640 11,880
Adjusted R2 0.001 0.056 0.054

Panel E: Including Credit Risk

rxit+1 (rxit+1 − Et(rx
i
t+1))2 (rxit+1 − Et(rx

i
t+1)) · (rxjt+1 − Et(rx

j
t+1))

Et(rx
i
t+1) 0.523∗

(0.239)
σ2
t (rxit+1) 0.957

(0.080)

covt(rx
i
t+1, rx

j
t+1) 0.984

(0.137)

Observations 1,680 1,680 7,560
Adjusted R2 0.002 0.075 0.073

This table shows estimates from regressions of realized returns, rxit+1, on expected returns, Et(rxit+1), column (1), of

(rxit+1 − Et(rxit+1))2 on estimated variance, σ2
t (rxit+1), column (2), and of (rxit+1 − Et(rxit+1)) · (rxjt+1 − Et(rx

j
t+1))

on estimated covariance, column (3). Panel A uses forward spread, value and long-term momentum as predictors for
the estimation of expected returns. Panel B uses forward spread, value, and short-term momentum as predictors for
the estimation of expected returns. Panel C uses forward spread, value and currency trend signals as predictors for the
estimation of expected returns. Currency trend signal is defined as Si,t/Si,t−12M − 1. Panel D uses forward spread,
value, long-term and short-term momentum, and currency trend signals as predictors for the estimation of expected
returns, as defined in Equation (17). Panel E uses forward spread, value, and credit risk as predictors for the estimation
of expected returns, as defined in Equation (18). Credit risk is defined as monthly changes in sovereign CDS spreads, as
detailed in Section 6.2.2. Standard errors are clustered at the month level. Under the null hypothesis that coefficients
are different from 1, ***,**,* denote that estimates are statistically significant at the 1, 5, and 10 percent levels.
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Table D4: Sharpe Ratio and GRS Test for Alternative UMVE Portfolios Using Portfolio
Strategies

SR GRS Tests – p-values

Model UMVE All strategies All Carry All Value All Carry
and Value

Optimal 1.135 0.402 0.205 0.392 0.256
Forward spread Value LTMom 0.988 0.458 0.670 0.200 0.375
Forward spread Value FX Trend 0.945 0.455 0.656 0.185 0.343
Forward spread Value STMom 0.913 0.417 0.642 0.154 0.298
Forward spread Value Credit Risk 0.811 0.294 0.551 0.056 0.138
Forward spread Value LTMom STMom FX Trend 0.717 0.240 0.420 0.078 0.129

Minimum Entropy Approach 0.861 0.002 0.016 0.010 0.001

This table shows in column (1) the Sharpe ratio (SR) for the optimal UMVE portfolio, which uses two signals, i.e.
forward spread and value as predictors, and for alternative UMVE portfolios. Specifically, the alternative UMVE
portfolios use the following signals: forward spread, value, long-term momentum (second row); forward spread, value,
currency trend signals (third row); forward spread, value, short-term momentum (fourth row); forward spread, value,
credit risk (fifth row); forward spread, value, long-term momentum, short-term momentum, currency trend signals
(sixth row). The bottom row shows the results for the optimal growth portfolio based on the minimum entropy
approach. Column (2) shows the p-value of the GRS test if the alphas from regressing all global portfolio strategies
on the respective UMVE portfolio are jointly equal to zero. Column (3) shows the p-value of the GRS test if the
alphas from regressing global carry portfolio strategies on the respective UMVE portfolio are jointly equal to zero.
Column (4) shows the p-value of the GRS test if the alphas from regressing global value portfolio strategies on the
respective UMVE portfolio are jointly equal to zero. Column (5) shows the p-value of the GRS test if the alphas
from regressing global carry and value portfolio strategies on the respective UMVE portfolio are jointly equal to zero.
Data are from January 2001 until December 2022 (with the exception of regressions involving credit risk that start
in 2009).
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Table D5: Predictive Ability of Conditional Expectations and Variance: Fixed-Width Esti-
mation Window for Expected Returns

rxit+1 (rxit+1 − Et(rxit+1))2 (rxit+1 − Et(rxit+1)) · (rxjt+1 − Et(rxjt+1))

Et(rxit+1) 0.659
(0.317)

σ2
t (rx

i
t+1) 0.971

(0.091)

covt(rx
i
t+1, rx

j
t+1) 1.020

(0.122)

Observations 2,640 2,640 11,880
Adjusted R2 0.008 0.065 0.061

This table shows estimates from regressions of realized returns, rxit+1, on expected returns, Et(rxit+1), column (1), of (rxit+1 −
Et(rxit+1))2 on estimated variance, σ2

t (rxit+1), column (2), and of (rxit+1−Et(rxit+1)) · (rxjt+1−Et(rx
j
t+1)) on estimated covariance,

column (3). Expected returns are estimated using 5-year rolling windows. Standard errors are clustered at the month level. Under
the null hypothesis that coefficients are different from 1, ***,**,* denote that estimates are statistically significant at the 1, 5, and
10 percent levels.
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Table D6: Testing the UMVE Using Individual Country Bond Returns: Fixed-Width Esti-
mation Window for Expected Returns

SR Mean t mean alpha t alpha adj.R2

Australia 0.263 2.200 1.238 1.172 0.624 0.009
Canada 0.463 3.209 2.179 1.300 0.900 0.067
Germany 0.502 3.480 2.363 1.803 1.397 0.049
Japan 0.704 2.351 3.316 1.058 1.533 0.118
New Zealand 0.285 2.293 1.341 1.580 0.906 0.004

Norway 0.383 2.746 1.805 1.894 1.240 0.009
Sweden 0.453 3.265 2.135 1.827 1.248 0.034
Switzerland 0.509 2.913 2.396 1.745 1.448 0.034
United Kingdom 0.313 2.533 1.474 0.796 0.492 0.038
United States 0.440 4.012 2.073 1.280 0.700 0.080

This table shows for individual countries the annualized Sharpe ratio (SR), mean
bond returns (Mean, in % p.a.), and the t-statistic for the mean bond returns
(t mean). It further shows the alpha from regressing individual countries’ bond
returns on the UMVE portfolio returns (Alpha, in % p.a.), the t-statistics for
the alpha (t alpha), and the adjusted R2 from this regression (adj.R2). Expected
returns used for the construction of the UMVE portfolio are estimated using 5-year
rolling windows. Data are from January 2001 to December 2022.
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Table D7: Testing the UMVE Using Portfolio Strategies: Fixed-
Width Estimation Window for Expected Returns

SR Mean t mean Alpha t alpha adj.R2

1/N 0.477 2.900 2.246 1.446 1.182 0.048
GDP-weighted 0.498 3.349 2.343 1.281 0.973 0.082

Average Carry 0.617 3.730 2.906 1.992 1.640 0.073
CS-Carry 0.786 3.038 3.701 1.088 1.483 0.223
TS-Carry 0.518 2.782 2.437 1.295 1.209 0.066

Average Value 0.617 3.726 2.903 1.679 1.308 0.101
CS-Value 0.517 1.716 2.435 0.970 1.429 0.045
TS-Value 0.600 3.029 2.825 1.089 1.032 0.132

Average Mom12 0.507 3.080 2.388 1.686 1.309 0.045
CS-Mom12 0.248 0.819 1.167 0.730 0.945 -0.003
TS-Mom12 0.403 6.310 1.898 3.811 1.081 0.020

Average Mom1 0.070 0.428 0.329 0.980 0.765 0.004
CS-Mom1 -0.344 -1.180 -1.618 -1.409 -1.798 0.001
TS-Mom1 -0.001 -0.005 -0.005 0.446 0.455 0.004

This table shows for global bond portfolio strategies, as defined in Table 5, the annu-
alized Sharpe ratio (SR), mean bond returns (Mean, in % p.a.), and the t-statistic
for the mean bond returns (t mean). It further shows the alpha from regressing in-
dividual countries’ bond returns on the UMVE portfolio returns (Alpha, in % p.a.),
the t-statistics for the alpha (t alpha), and the adjusted R2 from this regression
(adj.R2). Expected returns used for the construction of the UMVE portfolio are
estimated using 5-year rolling windows. Data are from January 2001 to December
2022.
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Table D8: Testing the UMVE Using Individual Country Bond Re-
turns for Other Maturities

SR Mean t mean Alpha t alpha adj.R2

5-year maturity
Australia 0.293 1.224 1.379 1.014 1.070 -0.003
Canada 0.524 1.985 2.467 0.961 1.216 0.050
Germany 0.522 1.857 2.457 1.299 1.874 0.016
Japan 0.690 0.941 3.247 0.415 1.423 0.099
New Zealand 0.343 1.316 1.614 0.698 0.842 0.014

Norway 0.462 1.692 2.174 1.224 1.488 0.008
Sweden 0.533 1.886 2.510 1.270 1.747 0.018
Switzerland 0.596 1.633 2.805 1.176 1.980 0.017
United Kingdom 0.386 1.566 1.818 1.199 1.472 0.002
United States 0.546 2.542 2.571 1.372 1.456 0.043

15-year maturity
Australia 0.254 3.230 1.195 1.161 0.414 0.016
Canada 0.467 4.306 2.200 1.224 0.647 0.087
Germany 0.445 4.806 2.097 1.860 0.938 0.055
Japan 0.509 2.851 2.397 0.370 0.329 0.131
New Zealand 0.236 2.920 1.113 0.756 0.283 0.022

Norway 0.308 3.345 1.450 1.888 0.818 0.010
Sweden 0.417 4.566 1.961 1.902 0.869 0.045
Switzerland 0.464 4.123 2.185 1.217 0.698 0.080
United Kingdom 0.278 3.088 1.308 1.109 0.484 0.021
United States 0.350 4.571 1.649 0.307 0.115 0.081

This table shows for individual countries the annualized Sharpe ratio (SR), mean
bond returns (Mean, in % p.a.), and the t-statistic for the mean bond returns
(t mean). It further shows the alpha from regressing individual countries’ bond
returns on the UMVE portfolio returns (alpha, in % p.a.), the t-statistics for the
alpha (t alpha), and the adjusted R2 from this regression (adj.R2). Individual coun-
tries’ returns are computed from the 5-year and 15-year zero curves. Data are from
January 2001 to December 2022.
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Table D9: Time Series Expected UMVE Sharpe Ratio and Macro
and Market Variables: Including Credit Risk

Dependent variable:

UMVE Expected Sharpe Ratio

GDP SD −0.043∗

(0.023)

Unempl SD −0.001
(0.006)

Infla SD 0.737∗∗∗

(0.098)

MSCIRet 0.266
(0.401)

VIX Index 0.007
(0.005)

GlobCDS −0.121
(0.127)

Constant 0.950∗∗∗

(0.304)

Observations 228
Adjusted R2 0.622

This table shows estimates from regressions of the UMVE expected Sharpe
ratio on macro and market variables. GDP SD, Unempl SD, and Infla SD
are the cross-sectional standard deviations of countries’ GDP, Unemploy-
ment, Inflation, respectively. MSCIRet is the return on the MSCI World
Index. VIX Index is an index of the implied volatility of the S&P 500 and
is calculated from S&P 500 index options. GlobCDS is the GDP-weighted
average of countries’ CDS spread changes. Newey-West standard errors
with 6 lags are reported in parenthesis (Newey and West (1994)). Data
are from January 2004 to December 2022. ***,**,* denote that estimates
are statistically significant at the 1, 5 and 10 percent levels.
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Table D10: Testing the Naive Portfolio Using Individual Country
Bond Returns

SR Mean t mean Alpha t alpha adj.R2

Australia 0.263 2.200 1.238 -1.411 -1.862 0.818
Canada 0.463 3.209 2.179 0.270 0.398 0.789
Germany 0.502 3.480 2.363 0.429 0.743 0.851
Japan 0.704 2.351 3.316 1.549 2.465 0.251
New Zealand 0.285 2.293 1.341 -0.877 -0.881 0.681

Norway 0.383 2.746 1.805 0.023 0.026 0.633
Sweden 0.453 3.265 2.135 0.167 0.243 0.813
Switzerland 0.509 2.913 2.396 0.593 0.923 0.721
United Kingdom 0.313 2.533 1.474 -0.853 -0.966 0.769
United States 0.440 4.012 2.073 0.110 0.126 0.806

This table shows for individual countries the annualized Sharpe ratio (SR), mean
bond returns (Mean, in % p.a.), and the t-statistic for the mean bond returns
(t mean). It further shows the alpha from regressing individual countries’ bond
returns on the naive portfolio returns (Alpha, in % p.a.), the t-statistics for the
alpha (t alpha), and the adjusted R2 from this regression (adj.R2). Data are from
January 2001 to December 2022.
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Table D11: Testing the Naive Portfolio Using Portfolio Strategies

SR Mean t mean Alpha t alpha adj.R2

GDP-weighted 0.498 3.349 2.343 0.269 0.653 0.920

Average Carry 0.617 3.730 2.906 1.002 1.924 0.895
CS-Carry 0.786 3.038 3.701 2.253 2.994 0.178
TS-Carry 0.518 2.782 2.437 0.366 0.938 0.888

Average Value 0.617 3.726 2.903 2.506 2.035 0.176
CS-Value 0.517 1.716 2.435 1.598 2.184 0.002
TS-Value 0.600 3.029 2.825 1.993 1.914 0.182

Average Mom12 0.507 3.080 2.388 1.974 1.599 0.142
CS-Mom12 0.248 0.819 1.167 0.547 0.792 0.026
TS-Mom12 0.403 6.310 1.898 2.248 0.803 0.293

Average Mom1 0.070 0.428 0.329 0.168 0.131 0.004
CS-Mom1 -0.344 -1.180 -1.618 -1.400 -1.941 0.014
TS-Mom1 -0.001 -0.005 -0.005 -0.203 -0.201 0.004

This table shows for global bond portfolio strategies, as defined in Table 5, the annu-
alized Sharpe ratio (SR), mean bond returns (Mean, in % p.a.), and the t-statistic
for the mean bond returns (t mean). It further shows the alpha from regressing
portfolio returns on the naive portfolio returns (Alpha, in % p.a.), the t-statistics
for the alpha (t alpha), and the adjusted R2 from this regression (adj.R2). Data are
from January 2001 to December 2022.
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Table D12: Testing the Growth Optimal Portfolio Using Individual
Country Bond Returns

SR Mean t mean Alpha t alpha adj.R2

Australia 0.259 2.176 1.219 -0.280 -0.159 0.112
Canada 0.466 3.237 2.190 -0.409 -0.327 0.369
Germany 0.500 3.471 2.348 -0.361 -0.304 0.408
Japan 0.684 2.272 3.212 0.146 0.272 0.550
New Zealand 0.290 2.341 1.364 -0.360 -0.214 0.148

Norway 0.384 2.754 1.803 -0.441 -0.335 0.264
Sweden 0.456 3.287 2.142 -0.372 -0.276 0.345
Switzerland 0.508 2.911 2.386 -0.259 -0.264 0.410
United Kingdom 0.313 2.539 1.472 -0.394 -0.238 0.174
United States 0.443 4.046 2.083 -0.516 -0.315 0.335

This table shows for individual countries the annualized Sharpe ratio (SR), mean
bond returns (Mean, in % p.a.), and the t-statistic for the mean bond returns
(t mean). It further shows the alpha from regressing individual countries’ bond
returns on the growth optimal portfolio obtained using the minimum entropy ap-
proach (Alpha, in % p.a.), the t-statistics for the alpha (t alpha), and the adjusted
R2 from this regression (adj.R2). Data are from January 2001 to December 2022.
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Table D13: Testing the Growth Optimal Portfolio Using Portfolio
Strategies

SR Mean t mean Alpha t alpha adj.R2

1/N 0.477 2.900 2.246 -0.325 -0.301 0.376
GDP-weighted 0.498 3.349 2.343 -0.365 -0.320 0.407

Average Carry 0.617 3.730 2.906 0.773 0.676 0.324
CS-Carry 0.786 3.038 3.701 1.956 2.302 0.098
TS-Carry 0.518 2.782 2.437 0.130 0.132 0.325

Average Value 0.617 3.726 2.903 2.229 1.761 0.080
CS-Value 0.517 1.716 2.435 2.196 3.165 0.022
TS-Value 0.600 3.029 2.825 1.687 1.574 0.093

Average Mom12 0.507 3.080 2.388 1.710 1.354 0.067
CS-Mom12 0.248 0.819 1.167 0.911 1.257 -0.003
TS-Mom12 0.403 6.310 1.898 1.456 0.458 0.128

Average Mom1 0.070 0.428 0.329 0.329 0.254 -0.004
CS-Mom1 -0.344 -1.180 -1.618 -1.355 -1.745 0.001
TS-Mom1 -0.001 -0.005 -0.005 -0.197 -0.194 -0.001

This table shows for global bond portfolio strategies, as defined in Table 5, the annu-
alized Sharpe ratio (SR), mean bond returns (Mean, in % p.a.), and the t-statistic
for the mean bond returns (t mean). It further shows the alpha from regressing
portfolio returns on the growth optimal portfolio obtained using the minimum en-
tropy approach (Alpha, in % p.a.), the t-statistics for the alpha (t alpha), and the
adjusted R2 from this regression (adj.R2). Data are from January 2001 to December
2022.
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Figure D1: Time Series of Estimated Coefficients from Predictive
Regression: Fixed-Width Estimation Window for Expected Returns
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This figure shows the time series of the estimated coefficients from pooled regressions of the forward spread (γ̂) and bond

value (δ̂) on bond excess returns using 5-year rolling windows. Panel A displays the estimated coefficient of the forward
spread variable and Panel B of the bond value variable. The range between the dotted lines and the shaded areas represents
the 90% and 95% confidence intervals of the variables, respectively. Standard errors are clustered at the country level.
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E Time Series of the Hedged Portfolio Weights

Figure E1: Time Series of Weights for the Hedged Strategies: Panel
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This graph shows the time series of the weights of the hedged strategies, as defined in Section 4.4.
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Figure E2: Time Series of Weights for the Hedged Strategies: Panel
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This graph shows the time series of the weights of the hedged strategies, as defined in Section 4.4.
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Figure E3: Time Series of Weights for the Hedged Strategies: Panel
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This graph shows the time series of the weights of the hedged strategies, as defined in Section 4.4.
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F Sharpe Ratio Decomposition Eliminating Cross-Sectional

Variation

F.1 Constant Expected Returns

Constant expected returns are computed as the average of excess returns across all markets

over the estimation window. Specifically, we regress excess returns on a constant only, using

expanding time windows. Using this approach, expected returns are only constant across

markets but not time invariant.

F.2 Constant Variances

The conditional covariance matrix Vσ̄
t has no cross-sectional variation in variances. To

achieve this, we first take the final Vt matrix, constructed, as in Section 3.4.2, at each

point in time, and split it up into the two components as follows:



σi

σj

. . .

σN


·



1 ρi,j
. . . ρi,N

ρj,i 1

. . . . . .

ρN,j 1


·



σi

σj

. . .

σN


(F1)

where σi is the bond standard deviation of market i. ρi,j is the bond correlation between

country i and j. Second, we calculate the cross-sectional average of the sigmas σ̄ = (σi + ...

σN)/N and use it to reconstruct a new matrix with constant standard deviations Vσ̄
t . Note

that the standard deviations are only constant across markets but not time invariant.2

2In order to simplify the notation, we suppress the time subscripts for standard deviations and correlations.
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F.3 Constant Correlations

The conditional covariance matrix Vρ̄
t has no cross-sectional variation in correlations. To

achieve this, we use the above matrix decomposition F1, but now we compute the average

correlation ρ̄. For this, we take all pairwise correlations ρi,j where i 6= j (the upper half of

the matrix, without the diagonal). As a last step, we replace all pairwise correlations by

this average and recompute a new matrix Vρ̄
t . In this new covariance matrix, only standard

deviations are different across countries, but correlations are constant.
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G Sharpe Ratio Decomposition Eliminating Time Se-

ries Variation

G.1 In-sample Expected Returns

The in-sample expected returns are computed for each country as the arithmetic average

across time of all monthly excess holding period returns. As a result, there is no time series

variation in returns.

G.2 In-sample Shrunk Conditional Variance

The in-sample shrunk covariance matrix ¯̃Σ is computed as the arithmetic average across time

of all the monthly shrunk covariance matrices Σ̃t, as defined in Section 3.4.2. As a result,

there is no time series variation in variances and correlations.
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Figure G1: Sharpe Ratio Hedged Strategies Decomposition when Fix-
ing One Element in the Time series
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This figure shows, for each strategy, the annualized Sharpe ratio of the hedged portfolio (first bar), as
defined in Section 4.4, and two alternative hedged portfolios constructed from restricted UMVE versions.
Specifically, the restricted UMVE portfolios shut off any time series variation in expected returns, or in
conditional variance (as described in detailed in Appendix G). The hedged portfolios resulting from these
restricted UMVE portfolios correspond to the hedged portfolio with in-sample expected returns (Hedged:
In-Sample Expected Returns), and the hedged portfolio with in-sample shrunk covariance matrix (Hedged:
In-Sample Shrunk Conditional Variance).
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