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Abstract

We consider equilibrium bidding behavior in a dynamic second price auction where

agents have the option to increase bids at random times and values follow a Markov

process. We prove that equilibrium exists and is unique and give an algorithm to solve

for bids as a function of time and values. Equilibrium bids equal the expected final

value conditional on the bid placed being the final one, meaning that either the agent

doesn’t get another opportunity to rebid or chooses not to increase this bid if given

the option. This results in adverse selection with respect to a bidder’s own future

strategy, and as a result bids are shaded relative to the bidder’s expected value. This

is true in spite of values being independent across bidders. Under mild conditions,

desired bids increase as time increases and the close of the auction is approached. Our

results are consistent with repeated bidding and sniping, two puzzling observations in

eBay auctions. We estimate the model by matching moments from Ebay auctions and

consider a series of counterfactuals.
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...if something went over my limit early on, I might re-evaluate my budget and

make a higher bid because I want the product. If it was the last few minutes I

wouldn’t have the time to consider if I can afford it.

...work + college = does not give you the right time you need to baby an auction.

The wife wanted to go to lunch right at the same time as the end of the auction,

so I decided to drop an early bid an hour before the close.

1 Introduction

Various auction mechanisms happen in a dynamic setting while most of the theoretical

models of auctions are static. For example, on eBay, auction listings usually last between

three and seven days. Bidders can bid at anytime during the active time of the auction and

also increase their bids at any other time prior to the end. As the first quote suggests1,

information might arrive during the auction that can change a bidder’s value. The second

and third quotes suggest bidders might not have full control of the timing of future bids.2

In this paper we develop a model of a dynamic auction that captures these two features.

In our model, bidders arrive randomly and possibly at multiple times in a second price

auction set in continuous time for a fixed interval. At each time of arrival bidders observe a

new signal and choose whether to place a bid or increase a previous one. At the end of the

auction, the winner is the highest bidder and the price equal to the second highest bid. We

characterize the equilibrium of this dynamic auction.

Our paper is motivated by bidding behavior in eBay auctions, which are close to second

price auctions, where bidders can place bids at any point in time up until the end of the

auction. Several authors have emphasized what seem to be anomalies in bidding behavior,

like submission of multiple bids throughout the auction and a higher concentration of bids

towards the end of the auction, as we document below. This type of behavior cannot be

1The first two quotes were obtained from a blog http://www.neowin.net/forum/topic/587154-why-
do-people-bid-so-early-on-ebay/. The second one is from http://www.kenrockwell.com/tech/ebay/early-
bidding.htm.

2Sniping programs are an incomplete solution as they do not condition bids on possible changes of
valuation that could arise from new information.
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rationalized through the lens of a static model, where bidders should bid their valuation only

once and at the time of arrival to the auction. Our model provides a way to rationalize this

behavior combining two ingredients: new information can change the optimal bid throughout

the auction and the possible lack of a future opportunity to bid provides a rationale for early

bidding.

In most of the paper, we consider the case of independent private values, where signals

and final values are independent across bidders, and where bidding times are exogenous.3

We model this through a–otherwise unrestricted–joint Markov process of signals and bidding

times that are also sufficient statistics for the final expected value. We prove equilibrium is

unique and provide a dynamic programming algorithm to derive the optimal bids as functions

of the state variable–signal and time.

Bidding behavior has an intuitive analog to a standard second price auctions’ behavior.

Consider first the case where bidders have a single opportunity to bid prior to the end of

the auction. In that case, they bid their expected final value as in a standard second price

auction. In contrast, when bidders can return to the auction prior to its end with positive

probability and rebid, the expected value is modified taking into account that the current

bid will only apply if the bidder chooses not to exercise that option. The optimal bid takes

this into account and as we show at each bidding time bidders bid their expected value

conditional on that bid being the final one.

The possibility of rebidding is a source of adverse selection as the current bid only applies

when the bidder chooses not to exercise future options of rebidding and this is correlated

with lower future value.4 As a consequence, bidders shade bids below their unconditional

expected final value. In particular, as the probability of bidding at the very end of the

auction converges to one, any prior bid goes to zero as would happen with sniping.

There is an important difference to the case of adverse selection with correlated values.

While bids are shaded relative to expected values, the expected final bid still equals the

expected final value and is thus unbiased. These two results are consistent since bids, while

3Section 9.1 analyzes a simplified model with endogenous bidding and Section 9.2 analyzes a simplified
model with correlated values among bidders.

4An analogue result is found in Harris and Holmstrom [1982], where initially worker’s wages are shaded
below marginal products, as the wage is effective in the future only if it is less or equal than the realized
marginal product of the worker.

3



shaded, are still unbiased in the set where they apply. As a comparison, an auction that

admits bidders to retract on bids will have no shading, since a bid only applies when no

rebidding takes place or when the final expected value is the same at a new bidding time.

To derive further properties, we consider the specialized case where bidding times are

Poisson, with possibly time dependent arrival rates, while signals and final values are in-

dependent of arrivals. Assuming the expected final value conditional on a signal is non-

decreasing in time, we show that the bidding function increases over time. This provides

a rationale why bidders might increase their bids over time independently of competitive

pressures. The intuition for this result is straightforward and goes back to the incentives

for shading: as the end of the auction approaches and the option of rebidding becomes less

likely, the adverse selection problem mentioned above and the incentives for shading tend to

disappear.

The problem of solving for the optimal bidding function is not a simple one, as current

bids depend on all future bidding behavior. The dynamic programming problem we define

provides an indirect method for deriving the optimal bidding functions, defined implicitly as

zeros of the value function. We use this method to derive explicitly a closed form solution to

the bidding function in a special case we call the bad news model, where bidders initial value

can become zero if a Poisson shock arrives. This scenario can be motivated by exogenous

events, e.g., the impossibility of attending a concert or bidders changing their mind or

finding a better alternative for their purchase. In addition to this case, we also specialize

the model to signals that follow a Brownian motion with drift, independently of Poisson

arrivals for bidding times.5We derive a partial differential equation that can be used to solve

for equilibrium bidding function.

Matching a series of moments from the data, we estimate parameter values for the Brow-

nian motion case. We then consider as a counterfactual a similar bidding mechanism to

our baseline but where bidders can retract bids at any of their random bidding times. The

possibility of retraction eliminates the source of adverse selection mentioned earlier and thus

the incentives for bid shading. As a consequence, at any bidding time the bidder will choose

5We conjecture there exist differential equations for optimal bids as a function of time and current signals
that we have not yet derived.
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a bid equal to the expected final value. As a reference point we also compute the efficient

allocation and prices, i.e. that corresponding to a second price auction taking place at the

end of period. The correlation between final values and final bids increases moderately (from

0.85 to 0.88) when comparing the baseline scenario to the case of bid-retraction. As a result

the expected final value increases, closing 1/3 of a fairly moderate gap of 3.5% between the

baseline model and the efficient allocation. While the gap in values is moderate, the gap in

prices between baseline and the efficient level is more than twice as high. This is precisely the

consequence of bid shading in our baseline scenario. As a comparison, the price gap is in the

order of only 2% for the bid retraction case. As a consequence, allowing for bid-retraction

would increase revenues of sellers by approximately 6% while decreasing the expected utility

of buyers by 18%.

The paper is organized as follows. Section 2 discusses the evidence on eBay bidding

behavior and reviews related literature. Section 3 provides a simple example that conveys the

main intuition and results in the paper. Section 4 describes the general model and defines an

equilibrium. Section 5proves existence and uniqueness of equilibrium, characterizes bidding

behavior and provides the dynamic programming algorithm. Section 6 gives properties for

the case where values are independent of Poisson arrivals for bidding times and solves the

two special cases described above. Section 7 shows that the bidding function derived before

is still applicable under arbitrary assumptions about the information a bidder observes on

the past bids of other bidders. Section 8 provides the estimates and counterfactuals. Sections

9.1 and 9.2 consider, respectively, the cases of endogenous bidding and correlated signals.

2 Evidence and Related Literature

The model presented in this paper closely mimics eBay auctions. eBay is an online auction

and shipping website introduced in 2005. Sellers can sell their items either through an

auction or by setting a fixed price for their item, an option called “Buy it Now.” The

auction mechanism is similar to a second price or Vickery auction. A seller sets the starting

bid of an auction and bidders can bid repeatedly for the item until the end of the auction.

Each bidder observes all previous bids, except for the current highest bid. A bidder should
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bid an amount higher than the current second highest bid, plus some minimum increment.6

If this value is higher than the current highest bid, the bidder becomes the new highest

bidder. Otherwise, he becomes the second highest bidder. The winner has to pay the second

highest bid, plus the increment or his/her own bid, whichever is smaller. Auctions last

for one to ten days and they have a pre-determined and fixed ending time that cannot be

changed once the auction is active.

On eBay, bidders’ bid-placement, as noted in the literature, does not follow the prediction

of a static model of auction, for instance a disproportional share of bids are placed in the

last few seconds of an auction. As a recent paper by Backus et al. [2013] shows, about third

of winning bids are placed in the last ten seconds of an auction. Hayne et al. [2003] report

that about 15 percent of bids placed are within the last 60 minutes of an auction and also

about 61 percent of bids placed by bidders who submitted more than one bid. Gonzalez

et al. [2009] similarly report 11 percent of bids placed within the last 60 minutes of auction

and 77 percent of bidders placed more than one bids. Hayne et al. [2003] further note that

on average there are 6.78 bids placed and about 3.98 unique bidders per auction. Moreover,

they show that late bidding has a much higher success rate, about 75.17 percent, much more

than early bidding, 7.33 percent, or bidding in between, 40.50 percent. Using a static model

of auctions, strategic late bidding or bidding multiple times is not rational.

Several papers have tried to rationalize sniping behavior and incremental bidding. Ba-

jari and Hortacsu [2003] incorporate a model of common value auction to explain this phe-

nomenon. Having informed and uninformed participants, the informed bidders do not bid

before the last period since that would reveal their private information to other potential

bidders. Hence in the equilibrium, all bidders only place a bid at the very last period of

the auction, leading to sniping by everyone. In another set of papers, to explain sniping

Ockenfels and Roth [2002] and Ockenfels and Roth [2006] compare auctions mechanisms

at eBay and Amazon which have hard ending and soft ending, respectively. Hard ending

refers to a fixed ending time for an auction which cannot be extended by the seller or the

marketplace; whereas soft ending refers to a tentative ending time: placing a bid within the

last few minutes of the auction extends the duration of the auction for another ten minutes.

6The increment is a function of the second highest bid, fixed for all auctions, and is set by eBay.
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They argue that along with the hard-ending rule at eBay, there are incremental bidders on

eBay whom increase their maximum bid as they get outbid by other bidders. Therefore, a

strategic bidder facing incremental bidders places bids in the last possible moment not to

give incremental bidders time to react and place higher bids, giving rise to sniping.

Gray and Reiley [2004] and Ely and Hossain [2009] independently run experiments eval-

uating the benefit of sniping. The former does not find a statistically significant effect while

reconfirming results in Ockenfels and Roth [2002] and Ockenfels and Roth [2006] regarding

the prevalence of sniping; in their dataset 50 percent of bids are placed within the last minute

of an auction. On the other hand, the latter find a significant value to sniping about $1 per

auction for various DVD listings. Backus et al. [2013] in a more recent paper consider the

effect of sniping on the return rate of new buyers to the marketplace. In all of these papers,

the concentration is mainly on rationalizing sniping, and neither early bidding nor bidding

multiple time is rationalized.

In this paper, we concentrate mainly on dynamics within the span of an auction. However,

we are borrowing the result from Zeithammer [2006], Said [2011], Hendricks and Sorensen

[2014] and Backus and Lewis [2012] implicitly. These papers model the dynamic value of

not winning the current auction and the opportunity cost of participating in the next avail-

able auction. There are usually many closely substitutable items simultaneously available

for auction on eBay and if bidders do not win a particular auction they have a chance of

participating in the next available one. This will lead to a reservation price for the bidders

below the static valuation of the item for them. Changes in the available alternative items

can change the reservation price for bidders over time, and as they get closer to the end of

the auction their valuation of the item at that instant becomes closer to their valuation at

the end of the auction. While our paper misses some of the interesting features arising from

the link between these auctions, it provides a very tractable reduced form.

3 A simple example

There are two periods t = {0, 1} . Bidders can submit a bid for sure in the first period and

with probability p in the second period. Bidders have no information in the first period and
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draw values vε [0, 1] independently from distribution F in the second period, prior to bidding

time. Since the auction is second price, it follows that the second period bid will equal vi

for all bidders. Let b−i denote the maximum final bid among all bidders, excluding i and let

G denote its cdf. The first period, expected value for bidder i is:

Ui = (1− p)
ˆ b0

0

(Ev − b−i) dG (b−i)

+ p

ˆ b0

0

ˆ b0

0

(v − b−i) dF (v) dG (b−i) + p

ˆ
b0

ˆ v

0

(v − b−i) dF (b) dG (b−i)

Taking derivate with respect to b and equating to zero:

(1− p) (Ev − b0) dG (b0) + p

ˆ b0

0

(v − b0) dG (b0) dF (v) = 0

b0 =
(1− p)Ev + p

´ b0
0
vdF (v)

(1− p) + pF (b0)
(1)

This has a natural interpretation: the optimal initial bid equals the expected value con-

ditional on no rebidding. Given a current bid b0, the final bid prevailing at the end of

the auction is then b0 with probability (1− p) and max (b0, v) with probability p. The

initial bid b0 binds in two cases: 1) there is no opportunity to rebid and 2) there is an

opportunity to rebid but v ≤ b0 therefore the bidder decides not to bid. The second term

in the above equation represents an adverse selection effect. It follows that b0 < E (v) as´ b0
0
vdF (v) /F (b0) < E (v). Indeed, as p→ 1 it is easy to see that b0 decreases monotonically

to zero.

The probability distribution F̃ for the final bids of a player is given by:

F̃ (b) =

0 if b < b0

(1− p) + pF (b) if b ≥ b0

(2)

with mean

E (b) = b0 [p+ (1− p)F (b0)] + p

ˆ 1

b0

vdF (v)
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b

E(v(T))

b*

Figure 1: Optimal bid

Substituting the first term using (1) it follows that:

E (b) = (1− p)Ev + p

ˆ
vdF (v) = Ev

so the expected final is unbiased, equaling the expected final value.

It is also interesting to compare the above results to a case where bidders can retract their

bids. It is easy to se that with retraction there is no incentive to shade, so b0 is equal to Ev;

the final bid equals Ev with probability (1− p) and equals the final value with probability

p. The distribution for final bids is thus:

F̃ (b) =

pF (b) if b < Ev

(1− p) + pF (b) if b ≥ Ev

Compared to (2) it is easy to see that this is a mean preserving spread of bidding with no

retraction. The higher dispersion is the simple result of a higher correlation with final values.

4 The Model

There are i=1,...,N potential bidders in an auction. The auction is sealed bid second price

and takes place in time interval [0, T ] where bids are submitted. As shown below in Section

7 equilibrium bidding functions are also applicable to sequential auctions -such as in eBay-
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with publicly available information on past bides.

Each bidder has the option of submitting bids only at random times τ1, τ2, ... Bids can

only be increased at any of these random bidding times and cannot be retracted. The

valuation of the bidder is modeled as a stochastic process vi (t) of signals where without loss

of generality v (T ) corresponds to the final value. Since these signals are only relevant at

bidding times τn we restrict attention to the corresponding signals vn at these dates. Assume

{vn, τn} follows a joint Markov process with transition function P (τn+1, vn+1|τn, vn) . Define

the state of a bidder as the pair (τ, v) at the last bidding time. 7We assume this process is

independent across bidders.8 Note that the model allows for random entry and rebidding,

as well as a random number of bidders.

A bidding function for bidder i specifies at each possible bidding time τn and given signal

vn a desired bidBi (τn, vn) .Given that bids can only be increased, bi (t) = max {Bi (τm, vm) |τm ≤ t}

is the bid that prevails at time t and in particular bi (T ) is the final bid. Let b−i (T ) denote

the maximum bid over the remaining bidders at time T and F−i(b) its distribution. Utility

for bidder i is given by:

U (v (T ) , b (T )) =

ˆ b(T )

(v (T )− u) dF−i (u) .

An optimal bidding function Bi for bidder i is the one that maximizes expected utility at

the time the bidder enters the auction, i.e.,

max
B(.)

E (U (v (T ) , b (T )) |τ1, v1) (3)

where τ1 is the time at which the bidder enters the auction and v1 the initial value.

Definition. An equilibrium for the auction is a vector of bidding functions Bi and final

distributions F−i for each player i, such that for every bidder i the bidding function Bi is

the best responses to F−i and bidding functions are consistent with the final distribution of

bids.

7The process for the value vi (t) can be considered a continuous Markov process sampled at random
stopping times τn that are Markov with respect to last stopping time and valuation at that time.

8Section 9.2 considers a simplified model with correlation.
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5 Equilibrium Bidding

In this section, we characterize the equilibrium bidding functions and provide a dynamic

programming problem that can be used to solve them. We show that the optimal bid

B (τn, vn) = E [v (T ) |τn, vn, b (T ) = B (τn, vn)] , namely the expected final value for bidder i

conditional on the current state and the event that no higher bids are placed by the same

bidder at a later instance so that the final bid b (T ) equals the current bid. Intuitively, this

mimics the notion that in a second price auction it is weakly dominant strategy to bid the

valuation or and when it is random, the expected valuation.

Proposition 1. The optimal bid B (τn, vn) = E [v (T ) |τn, vn, b (T ) = B (τn, vn)] .

Proof. (sketch) We provide here a variational argument to characterize bids. Take a candi-

date optimal bidding function Bi for bidder i and consider bid b in state τn, vn. Let H (b)

denote all paths ω = {τm,vm}m>n starting from the current history where B (τm, vm) ≤ b

including τn+1 > T (i.e. no rebidding opportunity.) The expected value of bidding b equals:

V (τn, vn, b) =

ˆ
H(b)

ˆ b

(v (T )− u) dF−i (u) dP (ω)+

ˆ
H(b)c

ˆ b(T,ω)

(v (T )− u) dF−i (u) dP (ω)

We claim that the optimal bid is b = B (τn, vn) = EH(b)v (T ). First, note that the boundary

of the set H (b) consists of all those paths starting from (τn, vn) for which the final bid

b (T ) is equal to b. So when considering the derivative of the above we can ignore the

effect of the change in the supports of the two integrals. The first order condition is then

∂V/∂b =
´
H(b)

(v (T )− b) dF−i (b) dP (ω) = 0 which is equivalent to the statement that

b = EH(b)v (T ) .

While Proposition 1 characterizes bidding at a given history, it also shows that current

bidding behavior depends on the whole strategy for future bidding, making the problem of

calculating equilibrium bids potentially very complicated. However, there is a natural recur-

sive structure to this problem which we exploit to define a dynamic programming problem

that will help derive the optimal bidding function and establish uniqueness.
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Define recursively the following function9:

W (b, v, t) =

ˆ T

t
min

(
W
(
b, v′, τ

)
, 0
)
dP
(
v′, τ |v, t

)
+ P (τ > T |v, t) (E [vT |v, t, τ > T ]− b) (4)

where τ denotes the following bidding time.

Assumption 2. Assume P (τ > T |v, t) > δ > 0 for all (v, t). In addition, assume all

conditional probabilities and expectations are continuous in the state.

By Assumption 2 and using standard dynamic programming arguments, it follows that

there is a unique function satisfying functional equation (4), that it is strictly decreasing in

b and continuous. Moreover, it is greater or equal to zero when b = 0 and negative for large

b. It follows, by the intermediate value theorem, that there is a unique value B (t, v) such

that W (B (t, v) , v, t) = 0. Given a new bidding time τ, value v (τ) and outstanding bid,

this function also defines the rebidding region {(b, v (τ) , τ) |W (b, v (τ) , τ) > 0}We will next

show that this bidding function maximizes the agents expected utility.

Proposition 3. The function B (τ, v) defined implicitly by W (B (τ, v) , v, τ) = 0 satisfies

E [v (T ) |τ, v, b (T ) = B (τ, v)] and is thus the optimal bidding function.

Proof. See Appendix.

Bid Shading

Our leading example suggests that bidders will shade bids as a consequence of adverse

selection given by the option of future rebidding. In this section we prove this is true for an

arbitrary process. We first establish the following result:

Lemma 4. W (b, v, t) ≤ E [vT |v, t]− b with strict inequality if P (τ ≤ T |v, t) > 0.

Proof. See Appendix.

Since W (b, v, t) is decreasing in b, it follows that:

9When conditioning with respect to τ = t and v (τ) = v we will write for short P [.|v, t] .
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Proposition 5. B (v, t) ≤ E [vT |v, t] with strict inequality if and only if rebidding occurs

with positive probability.

Unbiased expected final bids

Bids are shaded as the result of conditioning on the adverse selected set of no-rebidding.

However, in the complement of this set the current bid is replaced by a higher one. What is

the overall effect on the final expected bid? The answer is given in the following Proposition.

Proposition 6. Suppose v follows a Martingale. Consider a bidding time t with value v and

bid b = B (v, t) . Then the expected final bid equals v, i.e. E (B (T ) |v, t, b = B (v, t)) = v.

Proof. Let H0 consist of all histories ω starting from (v, t, b) where B (T ) = b. By Proposition

3 E (V (T ) |H0) = b. Now consider all histories ω on the complement Hc
0 where rebidding

occurs with probability one. Let τ be the stopping time corresponding to the first time where

rebidding occurs. Assume, by way of induction, that E [B (T ) |v (τ) , τ, b = B (v (τ) , τ)] =

v (τ) . By the optional stopping theorem it follows that E (B (T ) |Hc
0) = E (v (τ) |Hc

0) =

E (v (T ) |Hc
0) .

This Proposition implies, in particular, that when a bidder places the initial bid, the

expected final bid is unbiased and equals the expected final value. This result is consistent

with bid shading since bids, while shaded, are still unbiased in the set where they apply.

6 Properties

This section derives general properties on equilibrium bidding behavior and considers some

special cases. We specialize the model here to a case where the process for rebidding times

τn is Poisson with intensity ρ (t) that is independent of the signals and value v (T ). The

main result in this section is that the bidding function B (t, v) is increasing in t.

Proposition. Assume E [vT |v, t] is weakly increasing in t. Then ∂W (b, v, t) /∂t ≥ 0 and

bid B (t, v) increases with t.

Proof. See Appendix.
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The above result implies that bids increase over time even in the absence of competitive

pressure.

6.1 The Bad News Model

The agent starts with a valuation v (0) > 0. There is a Poisson process that can turn

that valuation to zero forever, with arrival rate λ; otherwise it remains unchanged. The

random bidding times τ1, τ2, ... are determined by a Poisson process with arrival ρ. This

special case captures the idea that a bidder might receive information during the auction

that makes the object auctioned unattractive, e.g. the bidder might find there is another

show she wishes to attend that day or engages in other commitments. It immediately

follows that W (b, 0, t) = −b for all t. Moreover, the unconditional expectation at T equals

exp (−λ (T − t)) v − b. Substituting in functional equation (4) and using Proposition 3 we

can derive an explicit bidding function.

Proposition 7. The bidding function for the bad news model is given by:

B (v, t) =
(ρ+ λ) exp (− (ρ+ λ) (T − t)) v
λ+ ρ exp (− (ρ+ λ) (T − t))

.

Proof. See Appendix.

Note that when λ = 0 or t = T this gives B (t) = v and when ρ = 0 this gives the

expected value exp (− (λ) (T − t)) v, as should be. To connect to our intuition that bids are

the expectation conditional on no rebidding, the two events to consider are: (1) no rebid-

ding occurred and the value did not go to zero, that has probability exp (− (ρ+ λ) (T − t))
and value v. The other event is that the value went to zero before the next rebid. This

has probability λ
´ T
t

exp (− (ρ+ λ) s) ds = λ
ρ+λ

(1− exp (− (ρ+ λ) (T − t))) and value zero.

Note that the sum of these two events:

exp (− (ρ+ λ) (T − t)) +
λ

ρ+ λ
(1− exp (− (ρ+ λ) (T − t))) =

λ+ ρ exp (− (ρ+ λ) (T − t))
ρ+ λ

Dividing the weighted value exp (− (ρ+ λ) (T − t)) v by this sum of probabilities gives the

bidding function above.
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6.2 Brownian Motion

Suppose that v (t) follows a Brownian motion with drift µ and variance σ2 and the process

for rebidding is Poisson with arrival ρ, as in the previous case. The functional equation (4)

is now:

W (b, v, t) = ρ

ˆ T

t

exp (−ρ (τ − t))
ˆ

min
(
0,W

(
b, v + µ (τ − t) +

√
τ − tσε, τ

))
dΦ (ε) dτ (5)

+ exp (−ρ (T − t)) (v + µ (T − t)− b)

Note that for this case, E [v (T ) |v, t] = v + µ (T − t) so if the drift µ ≤ 0 then E [v (T ) |v, t]

is increasing with t, so by Proposition 6, B (v, t) is increasing in t.

It is easy to show that W (b, v, t) = W (0, v − b, t)

Lemma 8. W (b, v, t) = W (0, v − b, t) .

Proof. The proof is by induction. So suppose the right hand side of (5) satisfies this condition.

Then,

W (b, v, t) = ρ

ˆ T

t

exp (−ρ (τ − t))
ˆ

min
(
0,W

(
0, v − b+ µ (τ − t) +

√
τ − tσε, τ

))
dΦ (ε) dτ

+ exp (−ρ (T − t)) (v − b+ µ (T − t))

= W (0, v − b, t)

As a consequence of this Lemma, we can write the value function Wµ (x, t) where x =

v − b,

Wµ (x, t) = ρ

ˆ T

t

exp (−ρ (τ − t))
ˆ

min
(
0,Wµ

(
x+ µ (τ − t) +

√
τ − tσε, τ

))
dΦ (ε) dτ (6)

+ exp (−ρ (T − t)) (x+ µ (T − t))

Scaling

Here we show is that if we scale σ and µ by a factor λ, we get W (λx;λµ, λσ) = λW (x, µ, σ) .

The proof is by induction, so assume the right hand side of (6) satisfies this property.

It verifies immediately that W (λx, t;λµ, λσ) = λW (x, t, µ, σ) . This also implies that the

shading function x (t;λµ, λσ) = λx (t;µ, σ)or equivalently B (λv, t;λµ, λσ) = λB (v, t;µ, σ) .
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Drift The effect of drift on the value function can also be easily determined as shown by

the following Lemma.

Lemma 9. Let Wµ denote the value function with drift µ and W the value function with

drift zero. Then Wµ (x, t) = W (x+ µ (T − t) , t) .

Proof. This is proved inductively using:

W (x+ µ (T − t) , t) = ρ

ˆ T

t

exp (−ρ (τ − t))
ˆ

min
(
0,W

(
x+ µ (T − τ) + µ (τ − t) +

√
τ − tσε, τ

))
dΦ (ε) dτ

+ exp (−ρ (T − t)) (x+ µ (T − t))

= ρ

ˆ T

t

exp (−ρ (τ − t))
ˆ

min
(
0,Wµ

(
x+ µ (τ − t) +

√
τ − tσε, τ

))
dΦ (ε) dτ

+ exp (−ρ (T − t)) (x+ µ (T − t))

= Wµ (x, t)

It also follows that the bid shading function is of the form x (t) + µ (T − t) where x (t) is

the shading function when µ = 0. In what follows we assume µ = 0.

Solving Bellman equation To find the pde for the Bellman equation (the Hamilton-

Jacobi equation), first subtract W (x, t)

0 = ρ

ˆ t+∆

t

exp (−ρ (τ − t))
ˆ [

min
(
0,W

(
x+
√
τ − tσε, τ

))
−W (x, t)

]
dΦ (ε) dτ (7)

+ exp (−ρ∆)

[ˆ
W
(
x+
√

∆σε, t+ ∆
)
−W (x, t)

]
dΦ (ε)

Taking derivative with respect to ∆ and evaluating at ∆ = 0

0 = ρ [min (0,W (x, t))−W (x, , t)] +
1

2
σ
∂2

∂x2
W (x, t) +

∂

∂t
W (x, t)

ρmax (W (x, t) , 0) =
1

2
σ
∂2

∂x2
W (x, t) +

∂

∂t
W (x, t)

This partial differential equation allows to solve for the value function and calculate the

bidding/shading function.
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7 Bidding with Partially Observed Competing Bids

and Censoring

The above assumed that the auction is sealed bid, so there is no information on competing

bids. In this section, we show that this assumption is really immaterial and the bidding

function derived above still holds, with a slightly different interpretation. Throughout this

section we maintain our assumption of independent values across bidders. Let Bi (v, t) denote

the maximum bid that bidder i is willing to place at time t. The information on other bids

during the auction has an effect on the expected utility of the agent as given by (3) as it

affects the distribution of the highest competing final bid. But as we have seen, the optimal

bid is independent of this distribution. Therefore, it remains an equilibrium for bidders to

“ignore” other bidders bids in choosing their own bid B (v, t) .10

However, when taking the model to the data one must take into account that when a

bidder observes an outstanding bid that is greater than B (v, t) , he will choose not to bid.

Hence, the process for observed bids is censored and this censoring depends on the available

information. In eBay auctions, bidders can see the outstanding second highest value thus

defining the threshold below which bids are censored.

Timing of Bids

The model has implications for the observed timing of bids. If at time t a bidder has a high

probability of returning to the auction right before its end, its desired bid B (v, t) will be very

low and thus it is likely to be censored by an existing higher second bid. As a consequence,

it is unlikely to see any bids from this bidder until the end of the auction, consistent with

the observed sniping behavior.

There is likely to be asymmetry in the frequency of bidding times for different bidders.

The observation of sniping–defined as bids that are overtaken in the last few minutes of the

auction–is usually interpreted as indication that many bidders follow this kind of strategy.

As the following example shows, this might not be true. Suppose there are n bidders. One

of these bidders can bid with probability one at the end of the auction, while the other n−1

10We do not know if there are other equilibria.
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bidders only bid at the beginning of the auction. To make things extreme, suppose the final

value is uniform between [0, 1] and all the n − 1 initial bidders have no information and

thus approximately the same expectation equal to 1/2 and so the initial winning bid is also

around 1/2. It follows that the probability that the remaining “sniping” bidder wins the

auction is 1/2. So in this auction, 1/2 of the times the auction will be sniped while the share

of snipers is only 1/n. Note also that given the information structure sniping is still efficient

as in absence of correlated information the expected value of the sniped bidder is 1/2 and

thus lower than the value for the sniper.

8 Estimation and Counterfactual (preliminary)

In this section we provide estimates and some counterfactual exercises for the Brownian

motion setting described in section 6.2. The diffusion has standard deviation σ, bidding

times given by an independent Poisson process with arrival rate ρ, and first arrival rates of

bidders at Poisson rate λ. To simplify the estimation procedure we fix λ = 5 (representing

an average of 5 bidders per auction) and assume bidders initial values are uniform between

0 and 1.

We consider the following three moments for the estimation:

• Average number of bidders-defined as those that placed either a highest or second

highest bid at some point during the auction. We refer to these as recorded bids.

• Average number of bids per bidder.

• % of winning bids placed in the last 10% of time

As ρ increases, we can expect the number of bids to increase and also the number of bids

per bidder. For winning bids, this is an immediate result that as ρ is increased, there is

stronger bid shading initially and thus more likely that winning bids occur towards the end

when there is less shading. An increase in σ will also lead to more shading of bids and it

thus likely to increase the % of winning bids placed closer to the end. The effect on the

number of bidders and bids per bidder is unclear. The increased shading might contribute
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Table 1: Matching of moments

#of bidders # bids % late winning bids

Data 6 2 80%
Fitted values 4.5 3.3 53%

to increasing the number of bids/bidders as early bids are more likely to get outbid by newer

ones.

To estimate these moments, we proceed as follows:

1. Solve the pde for the shading function as described in section 6.2 for a fixed set of

parameters (σ, ρ) .

2. Simulate all bids taking into account censoring, so only consider a bid for our moment

calculation if it was either first or second highest at the time it was placed.

3. Construct moments from n = 1000 simulations.

4. Find highest scoring on a grid.

Table 1 gives the moments corresponding to our estimated parameter values: σ = 0.3 and

ρ = 6. While the matching is far from perfect, it is a first step in this preliminary version. In

the future we expect to improve it considerably by choosing the distribution of initial bids,

arrival of bidders and most likely allowing for some heterogeneity across bidder parameter

values.

Counterfactuals

We consider two counterfactuals: 1) final efficient allocation, as would be given by a second

price auction at the end of time and 2) equilibrium bidding with the possibility of retracting

bids. For the latter we assume that bidders can choose to retract/lower bids during any

one of their bidding times but not outside these bidding times. This is a natural restriction,

since when bidders are allowed to retract at the end, bidding would become meaningless.

The possibility of retraction eliminates the source of adverse selection mentioned earlier and

thus the incentives for bid shading. Given that values follow a Martingale, at every bidding

time τ a bidder will choose a bid equal to the current value vτ .
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Figure 2: Correlation between bids and values

Figure 2 compares the correlation between values and bids for the baseline and no-

retraction case. In the left hand we consider simulated final values and final bids in both

scenarios. There is substantial dispersion in both cases, as bids are placed some random time

before the end of the auction giving rise to some residual uncertainty as of final value. The

correlation between bids and value is 0.85 for the baseline case and 0.88 for the no-retraction

case. The right hand side figure plots the correlation between bids and the expected value

at the time of the last bid/retraction opportunity. Here by definition bids equal to the value

with no-retraction, so the figure illustrates more clearly the added dispersion in the baseline

scenario, which is consistent with the lower correlation indicated above.

Table 2 gives the average performance of these bidding scenarios. The expected value

in the baseline is 96.5% of the one corresponding to an efficient final allocation, which is

considerably close. Bid retraction reduces this gap by 1/3. The gap in expected highest bids

is twice of large when comparing the baseline scenario and the efficient allocation while it

remains unchanged for the case of bid retraction. The latter follows immediately from the

fact bids are unbiased in the case of bid retraction. In contrast, bids are shaded for our

baseline scenario which explains the larger gap. Interestingly, similar effect is found when

considering the gap in prices. As a result of shading of the second highest bid, the gap

between the price in the baseline scenario and the efficient (second highest value) one is over

7.5%, while the corresponding gap for the case of bid-retraction is slightly over 2%. Allowing

for bid-retraction would increase revenues of sellers by approximately 6% while decreasing
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Table 2: Revenues and Efficiency

Baseline Bid-retraction Efficient

Expected value 1.064 1.077 1.102
Expected highest bid 1.03 1.077 1.102
Expected price 0.835 0.885 0.904
Expected utility 0.220 0.180 0.198

the expected utility of buyers by 18%.

9 Extensions

This section considers two extensions to our model. The first one is endogenous rebidding,

where there is a cost to rebid and bidders exercise this option optimally. The environment is

considerably more difficult as the value of rebidding is highly dependent of the distribution

of other players’ bids, in contrast to the simple bidding derived above. The second extension

is to allow for correlation between the signals received by bidders. While we still assume

that conditional on these signals values are independent across bidders, the adverse selection

problem becomes more severe: winning the auction when placing an early bid is correlated

with negative signals observed by later bidders. As we show below, this results in a larger

incentive to shade bids.

9.1 Endogenous Rebidding

We consider here a very simple model. There are N = 2 bidders and 2 periods. Let vi denote

the value for bidder i in the first period drawn from distribution G (v) and v′i the value in

the second period, drawn from conditional distribution F (v′|v) . Both bidders can bid freely

the first period but must pay a cost c > 0 to rebid in the second period. We assume bids

are sealed.

Strategies for the bidders can be defined as follows: a bidding function Bi (v) for the first

period and a rebidding set Ri (v) for the second period. Let Ni (v)denote the complement of
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Ri (v) . Given the strategy for the other player, player i′s expected utility is given by:

U (v) =

ˆ
Ni(v)

Qi (B1 (v)) (v′ − Pi (Bi (v))) dF (v′|v)

+

ˆ
Ri(v)

−c+Qi (v
′) (v′ − Pi (v′)) dF (v′|v)

where Qi is the probability of winning function and Pi the expected payment conditional on

winning. A symmetric equilibrium (Q,R)is a Nash equilibrium in these strategies.

Example 10. Both bidders draw independently their initial value vε [0, 1] from distribution

G and with probability 1 − ρ get zero value next period and with probability ρ the value

remains equal to v. Conjecture a threshold v∗ so that:

B1 (v) = ρv if v < v∗and zero otherwise

R (v) = {} for v < v∗and R (v) = {v} otherwise

Consider the player with v = v∗. Bidding first or second period doesn’t change his

probability of winning since for ρv∗ ≤ b ≤ v∗, Q (b) = G (v∗) + (1− ρ) (1−G (v∗)) . The

expected payment is also the same in both cases equal to:

ρ
´ v∗
0
vdG (v)

G (v∗) + (1− ρ) (1−G (v∗))
.

The difference is that if he chooses not to rebid, he pays this expected value for sure while

if he chooses to rebid he pays it with probability ρ. The difference in expected payment is

then:

(1− ρ)
ρ
´ v∗
0
vdG (v)

G (v∗) + (1− ρ) (1−G (v∗))

to which we need to add that he pays an expected cost ρc. So v∗ must be such that:

c =
(1− ρ)

´ v∗
0
vdG (v)

ρG (v∗) + (1− ρ)
. (8)

The derivative of the right hand side with respect to v∗ equals in sign to

v∗ [ρG (v∗) + (1− ρ)]− ρ
ˆ v∗

0

vdG (v) > 0.
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The last step is to show that for all v > v∗it is optimal to rebid and conversely for those not

in this set. The difference between rebidding and not is

ρ
´ v
0

(v − x) dF−i (x)−
´ ρv
0

(ρv − x) dF−i (x)

=
´ v
0

(ρv − ρx) dF−i (x)−
´ ρv
0

(ρv − x) dF−i

Using the envelope condition and taking derivatives with respect to v (keeping bids fixed)

ρF−i (v)− ρF−i (ρv) > 0.

This establishes that the gains from rebidding are increasing in v so the thresholdv∗defined

by (8) is an equilibrium and it is unique.

One might expect that similar results will hold with more bidders. Moreover, it is natural

to conjecture that the threshold for rebidding increases with the number of bidders, as

expected payoffs decrease. Following this conjecture, with endogenous bidding one might

expect that the number of bids per player decreases too.

9.2 Correlated Information

In many cases, it is likely that information or signals observed are correlated across bidders.

For example, the arrival of a competing auction with a similar product is an event that

creates an opportunity cost and is likely to affect in a correlated way the value of all bidders

that keep track of that information. Our results extend easily to the case of pure common

values, where all agents have the same values but different bidding windows. For more

general cases we do not have a general result so we restrict to a simplified scenario.

9.2.1 Pure common values

The setting is identical to that described in our general model, but where all bidders values

vi are identical, bidders observe the same signals but have independent bidding windows. As

before, it follows that the optimal bid at state (v, t) satisfies bi = E (v (T ) |v, t, b (T ) = bi)
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where now b (T ) = maxij bi (vj, tj) is the maximum over all bids, including those of other

bidders. The recursive representation given before still holds,

W (b, v, t) =

ˆ T

t

min (W (b, v′, τ) , 0) dP (v′, τ |v, t) + P (τ > T |v, t) (E [vT |v, t, τ > T ]− b)

where the interpretation of arrivals now is for the arrival to any bidder. As an example, if

opportunities for bidding are Poisson with arrival ρ then the total arrival rate that would

be used in this dynamic programming equation is Nρ, where N is the number of bidder.

The effect on bidding behavior is similar to an increase in ρ that intuitively should result

in greater shading of bids. This follows naturally the interpretation of increased adverse

selection as now the current bid will win not only when that bidder decides not to bid any

higher but when any other bidder chooses not to do so.

9.2.2 Imperfectly correlated information

Consider the following simplified scenario. Suppose time is discrete and there are two periods

{1, 2} where 2 corresponds to the end of the auction. Each bidder receives an independent

initial value vi, drawn from distribution F (v), that we interpret as the unconditional ex-

pected final value in absence of further information. They simultaneously bid in the first

period. With probability ρ, they have a chance to bid in the second period. Second period

valuations are drawn from distribution G (v′|v, θ) where θ is a common observable shock that

is independent of the initial values. Here v (resp. v′) denotes the initial (resp. final) value

for bidder one and v2 (v′2) the corresponding values for bidder two.

An agent that bids in the second period will choose b2 (v′) = v′. Let B1 (v) denote the

bid in the first period. This bid should equal the expected value conditional on the union

of the following events: (1) none of the two agents get to rebid and B1 (v) > B1 (v2); (2)

agent one gets to rebid but v′ ≤ B1 (v)and v2 ≤ v; (3) other agent rebids but v′2 < B1 (v)

and B1 (v2) < B1 (v), and (4) both get to rebid but v′, v′2 < B1 (v) and B1 (v2) < B1 (v). In

a symmetric equilibrium with monotone bidding functions, the condition B1 (v) ≥ B1 (v2)

can be substituted by v ≥ v2.

Consider a symmetric equilibrium Given a bid b for the first player, we claim the following:
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Proposition 11. B1 (v) is an equilibrium if and only if E (v′|v,B1 (v)) = B1 (v), where

E (v′|v, b) =
F (v) (1− ρ)

2
v1 (b, v) + F (v) ρ (1− ρ) v2 (b, v) + ρ (1− ρ) v3 (b, v) + F (v) ρ2v4 (b, v)

π(v, b)
(9)

where:

π(v, b) = F (v) (1− ρ)2 + F (v) ρ (1− ρ)G (b|v) + ρ (1− ρ)P (v2 ≤ v, v′2 ≤ b)

+F (v) ρ2
ˆ
χv′≤b,v′2≤bdP (v′, v′2|v, v2 ≤ v)

v1 (b, v) = E [v′|v]

v2 (b, v) = E [v′|v′ ≤ b, v]

v3 (b, v) =

ˆ
v′dG (v′|v, θ) dP (θ|v′2 ≤ b&B1 (v2) < b)

v4 (b, v) =

ˆ
χv′≤b,v′2≤bv

′dP

and H (v′2, v2) is the joint distribution that is assumed to be independent of v.

Proof. Note that the denominator is also π(v, b) the probability of winning with a bid equal

to b. Suppose the bidding function satisfies this condition for all v. By symmetry and mono-

tonicity of the bidding function, B1 (v2) ≤ B1 (v) if and only if v2 ≤ v. Hence conditioning

on v2 ≤ v is equivalent to conditioning on B1 (v2) ≤ b for b = B1 (v). It is now easy to verify

the expression given in equation (9) for b = B1 (v) is precisely the conditional expectation

described above.

Suppose v′i = θvi where θ is the common component. Rewriting equation (9),

E (v′|v, b) =
F (v) (1− ρ)

2
v
´
θdG (θ) + F (v) ρ (1− ρ) v

´ b/v
θdG (θ) + ρ (1− ρ) v

´
χ{v2≤v,θ≤b/v2}θdG (θ) dF (v2)

F (v) (1− ρ)
2

+ F (v) ρ (1− ρ)G (b/v) + ρ (1− ρ)
´
χ{v2≤v,θ≤b/v2}dG (θ) dF (v2)

(10)
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Figure 3: Bidding functions: effect of correlation

Suppose in addition that v and θ are both uniform [0, 1] . Closed form expressions can be

found when θ is uniform [0, 1] and v2 is also uniform.

E (v′|v, b) =
v2 (1− ρ)

2
/2 + ρ (1− ρ) b2/2 + ρ (1− ρ) v

´ v
min

(
1
2 ,

b2

2v22

)
dv2 + ρ2vb2

2

v (1− ρ)
2

+ ρ (1− ρ) b+ ρ (1− ρ)
´ v

min (1, b/v2) dv2 + ρ2b
(11)

=
v2 (1− ρ)

2
/2 + ρ (1− ρ) b2/2 + ρ (1− ρ) v

(
b− b2

2v

)
+ ρ2vb2

2

v (1− ρ)
2

+ ρ (1− ρ) b+ ρ (1− ρ) (b+ b ln (v/b)) + ρ2b
(12)

=
v2 (1− ρ) /2 + ρvb+ ρ2vb2

2(1−ρ)

v (1− ρ) + ρ (2b+ b ln (v/b)) + ρ2b
(1−ρ)

(13)

We solve for the fixed point above numerically and compare the bidding function with

the one obtained for the uncorrelated case, where θ is independently drawn for the two

players from a uniform distribution. Figure 3 plots bidding functions in both scenarios for

an initial value v = 1. The x axis shows different probabilities of rebidding ρand the y axis

the corresponding bids. Consistent with our findings, as ρ→ 1 bids go to zero in both cases

and at the other extreme, when ρ = 0 bids equal the unconditional mean of θ = 1/2. More

importantly, when information is correlated bidders shade their bids even more.
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10 Proofs

Proof or Proposition 3

Let Q (b, v, t)denote the probability that b (T ) = b conditional on τ = t and v (τ) = v. This

can be also expressed as the compound lottery

Q (b, v, t) =

ˆ T

t

χW (b,v′,τ)≤0Q (b, v′, τ) dP (v′, τ |v, t) + P (τ > T |v, t)

We now show recursively that

W (b, v, t) /Q (b, v, t) = E [v (T ) |τ = t, v (τ) = v, b (T ) = b]− b. (14)

Substituting in (4)

W (b, v, t)

Q (b, v, t)
=

{ˆ T
t

min
(
W

(
b, v′, τ

)
, 0

)
dP

(
v′, τ |v, t

)
+ P (τ > T |v, t) (E [vT |v, t]− b)

}
∗Q−1 (b, v, t)

=

{ˆ T
t
Q

(
b, v′, τ

)
min

(
W (b, v′, τ)

Q (b, v′, τ)
, 0

)
dP

(
v′, τ |v, t

)
+ P (τ > T |v, t) (E [vT |v, t]− b)

}
∗Q−1 (b, v, t)

=

{ˆ
Q

(
b, v′, τ

)
min

(
E

[
v (T ) |τ, v′, b (T ) = b

]
− b, 0

)
dP

(
v′, τ |v, t

)
+P (τ > T |v, t) (E [vT |v, t]− b)} ∗Q−1 (b, v, t)

=

{ˆ T
t
χ{W (b,v′,τ)≤0}Q

(
b, v′, τ

) (
E

[
v (T ) |τ, v′, b (T ) = b

]
− b

)
dP

(
v′, τ |v, t

)
+P (τ > T |v, t) (E [vT |v, t]− b)} ∗Q−1 (b, v, t)

= E (v (T ) |τ = t, v (τ) = v, b (T ) = b)− b.
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Proof or Lemma 4

First note that by the law of iterated expectation, E (E ([vT |v′, τ ]− b|v′, τ) |v, t) = E [vT |v, t]−

b and that

E (E ([vT |v′, τ ]− b|v′, τ) |v, t) =

ˆ
t

E ([vT |v′, τ ]− b|v′, τ) dP (v′, τ |v, t)

=

ˆ T

t

E ([vT |v′, τ ]− b|v′, τ) dP (v′, τ |v, t)

+

ˆ
T

E ([vT |v′, τ ]− b|v′, τ) dP (v′, τ |v, t)

=

ˆ T

t

E ([vT |v′, τ ]− b|v′, τ) dP (v′, τ |v, t)

+P (τ > T |v, t)E ([vT |v′, τ ]− b|v, t, τ > T ) .

We now prove the Lemma by induction. So suppose that W (b, v′, τ) ≤ E (v (T ) |v′, τ) − b.

Then

W (b, v, t) =

ˆ T

t

min (W (b, v′, τ) , 0) dP (v′, τ |v, t) + P (τ > T |v, t) (E [vT |v, t, τ > T ]− b)

≤
ˆ T

t

W (b, v′, τ) dP (v′, τ |v, t) + P (τ > T |v, t) (E [vT |v, t, τ > T ]− b)

≤
ˆ T

t

E ([vT |v′, τ ]− b|v′, τ) dP (v′, τ |v, t) + P (τ > T |v, t) (E [vT |v, t, τ > T ]− b) .

= E [vT |v, t]− b

where the first inequality is strict if P (τ ≤ T |v, t) > 0, thus completing the proof.

Proof of Proposition 6

Let S (t, τ) = exp
(
−
´ τ
t
ρ (s) ds

)
be the probability of no arrival of bidding time in the

interval [t, t+ τ ] . For the specific process considered here, the value function (4) specializes
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to:

W (b, v, t) =

ˆ T

t

ρ (τ)S (t, τ)

[ˆ
min (W (b, v′, τ) , 0) dP (v′|v)

]
dτ

+S (t, T ) [E (vT |v, t)− b]

We prove inductively that W (b, v, t) is weakly increasing in t.

∂W (b, v, t) /∂t = −ρ (t)

ˆ
min (W (b, v′, t) , 0) dP (v′|v) (15)

+

ˆ T

t

ρ (τ) ρ (t)

[ˆ
min (W (b, v′, τ) , 0) dP (v′|v)

]
dτ

+ρ (t) [E (vT |v, t)− b] + S (t, T )
∂

∂t
E (vT |v, t) (16)

> −ρ (t)

ˆ
min (W (b, v′, t) , 0) dP (v′|v)

+ρ (t) [E (vT |v, t)− b] + S (t, T )
∂

∂t
E (vT |v, t) (17)

≥ S (t, T )
∂

∂t
E (vT |v, t) ≥ 0

where the last inequality follows from Lemma 4. This completes the inductive proof. The

second claim of the Proposition follows from the first one, the fact that W (B (t, v) , v, t) = 0

and that W is decreasing in b.

Proof of Proposition 7

Using functional equation (4)
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W (b, v, t) = ρ

ˆ T−t

0

exp (−ρτ) [exp (−λτ) min (W (b, v, t+ τ) , 0)− (1− exp (−λτ)) b] dτ

+ exp (−ρ (T − t)) (exp (−λ (T − t)) v − b)

= ρ

ˆ T−t

0

exp (−ρτ) exp (−λτ) min (W (b, v, t+ τ) , 0) dτ

−ρ
ˆ T−t

0

exp (−ρτ) (1− exp (−λτ)) bdτ

+ exp (−ρ (T − t)) (exp (−λ (T − t)) v − b)

= ρ

ˆ T−t

0

exp (−ρτ) [exp (−λτ) min (W (b, v, t+ τ) , 0)− (1− exp (−λτ)) b] dτ

− b

ρ+ λ
[λ+ exp (− (ρ+ λ) (T − t))] + exp (− (ρ+ λ) (T − t)) v

Now make the guess that W (b, v, t) is increasing in t. Given that W (B (v, t) , v, t) = 0 it

follows that W (B (v, t) , v, t+ τ) > 0 for all τ > 0. This implies that:

0 = W (B (v, t) , v, t)

= −B (v, t)

ρ+ λ
[λ+ ρ exp (− (ρ+ λ) (T − t))] + exp (− (ρ+ λ) (T − t)) v

Solving for B (v, t) this gives

B (v, t) =
(ρ+ λ) exp (− (ρ+ λ) (T − t)) v
λ+ ρ exp (− (ρ+ λ) (T − t))

.
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