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Abstract

This paper provides a search-based information acquisition framework using an urn model

with an asymptotic approach. The underlying intuition of the model is simple: when the

scope of information search is more limited, marginal search efforts produce less useful

information due to redundancy, but commonality of information among different agents

increases. Consequently, limited information searchability induces a trade-off between

an information source’s precision and its commonality. In a “beauty contest”game with

endogenous information acquisition, this precision-commonality trade-off generates non-

fundamental volatility through the channel of information acquisition.
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1 Introduction

It is well known that equilibrium outcomes depend on what information agents act upon, and

that this information itself is (at least in part) also the result of a choice. Less is known, how-

ever, about how agents come to learn their information and whether this process influences

the type of information that agents choose to observe. In our paper, we address the following

questions: How do agents learn when relevant information has to be searched for? How does

an agent’s search effort translate into the information he learns? How similar is the informa-

tion that agents learn through search? We provide a microfounded information acquisition

technology that answers these questions. By means of applications, we illustrate its usefulness

and tractability in applied theory modeling.

Our framework is based on the following simple intuition: the more an agent searches for

new information, the more likely he is to encounter information that overlaps—and that is

therefore redundant—with what he has already discovered from past searching activities. This

increasing redundancy results in diminishing returns to scale in information search, or concav-

ity in an agent’s learning curve. This concavity is more pronounced when the total amount

of potentially observable information (henceforth, “searchable information”) is more limited.

Similarly, multiple agents who search from the same source of information will also face increas-

ing redundancy as more information is collected. Thus, the information they learn becomes

increasingly more similar. Such commonality of acquired information is more pronounced when

the searchable information is more limited.

We formalize the aforementioned intuition by employing an urn model with an asymptotic

approach. Consider drawing balls with replacement from an urn containing a finite number

of balls. Drawing a ball is interpreted as collecting a costly signal through search. Because

the collected balls are replaced into the urn, the odds of drawing a previously collected ball

increase each time an agent draws a ball from the urn. In the context of information acquisition,

drawing a previously collected ball means collecting a redundant (thus uninformative) signal.

On average, each additional draw provides less information due to redundancy. Hence, the

expected overall informativeness is concave in the number of collected signals; such concavity

is more pronounced the more limited is the searchable information (or the smaller is the urn).

In spite of these intuitive properties of the expected precision, the actual informativeness

of the acquired information is uncertain; it inherits the randomness in the number of non-
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redundant signals. This randomness will impair tractability in economic applications and is

therefore undesirable. To resolve this shortcoming, we consider the limiting case in which

each signal becomes infinitesimally small. This asymptotic approach allows us to obtain a

smooth and deterministic mapping from the search effort (i.e., the inputs of the resources used

in the information search) into the precision of the information that is collected by an agent

(Theorem 2.1). The curvature of this asymptotic precision function decreases with the amount

of searchable information.

We also formalize the case with multiple agents using the same logic. Imagine that multiple

agents are independently drawing balls from a single urn that is interpreted as a shared source

of information. Because the number of balls in the urn is finite, they tend to gather a more

similar set of balls as they increase the number of drawings from the urn. Furthermore, this

tendency is more pronounced when the number of balls in the urn is smaller. In the context

of information acquisition, the shared component of agents’collected signals grows larger as

more information is acquired by each agent. Consequently, the correlation of their acquired

information increases in the information acquisition, and the correlation is more pronounced

when the information searchability is lower (Theorem 2.2). The main result in our paper is

Theorem 2.3, which derives the joint distribution of the agents’information acquired through

search.

Our framework provides a microfoundation for a commonly used setup in which private

signals are imperfectly correlated among agents. In our model, the correlation of the agents’

signals is determined by the interaction between the agents’endogenous choices of effort and

the exogenous searchability of information. When the number of agents is large, we can further

show that an agent’s acquired information, Si, can be decomposed as

Si = θ + µ+ ηi, (1)

where θ is the variable of interest, µ is an error term common to all agents, and ηi is an

idiosyncratic error term; all three components on the right hand side of Eq. (1) are independent

of each other (see Corollary 2.1). By investing more resources in information search, an agent

can influence the distribution of ηi but not that of µ, which is endogenous to the information

search process and related to the searchability of information.

A distinct feature of the information structure in Eq. (1) that emerges from our microfun-

dation is the trade-off between an information source’s precision and its publicity. The idea
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is that the smaller is the information content that is available from an information source,

the more common is the information of the agents who search from it. In equilibrium mod-

els in which the commonality of information matters—such as beauty contest games, global

games and speculative trading models—this trade-off between precision and publicity can have

a significant impact on the incentives to acquire information and the resulting outcomes.

As an application, we study a “beauty contest”coordination game with endogenous infor-

mation acquisition. Our setup follows the standard two-period setup in the literature: Agents’

final payoffs depend on the quadratic distance of actions from an unobserved fundamental value

and the average action. To acquire information prior to taking actions, agents can allocate

their efforts (or resources) among different information sources to maximize their ex ante util-

ity. When agents care about forecasting other agents’information, we show how information

search leads to non-concavities that can result in multiple equilibria. Our findings contribute to

the discussion of equilibrium determinacy in coordination games with endogenous information

(see Section 3.4).

We then specialize to a setup with only two information sources. One of them is superior

to the other in the sense that it offers more precise information about the fundamental given

the same level of inputs. On the other hand, because of its lower searchability, the inferior

source provides information that is more correlated among agents. Therefore, if other agents

are learning from this source, it gives more precise information on what the other agents

will do. When the coordination motive is suffi ciently strong, there exists an equilibrium in

which all agents choose to focus on the inferior information source. Because less searchable

information leads to more covariance, this equilibrium outcome becomes more “likely”(i.e., it

exists on a larger set of parameters) precisely when the inferior information source becomes

more ineffi cient. This outcome may not be socially optimal because agents are acting based on

information from a less effi cient source. For instance, the inferior information equilibrium is

associated with an average action that is more volatile and less correlated with the fundamental.

Our results can be applied to situations with strategic complementarity, such as bank runs,

analysts’herding behavior, etc. For example, agents may decide to run on a healthy bank based

on less accurate information (e.g., rumors) instead of investigating more accurate sources of

information, because information from a less accurate source is more likely to be correlated

due to imperfect information searchability.
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There have been various approaches to modeling information choices put forward in the

literature, such as rational inattention (e.g., Sims (2003)), costly information (e.g., Grossman

and Stiglitz (1980)) and markets for information (e.g., Admati and Pfleiderer (1986)).1 Each

approach has different advantages that may be useful in different situations. For example, the

approach of rational inattention quantifies the amount of collected or processed information

based on entropy theory. In his seminal paper, Sims (2003) connected information theory to

agents’utility maximization problem using entropy as the measure of information. Due to its

elegance and practical usefulness, there have been numerous applications in macroeconomics

(e.g., Woodford (2009); Mackowiak and Wiederholt (2009)) and finance (e.g., Peng (2005);

Peng and Xiong (2006); Van Nieuwerburgh and Veldkamp (2010)). While rational inattention

is very useful for modeling the allocation of resources to information that is publicly available,

it is not designed to address learning when information has to be searched for, nor to deliver

implications for the commonality of agents’information.2 Therefore, we see our approach as

complementary.

On the technical side, we employ an urn model in contrast to other approaches. Urn models,

which developed as a branch of probability theory, have been popularized in many fields such

as biology, engineering, operations research, and mathematical psychology for their usefulness

in applications.3 Information search naturally lends itself to modeling with the urn approach

that we use in our paper; this approach enables us to relate search frictions to the features

of the underlying information environment (such as the availability of information). It allows

us to provide a microfoundation for important features of information acquisition such as the

quality and commonality of information with a greater degree of mathematical tractability. As

our examples illustrate, our model can be fruitfully used in applications.

The organization of the paper is as follows. Section 2 develops the framework of information

1See, for example, Veldkamp (2011) for an excellent survey on this topic.
2As was pointed by Marschak (1974), entropy is more relevant to the cost of communicating than to the cost

of searching for and collecting information. In Shannon (1948), entropy measures the quantity of transferred

information under the optimal coding scheme. The optimal coding scheme does not reflect frictions arising

from using natural languages.
3See, for example, Johnson and Kotz (1977) for a textbook treatment of urn problems and detailed discus-

sions about their applications. In economics, urn models are used to model reinforcement learning in game

theory (e.g., Beggs (2005); Hopkins and Posch (2005)), and the path dependence of technological innovations

(e.g., David (1985)) based on the “Pólya urn scheme”.
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acquisition under imperfect information searchability. Section 3 studies a coordination game

with complementarities as an example of possible applications. Section 4 concludes.

2 Information Search

In this section, we develop our methodology and characterize endogenous information under

imperfect information searchability. We begin by describing the basic setup, then derive the

asymptotic precision function (Theorem 2.1) and the asymptotic covariance function (Theo-

rem 2.2). Then we derive our main result—the joint distribution of agents’information after

information search (Theorem 2.3). Finally, we provide a public-private decomposition of the

resulting information structure (Corollary 2.1).

2.1 The Setup

2.1.1 Basic signals

Consider an economic agent who is interested in acquiring information in order to resolve

uncertainties that are relevant to his payoffs. There is a random variable of interest, θ, which

follows a normal distribution with mean θ̄ and precision τθ.4 ,5 For example, θ could be the

payoff of an investment opportunity such as the liquidation value of a tradable asset. Suppose

the underlying source of information on θ is given by a set L of “basic signals”that consists

of L distinct signals on θ. Each basic signal m ∈ {1, 2, . . . , L} in L is given by

sm = θ + εm, (2)

where εm ∼ i.i.d. N (0, τ−1
ε ) is a noise that is independent of θ. We refer to τε as the precision

of the basic signal sm.

4The precision and the inverse of variance are used interchangeably throughout this paper.
5We can alternatively assume that θ follows a uniform distribution on the real line (i.e., the agent has an

improper prior on θ). Our results are unaffected by this alternative assumption.
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2.1.2 Information searchability

We construct a formal model of information search using an urn model. Consider the set of

signals L to be an urn, and the basic signals to be balls in the urn. We capture the idea

of impediments to information search by allowing for redundancy among acquired signals.

Imagine that the agent is randomly drawing balls with replacement from the urn. The agent

can identify the index of each signal after acquiring it; ex post, he knows whether a signal is

redundant or not given the set of collected signals. Formally, we have:

Assumption 2.1. Signals are drawn with replacement from L.

This assumption plays a critical role in our model because it gives a foundation for the

concept of information searchability. If the number of balls in the urn is limited, the chance

of drawing a ball that is distinct from the balls drawn in the previous trials will get smaller as

the agent draws more balls from the urn.6

2.1.3 Precision function

Because redundant signals are completely uninformative, the informativeness of a set of ac-

quired signals only depends on the distinct signals among the set. Let H denote the set of

distinct signals among those acquired by the agent, and let h denote the number of signals in

H. Let S(h) denote the mean of the signals s1 , s2 , . . . , sh in H as follows:

S(h) =
1

h

∑
m∈H

sm = θ +
1

h

∑
m∈H

εm. (3)

Notice that S(h) is a suffi cient statistic for all the signals acquired by the agent because they

are i.i.d. normally distributed. By the standard Bayesian belief update formula, the precision

of the posterior belief about θ conditional on S(h) is given by

V ar(θ|S(h))−1 = τθ︸︷︷︸
precision of prior belief

+ τεh︸︷︷︸
signal precision

. (4)

6The opposite case to Assumption 2.1 would be sampling without replacement, in which case acquired

signals would never be redundant. In this case, any additional draw would be directly translated into a greater

amount of information (or a greater resolution of uncertainty). See Section 2.2 for further discussion.
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That is, the set of h i.i.d. signals is equivalent to having a single signal with precision that

is h times higher than that of each individual signal in the set. These observations lead to

the following definition of the precision function, given the number of distinct signals that are

collected:

Definition 2.1. The precision function Φ : R+ 7→ R+ is defined by

Φ(h) = τεh, (5)

where h is the number of distinct basic signals drawn from L, and τε is the precision of each

basic signal.

Suppose that l signals are drawn with replacement from a finite set L that consists of L

distinct signals. We let h̃ denote the (random) number of distinct signals among l collected

signals. The following lemma derives the expected number of distinct signals E(h̃).

Lemma 2.1. Suppose that signals are drawn l times from a set of L distinct signals. Then,

the expected number of distinct signals among the collected signals is given by

E(h̃) = L

[
1−

(
1− 1

L

)l]
. (6)

Proof. A more general proof for this can be found in Stadje (1990). For eachm ∈ {1, 2, . . . , L},
we define h̃m to be one if signal sm is collected eventually, and zero otherwise. Then, it is

immediate that Pr(h̃m = 1) = 1−
(
L−1
L

)l
. Because h̃ =

∑L
m=1 h̃

m, we get

E(h̃) =
L∑

m=1

[
1−

(
L− 1

L

)l]
= L

[
1−

(
1− 1

L

)l]
. (7)

Notice that E(h̃) is monotone increasing and concave in l.7 That is, when more signals

are drawn from the urn, the expected number of distinct signals increases, but it does so at
7The monotonicity and concavity can easily be verified from the following:

∂E(h̃)

∂l
= −L

(
1− 1

L

)l
log

(
1− 1

L

)
> 0, and

∂2E(h̃)

∂l2
= −L

(
1− 1

L

)l [
log

(
1− 1

L

)]2
< 0. (8)
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a decreasing rate as more and more signals are collected. Furthermore, E(h̃) is monotone

increasing in L. Intuitively, the more independent signals are in the urn, the higher will be

the expected number of distinct signals for a given number of draws. Hence, the number of

signals in L reflects the degree of information searchability. We explore these ideas in the

next subsection by connecting the precision function with the amount of resources spent on

information collection.

2.1.4 Resources and precision

In this subsection, we introduce a set of assumptions that allow us to study an asymptotic

limit of the precision function. To exploit the law of large numbers, we consider the case where

the signals (or balls) in the urn become infinitesimally small so that the number of signals

grows to infinity. That is, information acquisition becomes continuous in the limit rather

than discrete. This continuous limit yields a smooth and deterministic precision function with

desirable properties that can be applied to various economic applications.

To acquire necessary information, the agent needs to use his endowed resources. Let c ∈
(0,∞) be the unit of resources required to collect one signal on θ (i.e., the cost of one draw

from the urn). We assume that any amount of resources less than c cannot be utilized to

acquire a signal. Hence, an input of k units of resources would enable the agent to collect bk
c
c

signals.8

If the agent could observe all signals in L, the agent’s posterior precision in (4) would be

Φ(L). Therefore, Φ(L) is the upper bound on the precision of information that can be learned

from L. We will consider the behavior of the precision function as the cost c becomes small,

while keeping this upper bound fixed. Accordingly, in the next two assumptions we relate the

number and precision of basic signals to the cost c.

Assumption 2.2. For some L ∈ [0,∞], the number of basic signals in L is given by L = bL
c
c.

Note that L determines the number of signals in L, and therefore parameterizes the degree
of information searchability. All the collected signals will be distinct (thus informative) in

the absence of impediments to information search (L = ∞). On the other hand, some of
8bxc = max{z ∈ Z|z ≤ x}.
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the collected signals may be redundant in the presence of impediments to information search

(L <∞).

Assumption 2.3. For some τ ∈ [0,∞), the precision of each basic signal sm ∈ L equals

τε = τc.

The parameter τ captures the effi ciency of each basic signal per unit of cost. For given values

of L and τ , Assumption 2.2 and Assumption 2.3 imply that the total amount of information
available to the agent is in fact independent of c. Intuitively, we are keeping the total amount

of information available from the urn fixed and dividing it into more signals as the cost c

decreases. For example, when the required input of resources for one signal is halved, the

number of basic signals available in the population doubles but the precision of each basic

signal decreases is halved.

We define h̃(k; c) to be the number of distinct signals drawn from L given an input of k

units of resources, when the cost per draw is c. Then, the precision function according to

Definition 2.1 under Assumption 2.3 is given by

Φ(h̃(k; c)) = τch̃(k; c). (9)

There are two major problems in using the precision function in Eq. (9). First, the precision

of information given an input of k units of resources is random because the number of distinct

signals is random. Second, the function is not smooth in k because the number of distinct

signals is given by discrete numbers. These shortcomings make the precision function defined

in Eq. (9) unattractive in most economic applications. To resolve these shortcomings, we will

consider the limiting case in which the cost c tends to zero, and rely on the following notion:

Definition 2.2. The asymptotic precision function φ : R+ 7→ R+ is defined to be a function

that satisfies9

Φ(h̃(k; c))→ φ(k) a.s. as c→ 0. (10)

We demonstrate below that the asymptotic precision function φ(k) in Eq. (10) exists and

resolves both problems with Eq. (9).

9One may alternatively state that Pr
[
lim
c→0

∣∣Φ(h̃(k; c))− φ(k)
∣∣ < α

]
= 1 for each α > 0.
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2.2 Asymptotic Precision Functions

Here we derive the asymptotic precision function in the presence of impediments to information

search.

As a benchmark, consider the case of perfect searchability in which signals are drawn from

L without replacement. Since there cannot be redundant signals in this case, the number of

distinct signals drawn from L given an input of resources k such that
⌊
k
c

⌋
≤ L is trivially equal

to the number of collected signals,
⌊
k
c

⌋
. Hence, the corresponding precision function is given

by

Φ(h̃(k; c)) = τc
⌊k
c

⌋
= τ
[
k − g(c)

]
, (11)

where g(c) ≤ c. By taking the limit as c goes to zero, we immediately obtain the asymptotic

precision in the case of perfect information searchability:

φ(k) = τk. (12)

Now, we turn to the case of imperfect information searchability, i.e., when signals are drawn

from L with replacement and L <∞. Using Lemma 2.1, we can derive the expected number
of distinct signals given the resource input k as follows:

E(h̃(k; c)) = bL
c
c

1−
(

1− 1

bL
c
c

)b k
c
c
 . (13)

Multiplying by c and taking the limit as c goes to zero in Eq. (13) yields

E(ch̃(k; c))→ L
(

1− exp

(
− kL

))
, as c→ 0. (14)

Therefore, the expectation of the precision function Φ(h̃(k; c)) becomes smooth in the

limit as c approaches zero. However, it is not clear that the precision function itself will

be a deterministic function: proving this result is a non-trivial task because the number of

collected signals grows large as c approaches zero but so does the number of redundant signals.

Intuitively, proving that uncertainty in ch̃(k; c) disappears as c approaches zero requires us to

show that the fraction of redundant signals converges to its expectation, or, more formally,

that ch̃(k; c) can only deviate from E(ch̃(k; c)) in measure zero cases as c approaches zero.

This result is provided by the following lemma:
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Lemma 2.2. As c → 0, the difference between ch̃(k; c) and E(ch̃(k; c)) converges to zero

almost surely.

Proof. See Appendix A.

Because Φ(h̃(k; c)) = τch̃(k; c), Lemma 2.2 gives the main argument in the proof of the

following theorem.

Theorem 2.1. In the case of imperfect information searchability, the asymptotic precision is
given by

φ(k) = τL
(

1− exp

(
− kL

))
(15)

As mentioned above, the asymptotic precision function φ(k) overcomes the two major

diffi culties that exist in the case of Φ(h̃(k; c)). First, φ(k) is a deterministic function in k.

Second, φ(k) is a smooth function in k, i.e., φ(k) is continuous in k and is also infinitely

differentiable with respect to k. Furthermore, it has the following standard properties that are

frequently assumed in the information economics literature:

(i) non-negativity: φ ≥ 0;

(ii) monotonicity: ∂φ/∂k ≥ 0;

(iii) concavity: ∂2φ/∂k2 ≤ 0; and

(iv) curvature: −∂2φ/∂k2

∂φ/∂k
= 1/L.

These properties fit the intuition quite well. As one learns more about a subject, the prob-

ability of encountering redundant material goes up. One realizes that the collected materials

overlap with those that were previously acquired only after searching. Such concavity is as-

sociated with a negatively accelerated learning curve, which has been repeatedly reported in

cognitive science and psychology. A large body of literature with empirical and experimental

evidence finds learning data showing a rapid improvement followed by lesser improvements to

be best fitted by an exponential function.10

The curvature decreases in L, that is, worse information searchability would make the
asymptotic precision function more concave. On the other hand, as information searchability
10See Ritter and Schooler (2001) for surveys on the “power law” of learning curve that has been widely

observed in cognitive psychology.
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improves (i.e., L → ∞), the asymptotic precision function in Eq. (15) converges to the linear
function in Eq. (12) that is obtained when signals are drawn without replacement. We remark

that Eq. (15) implies φ′ (0) = τ, that is, the precision obtained from the first unit of input

only depends on the precision of the underlying information and is unaffected by information

searchability—the very first unit of information cannot be redundant, regardless of L.
From Eq. (15), it can immediately be verified that the precision φ (k) increases in both

parameters τ and L. This is intuitive: at any positive level of input k, higher values of

τ increase the precision of each non-redundant signal while higher values of L increase the
number of non-redundant signals.

In the literature, information acquisition technologies are often specified in terms of a cost

function k : φ 7→ k(φ) that maps the given level of precision φ to the amount of required

resources k. In our setup, a cost function is readily obtained as the inverse of the precision

function in (15), k (·) = φ−1 (·), as

k (φ) = −L log

(
1− φ

τL

)
. (16)

The cost function k (φ) has the following properties: it is non-negative, monotone increasing

and convex, with curvature decreasing in the information searchability parameter, L. Note
that k (φ) becomes infinite as φ approaches τL, which represents the upper bound on the
information precision. Finally, we remark that k′ (0) = τ−1 > 0, that is, the marginal cost of

the first unit of information is bounded away from zero.

Figure 1 provides a graphical illustration of φ (k) and k (φ) for different values of the

information searchability parameter L. The curvature of both functions decreases for larger
values of L, the precision function becoming less concave and the cost function becoming less
convex. The functions are linear in the case of perfect searchability (L =∞).
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Figure 1. Left panel: precision function φ(k). Right panel: cost function k(φ). Parameter

values: τ = 1 and L ∈ {1, 2,∞}.

Finally, we call an information source “superior”to another source only if it provides more

precise information than the other source given the same level of inputs. We give a more

formal definition of superiority as follows:

Definition 2.3. Information source i is superior to information source j if i is both more
effi cient and more searchable, i.e., τ i ≥ τ j and Li ≥ Lj with at least one inequality being
strict.

A superior information source will always have higher precision given the same level of

inputs. That is, suppose that i is superior to j (equivalently, j is inferior to i); then φi(k) >

φj(k) for all k > 0. One may imagine that a superior source will always be preferred to an

inferior source, but later in the paper (Section 3) we show that this is not necessarily the

case when agents’actions are strategic complements. This result builds on the multiple agent

framework that we develop next.

2.3 Multiple Agents

In this section, we extend our framework to the case of multiple agents. In particular, we focus

on the covariance of the acquired signals at the given level of information searchability. The
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same intuition about drawing balls with replacement from an urn still applies to the case with

multiple agents; when the number of balls in the urn gets smaller, the possibility of different

agents collecting overlapping information becomes higher. That is, more severe impediments

to information search would induce higher covariance of errors among the acquired signals

across different agents.

Suppose that there are I agents in the economy, and let I denote the set of agents. Adapting

the notation introduced in Section 2.1.3, we denote by Hi the set of distinct signals acquired

by agent i, and by hi the number of signals in Hi. Let Si(hi) be the mean of the distinct

signals acquired by agent i. Then, Si(hi) and Sj(hj) are suffi cient statistics for the information

acquired by agents i and j:

Si(hi) =
1

hi

∑
m∈Hi

sm = θ +
1

hi

∑
m∈Hi

εm, (17)

Sj(hj) =
1

hj

∑
n∈Hj

sn = θ +
1

hj

∑
n∈Hj

εn. (18)

Therefore, the covariance between Si(hi) and Sj(hj) is given by

Cov(Si(hi), Sj(hj)) =
1

τθ
+ Cov

 1

hi

∑
m∈Hi

εm,
1

hj

∑
n∈Hj

εn

 . (19)

Let Hi,j denote the set of indices of signals that belong to both Hi and Hj. Then, it is

immediate that

Cov

 1

hi

∑
m∈Hi

εm,
1

hj

∑
n∈Hj

εn

 =
1

hihj
V ar

 ∑
m∈Hi,j

εm

 =
hi,j

τchihj
, (20)

where hi,j denotes the number of distinct signals in Hi,j.

Suppose that agents i and j use amounts of resource ki and kj, respectively, when the cost

of each signal is set to be c. Denote by h̃i(ki; c) and h̃j(ki; c) the resulting number of distinct

signals collected by agents i and j and let h̃i,j(ki, kj; c) denote the number of distinct signals

among the commonly collected signals. Of course, for any positive value of c, h̃i(ki; c), h̃j(ki; c)

and h̃i,j(ki, kj; c) are random, and so is the covariance among the error terms in the signals

Si(h̃i(ki; c)) and Sj(h̃i(ki; c)) (see Eq. (20)). To restore tractability, we will again consider the

limit in which c goes to zero and rely on the following definition:
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Definition 2.4. The asymptotic covariance σij of the error terms in the signals Si(h̃i(ki; c))
and Sj(h̃i(ki; c)) satisfies

h̃i,j(ki, kj; c)

τch̃i(ki; c)h̃j(kj; c))
→ σij a.s. as c→ 0. (21)

Using an argument similar to Lemma 2.2, we can show that randomness in ch̃i,j(ki, kj; c)

disappears in the limit in which the cost c tends to zero. We have:

Lemma 2.3. As c→ 0, ch̃i,j(ki, kj; c) converges to a deterministic function in ki and kj almost

surely, i.e.,

ch̃i,j(ki, kj; c)→ L
(

1− exp

(
−kiL

))(
1− exp

(
−kjL

))
a.s., as c→ 0. (22)

Proof. See Appendix A.

Then, Lemma 2.2 and Lemma 2.3 together with Eq. (20) provide the proof of the following

theorem:

Theorem 2.2. For each agent pair i, j ∈ I, the asymptotic covariance of the error terms in
the signals Si(h̃i(ki; c)) and Sj(h̃i(ki; c)) satisfies

σij =
1

τL . (23)

Notice that the asymptotic covariance σij is constant and monotone decreasing in τL. The
latter result confirms our initial intuition that worse information searchability would increase

the covariance of acquired information across different agents.

Finally, using Theorem 2.1 and Theorem 2.2, we can obtain the asymptotic correlation of

the error terms between the two signals given the input of resources ki and kj as follows:

ρ(ki, kj) = lim
c→0

Corr

 1

hi

∑
m∈Hi

εm,
1

hj

∑
n∈Hj

εn

 =

[(
1− exp

(
−kiL

))(
1− exp

(
−kjL

))] 1
2

.

(24)
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2.4 Asymptotic Normality

In Theorem 2.1 and Theorem 2.2, we have obtained the second moments of the error terms

in the asymptotic signals. In the following theorem, we derive their exact joint asymptotic

distribution.

Theorem 2.3. For each agent pair i, j ∈ I using inputs ki and kj, respectively, as c goes to
zero the information acquired by agent i, j ∈ I is equivalent to the asymptotic signals

Si(ki) = θ + εi, (25)

Sj(kj) = θ + εj, (26)

where εi and εj are jointly normally distributed with mean zero and variance-covariance matrix

Σi,j, where

Σi,j =

(
φ(ki)

−1 1
τL

1
τL φ(kj)

−1

)
,

and the function φ(·) is as in Eq. (15).

Proof. See Appendix A.

2.5 A Public-Private Decomposition of Signals’Noise Terms

In the multiple agent case, we can decompose the noise term in agent i’s signal from Theorem

2.3 in terms of the average noise across agents:

εi = µ+ ηi, (27)

where µ and ηi are defined as

µ =
1

I

I∑
i=1

εi, ηi = εi − µ. (28)

The next corollary provides a characterization of the representation in Eq. (27) for an economy

with a large number of agents.
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Corollary 2.1. Consider an economy with I agents. As I →∞, each signal in Theorem 2.3

can be decomposed as

Si(ki) = θ + µ+ ηi, (29)

where µ and the ηi’s are independent of each other for all i ∈ I and

µ ∼ N
(
0, (τL)−1) ; ηi ∼ N

(
0, [τL (exp (ki/L)− 1)]−1) . (30)

Proof. See Appendix A.

The representation of agents’signals in Eq. (29) decomposes the original individual error

term in each signal into two independent parts: one component that is common across all

agents, µ, and an idiosyncratic component, ηi. Agent i can reduce the idiosyncratic variance

of his signal by increasing the amount of resources ki used for information acquisition. However,

agent i cannot reduce the variance of the common component µ, which is determined by the

underlying features of the information source, τ and L.
Corollary 2.1 gives a microfoundation for a signal structure that blends together two com-

mon assumptions used in the literature, in which the error terms in the signals are either fully

private (i.e., purely idiosyncratic noise) or fully public (i.e., purely public noise). A signal

structure as in Eq. (29) is employed in various contexts: finance (e.g., Grundy and McNichols

(1989); Manzano and Vives (2011)), political science (e.g., Dewan and Mayatt (2008)), infor-

mation economics (e.g., Myatt and Wallace (2012)), and industrial organization (e.g., Mayatt

and Wallace (2015)). In contrast to this literature, the precision of the common term (µ) and

the precision of the idiosyncratic term (ηi) are jointly determined in our framework. In par-

ticular, limited information searchability induces a trade-off between an information source’s

precision and its publicity, as we explain next.

While the overall noise V ar(εi) is a decreasing function of both τ and L (see Section 2.2),
these parameters have different effects on the private and public components of V ar(εi) at any

given level of ki. From Eqs. (30) it can immediately be verified that V ar(µ) decreases in L
whereas V ar(ηi) increases in L. To further understand these comparative statics, consider the
degree of “publicity”of the agents’information as measured by the fraction of a signal’s noise
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that is attributed to the common part. By Eqs. (30), this ratio is

V ar(µ)

V ar(εi)
= 1− exp

(
−kiL

)
. (31)

Eq. (31) illustrates that the searchability parameter L affects the composition of the agents’
information: lower values of L make the signals more public in nature. This property of the
model is intuitive: the smaller the information content that is available from an information

source, the more common the information of the agents who search from it. By contrast, the

effi ciency parameter τ scales all variances in the same way, leaving the overall composition of

V ar(εi) unchanged. Figure 2 illustrates these findings.

Figure 2. Left panel: variances across L (Parameter values: τ = 1, ki = 1). Right panel:

variances across τ (Parameter values: L = 1, ki = 1).

These properties of the model have implications for the agents’ incentives to search for

information. For instance, suppose that agents care about knowing what other agents know

because of strategic motives in their actions. In this case, agents might be willing to trade off

precision for publicity in their information choice and favor a dominated information source.

These information choices will have consequences for aggregate outcomes. In the next section,

we confirm this intuition by exploring an equilibrium model with coordination motives and

endogenous information.

19



3 Application: Endogenous Information in Coordina-

tion Games

We consider endogenous information choice in a beauty contest coordination game of the type

popularized byMorris and Shin (2002). Our analysis builds on the existing literature (e.g., Hell-

wig and Veldkamp (2009); Myatt and Wallace (2012); Hellwig, Kohls, and Veldkamp (2012))

and complements it by adopting the information technology derived in the previous section.

Our contribution is twofold. First, we show that our information acquisition technology leads

to qualitatively different implications regarding the nature of the information structure and

the existence of multiple equilibria. Second, we provide comparative statics on the different

equilibria and searchability of information that are unique to our framework.

3.1 The Setup

There is a continuum of agents indexed by i ∈ [0, 1] who play a simultaneous move game with

the following stages. First, each agent i gathers information, in a way that we specify below,

on an aggregate state variable θ. Second, each agent i chooses an action ai ∈ R that is based
on the information he has observed. Agent i’s payoff depends on how well his action does

at matching the state variable θ as well as the average action a =
∫ 1

0
ahdh. Agent i’s payoff

function is assumed to be quadratic:

ui = − (1− δ) (θ − ai)2 − δ (a− ai)2 , (32)

where the parameter δ ∈ (−1, 1) measures the intensity of agents’coordination motive relative

to the fundamental motive. For δ > 0 (δ < 0), agents’ choices are strategic complements

(substitutes). Furthermore, more positive (more negative) values of δ reflect greater desire to

choose an action that is as close (distant) as possible to (from) the average action. For δ = 0,

the coordination motive plays no role.

We assume θ is normally distributed with mean θ̄ and variance τ−1
θ . To acquire information

about θ, each agent in the model allocates a fixed amount of resources K to J > 1 indepen-

dent information sources. Each information source j ∈ {1, ..., J} is characterized by its own
effi ciency parameter τ j and searchability parameter Lj. Each agent i chooses an allocation of
his resources across information sources ki =

(
k1
i , ..., k

J
i

)
such that Σjk

j
i ≤ K. The mapping
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from resources to information is based on the information technology derived in the previous

section. When agent i allocates a positive amount of resources to information source j (i.e.,

kji > 0), the information obtained through this source is equivalent to a signal of the form

Sji = θ + εji ; εji ∼ N
(

0, φj
(
kji
)−1
)
, (33)

where the precision function φj (·) is as specified in Eq. (15) in Theorem 2.1,

φj
(
kji
)

= τ jLj
(

1− exp

(
− k

j
i

Lj

))
. (34)

When agent i does not allocate any resource to information source j (i.e., kji = 0), the signal

Sji is pure noise.

Corollary 2.1 implies that we can represent each signal Sji by decomposing the error term

as follows:

Sji = θ + µj + ηji , (35)

where µj’s and the ηji’s are jointly independent and normally distributed for all i and j:
11

µj ∼ N
(

0,
(
τ jLj

)−1
)

; ηji ∼ N
(

0, exp
(
−kji /Lj

)
φj
(
kji
)−1
)
. (36)

3.2 Equilibrium

In line with the literature, we focus on equilibria in which actions are affi ne functions of the

signals, i.e., agent i’s action takes the form ai = γ0
i + Σjγ

j
iS

j
i .
12 We denote γi =

(
γ0
i , ..., γ

J
i

)
and let ∆ be the set of feasible resource allocations, ∆ = {k ∈ RJ+

∣∣ Σjk
j ≤ K}. The strategy

space is Γ = ∆× RJ+1. An agent’s strategy is a pair (k, γ) ∈ Γ.

We focus on symmetric equilibria in which all agents play the same strategy. When all

other agents play the same strategy
(
k̂, γ̂
)
, agent i’s ex ante utility from a strategy (ki, γi) is

as follows:

E (ui) = −L1 (ki, γi)− L2 (γi, γ̂) , (37)

11Using Eq. (34), it can immediately be verified that Eqs. (36) is equivalent to Eqs. (30).
12See Myatt and Wallace (2012) for a discussion of suffi cient conditions on the strategy space that ensure

this assumption to be made without loss of generality.

21



where L1 (ki, γi) is the quadratic loss experienced by an agent when all players play the same

strategy, and L2 (γi, γ̂) is the quadratic loss (for δ > 0) or gain (for δ < 0) experienced by

an agent when he deviates from other players’strategy (see Eqs. (B.1)-(B.2) in Appendix B

for details of the derivations). Then, a Symmetric Bayesian Nash Equilibrium (SBNE) is a

strategy
(
k̂, γ̂
)
such that (

k̂, γ̂
)
∈ argmin

(ki,γi)∈Γ

L1 (ki, γi) + L2 (γi, γ̂) . (38)

We can show that a global minimizer of L1 (ki, γi) in Eq. (38) is a SBNE (see Lemma B.3 in

Appendix B); because the term L2 (γi, γ̂) vanishes when agent i plays γi = γ̂, a global minimizer

of L1 (ki, γi) is in fact a payoff-maximizing equilibrium.13 In Appendix B (see Lemma B.1), we

also show that finding a strategy that minimizes L1 (ki, γi) reduces to finding an allocation of

resources among information sources k∗ that satisfies

k∗ ∈ argmax
k∈∆

G(k), (39)

where

G(k) = ΣJ
j=1gj(k

j); gj(k
j) =

[
1− δ
φj(kj)

+
δ

exp (kj/Lj)φj(kj)

]−1

. (40)

The optimization problem in Eq. (39) can be interpreted as a planner’s problem of finding

an allocation of resources that maximizes agents’payoffs in a symmetric equilibrium. The

objective function G(k) in Eq. (40) has an intuitive interpretation. Each function gj(kj) is

an (weighted, harmonic) average of the precisions of the overall error term εji of the signal in

Eq. (33) and the idiosyncratic error term ηji in Eq. (35). When agents do not care about other

agents’actions (i.e., δ = 0), forecasting θ is all that matters for agents’utility. Then, G(k)

becomes simply a sum of signals’precisions (i.e., gj(·) = φj(·)), and k∗ is chosen to maximize
the precision of information about θ. Because the precision functions φj(·)’s are concave, G(k)

is concave if the coordination motive is suffi ciently weak, in which case the solution to Eq. (39)

is the unique equilibrium.14

13We remark that a payoff-maximizing equilibrium may not coincide with the first-best if coordination has

no social value. See Colombo, Femminis, and Pavan (2014) for a welfare analysis of information acquisition.
14See Lemma B.1, Lemma B.2 and Lemma B.3 in Appendix B for the details of the argument.
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On the other hand, for δ 6= 0, agents’coordination motives introduce a distortion. Consider

the case of strategic complementarities in actions, δ > 0. In a symmetric equilibrium, the

average action equals ā = γ̂0 + Σj γ̂
j (θ + µj), and what matters for predicting ā is not just

learning about the fundamental, but learning about the fundamental-plus-common-noise terms

(θ + µj)’s. For instance, in the extreme case in which δ approaches one, G(k) becomes simply

a sum of the idiosyncratic precisions (i.e., gj(k
j
i ) = var

(
ηji
)−1

for δ = 1), in which case k∗

is chosen to maximize the precision of information about the terms (θ + µj)’s. The precision

about θ + µj is convex in the input kji because uncertainty about θ + µj decreases faster than

it does for θ. As a result, a strong enough coordination motive makes the problem in Eq. (39)

non-concave, which can lead to multiple equilibria. Intuitively, an allocation of resources that

constitutes a local (but not global) maximum of G(k) is a SBNE if the cost an agent incurs

when moving away from other agents’actions is suffi cient to deter deviation.

This discussion suggests that the interplay between the coordination motive and the nature

of the information is the key determinant of information choices and equilibrium uniqueness.

We formalize this idea in the following proposition:

Proposition 3.1. (SBNE)(i) When actions are either strategic substitutes or strategic com-
plements with a weak coordination motive (i.e., for δ ∈ (−1, 1/2)), there exists a unique equi-

librium. In equilibrium, information acquisition satisfies

k̂j(λ) =

 Lj log

(
τ j−2λδ(1−δ)+

√
τ j(τ j−4λδ(1−δ))

2(1−δ)2λ

)
for 0 < λ < τ j;

0 for λ ≥ τ j,
(41)

for some λ > 0 that is the unique solution to ΣJ
j=1k̂

j(λ) = K.

(ii) When the coordination motive is strong (i.e., for δ ∈ [1/2, 1)), an equilibrium exists but

there may be multiple equilibria.

Proof. See Appendix B.

This proposition confirms the intuition from the previous discussion. In Proposition 3.1-

(i), the equilibrium is unique if the coordination motive is not suffi ciently strong (i.e., δ <

1/2).15 By contrast, Proposition 3.1-(ii) reveals the possibility of multiple equilibria when the

15In the equilibrium described in Proposition 3.1-(i), the following properties can easily be shown to be true.
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coordination motive is suffi ciently strong (i.e., δ ≥ 1/2). The next proposition examines this

case in a simplified environment with only two information sources.

Proposition 3.2. (Inferior information equilibrium when coordination motive is strong)

Assume there are only two information sources, A and B, such that A has perfect searchability

and is superior to B in the sense of Definition (2.3). Then,

(i) k̂A = K is an equilibrium; and

(ii) there exists a threshold L̄ > 0 such that, for all LB < L̄, k̂B = K is the payoff-maximizing

equilibrium if the coordination motive is suffi ciently strong.

Proof. See Appendix B.

Devoting all resources to the superior technology (i.e., kAi = K for all i) is an equilibrium

regardless of the coordination motive (Proposition 3.2-(i)).16 In this equilibrium, agents act

upon signals that are private in nature and the average action only depends on the fundamental.

Hence, precise information on the fundamental reveals other agents’actions, thus, it facilitates

coordination. Because information source B is inferior, an agent has no incentive to deviate

from kAi = K.

The equilibrium in Proposition 3.2-(ii) is in stark contrast with the δ < 1/2 case. If all

agents are learning from the inferior information source (i.e., kBi = K for all i), agents obtain

information that is less precise but highly correlated among them. This correlation facilitates

coordination in agents’actions. When coordination is valuable and searchability is suffi ciently

poor (i.e., LB < L̄), choosing the inferior information source is individually optimal because
the benefit from higher correlation outweighs the benefit from higher precision.17

First, agents devote attention to an information source only if this source is suffi ciently effi cient (i.e., λ < τ j).

Second, if information source j is superior to information source i according to Definition (2.3), information

source j gets more resources than i. Third, if an information source is superior to all other information sources

and has perfect searchability, it gets all the resources. Fourth, as agents care more about other agents’actions

(i.e., as δ increases), the number of information sources to which agents allocate their resources decreases

weakly (i.e., dλdδ > 0). These properties are consistent with those of Myatt and Wallace (2012).
16Because information source A is superior to B and LA =∞, Proposition 3.1 implies that this is the unique

equilibrium if δ < 1/2.
17Proposition 3.2-(ii) further shows that kBi = K is the payoff-maximizing equilibrium. The intuition is as

24



As explained in Section 2, lower values of LB make the signal from source B less precise

but also more public in nature. As a result, it can be easier for agents to coordinate on the

inferior source when this information is less precise, i.e., the set of parameter values for which

Proposition 3.2-(ii) holds expands as LB decreases. The following corollary states this result
formally:

Corollary 3.1. (Comparative statics) As LB decreases from the threshold L̄, a less strong
coordination motive is needed for k̂B = K to be the payoff-maximizing equilibrium.

Proof. See Appendix B.

The left panel of Figure 3 provides an illustration of Corollary 3.1. The figure further

shows that the same comparative statics holds when k̂B = K is a SBNE, without the further

requirement that it is the payoff-maximizing SBNE.

Equilibrium information choices have implications for aggregate volatility, as illustrated by

the right panel in Figure 3. The aggregate action is perfectly correlated with the fundamental

when resources are fully invested in the superior information. In contrast, this correlation is

significantly lower than one in the inferior information equilibrium because of the common

noise µB. As a result, the volatility of the average action is significantly higher in the k̂B = K

equilibrium than it is in the k̂A = K equilibrium, and this difference is more pronounced for

lower values of the searchability parameter LB.

follows. When LB < L̄, allocating all resources to information sourceB leaves less uncertainty about θ+µB than
does allocating all resources to information source A about θ (i.e., V ar(θ + µ

B |SBi )
∣∣∣
kBi =K

< V ar(θ|SAi )
∣∣∣
kAi =K

for LB < L̄). If all agents are learning from the superior information source A, agents’payoffs only depend on

θ, while if all agents are learning from the inferior information source B, the average action depends on θ+µB .

As a result, for large enough values of δ (so that agents’payoffs crucially depend on how well they can predict

the average action), agents’payoffs are larger in the k̂B = K equilibrium that in the k̂A = K equilibrium.

Furthermore, there is no interior equilibrium because the objective function in Eqs. (39) and (40) is strictly

convex under the conditions in the proposition.
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Figure 3. Left panel: light gray area: k̂B = K is a SBNE; dark gray area: k̂B = K is the payoff-

maximizing SBNE. Right panel: thick line, σB/σA: relative volatility of the aggregate action across

k̂B = K and k̂A = K equilibria; dashed (dot-dashed) line, ρB,θ (ρA,θ): correlation coeffi cient between

the average action a and θ in the k̂B = K (k̂A = K) equilibrium. Parameter values: τθ = τA = K = 1,

τB = 0.8 in both panels and δ = 0.8 in the right panel.

3.3 Interpretation

Our results in this section have interesting implications for many economic situations with

coordination motives (e.g., price-setting models, bank runs, analysts’forecasting, fund man-

agers’portfolio choices). For example, our results shed light on the well-documented financial

(or macroeconomic) analysts’herding behavior in forecasting or recommendations (e.g., Hong,

Kubik, and Solomon (2000); Welch (2000); Lamont (2002); Clement and Tse (2005)). In that

context, each individual agent’s action in our model can be interpreted as an analyst’s forecast

whereas the average action can be interpreted as the consensus forecast among analysts. It is

well-known that analysts’incentives do not only depend on their forecast accuracy but also
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on their career concerns.18 That is, there is an element of strategic complementarities in the

incentives behind analysts’forecasting, and, therefore, the payoff function in Eq. (32) can be

interpreted as an approximation of such career concerns.

We can interpret the superior source in Proposition 3.2 as information based on firms’

fundamentals while we can interpret the inferior source as rumors, information from social

media or web-based discussions, and news covered in the media. Our results show that there

is an equilibrium in which analysts gather all their information from the inferior source (see

Proposition 3.2).

As a measure of herding behavior, we can consider the non-fundamental part of the average

correlation among two analysts’forecasts: Corr (ai, ai′|θ). In a symmetric equilibrium in which
agents invest all resources in information source j, this measure is equivalent to

Corr (ai, ai′ |θ) = 1− exp

(
−KLj

)
. (42)

Notice that this is the same as the degree of publicity defined in Eq. (31). The publicity

measure becomes more pronounced with lower searchability; thus, we can predict a higher

tendency for analysts’herding when information searchability is lower. Although searchability

itself is diffi cult to observe, the resulting forecasts are easily observed. Empirical evidence

indeed suggests analysts’ tendency for herding creates (serial) correlations of forecasts that

may show no relevance to fundamentals (e.g., Chan, Jegadeesh, and Lakonishok (1996); Welch

(2000); Zitzewitz (2001)).

We can also assess the impact of herding behavior on informational effi ciency, which we

measure with the conditional precision of the fundamental value θ given the consensus forecast

ā. It can be shown that

V ar(θ|ā)−1 =
τθ

1− Corr (θ, ā)2 , (43)

where Corr(θ, ā) denotes the correlation coeffi cient between θ and ā. Hence, the correlation

coeffi cients in Figure 3 measure the informational effi ciency of the equilibrium outcome. The

consensus forecast reveals the fundamental value perfectly in the k̂A = K equilibrium but not

in the k̂B = K equilibrium. Therefore, our results imply that financial analysts may herd on

18For example, Hong, Kubik, and Solomon (2000) document that analysts are more likely to be terminated

for bold forecasts that deviate from consensus.
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less precise information sources due to career concerns and this can create negative effects for

informational effi ciency.19

3.4 Relation to the Literature

Our analysis in this section shows that information search can be a source of aggregate volatility

when agents’coordination motives are suffi ciently strong. Agents may collectively choose to

search for imprecise but highly correlated information; these information choices lead to non-

fundamental correlation in individual actions as well as aggregate outcomes that are dislocated

from fundamentals.

Methodologically, our analysis is closely related to two recent papers by Hellwig and Veld-

kamp (2009), and Myatt andWallace (2012), who study beauty contest games with endogenous

information acquisition.

A key message in Hellwig and Veldkamp (2009) is that the endogenous choice of public

information generates multiple equilibria. The idea is that a public signal is more valuable

than a private signal because it carries information both about the fundamental and about

what other agents have learned (and, hence, about what other agents will do). However, this

second effect depends on whether the public signal has been acquired by others or not, and

this leads to multiple equilibria.20

A very different message emerges from Myatt and Wallace (2012), who assume a signal

structure equivalent to Eq. (35), in which costly information acquisition from an information

source reduces the idiosyncratic noise (but not the common noise). In their setup, the equi-

librium is unique. The key difference is that the correlation in public information is bounded

away from zero in Hellwig and Veldkamp (2009), while in Myatt and Wallace (2012) the pub-

licity of a signal depends on agents’information choices and the first bits of information are

effectively private. As Myatt and Wallace (2012) put it,“this smooths out the first step of the

information acquisition process and eliminates multiple equilibria, even though the informative

19For example, Jegadeesh and Kim (2009) empirically find that the impact of forecast revisions on market

prices is smaller when they are driven by analysts’herding behavior.
20This result also holds when acquisition of public information is “near continuous,”in which case the value

of information is kinked at the point where other agents have stopped learning from the public source. Hence,

there can be many equilibria (a continuum, in fact).
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signals actually acquired in equilibrium may be relatively public in nature.”

In our model, uniqueness of equilibrium is guaranteed only if the coordination motive is not

too strong. Key to this result is the publicity-precision trade-off induced by limited information

searchability, which provides multiple ways for coordination to be achieved among agents (see

the discussion following Proposition 3.2). This mechanism is absent in Myatt and Wallace

(2012). It is the source of multiplicity in our model when the coordination motive is strong.21

4 Conclusion

In our paper, we develop a microfounded framework of information acquisition in which infor-

mation is acquired through search. Our framework is based on a simple intuition: as an agent

keeps searching for new information, it is likely that he will encounter some pieces of informa-

tion that overlap with findings from his past searching activities. Furthermore, other agents

searching for information from the same source will face the same diffi culty in collecting new

information; thus, they are more likely to have similar information if the amount of searchable

information is smaller. We formalize this idea by employing an urn model, where signals are

drawn with replacement. This allows us to develop a framework in which both the concav-

ity of signal precision and the correlation among signals increase as information becomes less

searchable. Using an asymptotic approach, we construct a tractable mapping from resource

allocations to the precision and the correlation of agents’acquired information under varying

degrees of searchable information.

Our analysis highlights that limited information searchability induces a trade-off between

the precision and the publicity of information that is acquired. To illustrate the potential

implications of this trade-off for equilibrium outcomes, we embed our information acquisition

technology in a beauty contest coordination game with endogenous information. We find

that agents may collectively prefer an inferior information source due to coordination motives.

21Myatt and Wallace (2012) also show that uniqueness of equilibrium is not robust in a version of their model

that employs a cost function derived through rational inattention constraints on information transmission (see

Sections 8 and 9 in their paper). This cost function is concave and introduces an exogenous element of convexity

into the problem, which is independent of the agents’coordination motives. By contrast, the precision function

in our model is concave (equivalently, the cost function for precision is convex); in our setup, non-concavities

arise from the interaction between the commonality of information and the coordination motive.
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As these information choices influence aggregate outcomes, information search is a potential

source of aggregate volatility.

Our model has a broad spectrum of potential applications. It provides a tractable infor-

mation acquisition technology for modeling situations in which acquiring information is costly.

In particular, the model’s implications for the commonality of information among agents pro-

vide a useful benchmark for information acquisition in a multitude of economic situations that

exhibit payoff externalities. Examples include price setting models, experts’recommendations

(such as financial analysts), bank runs, and trading in the financial markets. In these situa-

tions, the commonality of information among agents plays an important role for equilibrium

outcomes. In summary, our framework provides a tool for modeling the endogenous formation

of agents’information in a tractable way, thus, allowing us to better analyze and understand

the resulting equilibrium outcomes.
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Appendix A

Proof of Lemma 2.2: We prove this lemma in a similar fashion to standard proofs of the strong law
of large numbers.22 The major difference from the proof of the standard case is that, here, samples
of the random variables from the population allow redundancy at varying rates as the number of
samples increases.

Let L denote the number of distinct signals in L, i.e., L = bLc c. We also denote as l the number
of signals collected from L, i.e., l = bkc c. For each m ∈ {1, 2, . . . , L}, we define h̃

m(k; c) to be one if
signal sm is collected eventually, and zero otherwise. Then, we have h̃(k; c) =

∑L
m=1 h̃

m(k; c), and

E(h̃m(k; c)) = Pr(h̃m(k; c) = 1) = 1−
(
L− 1

L

)l
. (A.1)

By Markov’s inequality, we have

Pr
[∣∣∣ch̃(k; c)− E(ch̃(k; c))

∣∣∣ ≥ α] ≤ c4E

[∣∣∣h̃(k; c)− E[h̃(k; c)]
∣∣∣4]

α4
. (A.2)

We first prove that c2E

[∣∣∣h̃(k; c)− E[h̃(k; c)]
∣∣∣4] converges as c → 0. That is, the r.h.s. will be less

than c2M
α4

for suffi ciently small c for some positive constant M . This will allow us to have the desired
result.

We now drop the arguments in h̃(k; c) and h̃m(k; c) for notational convenience throughout this
proof. Observe that

E

[∣∣∣h̃− E(h̃)
∣∣∣4] = E

(
h̃4
)
− 4E

(
h̃3
)
E
(
h̃
)

+ 6E
(
h̃2
)
E
(
h̃
)2
− 4E

(
h̃
)4

+ E
(
h̃
)4
. (A.3)

Then, we can obtain the exact expression for Eq. (A.3) by obtaining each element in it separately
as follows:

E
(
h̃2
)

= LE
[
(h̃m)2

]
+ L(L− 1)E

(
h̃mh̃n

)
, (A.4)

E
(
h̃3
)

= LE
[
(h̃m)3

]
+

(
3

2

)
L(L− 1)E

[
(h̃m)2h̃n

]
+ L(L− 1)(L− 2)E

(
h̃mh̃nh̃x

)
, (A.5)

E
(
h̃4
)

= LE
[
(h̃m)4

]
+

(
4

3

)
L(L− 1)E

[
(h̃m)3h̃n

]
+

1

2

(
4

2

)
L(L− 1)E

[
(h̃m)2(h̃n)2

]
+

(
4

2

)
L(L− 1)(L− 2)E

[
(h̃m)2h̃nh̃x

]
+ L(L− 1)(L− 2)(L− 3)E

(
h̃mh̃nh̃xh̃y

)
. (A.6)

22See, for example, Billingsley (1995) for the standard proofs of the strong law of large numbers.
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Because (hm)r = hm for all r ∈ N, we have E
[
(h̃m)r

]
= E

(
h̃m
)
, E

[
(h̃m)r(h̃n)q

]
= E

(
h̃mh̃n

)
,

and E
[
(h̃m)r(h̃n)q(h̃x)s

]
= E

(
h̃mh̃nh̃x

)
for any r, q, s ∈ N. By substituting Eqs. (A.4), (A.5) and

(A.6) into Eq. (A.3), we have

E

[∣∣∣h̃− E(h̃)
∣∣∣4] = LE

(
h̃m
)

+ (3L2 − 7L)E
(
h̃mh̃n

)
− 6(L2 + 2L)E

(
h̃mh̃nh̃x

)
+ 3(L2 − 2L)E

(
h̃mh̃nh̃xh̃y

)
.

(A.7)

We denote by S the set of outcomes from drawing of l signals from the set L (i.e., the urn). Then,
we have |S| = Ll because there are L signals in the set L.23 We define Am to be an event where
signal i is not drawn within l trials (i.e., h̃m is equal to zero). Then, the expectation of the product
of the random variables h̃m and h̃n is given by

E
(
h̃mh̃n

)
= Pr(h̃mh̃n = 1) = Pr(Acm ∩Acn) =

|Acm ∩Acn|
|S| . (A.8)

Using the inclusion—exclusion principle, we obtain24

E
(
h̃mh̃n

)
=
|S| − 2|Acm|+ |Acm ∩Acn|

|S| .

= 1− 2(L− 1)l − (L− 2)l

Ll
= 1− 2

(
1− 1

L

)l
+

(
1− 2

L

)l
.

(A.10)

Therefore, taking the limit of c in Eqs. (A.1) and (A.10) yields

lim
c→0

E
(
h̃m
)

= 1− exp

(
− kL

)
, (A.11)

lim
c→0

E
(
h̃mh̃n

)
=

(
1− exp

(
− kL

))2

. (A.12)

In a similar fashion as in Eq. (A.10), we obtain the following using the inclusion—exclusion prin-
ciple:

E
(
h̃mh̃nh̃x

)
= Pr(h̃mh̃nh̃x) = 1− 3(L− 1)l − 3(L− 2)l + (L− 3)l

Ll
, (A.13)

23 |A| indicates the cardinality of a set A.
24Suppose that there are finite sets A1, A2, . . . , AM that belong to a set S. Then, the inclusion—exclusion

principle states that

| ∩Mm=1 Acm| = |S| −
M∑
m=1

|Am|+
∑

1≤m<n≤M
|Am ∩An| −

∑
1≤m<n<r≤M

|Am ∩An ∩Ar|+ . . .+ (−1)M | ∩Mm=1 Am|.

(A.9)
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E
(
h̃mh̃nh̃xh̃y

)
= Pr(h̃mh̃nh̃xh̃y) = 1− 4(L− 1)l − 6(L− 2)l + 4(L− 3)l − (L− 4)l

Ll
. (A.14)

Then, taking the limit as c tends to zero in Eqs. (A.13) and (A.14) yields the followings:

lim
c→0

E
(
h̃mh̃nh̃x

)
=

(
1− exp

(
− kL

))3

, (A.15)

lim
c→0

E
(
h̃mh̃nh̃xh̃y

)
=

(
1− exp

(
− kL

))4

. (A.16)

Multiplying Eq. (A.7) by c2 and taking the limit as c tends to zero yields

lim
c→0

c2E

[∣∣∣h̃− E[h̃]
∣∣∣4] = 3L2 exp

(
−2k

L

)(
1− exp

(
− kL

))2

.

Given a positive real number δ, let L̄ denote 3L2 exp
(
−2k
L
) (

1− exp
(
− k
L
))2

+ δ. Then, there exists c̄

such that c2E

[∣∣∣h̃− E(h̃)
∣∣∣4] < L̄ for all c < c̄. Therefore, there exists N > 0 such that for all n ≥ N

and n ∈ N we have
Pr

[∣∣∣∣ 1nh̃− 1

n
E
[
h̃
]∣∣∣∣ ≥ α] < L̄

n2α4
.

Then, the first Borel-Cantelli lemma implies that

Pr

[
lim
n→∞

∣∣∣∣Φ(h̃(k;
1

n
)

)
− φ(k)

∣∣∣∣ < α

]
= 1,

or equivalently

Pr
[
lim
c→0

∣∣∣Φ(h̃(k; c)
)
− φ(k)

∣∣∣ < α
]

= 1. �

Proof of Lemma 2.3: This proof is parallel to that of Lemma 2.2. Let L be the number of distinct
signals in L, i.e., L = bLc c. We also denote by l

i and lj the number of signals collected by agents i and

j from L, respectively, i.e., li = bkic c and l
j = bkjc c. For each m ∈ {1, 2, . . . , L}, we define h̃

m
i,j(ki; c)

to be one if signal sm belongs to the group of commonly collected signals Hi,j , and zero otherwise.
We also define h̃mi (ki; c) (or h̃mj (kj ; c)) to be one if signal sm is collected by agent i (or j), and zero
otherwise. Then, we have

h̃i,j(ki, kj ; c) =

L∑
m=1

h̃mi,j(ki, kj ; c) =

L∑
m=1

h̃mi (ki; c)h̃
m
j (kj ; c).
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Because h̃mi (ki; c) and h̃mj (kj ; c) are independent, we get

E[h̃i,j(ki, kj ; c)] =
L∑

m=1

Pr(h̃mi (ki; c)h̃
m
j (kj ; c) = 1) =

L∑
m=1

Pr(h̃mi (ki; c) = 1)Pr(h̃mj (kj ; c) = 1)

= L

[(
1−

(
L− 1

L

)li)(
1−

(
L− 1

L

)lj)]
.

(A.17)

We can represent Eq. (A.17) given ki and kj as follows:

E[h̃i,j(ki, kj ; c)] = bL
c
c


1−

(
1− 1

bLc c

)b ki
c
c

1−

(
1− 1

bLc c

)b kj
c
c

 . (A.18)

Multiplying Eq. (A.18) by c and taking the limit as c tends to zero yields

lim
c→0

E[ch̃i,j(ki, kj ; c)]→ L
(

1− exp

(
−kiL

))(
1− exp

(
−kjL

))
. (A.19)

We now drop the arguments in h̃i,j(ki, kj ; c) and h̃mi,j(ki, kj ; c) for notational convenience through-
out this proof.

By Markov’s inequality, we have

Pr
[∣∣∣ch̃i,j − E[ch̃i,j ]

∣∣∣ ≥ α] ≤ c4E

[∣∣∣h̃i,j − E[h̃i,j ]
∣∣∣4]

α4
. (A.20)

We aim to prove Eq. (A.20) by showing that c2E

[∣∣∣h̃i,j − E[h̃i,j ]
∣∣∣4] converges as c→ 0. The rest

of the proof of Lemma 2.3 is identical to the proof of Lemma 2.2 up to Eq. (A.7).
We denote ϕ1(z), ϕ2(z) and ϕ3(z) to be

ϕ1(z) =

(
L− 1

L

)z
, (A.21)

ϕ2(z) =

(
L− 2

L

)z
, (A.22)

ϕ3(z) =

(
L− 3

L

)z
. (A.23)
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Using the inclusion—exclusion principle (which is analogous to Eq. (A.10)), we have25

E
(
h̃mi,j h̃

n
i,j

)
= Pr(h̃mi,j h̃

n
i,j = 1)

= 1− Pr(h̃mi,j = 0)− Pr(h̃ni,j = 0) + Pr(h̃mi,j = 0 ∧ h̃ni,j = 0).
(A.25)

Using the inclusion—exclusion principle again, we derive

Pr(h̃mi,j = 0) = Pr(h̃ni,j = 0) = ϕ1(li) + ϕ1(lj)− ϕ1(li + lj), (A.26)

and

Pr(h̃mi,j = 0 ∧ h̃ni,j = 0) = Pr((h̃mi = 0 ∨ h̃mj = 0) ∧ (h̃ni = 0 ∨ h̃nj = 0))

= 2ϕ1(li)(1− ϕ1(li))ϕ1(lj)(1− ϕ1(lj))

+ ϕ2(li) + ϕ2(lj)− ϕ2(li)ϕ2(lj).

(A.27)

Substituting Eqs. (A.26) and (A.27) into Eq. (A.25), and taking the limit as c tends to zero yields

lim
c→0

E
(
h̃mi,j h̃

n
i,j

)
=

(
1− exp

(
−kmL

))2(
1− exp

(
−knL

))2

. (A.28)

Similarly as in Eq. (A.28), we obtain the expectation of the cross product of the three variables
h̃m, h̃n and h̃x as follows:

E
(
h̃mi,j h̃

n
i,j h̃

x
i,j

)
= Pr(h̃mi,j h̃

n
i,j h̃

x
i,j = 1)

= 1− 3 [ϕ1(li) + ϕ1(lj)− ϕ1(m+ n)]

+ 3 [ϕ1(li)(1− ϕ1(li))ϕ1(lj)(1− ϕ1(lj)) + ϕ2(li) + ϕ2(lj)− ϕ2(li)ϕ2(lj)]

− [3(ϕ1(li)
2(1− ϕ1(li))ϕ1(lj)(1− ϕ1(lj))

2 + ϕ1(li)(1− ϕ1(li))
2ϕ1(lj)

2(1− ϕ1(lj)))

+ 6ϕ2(li)(1− ϕ1(li))ϕ2(lj)(1− ϕ1(lj)) + ϕ3(li) + ϕ3(lj)− ϕ3(li)ϕ3(lj)].

(A.29)

Taking the limit as c tends to zero in Eq. (A.29) yields

lim
c→0

E
(
h̃mi,j h̃

n
i,j h̃

x
i,j

)
=

(
1− exp

(
−kmL

))3(
1− exp

(
−knL

))3

. (A.30)

25In this case, we use the inclusion—exclusion principle in the following form:

| ∪Mm=1 Am| =
M∑
m=1

|Am| −
∑

1≤m<n≤M
|Am ∩An|+

∑
1≤m<n<r≤M

|Am ∩An ∩Ar|+ . . .+ (−1)M+1| ∩Mm=1 Am|.

(A.24)
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We can repeat the same exercise as in Eq. (A.29) for the expectation of the cross-product of the
four variables h̃m, h̃n, h̃x and h̃y to obtain the following:

lim
c→0

E
(
h̃mi,j h̃

n
i,j h̃

x
i,j h̃

y
i,j

)
=

(
1− exp

(
−kmL

))4(
1− exp

(
−knL

))4

.

The rest of the proof is again identical to the proof of Lemma 2.2 and is omitted. �

Proof of Theorem 2.3 Let n = 1/c. With a slight modification of the notation in the main text,
let H i

n denote the set of distinct signals among those acquired by agent i for a fixed k
i and c, and let

hin denote the number of signals in H
i
n. Similarly, denote by H

i,j
n the set of distinct signals among

the overlapping signals acquired by agent i and agent j for fixed ki, kj and c, and let hi,jn denote the
number of signals in H i,j

n . Further, let Ln be the set of signals in the urn when the cost of each draw
is c,26 and let Ln be the cardinality of Ln. Then, let Sin denote the mean of the signals s1 , s2 , . . . , sh

i
n

in H i
n as follows:

27

Sin =
1

hin

∑
m∈Hi

n

sm = θ +
1

hin

∑
m∈Hi

n

εm,

and let ε̃in denote S
i
n − θ, that is,

ε̃in =
1

hin

∑
m∈Hi

n

εm. (A.31)

Outline of the proof. We will prove the joint asymptotic normality of ε̃in, ε̃
j
n by showing that, as n

goes to infinity,

aε̃in + bε̃jn
d−→ N

(
0,

a2

φ (ki)
+

b2

φ (kj)
+ 2

ab

τL

)
for all a, b ∈ R2. (A.32)

The plan of the proof is as follows. As a first step, starting from ε̃in, ε̃
j
n, we construct two alternative

random variables, ε̂in, ε̂
j
n say, whose distribution is unaffected by the randomness in hin, h

j
n and h

i,j
n .

As a second step, we use the Central Limit Theorem to prove the asymptotic normality of aε̂in + bε̂jn
as c goes to zero. As a third step, we prove that aε̃in + bε̃jn converges in probability to aε̂in + bε̂jn as c
goes to zero. The fourth step combines the previous results and completes the proof.

First step. Let L̃n be a set of Ln signals of the form θ + ε̃m, where each ε̃m is independently and
identically distributed. Furthermore, each ε̃m has the same distribution of the εm’s in the signals in
Ln and is independent of the εm’s in the signals in Ln.

26In terms of the notation in the main text we have hn = h̃(k; 1n ) and Ln = bnLc.
27The signals and error terms sm, εm should also have a n subscript to highlight that the distribution depends

on n (i.e., c). We will omit such additional notation in the rest of the proof.
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Let the random variable zi,jn be defined as zi,jn = hi,jn −
⌈
E
(
hi,jn
)⌉
.28 Then, let the set Zi,jn be

defined as follows. If zi,jn > 0, let Zi,jn be a set of zi,jn random draws (without replacement) from H i,j
n .

If zi,jn < 0, let Zi,jn be a set of
∣∣∣zi,jn ∣∣∣ random draws (without replacement) from L̃n. If z

i,j
n = 0, let Zi,jn

be the null set. Then, let the set Ĥ i,j
n be defined as follows:

Ĥ i,j
n =

{
H i,j
n �Zi,jn

H i,j
n ∪ Zi,jn

if zi,jn > 0

if zi,jn ≤ 0
.

By construction, the cardinality of Ĥ i,j
n equals

⌈
E
(
hi,jn
)⌉
.

Let the random variable zin be defined as z
i
n = hin−

⌈
E
(
hin
)⌉
−zi,jn . Then, let the set Zin be defined

as follows. If zin > 0, let Zin be a set of z
i
n random draws (without replacement) from H i

n�H
i,j
n . If

zin < 0, let Zin be a set of
∣∣∣zi,jn ∣∣∣ random draws (without replacement) from L̃n. If zin = 0, let Zin be

the null set. Then, let the set Ĥ i
n be defined as follows:

Ĥ i
n =


(
H i
n�H

i,j
n

)
�Zin(

H i
n�H

i,j
n

)
∪ Zin

if zin > 0
if zin ≤ 0

.

By construction, the cardinality of Ĥ i
n equals

⌈
E
(
hin
)⌉
−
⌈
E
(
hi,jn
)⌉
. Define the random variable ε̂in

as

ε̂in =
1

dE (hin)e

 ∑
m∈Ĥi

n

εm +
∑

m∈Ĥi,j
n

εm

 . (A.33)

By construction, ε̂in is therefore the sample average of
⌈
E
(
hin
)⌉
i.i.d. error terms, while ε̃in is the

sample average of hin i.i.d. error terms.
Finally, let the random variable ε̂jn be constructed in an equivalent manner to ε̂in but for agent j.

Second step. Let rn =
⌈
E
(
hin
)⌉

+
⌈
E
(
hjn
)⌉
−
⌈
E
(
hi,jn
)⌉
. By construction, aε̂in + bε̂jn can be written

out as the sum of rn independent terms as follows:

aε̂in + bε̂jn =

rn∑
k=1

Xnk,

where a number
⌈
E
(
hin
)⌉
−
⌈
E
(
hi,jn
)⌉
of the Xnk terms are of the form Xnk = a

dE(hin)eε
k, a number⌈

E
(
hjn
)⌉
−
⌈
E
(
hi,jn
)⌉
of the Xnk terms are of the form Xnk = b

dE(hjn)eε
k and a number

⌈
E
(
hi,jn
)⌉

of the Xnk terms are of the form Xnk =

(
a

dE(hin)e + b

dE(hjn)e

)
εk. Since E

(
εk
)

= 0, E (Xnk) = 0.

28dxe = min{z ∈ Z|z ≥ x}.

37



Letting V 2
n denote the variance of aε̂

i
n + bε̂jn, we have

V 2
n =

rn∑
k=1

V ar(Xnk)

= V ar
(
εk
)(⌈E (hin)⌉− ⌈E (hi,jn )⌉)( a

dE (hin)e

)2

+
(⌈
E
(
hjn
)⌉
−
⌈
E
(
hi,jn
)⌉) b⌈

E
(
hjn
)⌉
2

+
⌈
E
(
hi,jn
)⌉ a

dE (hin)e +
b⌈

E
(
hjn
)⌉
2

= V ar
(
εk
) a2

dE (hin)e +
b2⌈

E
(
hjn
)⌉ +

2ab

dE (hin)e
⌈
E
(
hjn
)⌉ ⌈E (hi,jn )⌉

 (A.34)

=
n

τ

 a2

nL
[
1−

(
1− 1

nL
)nki]

+ gi (n)
+

b2

nL
[
1−

(
1− 1

nL
)nkj]

+ gj (n)
+

2ab

nL+ gi,j (n)

 ,
for some deterministic functions gi(c), gj(c) and gi,j(c) that all vanish as n→∞. Hence, we have

lim
n→∞

V 2
n =

a2

φ (ki)
+

b2

φ (kj)
+ 2

ab

τL . (A.35)

The Lindeberg condition requires that, for all δ > 0,

lim
n→∞

rn∑
k=1

1

V 2
n

E
(
X2
nk1{|Xnk|≥δVn}

)
= 0. (A.36)

We can write
rn∑
k=1

1

V 2
n

E
(
X2
nk1{|Xnk|≥δVn}

)
= λin + λjn + λi,jn ,

where

λin =

(⌈
E
(
hin
)⌉
−
⌈
E
(
hi,jn
)⌉)

V 2
n

E

( aεk

dE (hin)e

)2

1{∣∣∣∣∣ aεk

dE(hin)e

∣∣∣∣∣≥δVn
}
 ;

λjn =

(⌈
E
(
hjn
)⌉
−
⌈
E
(
hi,jn
)⌉)

V 2
n

E


 bεk⌈

E
(
hjn
)⌉
2

1{∣∣∣∣∣ bεk

dE(hjn)e

∣∣∣∣∣≥δVn
}
 ;
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λi,jn =

⌈
E
(
hi,jn
)⌉

V 2
n

E


 a

dE (hin)e +
b⌈

E
(
hjn
)⌉
 εk

2

1{∣∣∣∣∣
(

a

dE(hin)e+ b

dE(hjn)e

)
εk

∣∣∣∣∣≥δVn
}
 .

Using the expression for V 2
n in (A.34) and simplifying, we can write

λin = αinβ
i
n,

where

αin =

1−

⌈
E
(
hi,jn
)⌉

dE (hin)e

 a2[
a2 + b2 dE(hin)e

dE(hjn)e + 2ab
dE(hi,jn )e
dE(hjn)e

] ,
and

βin = E

( εk√
V ar (εk)

)2

1{∣∣∣∣∣ aεk

dE(hin)e

∣∣∣∣∣≥δVn
}
 .

Furthermore, note that we can write (assuming a 6= 0)

∣∣∣∣ aεk

dE (hin)e

∣∣∣∣ ≥ δVn ⇔
∣∣∣∣∣ εk√

V ar (εk)

∣∣∣∣∣ ≥ δ

|a|

√
dE (hin)e2 V 2

n

V ar (εk)
⇔
∣∣∣yk∣∣∣ ≥ γin,

where we define

yk =
εk√

V ar (εk)
, (A.37)

and

γin =
δ

|a|

√√√√√a2 dE (hin)e+ b2
dE (hin)e2⌈
E
(
hjn
)⌉ + 2ab

⌈
E
(
hi,jn
)⌉

⌈
E
(
hjn
)⌉ dE (hin)e.

Hence, we can write

lim
n→∞

λin = lim
n→∞

αin

∫
|yk|≥γin

(
yk
)2
dP. (A.38)

Note that limn→∞ γin = ∞ while the distribution of yk is unaffected by n (see Eq. (A.37)), and
therefore

[∣∣yk∣∣ ≥ γin] ↓ ∅ as n ↑ ∞.29 Since αin has a finite limit as n → ∞, then limn→∞ λin = 0 in

29For notational convenience, we write
[∣∣yk∣∣ ≥ γin] :=

[
ω ∈ Ω :

∣∣yk(ω)
∣∣ ≥ γin] where Ω is the space of events

ω.
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Eq. (A.38). Similar steps show that limn→∞ λ
j
n = limn→∞ λ

i,j
n = 0, so that the Lindeberg condition

(A.36) is satisfied. Then, the Lindeberg-Feller Central Limit Theorem implies

aε̂in + bε̂jn
Vn

d−→ N(0, 1),

or, equivalently, that

aε̂in + bε̂jn
d−→ N

(
0,

a2

φ (ki)
+

b2

φ (kj)
+ 2

ab

τL

)
. (A.39)

Third step. Note that we can write ε̃in in (A.31) as

ε̃in =

⌈
E
(
hin
)⌉

hin

1

dE (hin)e
∑
m∈Hi

n

εm =

⌈
E
(
hin
)⌉

hin
ε̆in,

where we define
ε̆in =

1

dE (hin)e
∑
m∈Hi

n

εm. (A.40)

We will first prove that ε̆in
i.p.−→ ε̂in. We need to prove

lim
n→∞

Prob
(∣∣ε̆in − ε̂in∣∣ > α

)
= 0. (A.41)

By Chebyshev’s inequality,

Prob
(∣∣ε̆in − ε̂in∣∣ > α

)
≤
V ar

(
ε̆in − ε̂in

)
α2

. (A.42)

By the variance decomposition formula,

V ar
(
ε̆in − ε̂in

)
= E

[
V ar

(
ε̆in − ε̂in

∣∣hin, hi,jn )]+ V ar
[
E
(
ε̆in − ε̂in

∣∣hin, hi,jn )] .
Since E

(
ε̆in − ε̂in

∣∣hin, hi,jn ) = 0, we are left with

E
[
V ar

(
ε̆in − ε̂in

∣∣hin, hi,jn )] =
1

dE (hin)e2
E

V ar
 ∑
m∈Hi

n�H
i,j
n

εm −
∑
m∈Ĥi

n

εm +
∑

m∈Hi,j
n

εm −
∑

m∈Ĥi,j
n

εm

 .
Note that, by construction, H i,j

n and Ĥ i,j
n differ by exactly

∣∣∣zi,jn ∣∣∣ elements, while H i
n�H

i,j
n and Ĥ i

n

differ by exactly
∣∣zin∣∣ elements. Hence, we can write the last expression as

E
[
V ar

(
ε̆in − ε̂in

∣∣hin, hi,jn )] =
V ar (εm)

dE (hin)e2
E
[∣∣zin∣∣+

∣∣zi,jn ∣∣]
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=
V ar (εm)

dE (hin)e2
E
[∣∣hin − ⌈E (hin)⌉− zi,jn ∣∣+

∣∣zi,jn ∣∣]
≤ V ar (εm)

dE (hin)e2
E
[∣∣hin − ⌈E (hin)⌉∣∣+ 2

∣∣zi,jn ∣∣]
=
V ar (εm)

dE (hin)e2
E
[∣∣hin − ⌈E (hin)⌉∣∣+ 2

∣∣hi,jn − ⌈E (hi,jn )⌉∣∣]
=
V ar (εm)

dE (hin)e

E [∣∣∣∣ hin
dE (hin)e − 1

∣∣∣∣]+ 2

⌈
E
(
hi,jn
)⌉

dE (hin)e E

∣∣∣∣∣∣ hi,jn⌈
E
(
hi,jn
)⌉ − 1

∣∣∣∣∣∣


=
V ar (εm)

dE (hin)e

E [∣∣win − 1
∣∣]+ 2

⌈
E
(
hi,jn
)⌉

dE (hin)e E
[∣∣wi,jn − 1

∣∣] ,

where the second line follows from the definition of zin, the third line follows by the triangle inequality,
the fourth line follows from the definition of zi,jn , the fifth line from rearranging terms and the last
line uses the following definitions:

win =
hin

E (hin) + gi(n)
; wi,jn =

hi,jn

E
(
hi,jn
)

+ gi,j(n)
,

for two deterministic functions gi (n) and gi,j (n) that converge to zero as n→∞.
By Lemma 2.2, 1

nh
i
n

a.s.−→ 1
nE
(
hin
)
and therefore win

a.s.−→ 1. Since
∣∣win∣∣ is bounded from above by

the constant
(

1− e−ki/L
)−1

, the dominated convergence theorem implies that win converges in the

L1 norm, that is,
lim
n→∞

E
[∣∣win − 1

∣∣] = 0.

By Lemma 2.3, 1
nh

i,j
n

a.s.−→ 1
nE
(
hi,jn
)
and therefore wi,jn

a.s.−→ 1. Since
∣∣∣wi,jn ∣∣∣ is bounded from above

by the constant
[(

1− e−ki/L
)(

1− e−kj/L
)]−1

, the dominated convergence theorem implies that wi,jn

converges in the L1 norm, that is,
lim
n→∞

E
[∣∣wi,jn − 1

∣∣] = 0.

Since V ar(εm)
dE(hin)e and

dE(hi,jn )e
dE(hin)e have finite limits as n ↑ ∞, we have shown that

lim
n→∞

V ar
(
ε̆in − ε̂in

)
= 0,

which completes the proof of (A.41).
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Finally, since ε̆in
i.p.−→ ε̂in and

dE(hin)e
hin

i.p.−→ 1 (which is implied by 1
nh

i
n

a.s.−→ 1
nE
(
hin
)
and the

continuous mapping theorem) and ε̃in =
dE(hin)e

hin
ε̆in, then we have ε̃

i
n

i.p.−→ ε̂in. An identical proof shows

that ε̃jn
i.p.−→ ε̂jn, and therefore

aε̃in + bε̃jn
i.p.−→ aε̂in + bε̂jn. (A.43)

Fourth step. By (A.39) and (A.43), Theorem 2.7 in Van der Vaart (2000) implies that (A.32) holds.

Hence, by Theorem 29.4 in Billingsley (1995), ε̃in and ε̃
j
n are jointly normally distributed. �

Proof of Corollary 2.1: Notice that

V ar(µ) =
1

I2

I∑
i=1

V ar(εi) +
1

I2

I∑
i=1

I∑
j 6=i

Cov(εi, εj) (A.44)

=
1

I2

I∑
i=1

φ−1(ki) +
I − 1

I

1

τL , (A.45)

and

Cov(εi, µ) =
1

I

V ar(εi) +
∑
j 6=i

Cov(εi, εj)

 (A.46)

=
1

I
φ−1(ki) +

I − 1

I

1

τL . (A.47)

Therefore, we have

Cov(ηi, µ) = Cov(εi, µ)− V ar(µ) =
1

I2

I∑
j=1

φ−1(kj)−
1

I
φ−1(ki), (A.48)

and

V ar(ηi) = V ar(εi − µ) = V ar(εi)− 2Cov(εi, µ) + V ar(µ) (A.49)

=

(
1− 2

I

)
φ−1(ki)−

I − 1

I

1

τL +
1

I2

I∑
j=1

φ−1(kj), (A.50)

and

Cov(ηi, ηj) = Cov(εi − µ, εj − µ) = Cov(εi, εj)− Cov(εi, µ)− Cov(εj , µ) + V ar(µ) (A.51)
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=
1

τL −
1

I
φ−1(ki)−

1

I
φ−1(kj)−

I − 1

I

1

τL +
1

I2

I∑
i=1

φ−1(ki). (A.52)

Therefore, we have the following results in the limit as I tends to infinity:

lim
I→∞

V ar(ηi) =
1

φ(ki)
− 1

τL , for all i ∈ I (A.53)

lim
I→∞

Cov(ηi, µ) = 0, for all i ∈ I (A.54)

lim
I→∞

Cov(ηi, ηj) = 0, for all i, j ∈ I (A.55)

lim
I→∞

V ar(µ) =
1

τL . (A.56)

Using the definition of φ(ki) in Theorem 2.1 we can immediately rearrange the r.h.s. of Eq. (A.53)
as in the statement of Corollary 2.1. �
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Appendix B

Ex ante utility. Assuming all agents play some strategy
(
k̂, γ̂
)
, the average action equals a =

γ̂0 + Σj γ̂
j (θ + µj). Agent i’s ex ante utility from playing strategy (ki, γi) is

E (ui) = − (1− δ)E
(
θ − ai

)2 − δE (a− ai)2 ,
where

E (θ − ai)2 = E
(
θ − γ0

i − Σjγ
j
i S

i
j

)2

= E
((
θ − θ

) (
1− Σjγ

j
i

)
+ θ

(
1− Σjγ

j
i

)
− γ0

i − Σjγ
j
i ε
i
j

)2

=
(

1− Σjγ
j
i

)2
τ−1
θ +

(
θ
(

1− Σjγ
j
i

)
− γ0

i

)2
+ Σj

(
γji

)2
φj
(
kji

)−1

and

E (a− ai)2 = E
(
γ̂0 + Σj γ̂

j (θ + µj)− γ0
i − Σjγ

j
i S

i
j

)2

= E
(
γ̂0 − γ0

i + θ
(

Σj γ̂
j − Σjγ

j
i

)
+
(

Σj γ̂
j − Σjγ

j
i

) (
θ − θ

)
+ Σj

(
γ̂j − γji

)
µj − Σjγ

j
i η
i
j

)2

=
(
γ̂0 − γ0

i + θ
(

Σj γ̂
j − Σjγ

j
i

))2
+
(

Σj γ̂
j − Σjγ

j
i

)2
τ−1
θ +

+ Σj

(
γ̂j − γji

)2 (
τ jLj

)−1
+ Σj

(
γji

)2
(
φj
(
kji

)−1
−
(
τ jLj

)−1
)
.

We can immediately rearrange terms as in Eq. (37), defining

L1 (ki, γi) = (1− δ)
(
τ−1
θ

(
1− ΣJ

j=1γ
j
i

)2
+
(
θ
(

1− ΣJ
j=1γ

j
i

)
− γ0

i

)2
)

+ΣJ
j=1

(
γji

)2
(
φj
(
kji

)−1
− δ

τ jLj

)
,

(B.1)
and

L2 (γi, γ̂) = δ

[
τ−1
θ

(
ΣJ
j=1γ

j
i − ΣJ

j=1γ̂
j
)2

+ ΣJ
j=1

(
γji − γ̂

j
)2 1

τ jLj +
(
θ
(

ΣJ
j=1γ

j
i − ΣJ

j=1γ̂
j
)

+ γ0
i − γ̂0

)2
]
.

(B.2)
We remark that Eq. (B.2) implies

L2 (γ̂, γ̂) = 0;
∂

∂γi
L2 (γ̂, γ̂) = 0. (B.3)
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Lemma B.1. (Necessary conditions for a SBNE)A strategy
(
k̂, γ̂
)
is a SBNE only if the following

hold:
(i) γ̂ satisfies

γ̂j = γ̃j
(
k̂
)

=


θ
(

1− ΣJ
j=1γ̂

j
)

(1−δ)gj(k̂j)
τθ+(1−δ)G(k̂)

,

for j = 0

for j = 1, ..., J,
(B.4)

where
gj(k

j
i ) = φj

(
kji

) [
1− δ + δ exp

(
−kji /L

j
)]−1

, (B.5)

and
G (ki) = ΣJ

j=1gj(k
j
i ). (B.6)

(ii) k̂ satisfies ΣJ
j=1k̂

j = K and is such that ∇G
(
k̂
)
· z ≤ 0 for any z ∈ RJ such that ΣJ

j=1z
j ≤ 0 and

zj ≥ 0 for every j with k̂j = 0.30

Proof of part (i). Define
γ̃ (ki) ∈ argmin

γi
L1 (ki, γi) . (B.7)

Fixing ki, we can immediately verify that L1 (ki, γi) is strictly convex in γi for all δ ∈ (−1, 1).
Differentiating L1 (ki, γi) with respect to γi and solving the system of first-order conditions for γi
gives

γ̃0 (ki) = θ
(
1− ΣJ

j=1γ̃
j (ki)

)
;

γ̃j (ki) =
(1− δ) τ−1

θ φj
(
kji

) [
1− δ + δ exp

(
−kji /Lj

)]−1

1 + (1− δ) τ−1
θ ΣJ

n=1φn (kni ) [1− δ + δ exp (−kni /Ln)]−1 for j = 1, ..., J.

Note that the expression for γ̂j in Eq. (B.4) equals γ̃j
(
k̂
)
. Then, assume

(
k̂, γ̂
)
is a SBNE and

γ̂j 6= γ̃j
(
k̂
)
for some j. Consider an agent deviating locally from γ̂j . First-order effects of deviations

of γji from γ̂j are zero for L2 (see Eq. (B.3)). The strict convexity of L1 in γi implies that, if

γ̂j 6= γ̃j
(
k̂
)
, then ∂

∂γi
L1

(
k̂, γ̂
)
6= 0. Therefore, there is a profitable deviation, contradicting

(
k̂, γ̂
)

being a SBNE. �

30∇G
(
k̂
)
denotes the vector of partial derivatives of G

(
k̂
)
and “·”denotes the dot product.
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Proof of part (ii). Assume
(
k̂, γ̂
)
is a SBNE. By part (i), it has to be the case that γ̂ = γ̃

(
k̂
)
.

Substituting γ̃ (ki) for γi in L1 (ki, γi), we obtain

L1 (ki, γ̃ (ki)) =
(1− δ) τ−1

θ

1 + (1− δ) τ−1
θ ΣJ

j=1gj(k
j
i )
. (B.8)

Writing γi as a function of ki, we can drop the second argument in L1 (ki, γi) and represent it as
L̃1 (ki) := L1 (ki, γ̃ (ki)).

In an equilibrium, local deviations in (ki, γi) starting from
(
k̂, γ̃

(
k̂
))
must not provide a profitable

deviation to an agent. Since an agent’s local deviation from a symmetric strategy profile has no first-
order effect on L2 (γi, γ̂) (see Eq. (B.3)), any feasible direction of displacement z from k̂ (i.e., any
z ∈ RJ such that zj ≥ 0 for every j with k̂j = 0 and such that ΣJ

j=1z
j ≤ 0 if ΣJ

j=1k̂
j = K) must not

create a first-order decrease in the loss function L̃1

(
k̂
)
, or ∇L̃1

(
k̂
)
·z ≥ 0 for any feasible direction of

displacement z from k̂. Equivalently, since ki enters L̃1 (ki) only through G (ki), and L̃1 (ki) is strictly

decreasing in G (ki) for all δ ∈ (−1, 1), we must have ∇G
(
k̂
)
· z ≤ 0. Inspection of the functions gj

in Eq. (B.5) reveals that gj
(
kji

)
has strictly positive first derivative for all kji ≥ 0 and all δ ∈ (−1, 1).

Therefore, it has to be the case that ΣJ
j=1k̂

j = K, since otherwise a marginal increase in any kj from

k̂ would create a first-order decrease in the loss function L̃1

(
k̂
)
and constitute a profitable deviation.

�

Lemma B.2. A SBNE exists.

Proof This lemma is proven using similar steps as in Hellwig, Kohls, and Veldkamp (2012). By
Lemma B.1, in an equilibrium γ̂ must satisfy γ̂ = γ̃

(
k̂
)
. Hence, we can restrict the definition of a

SBNE in Eq. (38) as
(
γ̂, k̂
)
that satisfy(
γ̂, k̂
)
∈ argmin

(γi,ki)
L1 (γi, ki) + L2

(
γi, γ̃

(
k̂
))

. (B.9)

By Eqs. (B.1) and (B.2), it can immediately be verified that the minimand in (B.9) is strictly convex

in γi, so that there exists a unique γ∗
(
ki, k̂

)
that minimizes L1 (γi, ki) +L2

(
γi, γ̃

(
k̂
))

with respect

to γi given ki and k̂. Then, define k∗ : ∆→→ ∆ to be the best response correspondence

k∗
(
k̂
)
∈ argmin

ki∈∆
L1

(
γ∗
(
ki, k̂

)
, ki

)
+ L2

(
γ∗
(
ki, k̂

)
, γ̃
(
k̂
))

. (B.10)

Since it can be shown that γ∗
(
k̂, k̂
)

= γ̃
(
k̂
)
, a SBNE exists if the mapping k∗ in (B.10) has a

fixed point. Note that the minimand in (B.10) is continuous in ki and ∆ is compact, and therefore
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k∗
(
k̂
)
⊂ ∆ is non-empty. Moreover, it can be shown that the minimand in (B.10) is convex in ki,

and therefore k∗
(
k̂
)
⊂ ∆ is convex. Then, the Maximum Theorem implies that k∗

(
k̂
)
is upper-

hemicontinuous and compact-valued. Therefore, the Kakutani Fixed Point Theorem implies that k∗

has a fixed point. �

Lemma B.3. For δ ∈ (−1, 1/2), L1 (γi, ki) has a unique global minimizer and this is the unique
SBNE. For δ ∈ [1/2, 1), a global minimizer of L1 (γi, ki) is a SBNE.

Proof Consider the case δ ∈ (−1, 1/2). Inspection of the functions gj in Eq. (B.5) reveals that each
gj is strictly concave for δ ∈ (−1, 1/2). Thus, G (k) is strictly concave for k ∈ ∆. Then, if k̂ satisfies
part (ii) of Lemma B.1, k̂ is the unique global maximum in the following problem:31

max
ki∈∆

ΣJ
j=1gj(k

j) s.t. ΣJ
j=1k

j = K. (B.11)

Hence,
(
γ̂, k̂
)
such that k̂ is the unique solution to the problem in Eq. (B.11) and γ̂ = γ̃

(
k̂
)
as in

part (i) of Lemma B.1 is the unique global minimizer of L1 (γi, ki) and the unique candidate for a
SBNE for δ ∈ (−1, 1/2). Since a SBNE exists by Lemma B.2, this is the unique equilibrium.

For δ ∈ [1/2, 1) we have L2 (γi, γ̂) > 0 for all γi 6= γ̂. Therefore, by the definition of a SBNE in
Eq. (38), a global minimum of L1 (γi, ki) is a SBNE. �

Proof of Proposition 3.1. By Lemma B.1, Lemma B.2 and Lemma B.3, what is left to show for
the proof of Proposition 3.1 is that k̂ in Eq. (41) solves the problem in Eq. (B.11). We can convert
the problem in Eq. (B.11) into the following dual problem:

min
λ

λK − ΣJ
j=1g

∗
j (λ),

where g∗j (λ) is the conjugate function of gj(kj) such that

g∗j (λ) = min
kj≥0

(
λkj − φj

(
kj
) exp

(
kj/Lj

)
exp (kj/Lj) (1− δ) + δ

)
.

The F.O.C. for this problem implies that each k̂j solves

λ−
τ j exp

(
k̂j/Lj

)
[
(1− δ) exp

(
k̂j/Lj

)
+ δ
]2 = 0, (B.12)

31We remark that if k̂ is a local maximum of the problem in Eq. (B.11), then k̂ clearly satisfies part (ii) of
Lemma B.1 regardless of whether G (k) is concave or not. However, if k̂ satisfies part (ii) of Lemma B.1 and
G (k) is strictly concave, then k̂ must be the unique global maximum of the problem in Eq. (B.11).
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which has a strictly positive solution if and only if 0 < λ < τ j , in which case it can immediately be
verified that k̂j is as in Eq. (41). Finally, λ can be obtained by solving the following equation:

ΣJ
j=1k̂

j(λ) = K. (B.13)

Notice that the l.h.s. is zero when λ =∞ and infinity when λ = 0 and each k̂j(λ) is strictly decreasing
in λ for 0 < λ < τ j . Therefore, there exists a unique λ > 0 that solves Eq. (B.13) because the l.h.s.
is continuous and monotone decreasing in λ. �

Proof of Proposition 3.2-(i). We want to prove that k̂A = K, k̂B = 0 is an equilibrium. By

Lemma B.1 and Eqs. (B.4), it must be the case that γ̂0 = (1 − γ̂A)θ, γ̂A = (1−δ)τAK
τθ+(1−δ)τAK and

γ̂B = 0. Now, consider the corresponding problem in Eq. (38) using these values for
(
k̂, γ̂
)
. Denote

k (αi) =
(
kA (αi) , k

B (αi)
)
where kA (αi) = (1− αi)K and kB = αiK. Fixing αi ∈ [0, 1] and letting

γ∗ (αi) = arg minγi L1 (k (αi) , γi) + L2 (γi, γ̂) we obtain

γ∗0(αi) = (1− γAi (αi)− γBi (αi))θ;

γ∗A(αi) =
(1− δ)

(
φA(K) + τθ

)
(φA(K)(1− δ) + τθ) (τθ + φA((1− αi)K) + φB(αiK))

φA((1− αi)K);

γ∗B(αi) =
(1− δ)

(
φA(K) + τθ

)
(φA(K)(1− δ) + τθ) (τθ + φA((1− αi)K) + φB(αiK))

φB(αiK).

Substituting these optimal values for γi into the problem leaves

L1 (k (αi) , γ
∗ (αi)) + L2 (γ∗ (αi) , γ̂)

=
(1− δ)τθ

(
φA(K)2(1− δ)τ−1

θ + (2− δ(1 + αi))φ
A(K) + τθ + δφB(αiK)

)
(φA(K)(1− δ) + τθ)

2 (τθ + φA((1− αi)K + φB(αiK))
.

Straightforward algebra shows that the latter expression is increasing in αi if τA ≥ τB. �

Proof of Proposition 3.2-(ii). Define

δ̃
(
LB
)

=
eK/L

B

1 + eK/LB
,

and
Gα (α) = gA((1− α)K) + gB(αK). (B.14)

By Lemma B.3, a global minimum of L1 is a payoff-maximizing SBNE. Equivalently, by Lemma B.1,
k̂A = (1− α̂)K and k̂B = α̂K is a payoff-maximizing equilibrium if Gα (α̂) ≥ G (α) for all α ∈ [0, 1].
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It can immediately be verified that Gα (α) in Eq. (B.14) is strictly convex in α for all α ∈ [0, 1]
if δ ∈ (δ̃

(
LB
)
, 1). Then, the strict convexity of Gα (α) implies that Gα (α) is maximized when α is

either zero or one. Therefore, α = 1 is the unique payoff-maximizing SBNE if

Gα (1) > Gα (0)⇔ τA

τB
K

LB <
eK/L

B − 1

eK/LB (1− δ) + δ
(B.15)

Notice that the r.h.s. of the second inequality in Eq. (B.15) is increasing in δ. As δ → 1 and τA ≥ τB,
Eq. (B.15) holds for all LB < L, where L ∈ (0,∞] solves

τA

τB
K

L
= eK/LS − 1. (B.16)

Hence, for all LB < L, Eq. (B.15) holds if δ ∈ (δ̌
(
LB
)
, 1), where we define

δ̌
(
LB
)

=
eK/L

B

eK/LB − 1
− L

BτB

KτA
.

Combining these results, α = 1 is the unique payoff-maximizing SBNE if LB < LS and δ ∈
(δS
(
LB
)
, 1), where δS

(
LB
)

= max{δ̃
(
LB
)
, δ̌
(
LB
)
}. �

Proof of Corollary 3.1 From the definitions of δS
(
LB
)
, δ̃
(
LB
)
and δ̌

(
LB
)
in the proof of Proposi-

tion 3.2-(ii), we have that δS
(
L
)

= 1 and δS
(
LB
)
< 1 for all LB < L. The statement in the corollary

follows by the continuity of δS
(
LB
)
, which in turn is implied by the continuity of δ̃

(
LB
)
and δ̌

(
LB
)
.

�
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