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Abstract

This paper develops a methodology to solve dynamic principal-agent problems in

which the agent features present-biased time preferences and naive beliefs. There are

three insights. First, the problem has a recursive representation using the agent’s

perceived continuation value as a state variable (i.e., the remaining value the agent

(wrongly) anticipates getting from the contract). Second, incentive compatibility cor-

responds to a volatility constraint on the agent’s perceived continuation value. Fi-

nally, due to the agent’s naı̈vete, a perceived action constraint needs to be satisfied.

This constraint is accommodated by linking the agent’s perceived effort policy and the

volatility of his perceived continuation value. Novel economic insights regarding opti-

mal time-varying incentives and the term-structure of compensation include a large

signing bonus for the agent and more high powered and delayed incentives relative to

the rational benchmark.
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1 Introduction

Moral hazard is ubiquitous in most human economic relationships as pointed out all the

way back by Adam Smith’s “Theory of Moral Sentiments” (Smith (1822)). Economists rely

on the principal-agent problem to model such situations, making it the cornerstone of a

broad range of economic sub-fields (Bolton and Dewatripont (2004)). Moreover, the dy-

namic and repeated nature of these economic relationships requires modeling principal-

agent settings with long horizons. However, the neoclassical literature has assumed, by

and large, that economic participants are fully rational and discount the future expo-

nentially. This assumption is problematic in light of the large body of field and experi-

mental evidence documenting present-bias and the success of present-bias in endowing

economic models with additional realism and explanatory power since Laibson (1997)

introduced it to the profession. We fill this gap by asking the following questions: Can

present-bias be incorporated into dynamic contracting models in a tractable manner? If

so, what are the novel economic insights from such a model?

We argue that the answer to the first question is affirmative. In order to elaborate

on the details it is worth recalling the progression in contract theory from its early static

versions (e.g., Holmström (1979)) to modern dynamic contracting (e.g., Di Tella and San-

nikov (2021); Cvitanić et al. (2018)). Contracting requires the solution of two optimization

problems: an optimal contract design by the principal, and the optimal choice of an (un-

observable) action by the agent. In the early 1980s the transition to dynamic contracts

seemed daunting because the essential toolbox for dynamic optimization in economics,

dynamic programming (Stokey and Lucas (1989)), seemed to have hit a natural limita-

tion when addressing two intertwined dynamic optimization problems. This situation

was sometimes referred to as “dynamic programming squared”. The first major water-

shed in these developments was the realization that the principal’s optimal contracting

problem could be recursively characterized using the agent’s continuation value from the

contract as a state variable (Spear and Srivastava (1987)). In spite of this major insight,

characterizing incentive compatible contracts remained challenging beyond assuming the

first-order approach. Moreover, analytical progress remained elusive.

The second milestone occurred after dynamic contracting in continuous-time was

mathematically formalized and martingale methods were used to solve the agent’s prob-
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lem (Sannikov (2008)).1 This approach rendered the characterization of incentive com-

patibility (IC) as a simple constraint on the volatility of the agent’s continuation value,

thereby transforming the principal problem into a standard stochastic control problem.

The enhanced analytical and numerical tractability from these developments set the stage

for the growth in the dynamic contracting literature and its various applications across

many fields in economics and finance.2

Meanwhile, integrating present-bias and naı̈vete about self-control into a principal-

agent posed the unique challenge of incorporating in the contract design the action that

the principal (actually) implements and the action the agent (wrongly) anticipates he

will take in the future. Such inconsistency arises because the agent can display naı̈vete

about his future present-bias and anticipates his discount rate to be β̂; while in reality

his discount rate is β < β̂, leading him to take a different action than what he had

anticipated to take. Heidhues and Kőszegi (2010) address this challenge by suitably

expanding the usual contract space to include both a suggested action and a perceived

action. Importantly, in order to ensure consistency between the agent’s anticipated self

control problems and his perceived actions, a new constraint referred to as the perceived

choice constraint (PCC) needs to be added to the principal’s optimization problem. That

is, the principal optimization problem has to be solved subject to the (IC) and (PCC)

constraints.

The main contribution of this paper is to adapt the above methodologies to solve

dynamic contracting problems when the agent displays present-bias. The first insight is

to realize that from the perspective of the principal, she no longer needs to keep track of

the agent’s (actual) continuation value, but instead she must keep track of his perceived

continuation value, thereby making the latter the required state variable in the recursive

formulation of the optimal contracting problem. Second, the (IC) constraint now links the

agent’s (actual) action to the volatility of the perceived continuation value, discounted by

his actual discount rate β. Finally, the (PCC) corresponds to a constraint linking the

perceived action to the volatility of the perceived continuation value discounted by his

perceived discount rate β̂. This methodology transforms the optimal contracting problem
1Contemporaneously, Williams (2004, 2011) relied instead on the stochastic maximum principle to solve

the agent’s problem, and Biais et al. (2007) tackled the problem as a limiting case of the discrete-time model.
2See surveys by Sannikov (2013); Biais et al. (2013) and a textbook treatment by Cvitanic and Zhang

(2012).
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into a new, but otherwise standard, stochastic control problem. Table 1 summarizes

the above discussion and frames our contribution relative to the existing contract theory

literature.

Setting Two-period model Continuous-time model

Exponential discounting

(IC)-constraint:

Reward agent with

higher consumption if

“high” output is realized.

Holmström (1979).

(IC)-constraint:

Use sensitivity of agent’s

continuation value to out-

put to incentivize effort.

Sannikov (2008).

Present-biased agent

(PCC)-constraint:

Rewards incentivize agent’s per-

ceived choice under his (wrongly)

anticipated future present-bias β̂.

Heidhues and Kőszegi (2010).

(PCC)-constraint:

Use sensitivity of agent’s per-

ceived continuation value to

incentivize agent’s perceived

choice using β̂ as discount factor.

This paper.

Table 1: Contract theory with present-bias and in continuous-time.

In order to make analytical progress in answering the second question we specialize

our principal-agent problem to the risk-neutral with limited liability setting of DeMarzo

and Sannikov (2006). Our methodology, however, can be easily adapted to other appli-

cations and settings without major challenges. There are four main economic insights.

First, the term-structure of the contract changes: i) it features a large initial payment to

the agent in order to attract him into the venture, but ii) upon this initial payment the

remaining compensation is further back-loaded relative to that of an exponential agent.

Therefore, our model jointly rationalizes the use of both: front-loaded signing bonuses

(Van Wesep, 2010; Parsons and Van Wesep, 2013; Xu and Yang, 2016) and back-loaded

incentive schemes (Edmans et al., 2017) in managerial compensation packages. Sec-

ond, because the principal relies on (future) rewards conditional on good performance to

incentivize effort, present-bias increases incentive costs, decreases implemented effort,

and reduces principal value. As a result, present-bias may preclude the formation of

positive NPV ventures.

Third, principal value is increasing in the agent’s naı̈vete about his present-bias.

Such is the case because the principal exploits the agent’s naı̈vete by offering him a
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contract with high powered incentives that induces a large wedge between the perceived

action and the implemented action. Moreover, the principal optimally delays further the

compensation of a naive agent in order to lengthen the life of the contract and exploit his

naı̈vete for longer. In other words, the principal offers the agent a contract with generous

future rewards conditional on good performance. The agent anticipates working hard

in the future and reaping the benefits of this high powered incentives. In reality, his

actual effort is lower than anticipated and a big share of the expected rewards do not

materialize. Finally, the extent to which the principal exploits the agent, measure by the

distance between the perceived continuation value and the actual continuation value, is

time-varying. Exploitation is largest early in the life of the contract, but decreases with

time as the agent (on average) reports good performance and (finally) starts receiving his

promised back-loaded rewards.

1.1 Literature Review

Our paper is closely related to three strands of the literature. First, we contribute to the

literature on dynamic contracting with non-standard preferences. Adrian and Westerfield

(2008) developed the first dynamic contracting model with heterogeneous beliefs. They

show that disagreement can lead to gains from trade by transferring payments in states

that the agent deems relatively more likely to occur. Miao and Rivera (2016) characterize

the optimal contract when the principal is ambiguity-averse and show that ambiguity gen-

erates endogenous belief heterogeneity inducing a trade-off between incentives and ambi-

guity sharing in such a way that the incentive constraint does not always bind.3 Malenko

(2019) characterizes the optimal contract when the manager has empire-building prefer-

ences. He shows that empire building preferences lead to a budgeting mechanism with

threshold separation of financing. Finally, Cetemen et al. (2021) studies dynamic con-

tracting with non-exponential discounting under sophistication. Our paper is the first

to consider situations in which the agent’s actions are different than what he had an-

ticipated to take. We show that the relevant state variable for the recursive formulation

of this problem is the perceived continuation value of the agent, and that the perceived
3Relatedly, Szydlowski and Yoon (2021) show that the optimal contract when the principal is ambiguity

averse about the agent’s cost of effort generates a seemingly excessive pay-performance sensitivity, thereby
rationalizing the use of performance-sensitive debt. Dicks and Fulghieri (2021) study a model in which both
principal and agent display ambiguity aversion and apply this model to optimal compensation of division
managers within an organization.
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choice constraint can be formulated as a constraint on the volatility of this state variable.

Second, we also contribute to the literature on behavioral contracting with present-

bias. DellaVigna and Malmendier (2004) study optimal contract design by a profit-maximizing

firm facing present-biased customers. The theoretically predicted contracts match the

empirical contract design across the credit card, health club, gambling, and life insurance

industries. Heidhues and Kőszegi (2010) study contract choice and repayment behavior

in competitive credit markets when customers display present-bias. They show that, con-

sistent with subprime mortgages and most credit cards, the baseline repayment terms

are inexpensive, but they are also inefficiently front-loaded and delays require paying

large penalties. On the technical side, they formally show how to enlarge the contract

space to incorporate perceived choices and actual choices when agents display naı̈vete

about their self-control. Most recently, Gottlieb and Zhang (2021) study contracts be-

tween risk-neutral firms and present-biased consumers. Their analysis shows that the

welfare loss from present-bias vanishes as the contracting horizon grows. Our paper

enriches this literature by unlocking the tractability of continuous-time techniques to

study fully dynamic moral hazard settings and provide an analytical characterization of

the impact of present-bias on the optimal contract.

Finally, our paper also contributes to the recent literature harnessing the tractabil-

ity of continuous-time to model present-bias following the Instantaneous Gratification

(IG) Model pioneered by Harris and Laibson (2013). This literature explores the impact

of present-bias in various economic settings: Grenadier and Wang (2007) characterize

the impact of present-bias on the optimal exercise of real options within a corporate set-

ting and show that present-bias can sub-optimally hasten investment. Laibson et al.

(2021) incorporate present-bias into a heterogeneous agent macroeconomic model and

study fiscal and monetary policy within this setting. They show that present-bias in-

creases the impact of fiscal policy and amplifies the effect of monetary policy.4 Our paper

complements this literature by developing a tractable framework to study the impact of
4Other recent contributions to this literature include Acharya et al. (2020) which characterizes the value

of sophistication when investors are risk-averse and present-biased. Maxted (2020) generalizes the IG model
to provide analytical characterizations in a very general setting with liquid and illiquid assets. Shigeta (2020)
develops a portfolio choice problem in which the agent has present-bias and stochastic differential utility.
Tian (2016) characterizes a firm’s optimal capital structure under present-bias. Finally, Hernández and
Possamaı̈ (2020) provide a general theory to model time-inconsistent sophisticated agents and establish a
direct and rigorous proof of an extended dynamic programming principle similar to that of the classical
theory.
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present-bias on dynamic principal-agent settings.

2 Model

In this section we develop a continuous-time principal-agent model in which the agent

features present-bias preferences. In section 2.1 we lay out the risk-preferences and

technology of our principal-agent model following the corporate finance application of

DeMarzo and Sannikov (2006). In section 2.2 we model the present-bias preferences

of the agent in our continuous-time setting following the instantaneous gratification

model of Harris and Laibson (2013). To reiterate, we use the DeMarzo and Sannikov

(2006) formulation of the continuous-time principal-agent to facilitate conveying the gist

of our methodological contribution. However, our methodology can be adapted to any

continuous-time contracting problem with “hidden action” as long as there are no “hid-

den states”.5

2.1 Output and Technology

A risk-neutral principal (she) needs to hire an agent (he) to manage a project. The prin-

cipal is risk-neutral and discounts the future at rate r. The agent is also risk-neutral,

has limited liability, and displays β − γ present-bias preferences (discussed below) à la

Laibson (1997). Fixing an effort policy a ∈ A, the project’s cumulative output Yt follows a

controlled arithmetic Brownian motion process:

dYt = atµdt+ σdZat , (1)

where Zat is a standard Brownian motion under the probability measure Pa. Everyone

observes the realization of output Yt, but effort is the agent’s private information. Exert-

ing effort is costly to the agent and is given by g(a) = θa2/2. Thus, moral hazard arises

and incentives need to be provided.

Because the agent features naı̈vete about his present-bias, there will be a discrep-

ancy between his actual effort and his perceived effort policies. As a result, a contract
5We conjecture that in the special case of CARA preferences and unlimited liability (e.g., He (2011); Hack-

barth et al. (2021)), our methodology could still be used to accommodate a present-biased agent with “hidden
savings” as long as we impose the Hyperbolic Euler Equation (see Harris and Laibson (2001)) as a constraint
in lieu of the Euler Equation to ensure a no-private savings condition.
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Γ = (C, τ, a, â) specifies consumption C, a termination clause τ , an implemented effort

policy a, and a perceived effort policy â, all as functions of the observed history of out-

put.6 Upon termination the principal obtains L and the agent R, which we normalize

to 0 for simplicity. All quantities are assumed to be square integrable and progressively

measurable under the usual conditions.

2.2 Present-Bias

We now describe the agent’s discount function that models his present-bias preferences

in continuous-time. All periods, present and future, are discounted exponentially with

discount factor 0 < γ < 1. However, future periods are additionally discounted with uni-

form weight 0 < β ≤ 1. As a result, the present period receives full weight, while future

periods are given weight βe−γt.

We model the agent as a sequence of selves. Call the self born at time s0 = 0 “self

0”. The lifetime of self 0 is split into the present, which lasts from s0 to s0 + τ0, and

the future, which lasts from s0 + τ0 to ∞. The present can be thought of as the interval

during which control is exercised by self 0, while the future is the interval during which

control is exercised by future selves. The length of the time interval τ0 is stochastic and

exponentially distributed with hazard rate λ ∈ [0,∞).

Once the present of self 0 ends at s0 + τ0, self 1 is born and takes control. The

preferences of self 1 are identical to those of self 0, and his present lasts from s1 = s0 + τ0

to s1 + τ1. Proceeding in this manner we obtain an infinite sequence of selves {0, 1, 2, ...}

born respectively at dates {s0, s1, s2, ...}. Each self applies a discount factor Dn(t) to the

utility flow at time sn + t, where

Dn(t) =

 e−γt if t ∈ [0, τn)

βe−γt if t ∈ [τn,∞)

 .

For tractability reasons we will focus in the limiting case when λ → ∞, known as the

Instantaneous Gratification (IG) Model developed by Harris and Laibson (2013). In this
6Expanding the standard contract space to include the perceived effort policy â is inspired by the two-

period principal-agent formulation detailed in Section 2.2 of Koszegi (2014) applied to credit markets, in
which (r̂1, r̂2) correspond to the repayment plan the agent believes he will chose (i.e., to â in our setting) and
(r1, r2) to the repayment plan he actually chooses (i.e., to a in our setting).
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case the discount function exhibits a discrete discontinuity at t = 0+, so that

D(t) =

 1 if t = 0

βe−γt if t ∈ (0,∞)

 .

The assumption that each self lives only for an extremely short instant is made for mathe-

matical tractability. However, Laibson and Maxted (2020) show that IG preferences closely

approximate discrete-time models with period lengths that are psychologically plausible

(e.g., one week or less).

Finally, a key consideration in our analysis is whether the agent correctly anticipates

the present-bias he will have in the future. Following O’Donoghue and Rabin (2001),

we suppose that the agent believes his future selves β will actually be β̂ ≥ β. That is,

the agent can display naı̈vete about his future present-bias, and incorrectly underesti-

mate his future self-control problems. Our model, nests the sophisticated case (β = β̂),

whereby the investor understands his future selves will behave differently than he would

like to, and the standard exponential discounting case (β = β̂ = 1) used in most economic

models, whereby the agent is not present-biased.

3 The Agent’s Problem

Consider now the problem faced by an agent in light of a contract Γ = (C, τ, a, â). Suppose

the agent anticipates his future selves will take action â. Then, he can proceed to compute

his (perceived) continuation utility V̂ from this contract under exponential discounting:

V̂t = Eât

[∫ τ

t
e−γ(s−t)(dCs − g(âs))ds

]
. (2)

We note the expected value is computed under the probability measure Pâ, since the

agent (incorrectly) anticipates his future selves to exert effort policy â.

Using similar arguments as in Sannikov (2008) we can apply the Martingale Repre-

sentation Theorem to show that there exists stochastic process φt, adapted to the filtration

generated by output Y , such that the evolution of V̂ is given by

dV̂t = γV̂tdt− (dCt − g(ât)dt) + φt (dYt − âtµdt) . (3)
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The first term captures the appreciation in the perceived continuation value of the

agent due to long-term exponential discounting. The second term captures the change

resulting from the per-period utility anticipated by the agent from his consumption net

of effort costs: dCt− g(ât)dt. Finally, the last term captures the sensitivity with respect to

the realization of output. That is, φt = dV̂t/dYt is a measure of the contract’s incentives.

We proceed to define incentive compatibility in our context.

Definition 1. We say that a contract Γ = (C, τ, a, â) is incentive compatible (IC) if it is optimal

for the agent’s current self at time t to exert effort at when it anticipates his future selves to

exert effort âs, for all s > t.

Lemma 1. A contract Γ = (C, τ, a, â) is incentive compatible (IC) if and only if:

g′(at) = βφtµ ⇐⇒ at =
βµφt
θ

(IC)

for all t, where φ comes from the dynamics of V̂ given in equation (3).

Equation (IC) characterizes incentive compatibility as a link between the marginal

cost of effort and the volatility of the agent’s perceived continuation value, which is pro-

portional to the marginal benefit of effort. That is, for a contract to be (IC) the imple-

mented effort a has to be optimal for any current t-self when he is trading off the cost

of increasing his effort (born in the present) versus the anticipated benefits of effort re-

sulting from a more generous contract when high output is realized. The benefits are

enjoyed in the future, and therefore discounted with parameter β reflecting the current

t-self present-bias.

Lemma 1 generalizes the characterization in Sannikov (2008) for naive present-biased

agents by noting that, for a rational agent, his perceived continuation value is his actual

continuation value. In particular, note equation (4) in Sannikov (2008) is essentially the

same as equation (IC) above, except that the volatility of the continuation value is replaced

by the volatility of the perceived continuation value.

We now proceed to address the fact that the agent’s expectation about the effort policy

chosen by his future selves has to be consistent with his beliefs about his future self-

control problems. In a two-period setting, Heidhues and Kőszegi (2010) introduce the

perceived choice constraint as an additional constraint on the principal’s optimization

problem, which we adapt below to our fully dynamic environment:
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Definition 2. We say that a contract Γ = (C, τ, a, â) satisfies the perceived choice constraint

(PCC) if the 0-self agent thinks it will be optimal for all his future selves to choose effort policy

â for all t > 0.

Lemma 2. A contract Γ = (C, τ, a, â) satisfies the perceived choice constraint (PPC) if and

only if:

g′(ât) = β̂φtµ ⇐⇒ ât =
β̂µφt
θ

(PCC)

for all t, where φ comes from the dynamics of V̂ given in equation (3).

Equation (PCC) is new in the literature. It characterizes the perceived action con-

straint by equating the marginal cost of effort with its marginal benefit, which is propor-

tional to the volatility of the agent’s perceived continuation value and the agent’s (incor-

rect) beliefs about his future self-control problems β̂.

To gain intuition, consider the 0-self anticipation of the optimization problem that

his future t-self will be faced with. The 0-self anticipates his t-self trading off the cost of

increasing his effort (born at time t, i.e., in the present, and therefore receiving full weight)

versus the anticipated benefits of exerting effort resulting from a more generous contract

when high output is realized. The benefits are enjoyed in the future (i.e., after time t)

and which the 0-self imagines his t-self will discount with parameter β̂, reflecting the

0-self underestimation of his t-self present-bias. We note that equation (PCC) represents

a continuous-time analogue of the (PCC) constrained stated in equation (1) of Heidhues

and Kőszegi (2010).

Importantly, the IC constraint and the PCC coincide with each other when the agent

is sophisticated, namely β = β̂. This redundancy of the PCC is expected because the

sophisticated agent has correct expectations about his future selves. Therefore, what he

perceives as his future choice will be his actual choice. In other words, the implemented

effort policy and the perceived effort policy must coincide (i.e., a = â), which yields the

perceived effort policy redundant as part of the contract space. Consequently, when

dealing with a sophisticated agent it is sufficient to specify the suggested effort policy

and the IC constraint.

Finally, the agent’s participation constraint (PC) states that the perceived payoff from

the contract at t = 0 must be larger than an exogenous initial outside option denoted V̂ :
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βEâ
[∫ τ

0+

e−γs(dCs − g(âs))ds

]
+ dC0 = βV̂0+ + dC0 ≥ V̂ . (PC)

The characterization of the incentive-compatibility constraint via equation (IC), the

perceived choice constraint via equation (PCC), and the participation constraint via equa-

tion (PC) will be very useful when solving the principal’s problem. Anticipating, these

characterizations allow us to write the principal’s problem recursively and thereby trans-

form it into a standard Markovian stochastic control problem with the agent’s perceived

continuation value V̂ as a state variable.

4 The Principal’s Problem

The principal’s problem consists of choosing a contract Γ = (C, τ, a, â) that maximizes

the net present value of the cashflows generated by the project net of the agent’s com-

pensation, subject to the agent’s IC, PCC, and PC constraints.7 Formally, the principal

solves

max
Γ

Ea
[∫ τ

0
e−rt (dYt − dCt) + e−rτL

]
(4)

subject to (IC), (PCC), and (PC).

Before proceeding to solve the principal’s problem, we restate the dynamics of V̂ from

the perspective of the probability measure Pa used by the principal when forming her

expectations (i.e., the probability induced by the implemented effort level a):

dV̂t = γV̂tdt− (dCt − g(ât)dt) + φtµ(at − ât)dt+ φtσdZ
a
t , (5)

where dZat is Brownian motion process under Pa. It is worth it at this stage to compare the

dynamics of V̂ as expected by the agent (equation (3)) and as expected by the principal

(equation (5)). Because the principal is aware that the agent will choose effort a instead

of â, the perceived continuation value features an additional term φtµ(at − ât)dt relative

to the dynamics perceived by the agent. Importantly, the principal knows the agent’s
7Implicit in the formulation below, and in line with the dynamic contracting literature, once the principal

offers a contract to the agent, the principal commits to delivering to the agent the consumption stated in the
contract as a function of the history of observed output. That is the principal can commit to the contract.
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perceived continuation value will not grow as fast as the agent anticipates it to, since his

effort level will be lower than what he anticipates (i.e., since at ≤ ât). This observation

plays a critical role in section 5 where we characterize the principal’s optimal contract

and the extent to which she can exploit the agent’s present-bias to increase her profit.

4.1 Recursive Formulation for t > 0

In this section we study the problem faced by a principal for any t > 0. Suppose that

the agent’s perceived continuation value at the time is V̂t (i.e., the value that a previ-

ous self anticipates to get from the continuation contract when discounting the payoffs

exponentially). Denote the value function for the principal as F (V̂ ). Because both prin-

cipal and agent are risk neutral, by a similar intuition as in DeMarzo and Sannikov

(2006), we expect the optimal contract to feature dCt > 0 only after sufficiently good per-

formance. In particular, the perceived continuation value evolves according to (3) (with

dCt = 0 whenever V̂t ∈ [0, V̄ )) and is reflected down by dCt > 0 whenever V̂t = V̄ . The

contract is terminated the first time the perceived continuation value goes down to zero

(i.e., τ = min{t : V̂t = 0}).

Hence, we conjecture that the value function satisfies the following ODE for V̂ ∈ [0, V̄ ]:

rF (V̂ ) = max
φ

{
a(φ)µ+ F ′(V̂ )(γV̂ + g(â(φ)) + φµ(a(φ)− â(φ))) +

1

2
F ′′(V̂ )φ2σ2

}
(6)

F (0) =L, F ′(V̄ ) = −1, F ′′(V̄ ) = 0, (7)

where a(φ) = βµφ
θ and â(φ) = β̂µφ

θ as given by the IC and PCC constraints, respectively.

The first boundary condition in (7) states that the principal gets L upon termination. The

second boundary condition states that the agent is paid whenever the marginal benefit

to the principal of promising a payment equals his marginal cost of 1. Finally, the last

boundary condition corresponds to a smooth-pasting condition which pins down the

optimal payout boundary V̄ .

Upon substituting the first order condition for the optimal φ:

φ(V̂ ) = − βµ2

µ2(2β − 2β̂ + β̂2)F ′(V̂ ) + θσ2F ′′(V̂ )
, (8)

the system (6)-(7) can be solved numerically using any standard ODE solver. Moreover,
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many of the properties of the value function, as well as that of the optimal contract

are analytically tractable via probabilistic methods. We turn to such analysis of the

optimal contract in the next section. The proposition below formalizes the analysis for

this subsection.

Proposition 1. Consider the contracting problem faced by the principal at t = 0+. Suppose

that there exists a unique twice continuously differentiable solution F (V̂ ) to the ODE (6)

on [0, V̄ ] with boundary conditions (7). Then, i) F (V̂ ) is the value function for the principal

when she has to deliver a perceived continuation value V̂ to the agent, ii) optimal incentives

φ(V̂ ) are given by (8), iii) the contract delivers a perceived value V̂ ∈ [0, V̄ ] to the agent

whose perceived continuation value follows the dynamics (3) for t ∈ [0, τ ], where the optimal

payments dC reflect the process V̂t at V̄ , and iv) termination occurs at time τ = inf{t ≥ 0 :

V̂t = 0}.

4.2 Value Function at t = 0

We now solve for the optimal initial payment to the agent dC0. The reason for character-

izing this payment separately from the rest of this contract is because the fact that the

agent displays present-bias modelled following the IG model implies that the participa-

tion constraint disproportionaly values the instantaneous utility of the 0-self, as seen in

equation (PC). Formally, the optimal initial payment solves

max
dC0

F (V̂0+)− dC0, (9)

subject to the participation constraint (PC). Because, at the optimum, the participation

constraint binds, we can substitute it into (9). Taking first order conditions implies that

the optimal initial payment is given by

dC0 =


0, if 0 ≤ V̂ < Ṽ ,

V̂ − Ṽ , if V̂ ≥ Ṽ ,
(10)

where Ṽ solves F ′(Ṽ ) = −β. The intuition for the initial payment is straightforward.

Because the agent discounts the future at rate β, in order to satisfy the PC constraint,

the principal finds it optimal to pay him “early” in order to entice him to participate in
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the contract. The following proposition characterizes the value function for the principal

at t = 0.

Proposition 2. The value for the principal’s optimization problem (4) is equal to F
(
V̂−dC0

β

)
,

where dC0 is given by (10).

5 Economic Insights

In this section we study the novel economic insights delivered by enriching, an other-

wise standard continuous-time principal-agent model, with the possibility that the agent

features present-bias preferences. In section 5.1 we show the impact of present-bias on

the level of incentives and effort implemented by the optimal contract. In section 5.2

we characterize the effect of present-bias on the optimal term-structure of compensation

(i.e., optimal amount of back-loading and front-loading of incentives). Finally, in section

5.3 we characterize the additional profit that a principal earns by exploiting the agent’s

present-bias, and explore the situations in the state space for which such exploitation is

most prominent.

5.1 Value Function, Incentives, and Effort

In this section we explore the impact of the present-bias parameters on the principal’s

value function, the contract’s incentives, implemented effort, and perceived effort. Propo-

sition 3 below constitutes a natural starting point for this analysis by providing proba-

bilistic representations for the comparative statics of the value with respect to β and β̂.

Proposition 3. The comparatives statics of the value function with respect to β and β̂ are

given by:

∂F (V̂ ; β̂)

∂β̂
= Ea

[∫ τ

t
e−r(s−t)F ′(V̂ )(β̂ − 1)

µ2φ(V̂ )2

θ
|V̂t = V̂

]
(11)

∂F (V̂ ;β)

∂β
= Ea

[∫ τ

t
e−r(s−t)[1 + F ′(V̂ )φ(V̂ )]

µ2φ(V̂ )

θ
|V̂t = V̂

]
(12)

These expressions are intuitive. Start with the comparative static with respect to β̂.

An increase in the agent’s perceived present-bias parameter means that the agent an-

ticipates having less present-bias in the future than he actually will. That means that

14



he will, on average, under-perform his expectations by a larger margin since he will ex-

ert less effort than anticipated. As a result, his perceived continuation value will tend

to decrease. The payoff for the principal from such reduction in the agent’s perceived

continuation value is proportional to F ′(V̂ ) multiplied by the reduction in the drift in-

duced by a larger β̂ at each point in time (i.e., we integrate this effect over time and take

expectations).

Panel A in Figure 1 shows comparative statics for the value function with respect

to three values of β̂ and shows that in general the value function is increasing in β̂.

Mathematically, this comes from the fact that most of the time F ′(V̂ ) < 0 (i.e., the principal

value function is decreasing in her promises to the agent). Intuitively, this comparative

static says that having a more naive agent is valuable to the principal, because she can

exploit this naı̈vete and increase her value. We refer to this mechanism as the exploitation

effect.

How does the principal exploit the agent’s naivite? Because the principal knows that

the agent is underestimating his future present-bias, she offers him a contract with more

high powered incentives (panel B). The agent, values these incentives, because he thinks

he will exert a lot of effort (panel D), and in turn earn large rewards in the future. His

actual effort, however, will be much lower than anticipated (panel C). Thus, the principal

will end up paying him a lot less. By saving on these future compensation, the prin-

cipal earns a higher profit when dealing with a more naive agent. Section 5.3 provides

additional insights on the magnitude of the exploitation effect.

Similarly, the expression for the comparative static with respect to the present-bias

parameter β is also intuitive. There are two effects. First, as β increases, the agent

discounts the future less, and exerts more effort for a given level of incentives. Second,

higher β implies the agent is relatively less naive since β̂ − β decreases. As discussed

above, lower naı̈vete decreases the value to the principal in proportion to F ′(V̂ ).

Panel A in Figure 2 shows comparative statics for the value function with respect to

three values of β. It shows that for low values of V̂ the first effect dominates and the value

function is increasing in β. By contrast, because F ′(V̂ ) < 0 for high values of V̂ , the second

effect dominates, rendering the value function decreasing in β. Moreover, panel B shows

that as β increases it is easier to incentivize the agent, and thus incentives are decreasing

in β. By a similar mechanism as before, panel C shows that effort is increasing in β for low
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Figure 1: Comparative statics with respect to β̂. Other parameter values are r =
0.05, γ = 0.08, µ = 20, σ = 25, θ = 15, L = 100.

values of V̂ (because it is easier to incentivize the agent), but decreasing for high values of

V̂ (because the agent is less naive, which reduces the exploitation effect). Finally, panel

D shows that because increasing β makes the agent less naive, his perceived effort will

decrease.

Finally, we discuss what happens when increasing β and β̂ at the same time. This can

be thought of as reducing the agent’s present bias while keeping his naı̈vete unchanged.

Adding both effects yields the following expression:

∂F (V̂ ; β̂)

∂β̂
+
∂F (V̂ ;β)

∂β
= Ea

[∫ τ

t
e−r(s−t)[1 + β̂F ′(V̂ )φ(V̂ )]

µ2φ(V̂ )

θ
|V̂t = V̂

]
. (13)

Again, there are two effects. The first effect, as before, simply captures the higher

output generated by the greater effort exerted by a less present-biased agent. The second

effect captures the rise in the drift of the agent’s perceived continuation value needed to

compensate him for his higher effort. The impact of the latter effect is positive for the

principal when F ′(V̂ ) > 0 (V̂ is low), but negative when F ′(V̂ ) < 0 (V̂ is high). Panel A

in Figure 3 provides a numerical illustration in which the first effect dominates, and the

value function increases as present-bias decreases.
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Figure 2: Comparative statics with respect to β. Other parameter values are r =
0.05, γ = 0.08, µ = 20, σ = 25, θ = 15, L = 100.

Furthermore, panel B shows that a less present-biased agent is easier to incen-

tivize, and thus requires less powerful incentives. However, because the principal finds

it cheaper to incentivize the agent, she implements a higher level of effort (which equals

perceived effort in this case since β̂ = β), as depicted in panel C (resp. panel D).

5.2 Payout Boundary and Initial Bonus

We now turn our attention to explore the impact of the present-bias parameters on the

payout boundary and the initial bonus offered by the principal to recruit the agent.

Proposition 4 below provides probabilistic representations for the comparative statics of

the payout boundary with respect to β and β̂.

Proposition 4. The comparatives statics of the payout boundary with respect to β and β̂
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Figure 3: Comparative statics with respect to β and β̂ simultaneously. Other param-
eter values are r = 0.05, γ = 0.08, µ = 20, σ = 25, θ = 15, L = 100.

are given by:

∂V̄

∂β̂
=

r

γ − r

 (1− β̂)β2µ2

rθ(2β − 2β̂ + β̂2)2︸ ︷︷ ︸
(+)

−Ea
[∫ τ

t
e−r(s−t)F ′(V̂ )(β̂ − 1)

µ2φ(V̂ )2

θ
|V̂t = V̄

]
︸ ︷︷ ︸

(+/−)

 , (14)

∂V̄

∂β
=

r

γ − r

 (β − 2β̂ + β̂2)βµ2

rθ(2β − 2β̂ + β̂2)2︸ ︷︷ ︸
(−)

−Ea
[∫ τ

t
e−r(s−t)[1 + F ′(V̂ )φ(V̂ )]

µ2φ(V̂ )

θ
|V̂t = V̄

]
︸ ︷︷ ︸

(+/−)

 . (15)

Consider first the effect of β̂ on the payout boundary. The first term constitutes a

direct effect that captures the increased value for a principal from dealing with a more

naive agent. In order to exploit this naı̈vete the principal finds it optimal to postpone

the agent’s compensation. The second term, constitutes an indirect effect capturing the

effect of higher naı̈vete on the drift of the agent’s continuation value, which in turn af-

fects the relative benefit of postponing the agent’s compensation. The sign of this effect

is ambiguous and depends on the sign of F ′(V̂ ) throughout the life of the contract. Panel

A in Figure 4 provides an illustration in which the exploitation effect renders it optimal
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for the principal to postpone the compensation of the agent as his naı̈vete increases. In-

tuitively, the longer the principal can interact with a naive agent, the more he can exploit

his naı̈vete. Thus, postponing his compensation reduces the probability of termination,

and lengthens his profitable interaction with the agent. By the same token, the principal

will reduce the size of the initial bonus of a more naive agent, in order to reduce the prob-

ability of terminating his relationship with this more naive agent (i.e., the initial bonus

dC0 is decreasing in β̂, as shown in panel D).

Next, we study the effect of β on the payout boundary (while keeping β̂ constant).

There are two terms in this expression. The first term is negative, capturing the reduction

in value for the principal from the fact that the agent’s beliefs about his future present-

bias are less distorted (i.e., from β moving closer to β̂). The second term, as before, is

ambiguous.

Intuitively, there are two effects. First, as present-bias declines, the agent is willing to

exert more effort in exchange for promises of future rewards, an incentive effect. Hence,

the volatility of the agent’s continuation value is lower and termination is less likely.

Because termination is less of a concern, the principal finds it optimal to pay earlier and

make a larger initial bonus. Additionally, the second effect is what we have called the

exploitation effect. As his perceived present-bias moves closer to his actual present-bias,

there is less room for the principal to exploit the agent. This means the principal is less

concerned about termination. As a result, earlier compensation (panel B) and a higher

initial bonus are optimal (panel E).

Finally, panels C and F shut down the exploitation effect by increasing β and β̂ at the

same time. The incentive effect reduces the payout boundary and increases the initial

bonus. However, their magnitudes are smaller relative to those of panels B and E, since

the exploitation motive is unchanged in this exercise.

5.3 Exploitation Effect

In this section we compute the severity of the exploitation effect induced by the optimal

contract. Recall that, because the agent is naive, his actual effort policy will be different

from what he anticipates. Moreover, the expected path of output, and therefore his com-

pensation will also be different. Hence, to understand the magnitude of the exploitation

effect, we need to compute the (actual) continuation value Vt:
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Figure 4: Comparative statics for the payout boundary and initial bonus. Other
parameter values are r = 0.05, γ = 0.08, µ = 20, σ = 25, θ = 15, L = 100, V̂ = 150.

Vt = Eat

[∫ τ

t
e−γ(s−t)(dCs − g(as))ds

]
, (16)

where we note that, in contrast to expression (2), the expected value is computed under

the probability measure Pa (i.e., the probability measure induced by the actual effort

policy chosen by the agent).

In general, we expect the agent’s continuation value to be lower than his perceived

continuation value. After all, the principal is aware of the agent’s naı̈vete, and it is in

her interest to design a contract that exploits this naı̈vete: Vt < V̂t. Panel A in Figure

5 compares Vt and V̂t for three different values of β̂. The blue line corresponds to the

45 degree line, because when the agent is sophisticated (i.e., when β̂ = β), his perceived

continuation value equals his (actual) continuation value. For the red and the yellow

lines, we see that his perceived continuation value is lower than his (actual) continuation

value due to the exploitation effect. Moreover, and in line with intuition, as the agent

becomes more naive (i.e., as β̂ grows), the wedge between Vt and V̂t grows larger.

Panel B depicts the ratio of the continuation value to the perceived continuation

value. This ratio is equal to one in the case of sophistication (blue line), but it is below

one when the agent is naive. Moreover, this ratio is increasing in V̂ . The intuition for this
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pattern stems from the fact that for low values of V̂ the agent’s compensation is far in

the future. Because naı̈vete manifests in the form of optimism about future performance,

he overestimates his compensation by a larger margin when he needs a long sequence of

positive cash flows to get paid, than when his compensation is imminent, which is the

case when V̂ is high.

6 Conclusion

We analyze a dynamic principal-agent problem in which the agent displays present-bias.

We develop a methodology that makes this problem numerically and analytically tractable

upon converting it into a standard stochastic control problem. Our approach mimics the

dynamic contracting literature by uncovering the recursive structure of the problem upon

realizing that the right state variable is the perceived continuation value of the agent, and

that both, the (IC) and (PCC) constraints correspond to links between the agent’s action

and perceived action with the volatility of the perceived continuation value.

Our results suggest several fruitful avenues for future research. First, given the preva-

lence of present-bias borrowers in the mortgage market, can our model provide additional

insights to the design of optimal mortgages in the spirit of Piskorski and Tchistyi (2010)?

Second, what are the normative implications for behavioral taxation (Farhi and Gabaix

(2020)) when households display present-bias? Lastly, can we extend the analysis of

Heidhues and Strack (2021) to jointly identify present-bias in a setting in which effort,

timing, and incentives are all endogenously determined? These and other questions are

the subject of ongoing research.
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7 Appendix

Proof of Lemma 1. The agent’s current self chooses effort in order to maximize the sum

of i) his instantaneous utility plus ii) his perceived continuation utility discounted by the

present-bias parameter β:

max
ã

(dCt − g(ã)dt) + βEãt [dV̂t] (17)

= max
ã

(dCt − g(ã)dt) + β[γV̂tdt− (dCt − g(ât)dt) + φtµ (ãdt− âtdt) + Eãt [σdZ ãt ]] (18)

= max
ã
{βφtµ (ãdt− âtdt)− g(ã)dt}+ β[γV̂tdt− g(ât)dt], (19)

which, by convexity of the effort cost function g′′(a) ≥ 0, implies that the contract

Γ = (C, τ, a, â) is incentive compatible if and only if for all t:

g′(at) = βφtµ ⇐⇒ at =
βµφt
θ

. (20)

Proof of Lemma 2. The agent’s 0-self anticipates the optimization problem that his fu-

ture t-self will solve as choosing effort in order to maximize the sum of i) t-self’s in-

stantaneous utility plus ii) t-self’s perceived continuation utility discounted by 0-self’s

(underestimated) present-bias parameter for his t-self β̂:

max
ã

(dCt − g(ã)dt) + β̂Eãt [dV̂t] (21)

= max
ã

(dCt − g(ã)dt) + β̂[γV̂tdt− (dCt − g(ât)dt) + φtµ (ãdt− âtdt) + Eãt [σdZ ãt ]] (22)

= max
ã
{β̂φtµ (ãdt− âtdt)− g(ã)dt}+ β̂[γV̂tdt− g(ât)dt], (23)

which, by convexity of the effort cost function g′′(a) ≥ 0, implies that the contract

Γ = (C, τ, a, â) satisfies the PCC constraint if and only if for all t:

g′(ât) = β̂φtµ ⇐⇒ ât =
β̂µφt
θ

. (24)

Proof of Proposition 1. Fix an arbitrary contract Γ
′

= (C
′
, τ

′
, a

′
, â

′
) that satisfies the (IC)
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and (PCC) constraints. Applying lemmas 1 and 2 it must be the case that a′
t =

βµφ
′
t

θ and

â
′
t =

β̂µφ
′
t

θ for all t. Next, consider the following gain process:

GΓ
′

t =

∫ t∧τ ′

0
e−rs

(
a
′
sµ− dC

′
s

)
+ e−r(t∧τ

′
)F (V̂t∧τ ′ ).

Applying Ito’s lemma to dGΓ
′

t combined with equation (6) imply that GΓ
′

t is a Pa
′

super-

martingale. Integrating from 0 to T and taking expectations gives:

GΓ
′

0 ≥ Ea
′
[∫ T∧τ ′

0
e−rt (dYt − dCt) + e−r(T∧τ

′
))L+ e−r(T∧τ

′
)F (V̂T∧τ ′ )

]
. (25)

Letting T →∞ and noticing that because Γ
′ satisfies the (PC) constraint then the transver-

sality condition limT→∞ Ea
′ [
e−r(T∧τ

′
)F (V̂T∧τ ′ )

]
= 0 holds, we obtain that:

F (V̂0) = GΓ
′

0 ≥ Ea
′
[∫ T∧τ ′

0
e−rt (dYt − dCt) + e−r(T∧τ

′
))L

]
, (26)

where the first equality follows from the fact that the conjectured optimal contract Γ =

(C, τ, a, â) satisfies equation (6) with equality, making GΓ
t a Pa martingale. Noting that

(26) holds for any arbitrary contract Γ
′ that satisfies the (PC), (PCC), and (IC) constraints

completes the proof.

Proof of Proposition 2. Since the principal value function for 0+ has already been shown

to be F (V̂0+), the problem for the principal at time t = 0 corresponds to optimally choosing

dC0 and “stitching” the remainder of the contract as described by proposition 1. Because

the PC constraint binds, the principal problem at t = 0 becomes:

max
dC0

F

(
V̂ − dC0

β

)
− dC0. (27)

Finally, a standard proof by contradiction shows that F (V̂ ) is concave, which implies that

the maximizer in (27) is uniquely given by expression (10).

Proof of Proposition 3. We begin by rewriting ODE (6) and boundary conditions (7) by

making explicit the dependence of the value function F (V̂ ; β̂) on the present-bias param-
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eter β̂, denoting the optimal control by φ(V̂ ), and substituting for a and â from (IC) and

(PCC) respectively gives:

rF (V̂ ; β̂) =
βµφ(V̂ )

θ
+ F ′(V̂ ; β̂)(γV̂ +

β̂2µ2φ(V̂ )2

2θ
+
µ2φ(V̂ )2(β − β̂)

θ
) +

1

2
F ′′(V̂ ; β̂)φ(V̂ )2σ2.

F (0; β̂) =L, F ′(V̄ (β̂); β̂) = −1, F ′′(V̄ (β̂); β̂) = 0.

Differentiating with respect to β̂ yields:

r
∂F (V̂ ; β̂)

∂β̂
=
∂F ′(V̂ ; β̂)

∂β̂
(γV̂ +

β̂2µ2φ(V̂ )2

2θ
+
µ2φ(V̂ )2(β − β̂)

θ
) +

1

2

∂F ′′(V̂ ; β̂)

∂β̂
φ(V̂ )2σ2

+ F ′(V̂ ; β̂)
µ2φ(V̂ )2

θ
(β̂ − 1). (28)

∂F (0; β̂)

∂β̂
=0,

∂F ′(V̄ ; β̂)

∂β̂
= 0

Applying a standard Feynman-Kac type of argument shows that the probabilistic

representation of ∂F (V̂ ;β̂)

∂β̂
which satisfies the system (28) is given by:

∂F (V̂ ; β̂)

∂β̂
= Ea

[∫ τ

t
e−r(s−t)F ′(V̂ )(β̂ − 1)

µ2φ(V̂ )2

θ
|V̂t = V̂

]
,

as desired. The second part of the proposition follows from an identical argument.

Proof of Proposition 4. First, we substitute the boundary conditions (7) and the ex-

pression for φ(V̂ ) from (8) into (6). Next, we set V̂ = V̄ and differentiate with respect to β̂.

Finally, we solve for ∂V̄
∂β̂

, which gives:

∂V̄

∂β̂
=

r

γ − r

[
(1− β̂)β2µ2

rθ(2β − 2β̂ + β̂2)2
− ∂F (V̂ ; β̂)

∂β̂

]
. (29)

Substituting for ∂F (V̂ ;β̂)

∂β̂
from (11) yields (14). A similar argument shows (15).
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