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Abstract

This paper studies optimal fiscal policy in a climate-economy model with heterogeneous households.
When individualized lump-sum taxation is not available, distortionary taxes on labor and capital
income are levied to provide redistribution. In contrast to the representative-agent setting, the
second-best pollution tax is then on average Pigouvian, with fiscal distortions driving only temporary
deviations from Pigou. In a quantitative analysis where the climate model is calibrated to DICE
and the fiscal system to the one of the U.S., we show that these temporary deviations are negligible,
so that the optimal carbon tax is approximately equal to the social cost of carbon (SCC). Economic
inequalities do not call for deviations from the Pigouvian principle, but they affect the Pigouvian
rate itself: in our baseline experiment, the inequalities that remain after the planner sets income
taxes optimally reduce the SCC by 4%. Optimal carbon taxation also leads to a more progressive tax
system: contrary to the double-dividend hypothesis, with heterogeneous households it is optimal to
use only half of the carbon tax revenue to reduce distortionary taxes, the rest being used to increase
transfers.
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1 Introduction

Economic inequality and environmental degradation are certainly two of the most critical issues facing
societies today. In order to address these two problems, economists have long argued for the use of fiscal
instruments: labor and capital taxes can be used to provide redistribution, and following the Pigouvian
principle a pollution tax can be used to internalize environmental externalities. However, pollution taxes
also have distributional implications as they heterogeneously impact households’ purchasing power.
Conversely, capital and labor taxes also affect the costs and benefits of improving the environment by
reducing incentives to work and invest. The goal of this study is to analyze how these instruments
should be jointly optimized if society wishes to tackle both inequality and environmental degradation.

We address this question from both a theoretical and a quantitative perspective. To do so, this
paper presents a dynamic fiscal climate-economy model with heterogeneous agents. We use a technique
introduced by Werning (2007) to extend the climate-economy model of Barrage (2019) to heterogeneous
agents. In our model, households derive utility from consumption, leisure, and environmental quality.
The final consumption good is produced using energy as one of its inputs. Energy production is
polluting, and pollution leads to environmental degradation that affects productivity and households’
utility. As in Barrage (2019), energy producers can reduce the emission intensity of their output by
engaging in costly abatement activities. Because of these costs, positive abatement will occur only if
producers also need to pay for their pollution, for example through a pollution tax. The government
thus faces multiple tasks at once: mitigating the pollution externality, providing redistribution, and
financing some exogenous government spending.

We model this as a Ramsey problem in which the government chooses the level of linear taxes—in
particular, taxes on labor and capital income, energy, and pollution—and a uniform lump-sum transfer
to maximize aggregate welfare. Because agents are heterogeneous but tax instruments are anonymous,
the government must rely on distortionary instruments to provide redistribution. We analytically
characterize optimal tax formulas and study the implications of heterogeneity for optimal pollution
taxation. We then use our model to examine how inequalities and distortionary taxation affect the
social cost of carbon (SCC) and the optimal carbon tax. We calibrate our climate model following
DICE 2016 (Nordhaus, 2017). On the economic side, we calibrate the fiscal system and household
heterogeneity (first in productivity, later in wealth and preferences for energy consumption) to match
U.S. data. Conceptually, our quantitative analysis examines the optimal fiscal policy of the U.S. if they
accounted for the negative global impact of their emissions.1

Theoretically, we find that the optimal pollution tax is a modified Pigouvian rule that accounts
for tax distortions via the marginal cost of public funds (MCF). However, because uniform lump-sum
taxation is available, the MCF is no longer higher than 1 as in representative-agent settings (see for
instance Bovenberg and Goulder, 1996; Barrage, 2019). In fact, we show that when households have
balanced-growth preferences, the MCF is on average equal to 1, so the optimal pollution tax may only
temporarily lie above or below the Pigouvian level. These temporary tax distortions are driven by the

1Specifically, we consider the problem of the U.S. government with its emissions scaled up to the global level. An
equivalent interpretation is that the world consists of a number of U.S. economies coordinating on their climate policies.
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costs the planner faces when implementing its preferred allocation. While these costs are on average
null in the presence of lump-sum taxation, they may not be in each period. We provide conditions
under which these costs are always null, and discuss the determinants of temporal variations in tax
distortions when they are not. Our theoretical results also highlight the role of consumption inequalities.
When the MCF is equal to unity, the second-best pollution tax is Pigouvian, but the Pigouvian tax is
evaluated at the second-best allocation. We show that consumption inequality affects the Pigouvian
tax ambiguously through the opportunity cost of emission abatement. On the one hand, consumption
is valued less in the presence of inequalities because it disproportionately goes to richer households
with lower marginal utilities of consumption. On the other hand, consumption inequalities increase the
average marginal utility of consumption, and thus the opportunity cost of abatement. We show that
with balanced-growth preferences, the latter effect dominates if and only if the intertemporal elasticity
of substitution is lower than 1, in which case inequalities reduce the value of the Pigouvian tax.

Quantitatively, we find that the MCF plays an insignificant role. The second-best carbon tax starts
at about 0.5% below the SCC, and then fluctuates at about 0.2% above or below. The SCC is, however,
significantly affected by the presence of inequalities: consumption inequality—after income taxes are
set optimally—reduces the SCC by 3.9% in our baseline calibration. We then compare our optimal
policy to the one of a “climate skeptic” planner who optimizes fiscal instruments assuming climate
change is exogenous, thus setting the carbon tax to zero. We find that the additional revenue raised
by the carbon tax is about equally split between increasing transfers and reducing the labor income
tax. Turning to welfare, we find that the optimal carbon tax policy has progressive effects in the 21st

century—owing to the higher progressivity of the tax system—and very large positive but regressive
effects afterwards, as richer households value environmental improvements proportionally more relative
to consumption.

We also examine the following extensions to our benchmark model:

1. We show that the roles of tax distortions and inequalities are robust to alternative calibrations,
such as more severe damages or different levels of government spending. The role of inequality
increases about proportionally with productivity heterogeneity and with the share of direct utility
damages, and increases more than proportionally with the intertemporal elasticity of substitution
(IES): when the IES is 2, inequalities reduce the carbon tax by 16.2% instead of 3.9% in our
baseline where the IES is 1.45.

2. We theoretically characterize and quantitatively compute third-best fiscal policies, i.e. optimal
fiscal policies when either the labor or the capital income tax is exogenously fixed at its current
level. The effect of inequalities on the social cost of carbon remains similar to our benchmark,
although it becomes larger when the planner cannot reduce inequalities as much as it would like
to. Tax distortions still play an insignificant role through the MCF, but the additional constraint
on fiscal instruments now generates a new fiscal interaction term which enters additively into the
pollution tax formula. When the labor or capital income tax is exogenously fixed below (resp.
above) its optimal value, this term is negative (resp. positive) and the third-best tax rule is set
below (resp. above) the second-best level.
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3. We show that when wealth is initially unequally distributed, the optimal capital income tax is
set such that all wealth is expropriated in the initial period. When the planner cannot choose the
initial capital tax, however, wealth inequality is costly for the planner. As this cost depends on
the level of aggregate consumption, wealth inequality also affects the opportunity cost of carbon
taxation. In particular, we find that wealth inequality significantly reduces the optimal level of
the carbon tax in the initial period, but does not affect the tax in subsequent periods.

4. We present a version of the model where households consume an additional dirty good that uses
energy as its only input. In order to capture heterogeneous budget shares that vary with income,
we model this good as a necessity. We show that as long as agents’ needs are identical, the
optimal tax formulas are unaffected. When agents have heterogeneous needs, the planner simply
adds a subsidy on the dirty good if the agents it values relatively more have higher needs. We
find that this heterogeneity does not significantly affect carbon taxes and that the subsidy is
quantitatively negligible, as heterogeneous energy needs between and within income groups do
not strongly co-vary with households’ welfare.

5. We introduce heterogeneous sensitivity to environmental degradation in the utility function. We
show that if utility is strongly separable in environmental preferences, heterogeneous environmen-
tal damages have no impact on the optimal pollution tax in the utilitarian case, but lead to higher
pollution taxes when the planner values more the agents more impacted by pollution. A Rawlsian
planner would therefore tax pollution at a higher level if poorer agents are also disproportionately
impacted by environmental damages.

Our paper contributes to two strands of the literature. First, it contributes to the literature on
the optimal taxation of pollution. In a pioneering work, Pigou (1920) established that the first-best
policy response to an externality is to implement a tax equal to its social cost. An extensive literature
has then investigated optimal pollution taxation in a second-best environment. In a representative-
agent framework, when the government does not have access to lump-sum transfers to finance public
expenditures, distortionary taxes typically raise the MCF above 1, and it becomes optimal to set
the pollution tax below the Pigouvian level (see e.g., Sandmo, 1975; Bovenberg and de Mooij, 1994;
Bovenberg and van der Ploeg, 1994; Bovenberg and Goulder, 1996).2 More recently, other papers have
considered this problem with heterogeneous agents and uniform lump-sum taxation (see e.g., Jacobs
and de Mooij, 2015; Jacobs and van der Ploeg, 2019), arguing that in this set-up the MCF is equal to
1 and the second-best tax is set at the Pigouvian level.3 While these papers focus on static settings
and model the pollution externality in a stylized manner, the recent work of Barrage (2019) creates
a critical bridge between the climate-economy literature and the dynamic public finance literature.
Her framework integrates a climate-economy model in the spirit of Golosov et al. (2014) into the
representative-agent Ramsey model (see Chari and Kehoe (1999) for a review). In this setting, tax

2For further references on second-best pollution taxation in representative-agents models, see Barrage (2019).
3Other papers jointly studying optimal pollution taxation and redistribution include, among others, Pirttilä and

Tuomala (1997), Cremer et al. (1998, 2003), Micheletto (2008), and Kaplow (2012).
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distortions again call for lower taxes on carbon emissions. Our main innovation relative to Barrage
(2019) is to introduce heterogeneous agents, which we see as critical for two reasons. First, this
allows us to jointly study environmental and equity issues. In addition of the importance of equity
in normative analysis, recent experience has shown that the distributional effects of environmental
policies were also critical to ensure their public support.4 Second, agent heterogeneity provides a sound
foundation for the study of second-best policies. In representative-agent settings, the second-best
environment arises because lump-sum transfers are assumed unfeasible: governments therefore need
to rely on distortionary taxes to finance their expenditures. Yet, in practice lump-sum transfers are
feasible as they simply correspond to the intercept on a tax scheme.5 With heterogeneous agents, lump-
sum transfers are no longer excluded as long as they do not discriminate between agents. Although this
non-distortionary source of public income is available, governments now want to use distortionary taxes
to provide redistribution. While our optimal tax formulas resemble the ones in Barrage (2019), this
significantly changes the implications of tax distortions. In particular, we find that the MCF averages
to 1 over time and that its temporal variations are quantitatively insignificant, so the optimal pollution
tax is approximately Pigouvian. Our results also show that unlike in representative-agent models, the
weak double-dividend hypothesis—according to which it is optimal to use the pollution tax revenue
exclusively to reduce distortionary taxes (see e.g., Goulder, 1995)—does not hold with heterogeneous
agents. At the optimum, the welfare gain from a marginal reduction in tax distortions is equal to the
marginal cost from increasing inequalities, hence the optimal policy divides the carbon tax revenue
about equally between reducing tax distortions and providing redistribution.6 While tax distortions
do not call for significant deviations from the Pigouvian principle as the double-dividend literature
suggests, we show that inequalities matter for the taxation of pollution: by increasing the opportunity
cost of abatement, inequalities reduce the social cost of pollution. In our quantitative analysis, this
effect appears to be significant although not very large, reducing the carbon tax by about 4% in the
baseline. Intuitively, inequalities are more effectively addressed using income taxes than the carbon
tax. Still, the carbon tax is affected by the residual inequality, i.e. the level of inequality that remains
after the planner has optimally set income taxes.

Second, this paper contributes to the analysis of the distributional effects of environmental taxes
in general equilibrium. An extensive literature has analyzed the distributional effects of environmental
taxes through the consumption channel (for a recent survey, see Pizer and Sexton, 2019), generally
pointing to regressive effects since the consumption share of polluting goods tends to decrease with

4Public protests against policy-induced increases in energy prices have recently occurred in many countries worldwide.
For instance, in France the Yellow Vests movement strongly opposed carbon tax increases due to the expected impact
on households’ purchasing power, leading to the abandonment of the scheduled carbon tax reforms (Douenne and Fabre,
2022).

5Recent policy proposals—such as the carbon tax and dividend advocated by the Climate Leadership Council and
signed by 3,354 American economists—even call for using such instruments to redistribute the carbon tax revenue
(Economists Statement on Carbon Dividends, 2019).

6This result echoes the recent findings of Fried et al. (2021) who study the optimal recycling policy for an exogenous
carbon tax introduced in a sub-optimal tax system. In their model with heterogeneity between and within generations,
they find that two-third of the carbon tax revenue should be used to reduce taxes on capital income, one third to provide
redistribution.
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income (Levinson and OBrien, 2019). More recently, several authors have also analyzed the hetero-
geneous incidence of environmental taxes on households’ income. While a number of papers found
progressive effects due to the larger negative impact of the policy on capital income relative to labor
income and transfers (see e.g. Rausch et al., 2011; Fullerton and Monti, 2013; Williams et al., 2015;
Goulder et al., 2019), the recent work of Känzig (2021) shows—exploiting exogenous shocks to the
EU-ETS price—that carbon taxation has a larger impact on poor households’ income. Many papers
have also shown that the incidence of carbon taxation largely depends on how the tax revenue is re-
cycled. In particular, Fried et al. (2018) study the economic impact of introducing a carbon tax with
three alternative revenue-recycling schemes in a quantitative OLG model with heterogeneity within-
generations. They show that while a uniform lump-sum rebate is more costly than reductions of the
labor or capital tax rates in steady state, it is more favorable to the current generation and leads to less
adverse distributional effects.7 Finally, a few papers have considered the heterogeneous environmental
benefits of climate change mitigation, between generations (e.g., Leach, 2009; Kotlikoff et al., 2021) or
between regions (e.g., Hassler and Krusell, 2012; Krusell and Smith, 2015; Cruz and Rossi-Hansberg,
2021). In this paper, we jointly study the financial and environmental impacts from optimal pollution
taxation, both over time and between heterogeneous households who differ in income, wealth, and
energy budget share. We find that accounting for environmental benefits, current rich households lose
the most from carbon taxation, but future rich households win the most provided they are not less
exposed to environmental damages.

The rest of the paper is organized as follows. Section 2 presents the model, and Section 3 the
optimal tax formulas. Section 4 describes our calibration and Section 5 presents our main quantitative
exercise. Extensions of our main framework are provided in Section 6. Section 7 concludes.

2 Model

The model builds on Barrage (2019): one sector of the economy produces a final good using capital,
labor, and energy, which is itself produced in the second sector. Energy production generates pollution
that leads to environmental degradation, which in turn affects productivity and households’ utility. The
government finances an exogenous stream of expenditures using taxes on labor income, capital income,
energy, and pollution, as well as a lump-sum tax. The key departures from Barrage (2019) are that,
in our model, households are heterogeneous and the government has access to a (non-individualized)
lump-sum tax or transfer. Consequently, although the government has access to a non-distortionary
source of revenue, it uses distortionary taxes for redistributive purposes.

7Leach (2009), Rausch (2013), and Rausch and Yonezawa (2018) also quantitatively investigate the distributional
effects from revenue recycling across generations, with a representative agent for each generation. Other papers use a
dynamic model to compute the incidence of carbon tax reforms, and simulate the distributional effects across heterogeneous
agents in the initial period (Williams et al., 2015) or over different time intervals (Goulder et al., 2019). All these papers
consider exogenous reforms and—with the exception of Leach (2009)—ignore environmental effects.
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2.1 Households

We consider an economy populated by a continuum of infinitely-lived agents divided into types i ∈ I of
size πi. The total population size in period t is Nt. Each agent, or dynasty of type i ∈ I ranks streams
of consumption of a final good ci,t, labor supply hi,t, and environmental degradation Zt according to
the preferences

∞∑
t=0

βtNtu (ci,t, hi,t, Zt) . (1)

In our benchmark, agents are assumed to differ in two ways: their productivity levels, ei, and their
initial asset holdings, ai,0. Productivity levels are normalized such that

∑
i πiei = 1. Agents’ assets are

composed of government debt and capital and we denote respectively bi,t and ki,t the number of units
of these assets held by agents of type i between periods t − 1 and t, with ai,t = bi,t + ki,t. Aggregates
are denoted without the subscript i: Ct = Nt

∑
i πici,t, Ht = Nt

∑
i πieihi,t, Bt = Nt

∑
i πibi,t, and

Kt = Nt
∑

i πiki,t. In addition, per period average consumption and hours worked are denoted by
ct ≡ Ct/Nt and ht ≡ Ht/Nt.

Let pt denote the price of the consumption good in period t in terms of consumption in period 0 (so
that p0 = 1), wt and rt denote the real wage and the rental rate of capital in period t, and Rt its gross
return (between t − 1 and t). Finally, let τH,t and τK,t represent the labor and capital income taxes,
and Tt the aggregate uniform lump-sum transfers received by all households in period t. Given ki,0, bi,0,
prices {pt, wt, Rt}∞t=0 and policies {τH,t, τK,t, Tt}∞t=0, agents of type i choose {ci,t, hi,t, ki,t+1, bi,t+1}∞t=0

to maximize (1) subject to the budget constraint

∞∑
t=0

ptNt (ci,t + ki,t+1 + bi,t+1) ≤
∞∑
t=0

ptNt ((1− τH,t)wteihi,t +Rt (ki,t + bi,t) + Tt/Nt) ,

where Rt ≡ 1 + (1− τK,t) (rt − δ), for t ≥ 0. Here, we use the convention that the capital income tax
is levied on the rate of return net of depreciation, but none of our results depend on it. No arbitrage
requires pt = Rt+1pt+1, and defining T ≡

∑∞
t=0 ptTt as the present value of lump-sum transfers, the

budget constraint can equivalently be written as
∞∑
t=0

ptNt

(
ci,t − (1− τH,t)wteihi,t

)
≤ R0N0ai,0 + T. (2)

From the first order conditions of agent i’s problem we have

βt uc,i,t
uc,i,0

= pt, ∀ t ≥ 0,

uh,i,t
uc,i,t

= − (1− τH,t) eiwt, ∀ t ≥ 0,

which holds across all agents. To reduce notations, we use subscripts x, i, t to denote partial derivatives
with respect to argument x for agent of type i at time t, and we keep the arguments of the derivatives
implicit.
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2.2 Final good sector

As in Barrage (2019), there are two production sectors. In the final good sector, indexed by
1, a consumption-capital good is produced with a concave, constant returns to scale technology,
F (K1,t,H1,t, Et), that uses capital K1,t, labor H1,t, and energy Et. The total factor productivity
is given by A1,t and the function D (Zt) controls the damages to production implied by environmental
degradation, with D′(Zt) > 0. The output Y1,t is given by

Y1,t = (1−D(Zt))A1,tF (K1,t,H1,t, Et).

The first order conditions for the firm problem are:

rt = (1−D (Zt))A1,tFK,t, ∀ t ≥ 0, (3)

wt = (1−D (Zt))A1,tFH,t, ∀ t ≥ 0, (4)

pE,t = (1−D (Zt))A1,tFE,t, ∀ t ≥ 0. (5)

Here, pE,t denotes the price of energy in period t. Because there are constant returns to scale and
inputs are paid according to their marginal productivity, final goods producers make zero profits.

2.3 Energy sector

The energy sector, indexed by 2, produces energy Et using capital K2,t and labor H2,t with a constant
returns to scale technology so that

Et = A2,tG (K2,t,H2,t) , ∀ t ≥ 0. (6)

Energy producers can provide a fraction µt of energy from clean technologies, at additional cost
Θt (µt, Et), which satisfies Θµ,t,ΘE,t,Θµµ,t > 0, ΘEE,t ≥ 0 and Θt(0, Et) = Θt(µt, 0) = 0. Convexity in
Θt(·, ·) captures decreasing returns to abatement. This function nests the one used in Barrage (2019),
where Θt (µt, Et) = Θt (µtEt), and in Nordhaus (2017), where it is equivalent to Θt (µt, Et) = Θt (µt)Et.
In our calibration, we opt for the latter specification in order to follow DICE as closely as possible.
Total profits from energy production are given by

Πt = (pE,t − τI,t)Et − τE,t (1− µt)Et − wtH2,t − rtK2,t −Θt (µt, Et) ,

where τI,t denotes the excise intermediate-goods tax on total energy and τE,t denotes the excise tax
on pollution emissions EM

t = (1− µt)Et. Firms maximize profits subject to the technology constraint
given by equation (6) by choosing the abatement term µt, capital K2,t, and labor H2,t. The first order
conditions are

rt =
(
pE,t − τI,t − τE,t(1− µt)−ΘE,t

)
A2,tGK,t, ∀ t ≥ 0, (7)

wt =
(
pE,t − τI,t − τE,t(1− µt)−ΘE,t

)
A2,tGH,t, ∀ t ≥ 0, (8)

τE,t =
Θµ,t

Et
, ∀ t ≥ 0. (9)
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If there is positive abatement and Θt(·, ·) is convex in its second argument, profits in the energy sector
will be positive. For simplicity, we assume that these profits are taxed at a confiscatory rate τπ,t = 1.
Doing so is typically optimal, as taxing pure profits does not generate distortions and income from
shareholdings tends to be unequally distributed. In our calibration in Section 4, the abatement cost
function is strictly convex in its first argument and linear in the second, hence profits are null.

Capital and labor are mobile across sectors, so market clearing requires

K1,t +K2,t = Kt, ∀ t ≥ 0, (10)

H1,t +H2,t = Ht, ∀ t ≥ 0. (11)

2.4 Government

Each period the government finances its expenses Gt and lump sum transfers Tt with proportional
income taxes on capital τK,t and labor τH,t, total energy taxes τI,t, and emissions taxes τE,t. In
addition, profits are taxed at a confiscatory rate: τπ,t = 1. The government’s budget constraint is

R0B0 + T +
∑
t

ptGt =
∑
t

pt
(
τH,twtHt + τK,t (rt − δ)Kt + τI,tEt + τE,tE

M
t +Πt

)
. (12)

Although the instruments levied are proportional, the tax system is progressive when transfers are
positive. As shown in Piketty and Saez (2013) and Dyrda and Pedroni (2022), an affine tax system
provides a good approximation of actual tax systems such as the one of the U.S.

2.5 Environmental degradation

The environmental variable is affected by the history of pollution emissions EM
t = (1− µt)Et, initial

conditions S0, and the history of exogenous shifters ηt according to

Zt = J
(
S0, E

M
0 , ..., EM

t , η0, ..., ηt
)
, ∀ t ≥ 0. (13)

In our calibration below, Z represents the global mean temperature that is the outcome of the climate
model J . In this section and the next, we do not further specify this function and our theoretical results
can apply to any kind of pollution externality affecting production and households’ utility.

2.6 Competitive equilibrium

Definition 1 Given a distribution of assets {ai,0}, aggregate capital K0 and aggregate bond holdings
B0, a competitive equilibrium is a policy {τH,t, τK,t, τI,t, τE,t, Tt}∞t=0, a price system {pt, wt, rt, pE,t}∞t=0

and an allocation
{
(ci,t, hi,t)i , Zt, Et,K1,t,K2,t,Kt+1,H1,t,H2,t,Ht

}∞
t=0

such that: (i) agents choose{
(ci,t, hi,t)i

}∞
t=0

to maximize utility subject to budget constraint (2) taking policies and prices (that
satisfy pt = Rt+1pt+1) as given; (ii) firms maximize profits; (iii) the government’s budget constraint
(12) holds; (iv) markets clear: the resource constraints (6), (10), (11), and (13) hold, and

Ntct +Gt +Kt+1 +Θt (µt, Et) = (1−D (Zt))A1,tF (K1,t,H1,t, Et) + (1− δ)Kt, ∀ t ≥ 0. (14)
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3 Optimal tax rules

In this section, we use the technique introduced by Werning (2007) to express agents’ equilibrium allo-
cations as a function of aggregate variables, and solve the Ramsey problem as a function of aggregates
instead of their full distributions.

3.1 Ramsey problem

A simple characterization of equilibrium Because the government sets linear tax rates, all agents
face the same marginal rate of substitution between consumption and leisure. Consequently, the distri-
bution of individual allocations (ci,t, hi,t) is efficient given aggregates (ct, ht, Zt), where ct = Ct/Nt and
ht = Ht/Nt denote the average consumption and hours worked in period t. Following Werning (2007),
it is therefore possible to split up the optimal tax problem in two steps. The first is to determine indi-
vidual allocations given aggregates, and the second is to determine the aggregates. Starting with the
first step, denote by φ ≡ {φi} a set of market weights with φi ≥ 0. Using the property that individual
allocations are efficient given aggregates, we can characterize these allocations by solving the following
static sub-problem for each period t:

U (ct, ht, Zt;φ) ≡ max
ci,t,hi,t

∑
i

πiφiu (ci,t, hi,t, Zt) ,

s.t.
∑
i

πici,t = ct and
∑
i

πieihi,t = ht.
(15)

Here, U (ct, ht, Zt;φ) denotes the indirect aggregate utility function, computed using market weights
and aggregates. To reduce the notation burden and ease tractability, we assume that utility is additively
separable in Z, i.e. that we can write

u (ci,t, hi,t, Zt) ≡ ũ (ci,t, hi,t) + û(Zt).

Implementability condition Applying the envelope theorem to problem (15) and using consumers’
first order conditions we get

Uh,t

Uc,t
=

uh,i,t
uc,i,tei

= −wt (1− τH,t) ,

and
Uc,t

Uc,0
=

uc,i,t
uc,i,0

=
pt
βt

.

Using these relationships to substitute out for prices in agents’ budget constraints, for any agent i we
can derive an implementability condition that depends only on the aggregates ct and ht, and market
weights φ

Uc,0

(
R0N0ai,0 + T

)
=

∞∑
t=0

Ntβ
t

(
Uc,tc

m
i,t

(
ct, ht;φ

)
+ Uh,teih

m
i,t

(
ct, ht;φ

))
, ∀ i, (16)

with cmi,t(ct, ht;φ) and hmi,t(ct, ht;φ) solutions to problem (15). The following Proposition follows imme-
diately from the arguments above.
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Proposition 1 An aggregate allocation {ct,H1,t,H2,t,K1,t,K2,t, Et, Zt, µt}∞t=0 can be supported by a
competitive equilibrium if and only if the market clearing conditions (10), and (11) hold, the resource
constraints (6), (13), (14) hold and there exist market weights φ and a lump-sum tax T such that the
implementability conditions (16) hold for all i ∈ I. Individual allocations can then be computed using
functions cmi,t and hmi,t, prices and taxes can be computed using the usual equilibrium conditions.

Problem Let λ ≡ {λi} be the planner’s welfare weight on type i, with
∑

i πiλi = 1. The Ramsey
problem is

max
{ct,H1,t,H2,t,K1,t,K2,t,

Et,Zt,µt}∞t=0,T,φ

∑
t,i

Ntβ
tπiλiu

(
cmi,t
(
ct, ht;φ

)
, hmi,t

(
ct, ht;φ

)
, Zt

)
, (17)

subject to

Uc,0

(
R0N0ai,0 + T

)
=

∞∑
t=0

Ntβ
t
(
Uc,tc

m
i,t(ct, ht;φ) + Uh,teih

m
i,t (ct, ht;φ)

)
, ∀ i,

FK,tGH,t = GK,tFH,t, ∀ t ≥ 0,

Ntct +Gt +Kt+1 +Θt (µt, Et) = (1−D (Zt))A1,tF (K1,t,H1,t, Et) + (1− δ)Kt, ∀ t ≥ 0,

Et = A2,tG (K2,t,H2,t) , ∀ t ≥ 0,

Zt = J
(
S0, E

M
0 , ..., EM

t , η0, ..., ηt
)
, ∀ t ≥ 0,

K1,t +K2,t = Kt, ∀ t ≥ 0,

H1,t +H2,t = Ntht, ∀ t ≥ 0.

The first of these constraints is the implementability condition, which must hold for each agent i. It is
written solely in terms of aggregate variables and states that the present value of consumption equals
the present value of labor income, initial assets and lump-sum transfers. The second constraint states
that the marginal rate of technical substitution between capital and labor is the same in both sectors,
a restriction associated with the fact that the government does not use sector-specific instruments and
factors are mobile across sectors. The other constraints reflect market clearing for capital, labor and
goods, and technological constraints.

To simplify the exposition, we assume for now that there is no initial wealth inequality, that is
ai,0 = aj,0 for all i and j. An equivalent interpretation is that there is initial wealth inequality, but that
all wealth is expropriated by the planner. This can be done by taxing it directly, R0 = 0, or through
a combination of consumption and labor taxes: see Werning (2007) for a discussion.8 We relax the
assumption that there is no initial wealth inequality, or equivalently that all wealth can be expropriated,
and study the implications for optimal taxes in Section 6.2. Without initial wealth inequality and with
the ability to adjust lump-sum transfers, the optimal level of τK,0 is indeterminate. We therefore assume
that τK,0 is taken as given by the Ramsey planner.9

8Levying a confiscatory tax on all initial wealth is generally optimal if assets and productivity are positively correlated.
In that case, taxing wealth reduces inequality without generating any distortions.

9If there is initial wealth inequality and the government can adjust a lump-sum transfer, the level of τK,0 is no longer
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3.2 General formulas

Capital and labor income taxes From the planner’s first order conditions, the labor and capital
income taxes are determined by

τH,t = 1−
Uh,t

Uc,t

Wc,t

Wh,t
,

and
Rt+1

R∗
t+1

=
Wc,t+1

Wc,t

Uc,t

Uc,t+1
,

where the pseudo-utility function W is defined as

W (ct, ht, Zt;φ, θ, λ) ≡ V (ct, ht, Zt;φ, λ) +
∑
i

πiθiICi(ct, ht, φ),

with
V (ct, ht, Zt;φ, λ) ≡

∑
i

πiλiu
(
cmi,t (ct, ht;φ) , h

m
i,t (ct, ht;φ) , Zt

)
, (18)

the aggregate utility based on the planner’s weights,

ICi(ct, ht, φ) ≡ Uc,tc
m
i,t (ct, ht;φ) + Uh,teih

m
i,t (ct, ht;φ) , (19)

the difference between agent i spending on consumption and labor income in period t as it appears in
its implementability constraint, and πiθi the Lagrange multiplier on the implementability constraint
of agent i in the Ramsey problem. These optimal tax formulas are the same as the ones obtained in
Werning (2007). The reason is that the environmental variable enters additively to the problem and
does not directly affect the labor and capital tax rules.

Excise taxes on energy and emissions The planner’s first order conditions together with firms
equilibrium conditions give

τI,t = 0.

Thus, as long as labor, capital, profits and pollution can be taxed, there is no point in distorting
production decisions. This result can also be found in Bovenberg and Goulder (1996) and Barrage
(2019) and goes back to the production efficiency theorem of Diamond and Mirrlees (1971). Turning
to the pollution tax we have

τE,t =

∞∑
j=0

βj

(
Vc,t+j +

∑
i πiθiICc,i,t+j

Vc,t +
∑

i πiθiICc,i,t
D′

t+jA1,t+jFt+j −
Nt+jVZ,t+j

Vc,t +
∑

i πiθiICc,i,t

)
JEM

t ,t+j , (20)

where the arguments to the production function Ft have been dropped to simplify notations. The term
Vc,t +

∑
i πiθiICc,i,t appears from the substitution of Wc,t = ν1,t, where ν1,t is the Lagrange multiplier

on the planner’s resource constraint. When the pollution tax increases, abatement increases, which

indeterminate. However, when studying the impact of initial wealth inequality on optimal taxes in Section 6.2, we also
treat τK,0 as given. The reason for doing so is that optimizing over τK,0 allows the planner to confiscate all initial wealth,
which immediately gets rid of all initial wealth inequality as well.
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increases the scarcity of the final good. The opportunity cost of increasing the pollution tax therefore
corresponds to the marginal cost of increasing the final good’s scarcity, which is equal to the marginal
utility from consumption as computed using the planner’s weights (Vc,t) plus a term which captures the
marginal reduction in the planner’s implementation cost from an increase in aggregate consumption
(
∑

i πiθiICc,i,t). Intuitively, θi represents the shadow cost of transferring one unit of consumption to
households i, and ICi,t the difference between i’s consumption and labor income in period t. Therefore,∑

i πiθiICi,t represents the cost for the planner to implement its preferred allocation in period t. The
degree to which this cost depends on the scarcity of the final good, ct, is captured by the term ICc,i,t.

This formula holds both for the first and second-best. Still, the optimal pollution tax may differ
between these two fiscal environments for three reasons: the value of the marginal implementation
cost, the path of aggregate variables, and the distribution of individual allocations all depend on fiscal
policies.

3.3 Comparison with first-best

The role of tax distortions The first potential difference between the first and second-best pollution
tax lies in the value of the marginal reduction in implementation cost,

∑
i πiθiICc,i,t. In the first-best,

the first order conditions with respect to individualized lump-sum transfers give

θi = 0, ∀i.

It follows that the planner can achieve its preferred allocation at no cost, and the optimal pollution tax
simplifies to

τFB
E,t =

∞∑
j=0

βj

(
Vc,t+j

Vc,t
D′

t+jA1,t+jFt+j −
Nt+jVZ,t+j

Vc,t

)
JEM

t ,t+j .

This formula illustrates the well-known Pigouvian principle according to which the optimal corrective
tax is equal to the social cost of the externality: the tax corresponds to the discounted sum of marginal
(utility and production) damages valued at the marginal utility of consumption.

Turning to the second-best case, where only a uniform lump-sum transfer is available in each period,
the first order condition with respect to the transfer gives∑

i

πiθi = 0,

hence ∑
i

πiθiICc,i,t = cov
(
θi, ICc,i,t

)
.

Thus, at the second-best, the sum of the multipliers associated with the implementability conditions
is zero, but the marginal cost for the planner to implement its preferred allocation in a given period
is not necessarily zero. The definitions below lead to Proposition 2 which states how the second-best
pollution tax deviates from the Pigouvian principle when the covariance term above deviates from 0.
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Definitions (Pigouvian tax) From the first-best tax formula, we can decompose the Pigouvian tax
into a production component (τPigou,Y

E,t ) and a utility damage component (τPigou,U
E,t ),

τPigou,Y
E,t ≡

∞∑
j=0

βj Vc,t+j

Vc,t
D′

t+jA1,t+jFt+jJEM
t ,t+j ,

τPigou,U
E,t ≡ (−1)

∞∑
j=0

βjNt+jVZ,t+j

Vc,t
JEM

t ,t+j ,

with the total Pigouvian tax τPigou
E,t ≡ τPigou,Y

E,t + τPigou,U
E,t , the share of marginal utility damages at time

t,

ωU
t ≡

τPigou,U
E,t

τPigou
E,t

,

and the share of marginal production damages occurring at time t + s due to a marginal change in
emissions at time t,

∆t+s ≡
βsVc,t+sD

′
t+sA1,t+sFt+sJEM

t ,t+s∑∞
j=0 β

jVc,t+jD′
t+jA1,t+jFt+jJEM

t ,t+j

.

Definition (Marginal cost of funds) Let us define the marginal cost of funds (MCF) as the ratio of
the public to the private marginal utility of consumption,10

MCFt ≡
ν1,t
Vc,t

.

Definition (Balanced-growth preferences) An agent has balanced-growth preferences if its utility
function can be expressed as

u (ci, hi, Z) =
(ci(1− ςhi)

γ)1−σ

1− σ
+ û(Z), (21)

with 1/σ the intertemporal elasticity of substitution (IES).

Proposition 2 Let τPigou
E,t

∣∣∣
SB

denote the Pigouvian tax evaluated at the second-best allocation. When
the planner has only access to a uniform lump-sum transfer, the optimal pollution tax formula is a
modified Pigouvian rule adjusted for the marginal cost of funds,

τE,t = τPigou
E,t

∣∣∣
SB

( ∞∑
j=0

MCFt+j

MCFt
∆t+j(1− ωU

t ) +
ωU
t

MCFt

)
, (22)

10Jacobs and de Mooij (2015) and Jacobs and van der Ploeg (2019) use a definition of the marginal cost of funds that
takes into account fiscal externalities resulting from income effects. They find that the marginal cost of funds equals 1 at
the optimal tax system, owing to the fact that the government can optimize a lump-sum transfer (see also Jacobs, 2018).
However, because as in Barrage (2019) we optimize over the allocation variables directly rather than over tax instruments,
it is more convenient to define the marginal costs of funds as the ratio between the multiplier on the government budget
constraint and the average marginal utility of consumption computed using Pareto weights, which Jacobs and de Mooij
(2015) refer to as the traditional measure of the MCF.
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with
MCFt = 1 +

cov(θi, ICc,i,t)

Vc,t
. (23)

If agents have balanced-growth preferences, then from period 0 the welfare-weighted average MCF is 1,
i.e. with Vt ≡ V (ct, ht, Zt;φ, λ), ∑∞

t=0Ntβ
tVt × MCFt∑∞

t=0NtβtVt
= 1.

In the limit case where the IES tends to 1, then for t ≥ 0, MCFt = 1.

The proof of Proposition 2 is provided in Appendix A.5. The optimal pollution tax reflects the arbitrage
between the marginal benefits of pollution abatement and the opportunity cost from reductions in
aggregate consumption. In the first-best, this opportunity cost is given by the marginal utility of
consumption, Vc,t. In the second-best, the planner also accounts for the fiscal costs associated with a
reduction in consumption. At any time t ≥ 0, the shadow cost of the consumption good is given by
Vc,t × MCFt, hence the opportunity cost of abatement is higher than in the first best if and only if the
MCF is above 1. Fiscal distortions also affect the marginal benefits of pollution abatement through
the value of future production damages. Thus, when the MCF decreases over time, fiscal distortions
operate as a form of discounting: consumption is valued relatively more in the present than in the
future, hence future production damages are relatively under-internalized. We show in Appendix A.5
that the ratio of MCFs can be expressed as

MCFt+j

MCFt
=

j∏
k=1

Rt+k

R∗
t+k

,

from which we see that the MCF is constant if the capital tax is null for all future periods where current
emissions generate production damages. Thus, as in Barrage (2019), the optimal tax on production
damage is not distorted as long as, going forward, the capital income tax is optimally set to zero.
Intuitively, in this situation fiscal distortions affect future marginal abatement benefits proportionally
to current marginal abatement costs. Production damages are then perfectly internalized, and the
optimal tax can be expressed as

τE,t = τPigou,Y
E,t

∣∣∣
SB

+
τPigou,U
E,t

∣∣∣
SB

MCFt
.

Proposition 2 additionally provides an expression for the MCF as a function of individual allocations
given by θi and ICc,i,t. The first term, θi, represents the shadow cost for the planner of providing an
additional unit of lump-sum transfer to agent i. While θi is on average null at the optimum, it typically
takes a positive value for rich agents and a negative value for poor agents.11 The second term, ICc,i,t,

11As shown in Appendix A.4.2, with balanced-growth preferences we have

θi =
∑
j

πjλj

φj
− λi

φi
, ∀i,

hence −θi represents how much the agent is valued by the planner relative to the market, as compared to an average
agent.
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represents how the difference between the agent current consumption and current labor income changes
when more resources are available for consumption. We show in Appendix A.5 that this term is in fact
driven by two mechanisms: a volume and a price effect. When less resources are used for pollution
abatement, consumption increases and labor supply adjusts, which also affects prices and wages. When
households have balanced-growth preferences and the IES tends to 1, these two effects exactly offset
each other, such that the present value of the lump-sum transfer necessary to satisfy households’ budget
constraints remains unchanged. In this situation, taxing pollution does not affect tax distortions, the
MCF is equal to 1, and the second-best tax is exactly Pigouvian. When the IES is below (resp. above)
1, the price (resp. volume) effect dominates and an increase in aggregate consumption reduces (resp.
increases) the total amount of transfers needed to satisfy agents’ implementability constraints. If these
changes are heterogeneous across households and correlate with their type, the MCF differs from 1. At
the optimum, agents’ binding implementability conditions imply

∞∑
t=0

Ntβ
tICi,t = Uc,0(R0ai,0 + T ),

hence with no initial wealth inequality (or equivalently, full expropriation of initial wealth) the dis-
counted sum of ICi,t is invariant across types. Intuitively, this condition means that with a uniform
lump-sum transfer, the discounted sum of expenditures minus labor income must be the same for every-
one. We show in Appendix A.5 that this condition implies that with balanced-growth preferences the
covariance term in (23) averages to 0 over time, hence the MCF is on average equal to 1 and the optimal
pollution tax is on average equal to the Pigouvian level. Still, in any period t ≥ 0, this covariance term
may differ from 0, hence temporary deviations from the Pigouvian principle may occur. In particular,
we show in Appendix A.5 that with balanced-growth preferences, the covariance is positive when IES
is below 1 and aggregate labor supply is high relative to its long-run value. In this situation, increasing
aggregate consumption makes it relatively easier to satisfy the budget constraint of richer agents for
whom transfers are costly for the planner (θi > 0), hence the opportunity cost of pollution taxation is
higher because of fiscal motives, the MCF is above 1, and the optimal tax is (temporarily) below the
Pigouvian level.

The role of inequalities When the marginal cost of funds is 1, the first and second-best tax formulas
coincide, and they are both equal to the social cost of pollution. Still, the actual tax levels may differ
for two reasons.

The first reason is that, when the tax system is different, aggregate variables generally take different
values. When capital and labor are taxed, labor supply and investments are expected to be lower, hence
output, consumption, and pollution are also expected to be lower along the optimal path. Since the
pollution tax level is determined by the trade-off between the marginal utility of consumption and the
marginal utility of pollution abatement, if both pollution and consumption are lower, the optimal tax
will generally be set at a lower level since utility is concave in consumption and convex in pollution.12

12This result also depends on the law of motion of environmental degradation: if each additional unit of pollution
emitted increases degradation by less than the previous unit, the marginal abatement benefits could be lower for higher
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The second reason is that the distribution of individual allocations also differs depending on the
fiscal environment. Because individualized lump-sum transfers are not feasible in the second-best, there
are generally more consumption inequalities. The welfare gains from leaving more resources available
for agents’ consumption by decreasing the pollution tax may then be higher or lower compared to the
first-best depending on the curvature of agents’ utility function.

Proposition 3 The social cost of pollution from utility damages is inversely related to the social
marginal utility of consumption Vc,t. If agents have balanced-growth preferences, Vc,t can be expressed
as

Vc,t =
∑
i

πiλiuc,i,t + cov
(
λiuc,i,t,

ci,t
ct

)
,

and holding aggregate variables constant, consumption inequalities affect Vc,t in two opposite ways: i)
they increase it by increasing the average value of households’ marginal utility of consumption, and ii)
they reduce it because a larger share of additional consumption (ci,t/ct) is attributed to households with
lower marginal utilities of consumption (uc,i,t). In the limit case where the IES tends to 1, the two
effects exactly offset each other and consumption inequalities do not affect the tax level.

The proof of Proposition 3 is provided in Appendix A.5. In the presence of inequalities, an increase
in aggregate consumption is valued more to the extent that households’ marginal utilities are higher
on average (by convexity of the marginal utility function), but it is valued less to the extent that the
inflow in consumption disproportionately goes to richer households with lower marginal utilities. An
increase in the pollution tax reduces every households’ consumption proportionally. In the limiting
case in which IES tends to 1, the planner is indifferent between a proportional increase in consumption
for a rich or a poor agent, so inequalities do not affect the planner’s marginal valuation of aggregate
consumption.13 When utility is more concave, the first mechanism becomes relatively stronger and
inequalities lead to a higher social marginal utility of consumption, thereby increasing the opportunity
cost associated with raising pollution taxes.

4 Calibration

In this section, we explain how we calibrate the model to explore quantitatively the implications of
heterogeneity in productivity for the optimal taxation of carbon, capital income, and labor income.
As in Barrage (2019), we consider a climate-economy model based on Nordhaus’ DICE model. While
Barrage (2019) considers a planner setting taxes for the global economy, we adopt a slightly different
approach: we consider a global economy with the economic features of the U.S. economy, i.e. we

levels of pollution.
13In the simpler case where agents have logarithmic utility on consumption only, it is straightforward to see that the

distribution of households’ consumption has no effect on the planner’s valuation of an homogeneous increase in consumption∑
i

πiλiln((1 + x)ci)−
∑
i

πiλiln(ci) = ln(1 + x).
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parametrize the income per capita, the productivity distribution, and the fiscal system to match U.S.
data, but we scale our economy so that output and emissions match global data. The objective is to
determine how an economy with important inequalities and responsible for a significant share of global
emissions like the U.S. should design its fiscal system if it were to internalize the global impact of its
emissions, assuming that the rest of the world would behave identically.

4.1 Climate model

The calibration of the climate model is based on the 2016 version of DICE, presented for example
in Nordhaus (2017). The initial period is 2015, and each period lasts 5 years. The climate model is
composed of three sets of equations describing the carbon cycle, radiative forcing, and climate change.

Carbon cycle The carbon cycle is represented by three reservoirs. SAt, SUp, and SLo represent the
level of carbon concentration in the atmosphere, the upper oceans and biosphere, and the deep oceans
respectively. These stocks evolve according to the following laws of motion:

Sj
t = b0,j(E

M
t + Eland

t ) +

3∑
i=1

bi,jS
i
t−1,

where the three reservoirs j are ranked as above and with Eland
t the exogenous land emissions. The

coefficient b0,j is 1 for the first reservoir (SAt) and 0 for the others: industrial and land emissions
directly flow into the atmosphere, and later affect the other two reservoirs through the communication
between the carbon stocks captured by the parameters bi,j .

Radiative forcing The accumulation of carbon in the atmosphere increases radiative forcing, i.e.
the net radiation received by the earth. This mechanism is captured by the following equation

Ft = κ
(
ln(SAt

t /SAt
1750)/ln(2)

)
+ Fex

t .

where Fex
t is exogenous forcing. A positive radiative forcing means that the earth receives more energy

from the sun than it emits back to space, hence the climate warms.

Climate change The change in temperature is modeled through two equations for the mean tem-
perature of the atmosphere (ZAt

t ) and deep oceans (ZLo
t ) that interact as follows

ZAt
t = ZAt

t−1 + ζ1
(
Ft − ζ2Z

At
t−1 − ζ3(Z

At
t−1 − ZLo

t−1)
)
,

ZLo
t = ZLo

t−1 + ζ4(Z
At
t−1 − ZLo

t−1).

All the parameters of the climate model are taken from DICE 2016, and reported in Table VI in the
appendix.
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4.2 Damages

We also model production damages as in DICE 2016, with

D(Z) = a1Z + a2Z
a3 , (24)

As in DICE, we assume that D(Z) is a simple quadratic function with a1 = 0 and a3 = 2. The relevant
Z that enters this formula, in each period t, is the atmospheric temperature ZAt

t . Since DICE does
not distinguish between production and utility damages, we follow Barrage (2019) to decompose the
damages from DICE into a production and a utility component. We apply her decomposition and
assign 74% of damages at 2.5°C warming to output, and 26% to utility. This provides an adjusted
value for the parameter a2 in equation (24), and enables us to calibrate utility damages (specifically
the preference parameter α0 described below).

To examine the robustness of our quantitative results to the level of damages, we also consider an
alternative “high damage” specification. Instead of assuming quadratic damages, we consider a cubic
function (a1 = 0, a3 = 3) and we adjust the coefficient a2 such that damages are identical to the
baseline scenario at current warming. This high damages scenario therefore assumes that the damage
function in DICE correctly captures current damages, but mis-estimates damages at higher levels of
warming because of the high uncertainties surrounding the impacts of climate change at these higher
temperatures (see e.g., Weitzman, 2009; Pindyck, 2013).

4.3 Households

We assume households have balanced-growth preferences as defined in (21) with

û(Z) =

(
1 + α0Z

2
t

)−(1−σ)

1− σ
,

as in Barrage (2019). Using market weights, the intertemporal aggregate utility is

∑
t

βtNtU (ct, ht, Zt, φ) =
∑
t

βtNt

(
(ct(1− ςht)

γ)1−σ

1− σ
+ Γ

(
1 + α0Z

2
t

)−(1−σ)

1− σ

)
,

with Γ ≡
∑

i πiφi and where Zt ≡ ZAt
t is the atmospheric temperature (see Appendix A.4.1). To ensure

that aggregate emissions remain consistent with DICE, we calibrate the growth rate of population
accordingly. Because we also want to match the GDP per capita of the U.S., we set the population
levels as U.S. population multiplied by the ratio of world to U.S. GDP in 2011-2015, the first period of
the model.

Following DICE, we calibrate the utility discount factor to β = 1/(1 + 0.015) per year, and the
inverse of the IES to σ = 1.45. The parameters γ and ς are set in order to match a Frisch elasticity of
labor supply of 0.75 (see Chetty et al., 2011) and an average per capita labor supply of h2015 = 0.277

in the initial period (computed from the Survey of Consumer Finances, see Appendix F.2).
We calibrate the ability distribution on the basis of hourly wage data that we obtain from the Survey

of Consumer Finances (SCF). To be consistent with the initial period in DICE (2011-2015), we use the
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SCF 2013. We divide the sample of working households into ten groups of hourly wage deciles (i.e.,
I = 10, and for all i, πi = 0.1), with an hourly wage of $6.44 for the bottom productivity group and
$101.35 for the top productivity group, and normalize productivity levels such that

∑
i πiei = 1. The

full procedure is described in Appendix F.1. While we calibrate productivity levels directly instead
of targeting a specific ex post distribution of inequalities, the model correctly predicts consumption
inequalities, with a consumption Gini of 0.33, very close to the value of 0.32 observed in the data (see
Heathcote et al., 2010). Thus, although our model abstract from idiosyncratic income risk, we still
correctly capture lifetime economic inequalities.

4.4 Production

We model production using a Cobb-Douglas technology for both sectors. We have

F (K1,t,H1,t, Et) = Kα
1,tH

1−α−ν
1,t Eν

t

with α = 0.3, and ν = 0.04 (from Golosov et al., 2014), and

G(K2,t,H2,t) = K1−αE
2,t HαE

2,t .

with αE = 0.403 (from Barrage, 2019). The initial total factor productivities A1,2015 and A2,2015 are set
such that output in sectors one and two match world GDP (2011-2015 average from the World Bank)
and aggregate industrial emissions (from DICE 2016) respectively, and their growth rate are taken from
DICE 2016.14 Our abatement cost function is also taken from DICE, with the following specification

Θ(µt, Et) = c1,tµ
c2
t Et,

where c1,tc2 = P backstop
t represents the backstop price, i.e. the price at which it becomes economical

to abate 100% of emissions. As in DICE 2016, we assume that this price is $550/tCO2 in the initial
period, and declines at a rate of 0.5% per year. We also calibrate the exponent c2 = 2.6 as in DICE.

4.5 Government

We calibrate the fiscal part of the model to match data on U.S. fiscal policy. Here we deviate from
Barrage (2019) who sets tax rates, government spending, and debt to match their empirical counterparts
at the global level. The reason for targeting the U.S. rather than the global economy is that the degree
of inequality is calibrated to match the U.S. income and wealth distribution and, more importantly,
in our framework and in reality fiscal policy is typically decided on at the national level. To make
the model consistent with the (global) evolution of the climate, we subsequently scale up the economy
such that GDP and total emissions are consistent with their global levels. By doing so, rather than
ignoring negative effects from emissions on other countries, we assume that U.S. fiscal policy is set to
fully internalize the negative global effects from their carbon emissions.

14To calibrate the initial values of K1,0 and K2,0, we assume that the economy is in a balanced-growth path in which
temperature remains constant at the current level.
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To calibrate fiscal policy, we first require the empirical counterparts of taxes. In the model, there
are four taxes: a tax τK,t on capital income, a tax τH,t on labor income, an excise (intermediate-goods)
tax τI,t on total energy and a tax τE,t on pollution emissions. We set the tax rates on capital and
labor income in line with Trabandt and Uhlig (2012), who conduct a detailed analysis of fiscal policies
in the U.S. and a number of European countries. Using a comprehensive measure of taxes on capital
income, they find that on average, capital income in the U.S. is taxed at a rate of 41,4%, hence we set
a time-invariant τK = 0.411 in our baseline.15 They find that labor income in turn, is taxed at a rate
of 22.1%. Combined with a tax rate on consumption of 4.6%, this translates into a consumption-labor
wedge of 25.5%, or τH = 1 − (1 − 0.221)/(1 + 0.046) = 0.255. Turning to energy taxes, we follow
Barrage (2019) and set the intermediate-goods tax at τI = 0. Regarding the tax on pollution emissions
τE , we set it at a level so that, in our calibrated economy, 3% of total energy is obtained from clean
technologies (Nordhaus, 2017). This requires τE = 2.01$/tCO2 in 2015.

To calibrate initial, outstanding debt B0 at the start of the economy, we calculate the difference
between total liabilities and financial assets from the U.S. government’s balance sheet, both as a per-
centage of GDP.16 Following Barrage (2019) and in order to facilitate reproducing results for other
countries, these data are obtained from the IMF Government Finance Statistics. This gives an average
debt-to-GDP ratio of approximately 111% over the period 2011–2015. Because in our model a period
corresponds to five years, we set B0/Y1,0 = 1.11/5 = 0.222.

Lastly, we require an empirical counterpart of government spending. In our model, Gt denotes
government consumption of the final good, while T captures the present value of all lump-sum transfers
households receive from the government. To better align the model with the data and to analyze
business-as-usual scenarios, we follow Barrage (2019) and split up total government spending into final
good spending GC

t and exogenous transfers GT
t that are provided to households. The total transfers

households receive thus consist of this exogenous component GT
t and the endogenous component T .17

To obtain the empirical counterparts of GC
t and GT

t , we proceed as in Barrage (2019) and collect data
on U.S. government expenses from the IMF Government Finance Statistics. Averaging over the years
2011–2015, government consumption is GC

0 /Y1,0 = 0.158, while government transfers are GT
0 /Y1,0 =

0.145.18,19 To keep the sizes comparable to GDP going forward, both government consumption and
15Specifically, to obtain a comprehensive measure of capital tax rates, Trabandt and Uhlig (2012) adjust the personal

income tax rate to account for income, profit and capital gains taxes of corporations, taxes on financial and capital
transactions and recurrent taxes on immovable property. Similarly, to calculate labor income taxes, personal income taxes
are adjusted to account for payroll taxes and social security contributions.

16The numbers are calculated at the “General Government” level.
17The endogenous component is set to T = 0 in Barrage (2019) and many other Ramsey tax models. The reason

is that without heterogeneity, optimal policy would be to finance all spending through lump-sum taxes (i.e., negative
transfers), in which case tax distortions become irrelevant. In our model with heterogeneity, we do not have to impose
this restriction.

18With these expenditure levels and the current tax system the intertemporal government budget constraint is not
balanced. To balance the budget, taxes need to be raised in the future. We also consider an alternative calibration with
the level of Gt rescaled to balance the budget with status-quo policies. All results discussed below remain unchanged,
with only the average level of lump-sum transfers being affected.

19As in Barrage (2019), we include the following categories from the expense breakdown in GC
t : compensation of
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exogenous transfers grow at the sum of technological progress and population growth.

5 Quantitative results

We now present the optimal policy obtained under a utilitarian welfare criterion (i.e., λi = 1 for all
i), and the associated welfare effects compared to a “climate skeptic” planner scenario in which the
planner ignores the anthropogenic origin of climate change and consequently sets the carbon tax to
zero.20

5.1 Optimal policy

Optimal tax paths Figure 1 shows the path of optimal taxes on capital and labor income in our
baseline scenario. The labor income tax roughly doubles in the first period, from 25% to about 50%, and
stabilizes at this level. Rebating the revenue from these taxes via lump-sum transfers achieves most of
the redistribution implied by the optimal tax system. Because lump-sum taxes are available and there is
no initial wealth inequality, the only reason to tax capital income is to mitigate intertemporal distortions
associated with labor income taxation. Since optimal labor income taxes are close to constant, the
optimal capital income tax converges to zero quickly after the second period.21 The next section
examines scenarios with further constraints on policy instruments leading to deviations from this result.

Figure 2 shows the optimal path of carbon taxes: in the baseline scenario, the tax starts at
21.7$/tCO2 in 2020 and goes up to reach 229.2$/tCO2 a century later. These tax levels are con-
sistent with the ones found in Barrage (2019) and Nordhaus (2017, 2018), but are too low to contain
climate change to a level consistent with the +2°C objective of the Paris agreement. In our “high
damages” scenario, the optimal income taxes remain almost the same, but the carbon tax is roughly
four times as large (see Appendix G.1).

Carbon tax decomposition Figure 3 compares the second-best pollution tax normalized to 1 (black
line) to what it would be if the MCF was 1 in all periods (red line)—which also corresponds to the
Pigouvian tax evaluated at the second-best allocation—and to what it would be ignoring inequalities
(blue line). The MCF appears to play an insignificant role: the social cost of carbon is only 0.5% above
the second-best carbon tax in the initial period, a difference that becomes even smaller in subsequent
periods. Thus, even in the presence of distortionary taxation, it is optimal to set the carbon tax
approximately at the social cost of carbon (i.e. at the Pigouvian level). However, the discrepancy
between the blue and red lines indicates that the social cost of carbon itself is significantly affected
by the presence of inequalities. The reason is that the social cost of carbon represents the monetary
value of climate damages, and is determined by the arbitrage between reducing damages and increasing

employees, use of goods and services, subsidies, grants and other expense. For transfers GT
t , we include social benefits.

20Details on the algorithm used to compute the Ramsey policy can be found in Appendix H.
21Notice that, because we have lump-sum taxation, the reason for zero long-run capital income taxation is different

from the usual Chamley (1986) and Judd (1985), and is not subject to the criticism in Straub and Werning (2020).
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Figure 1: Optimal Income taxes.

Notes: Figures show the path of second-best labor and capital income taxes for the baseline calibration. Initial tax rates
(for 2015) are set exogenously to their current levels obtained from Trabandt and Uhlig (2012).
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Figure 2: Optimal Carbon Taxes ($/tCO2).

Notes: Figure shows the path of second-best carbon taxes for the baseline calibration expressed in dollars per ton of CO2.
Initial level (for 2015) is set exogenously to its current level obtained from Nordhaus (2017).

aggregate consumption. As stated in Proposition 3, a marginal unit of aggregate consumption is valued
more in the presence of inequalities if the marginal utility is sufficiently declining in consumption.
Intuitively, an increase in aggregate consumption is valued less to the extent that it disproportionately
goes in the hand of richer households, but it is valued more to the extent that the average marginal utility
becomes higher if some people have relatively low consumption levels. In particular, with σ = 1.45, the
IES is below unity, and ignoring consumption inequalities would lead to a social cost of carbon higher
by on average 3.9% over the next century.
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Figure 3: Carbon Tax Decomposition.

Notes: The black line represents the second-best carbon tax normalized to 1. The red line shows what this tax would be
if the MCF was set to 1 in all periods, holding aggregates constant (see Proposition 2). The blue line shows what this tax
would be absent consumption inequalities, again holding aggregates constant (see Proposition 3). All taxes are computed
under the baseline calibration.

Sensitivity to calibration choices The level of government expenditures does not significantly
affect the results. When choosing government expenditures such that current taxes are sustainable—at
22.5% instead of 30.3% of GDP—the effects of the MCF and inequalities are unaffected. In Appendix
G.1, we also show that with a more severe calibration of climate damages leading to a SCC about
four times higher, the role of the MCF remains negligible while the effect of inequalities decreases, at
2.6% instead of 3.9% in our baseline. This lower value is due to the lower share of utility damages at
lower levels of warming (that result from higher carbon taxes). Figure 21b in Appendix G.4 illustrates
this intuition: the figure plots the effect of inequalities on the optimal carbon tax for alternative
values of the share of utility vs. production damages. When climate change impacts production only,
inequalities have no effect on the optimal carbon tax. As the share of utility damages increases, the
effect of inequalities rises, although at a decreasing rate. For instance, if 10% of damages were directly
impacting utility at 2.5°C warming instead of 26% in the baseline, the effect of inequalities on the carbon
tax would be 1.8% instead of 3.9%. If the share of utility damages was 40%, the effect of inequality
would increase to 5.2%. Finally, we also consider different levels of heterogeneity in productivity (see
Figure 21a in Appendix G.4). The effect on the optimal carbon tax appears relatively linear: it would
be twice smaller if inequalities were twice lower than currently observed in the U.S.

As highlighted in Proposition 3, the effect of inequalities is sensitive to the value of σ, which in
our dynamic framework with heterogeneous agents captures both the IES and the degree of inequality
aversion of the planner. Figure 21c in Appendix G.4 plots the effect of inequalities on the optimal
carbon tax for different values of σ. As stated in Proposition 3, the effect is null when σ tends to 1. For
higher degrees of inequality aversion however (i.e. higher values of σ), the effect goes up non-linearly:
with σ = 2, inequalities reduce the optimal carbon tax by 16.2%, instead of 3.9% with our baseline
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value of σ = 1.45 taken from DICE. So, credible alternative calibrations could lead to significantly
stronger effects of inequality.

Fiscal adjustments relative to a climate skeptic planner Table I below reports the adjustments
made to the government budget between our baseline scenario and a “climate skeptic” planner scenario
in which the planner ignores the anthropogenic origin of climate change. Specifically, this climate skeptic
planner sets all taxes optimally but behaves as if the climate variable was exogenous and not driven by
human-made emissions. The objective of this experiment is to see how the planner should adjust the
fiscal system once it acknowledges the necessity to address climate change. As shown in the table, the
additional revenue provided by the carbon tax is split about equally between reducing distortionary
taxes, with the present value of the labor tax decreasing by 0.7% of GDP, and increasing transfers, whose
present value increases by 0.8% of GDP.22 This finding violates the weak double-dividend hypothesis
(for a review, see Goulder, 1995) according to which it is optimal to use the proceeds of the carbon
tax to reduce distortionary taxes. With heterogeneous agents, distortionary taxes serve a redistributive
purpose, hence it is not desirable to reduce them unless additional transfers can be provided through
another mean. This result also gives some grounds to the popular carbon tax and dividend policy (see
Economists Statement on Carbon Dividends, 2019) that calls for redistributing the proceeds of the tax
lump-sum to address redistributive concerns, although we find that only half of the tax revenue should
serve that purpose, the rest being aimed at improving economic efficiency.

Table I: Government Budget Adjustment.

Revenue Source Revenue Use

Labor Capital Carbon Gov. Cons. Transfer Interest

No Carbon Tax 33.5% 0.6% 0.0% 17.2% 14.6% 2.3%

Optimal Carbon Tax 32.9% 0.6% 1.2% 16.9% 15.4% 2.3%

Change −0.7% 0.0% 1.2% −0.3% 0.8% 0.0%

Notes: Numbers represent the present value of each component of the government budget constraint divided by the
present value of GDP, in the scenarios without carbon taxes (first row) and with carbon taxes (second row). The third
row displays the difference between the two scenarios.

5.2 Welfare effects

Figure 4 displays the percentage increase in consumption that would be necessary in the climate skeptic
scenario to make households as well-off as in the optimal scenario in each period and for each produc-
tivity group. While the average long run gains are positive for all productivity groups (the average

22The -0.3% change in government consumption expenditures reported in Table I results from the effect of carbon
taxation on the present value of GDP since the expenditures are exogenous.
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discounted gain is 5.8% with baseline damages), the period welfare gains are heterogeneous over time
and between groups. Overall, welfare gains increase dramatically after the 21st century.23 While they
are initially progressively distributed, this pattern eventually reverses. The reason why the optimal car-
bon tax is progressive initially is that the revenue gains from carbon taxation are rebated through both
a higher lump-sum transfer and a reduction in the labor income tax rate (see Table I). This contributes
to an increase in the progressivity of the overall tax system, which makes poorer households benefit
more (or suffer less) from the initial increase in carbon taxes. In the long run, richer households are
the ones who benefit more from carbon taxation. A significant share of the welfare gains from a lower
temperature come from reduced utility damages. Richer households care relatively more about those
damages in the sense that, when the IES is below 1, they are willing to give up a higher share of their
consumption for a reduction in temperature. This explains why in the long run, the welfare gains from
carbon taxation are regressive when expressed in consumption units. Naturally, this exercise abstracts
from heterogeneity in climate damages, an extension that we theoretically investigate in Section 6.4.
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Figure 4: Period Welfare Gains (%).

Notes: For each decade and each income decile the table shows the welfare gains, in percentage of consumption, from
optimal carbon taxation relative to a scenario without carbon taxation. Numbers are computed under the baseline
calibration.

While carbon tax policies are often considered unpopular because of their potentially regressive
effects, we find that an optimal carbon policy—i.e., combined with optimal adjustments of income
taxes and transfers—is actually progressive. Thus, although the expected gains from carbon taxation
will disproportionately benefit future generations, the optimal carbon tax policy still benefits poor
households in the present, which could make the policy more attractive to a government concerned
with redistribution and increase public support in the first stages of the policy implementation.

23As shown in Dietz et al. (2021), the DICE model features too much thermal inertia, i.e., the temperature response
to an impulse in emissions is delayed too much compared to what climate science models predict. If this response was
more immediate, welfare gains from carbon taxation could become positive earlier.
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6 Extensions

In this section, we consider different extensions of our baseline results. First, we explore fiscal environ-
ments with additional constraints on the set of available instruments. Then, we study in turn the effects
of introducing inequality in wealth, energy consumption, and sensitivity to environmental damages.

6.1 Third-best policies

We have considered a Ramsey problem in which the government faces two key constraints: only linear
and anonymous instruments can be used. Still, this set of fiscal instruments confers a lot of power to the
government, arguably more than what most governments have. When introducing an environmental
tax policy, a government may not have complete freedom to adjust labor or capital income taxes.

6.1.1 Third-best tax formulas

Exogenous labor income tax Let us assume that the planner cannot choose the labor income tax,
that is exogenously fixed at a level τ̄H in all periods t ≥ 0. The planner now faces additional constraints:
in every period t ≥ 0, it must ensure that

Uh,t

Uc,t
= − (1− τ̄H) (1−Dt)A1,tFH,t, (25)

which pins down the wedge between the marginal rate of substitution between consumption and leisure
and the marginal product of labor. For a given value of τ̄H , equation (25) puts a restriction on
the implementable allocations that the planner must satisfy. Let βtΛH

t denote the multiplier on the
constraint (25). The latter is proportional to the welfare impact of raising the exogenous τ̄H in a
particular period. The multiplier ΛH

t will be positive (resp. negative) on average if the labor income
tax is fixed at a sub-optimally high (resp. low) level. With the additional constraint (25) in each period
t, the expression for the optimal pollution tax becomes24

τE,t =
1

ν1,t

∞∑
j=0

βj

(
ν1,t+jD

′
t+jA1,t+jFt+j−Nt+jVZ,t+j+ΛH

t+j (1− τ̄H)D′
t+jA1,t+jFH,t+j

)
JEM

t ,t+j . (26)

where, as in Section 3, ν1,t is the multiplier on the aggregate resource constraint in period t, which
measures the scarcity of consumption goods and hence, the opportunity costs of reducing emissions.
Compared to equation (20), the main modification is the final component, which Barrage (2019) refers
to as the fiscal interaction term. It reflects another reason for deviating from the Pigouvian tax rule.
By reducing production damages, a higher pollution tax τE,t raises the marginal product of labor and
hence, the before-tax wage. If τH is fixed at a sub-optimally low level, a further increase in the before-
tax wage is welfare-reducing. The pollution tax then amplifies the costs of having a tax on labor income

24Without constraint (25), it is optimal to equalize the marginal rate of technical substitution between capital and
labor across both sectors: the government does not wish to distort production decisions. In the third best, with constraint
(25), this is no longer the case, and it is optimal to deviate from zero excise energy taxes, τI,t. See Appendix B for more
details.
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that is below the welfare-maximizing level. Consequently, the optimal pollution tax is reduced. The
fiscal interaction term thus calls for a lower pollution tax when the labor income tax is fixed at a
sub-optimally low level and vice versa if the labor income tax is fixed at a sub-optimally high level.

Exogenous capital income tax Let us now assume that the planner cannot choose the capital
income tax, that is exogenously fixed at a level τ̄K in all periods t ≥ 0. The new constraints faced by
the planner are such that in every period t ≥ 0,

Uc,t

Uc,t+1
= β

(
1 + (1− τ̄K)

(
(1−Dt+1)A1,t+1FK,t+1 − δ

))
, (27)

which links the marginal rate of substitution between consumption in periods t and t+ 1 (on the left-
hand side) to the after-tax interest rate (on the right-hand side). As with an exogenous labor income
tax, equation (27) restricts the set of implementable allocations for a given value of τ̄K . Let βtΛK

t+1 be
the multiplier on this constraint in period t. The multiplier is positive (negative) if the capital income
tax rate is fixed at a sub-optimally high (low) level, so that raising τ̄K in a particular period lowers
welfare. With the additional constraint (27), the expression for the optimal pollution tax is modified
to:

τE,t =
1

ν1,t

∞∑
j=0

βj

(
ν1,t+jD

′
t+jA1,t+jFt+j−Nt+jWZ,t+j+ΛK

t+j (1− τ̄K)D′
t+jA1,t+jFK,t+j

)
JEM

t ,t+j , (28)

where again the last component captures the fiscal interaction term. The intuition is similar as before.
A higher pollution tax raises the marginal product of capital by lowering production damages. The
latter is beneficial if the capital income tax is fixed at a sub-optimally high level. A higher pollution
tax then alleviates the savings distortion by raising the before-tax interest rate. If, by contrast, the
capital income tax is fixed at a level below the one that maximizes welfare, a pollution tax amplifies
the savings distortion and the fiscal interaction term reduces the optimal pollution tax.

6.1.2 Quantitative analysis

Figure 5 below compares the third-best pollution tax normalized to 1 (black line) with what it would
be ignoring the new fiscal interaction term (green line), ignoring the MCF (red line), and ignoring
inequalities (blue line).25 As in our benchmark scenario, the MCF plays an insignificant role but
inequalities push the carbon tax downward. The effect of inequalities is slightly larger when the labor
income tax is fixed: ignoring inequalities would increase the tax by around 6% in this scenario instead
of about 4% in the second-best and in the scenario where the capital tax is fixed. Indeed, since τ̄H is
set to 25.5%, i.e. below the second-best tax rate, there are more consumption inequalities than in the
second-best and the opportunity cost of emission abatement is higher.

While the MCF still plays a negligible role, fiscal interactions now drive the carbon tax away
from its Pigouvian level through the additional constraints that arise in the third-best environment.

25Appendix G.2 presents figures for the optimal path of income and carbon taxes in the third-best scenarios.
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Figure 5: Third-Best Carbon Tax Decomposition.

Notes: The black line represents the second-best carbon tax normalized to 1. The green line shows what this tax would
be without the fiscal interaction term, holding aggregates constant—for (a) this is the last term in equation (26) and for
(b) the last term in equation (28). As in Figure 3, the red and blue lines display the effects of the MCF and inequalities
respectively, relative to the green line. All taxes are computed under the baseline calibration.

Interestingly, the fiscal interaction term lowers the optimal carbon tax when the labor income tax is
fixed, whereas it raises the optimal carbon tax when the capital income tax is fixed. Recall that a carbon
tax, by reducing production damages, increases both the marginal product of labor and the marginal
product of capital and hence, the before-tax wage and interest rate. A higher before-tax wage, in turn,
lowers welfare because the labor income tax is set at a sub-optimally low level (i.e., τ̄H = 25.5% instead
of around 49% at the optimum), whereas a higher before-tax interest rate raises welfare because the
capital income tax is set at a sub-optimally high level (i.e., τ̄K = 41.1% instead of virtually 0% at the
optimum). A higher carbon tax thus alleviates the savings distortion, whereas it amplifies the costs of
taxing labor income at a sub-optimally low level. This explains why quantitatively we find that the
fiscal interaction term is positive when the capital income tax is fixed, and negative when the labor
income tax is fixed.

Appendix G.2 also provides the government budget adjustments and welfare gains in these third-
best policy scenarios. These results suggest that the general pattern of the distribution of welfare
gains from carbon taxation does not strongly depend on the fiscal policies currently in place, but the
optimal use of the carbon tax revenue does. While this revenue is split about equally between increasing
transfers and reducing the labor income tax in our baseline scenario, with additional constraints on
instruments this is not the case anymore. In particular, when the government is forced to redistribute
“too little” because labor income taxes are set below the optimum, the carbon tax revenue is mostly
targeted towards redistribution, leading to more progressive effects.
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6.2 Initial wealth inequality

In this section, we consider the effect of initial wealth inequality on the optimal tax system. When the
planner is allowed to set the initial tax on capital income, it is optimal to fully expropriate initial wealth
(if less productive households are also less wealthy). To study the implications of wealth inequality on
optimal fiscal policy, we therefore assume that the planner is unable to set the capital income tax in
the first period, i.e. τK,0 is exogenous. We discuss the optimal rules and investigate the quantitative
effects given the levels of wealth inequality observed in the U.S. In Appendix C.1, we also discuss the
implications of initial wealth inequality for the time-consistency of Ramsey policies.

6.2.1 Optimal tax rules

For t ≥ 1, the optimal tax rules are not affected by the presence of initial wealth inequality.26 However,
if τK,0 cannot be chosen to eliminate initial wealth inequality, there is another reason for deviating from
Pigouvian taxation in period 0. Let ∆ denote the shadow cost of wealth inequality,

∆ ≡
∑
i

πiθiai,0,

then, the optimal period-0 pollution tax is given by (see Appendix C):

τE,0 =
1

ν1,0

( ∞∑
j=0

βj
(
ν1,jD

′
jA1,jFj −NjWZ,j

)
JEM

0 ,j −N0Uc,0∆(1− τK,0)D
′
0A1,0FK,0JEM

0 ,0

)
, (29)

where
ν1,0 = Wc,0 − Ucc,0R0∆

is the planner’s multiplier on the aggregate resource constraint.
Notice that wealth inequality, through ∆, affects pollution taxation in period zero via two mecha-

nisms: (1) it implies an additional term, the last one in equation (29); and (2) it affects the planner’s
valuation of a unit of consumption in period 0. First, the additional term has to do with the fact
that higher damages reduce interest rates which, as a side-effect, mitigates wealth inequality, calling
for lower pollution taxes. This is a very subtle effect and quantitatively this term is small. Second, the
effect on ν1,0 is a result of the fact that we do not allow full expropriation of initial wealth, which could
be achieved by increasing τK,0 so that R0 = 0. We instead fix τK,0 and this constraint is equivalent to
having the planner expropriate all initial wealth and then return the amount assigned to each house-
hold. When more productive households have higher wealth, this is costly for the planner, so ∆ > 0.
The opportunity cost of abatement given by ν1,0 is then higher to the extent that increasing aggregate
consumption would lower the initial price and exacerbate this cost. This effect leads to a substantial re-
duction in period-0 pollution taxes. Similarly to inequalities in productivity, wealth inequalities reduce
the optimal pollution tax, although the effect is concentrated in the first period.

26The exception is the tax rule for τK,1. See Appendix C for details.
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6.2.2 Quantitative analysis of the effect of wealth inequality

We calibrate the joint distribution of productivity and initial wealth from the SCF. We divide households
into 10 productivity groups, and 10 wealth groups within each productivity group, for a total of 100
different groups of equal size. The full procedure is described in Appendix F.1. We fix τK,0 to be at
the same level as in the current tax system, at 41.1%.

Figure 6 below provides a decomposition similar to the one shown in Figure 3 above.27 While the
effects of the MCF and consumption inequalities remain similar to the baseline, wealth inequalities call
for a significant reduction of the optimal tax in the first period (green line). This effect is fully driven
by the second mechanism described above, i.e. the higher value to the planner of an extra unit of
consumption in period 0, ν1,0. It should however be noted that this temporary decrease in the optimal
carbon tax is accompanied by an equivalent increase in the energy tax, τI , that mitigates losses in
productive efficiency.
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Figure 6: Carbon Tax Decomposition, Initial Wealth Heterogeneity and Exogenous Initial Capital Tax.

Notes: The black line represents the second-best carbon tax normalized to 1. The green line shows what this tax would
be without wealth inequality, holding aggregates constant—more precisely, it shows what happens to τE,t in equation (29)
if ∆ is set to zero. As in Figure 3, the red and blue lines display the effects of the MCF and inequalities respectively,
relative to the green line. All taxes are computed under the baseline calibration.

27Appendix G.3 includes figures for the optimal path of income and carbon taxes with initial wealth heterogeneity when
the initial capital tax is fixed at its current level. The appendix also contains a table showing the government budget
adjustments made relative to the climate skeptic planner and a figure that displays the distribution of the lifetime welfare
gains for each of the 100 groups. These gains are U-shaped with respect to income, but strictly increasing with initial
wealth.
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6.3 Energy consumption inequality

6.3.1 Optimal tax rules

Our benchmark model considers heterogeneous households who differ in productivity and initial asset
holdings. To further explore the role of households’ heterogeneity on optimal fiscal policy, we now
introduce into our benchmark model a second dirtier consumption good modeled as a necessity.

Two-goods economy Formally, we assume that a household of type i derives utility from the con-
sumption of a final good ci,t, a dirtier good di,t, labor supply hi,t, and environmental degradation Zt

according to a utility function
∞∑
t=0

Ntβ
tui (ci,t, di,t, hi,t, Zt) ,

where the second dirtier good d is produced from a linear technology that uses energy as its only input.
To further simplify notations, we assume that energy produced in the energy sector (Et) is now used
in the final good sector or directly consumed by households, such that

Et = E1,t +Ntdt,

with E1,t the quantity of energy used as an input in the final good sector and dt =
∑

i πidi,t the
households’ average per period energy consumption. In order to match empirically observed budget
shares for energy (or alternatively, polluting goods) for different income groups, we assume households’
utility can be represented by the following period utility function

ui (ci, di, hi, Z) =

(
ci(di − d̄i)

ϵ(1− ςhi)
γ
)1−σ

1− σ
+

(
1 + α0Z

2
)−(1−σ)

1− σ
. (30)

Thus, in line with previous studies in this literature (e.g. Fried et al., 2018; Klenert et al., 2018; Aubert
and Chiroleu-Assouline, 2019; Jacobs and van der Ploeg, 2019) preferences for consumption are modeled
with a Stone-Geary utility function, so that an agent of type i experiences positive utility from energy
consumption only after consuming its first d̄i units of energy. d̄i therefore denotes the subsistence
consumption level of energy for an agent of type i, which we allow to be type (and time) specific. This
specification allows us to consider households with non-homothetic preferences to better capture the
heterogeneous impact of pollution taxes on households’ budgets. Assuming type-specific values for d̄i,
this specification also allows us to potentially consider non-linear aggregate Engel curves as well as
horizontal heterogeneity.28,29

28With Stone-Geary preferences, agents’ Engel curves are linear. When preferences are heterogeneous, the aggregate
distribution of expenditures may however be a non-linear function of income.

29Horizontal heterogeneity arises when households with the same income do not consume goods in the same proportions.
Recent studies have shown the importance of horizontal heterogeneity on the distributional impacts of energy taxes in the
U.S. (Cronin et al., 2019; Pizer and Sexton, 2019), and their implications for the design of tax reforms (Sallee, 2019).
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Solution method Because there is an additional consumption good, the planner uses an additional
instrument: it levies an excise tax τD,t on households’ consumption of energy. The budget constraint
of agents of type i can thus be expressed as

∞∑
t=0

ptNt

(
ci,t + di,t(pE,t + τD,t)− (1− τH,t)wteihi,t

)
≤ R0N0a0 + T. (31)

To focus on the additional sources of heterogeneity, we assume here that there is no initial wealth
inequality, so that ai,0 = a0 for all i. We apply the same solution method as in our benchmark model.
Following Werning (2007), we can express individual allocations as a function of aggregate variables and
market weights. These expressions allow us to write the aggregate utility function U(ct, dt, ht, Zt, φ)

and individual implementability conditions necessary to solve the Ramsey problem based on aggregate
variables and market weights only.

Optimal tax formulas Propositions 4 and 5 below state the role of preferences for the additional
polluting commodity on the optimal taxation of pollution and energy consumption respectively.

Proposition 4 If agents’ utility is given by (30), the optimal pollution tax can be expressed as (22),
i.e. a modified Pigouvian rule that accounts for the MCF given by

MCFt = 1 +
cov(θi, ICc,i,t)

Vc,t
,

with
ICc,i,t = (1− σ)Uc,t

(
(1 + γ + ϵ)ωi − γ

ei
1− ςht

+ ϵ
d̄i,t

dt − d̄t

)
.

From period 0, the welfare-weighted average MCF is 1. In the limit case where the IES tends to 1, then
for t ≥ 0, MCFt = 1.

Proposition 4 (see proof in Appendix D.4) states that the additional dirty good affects the optimal
pollution tax only through the MCF: temporal variations in energy needs affect households’ budget
constraint, thereby affecting the planner’s implementation cost over time. This mechanism might cause
temporal fluctuations in the MCF, but it does not affect its the long-term average value that remains
equal to 1 as in the benchmark. In addition, as in Proposition 2 above, when the IES tends to 1,
the price and volume effects from an increase in aggregate consumption exactly offset each other, so
households’ expenditures net of income remain unaffected by a marginal increase in the pollution tax
and the MCF is equal to 1 in all periods.

Proposition 5 If agents’ utility is given by (30), then

τD,t =
Λtϵ

ct
(dt−d̄t)2

Φ+ Ψςγ(σ−1)
(1−ςht)

− Λtϵ(σ−1)

(dt−d̄t)

,
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with

Φ =
∑
j

πj
λj

φj
+
(
1− (1 + ϵ+ γ)(1− σ)

)
cov(λi/φi, ωi),

Ψ = −cov(λi/φi, ei)

ς
,

Λt = −cov(λi/φi, d̄i,t),

hence the energy good is subsidized if and only if the agents who are valued relatively more by the planner
compared to the market (higher λi/φi) have higher energy needs (d̄i,t).

A corollary of Proposition 5 (see proof in Appendix D.4) is that, when preferences for the energy good
are homogeneous, the optimal excise tax on this good is zero. We also show in Appendix D.4 that
in this case, the explicit formulas for labor, capital, and energy input taxes are unchanged relative to
the benchmark model. Thus, although poor households spend a larger share of their budget in the
polluting energy necessity, the optimal tax formulas are the same as in the benchmark model. This
result is reminiscent of Jacobs and van der Ploeg (2019) who show that as long as Engel curves are
linear—which is the case with Stone-Geary utility—corrective taxation should not serve to address
redistributive objectives, even when non-linear income taxation is not available. Still, the optimal tax
levels might differ from the benchmark due to differences in allocations: having a second good modeled
as a necessity generates a fixed-cost to households’ utility, which exacerbates inequalities.

In the general case where preferences differ between agents, the agggregate Engel curves are non-
linear, hence commodity taxes offer an additional levy for redistribution. When the agents who are
valued relatively more by the planner also have higher energy needs, the planner can target these agents
by subsidizing the energy good. The sign and magnitude of this mechanism therefore depend on the
distribution of {d̄i}i∈I , both between and within productivity types. First, as less productive types tend
to have higher marginal utilities of consumption, the relative planner’s weights are generally higher for
these agents. The excise tax will therefore be higher to the extent that more productive agents have on
average higher energy needs. Second, for a given productivity level, agents with higher energy needs
will also tend to have higher marginal utilities of consumption because of the higher fixed cost that
they incur. This horizontal heterogeneity will therefore drive the value of the excise tax downward.
Our quantitative analysis below uses data on U.S. households’ energy consumption to illustrate the
impact of these two sources of heterogeneity.

6.3.2 Quantitative analysis of the extended model

Calibration choices To calibrate this extended model, we choose our parameters to meet two ad-
ditional targets: the share of households’ expenditures on the energy good, and the share of aggregate
emissions coming from households’ energy consumption. Using the model’s first order conditions, we
show in Appendix F.1 that ϵ can be expressed as a coefficient in a regression where households’ energy
and total expenditures are the only variables to observe. The distribution of these variables is obtained
from the Consumer Expenditure Surveys (CEX), where energy expenditures corresponds to the sum of
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households’ expenditures on energy used for transport and housing. We first use this data to compute
the value of ϵ, and set the initial value of d̄ to target an average energy expenditure share of 10.8% as
observed in the CEX. We then use the value of ϵ to compute 15 type-specific subsistence levels d̄i to
match the observed distribution of energy expenditure shares across and within income quintiles. For
the share of emissions coming from households’ energy consumption, we target 30%, which represents
the share of emissions coming from the residential sector and households’ transportation.30 To do so,
we adjust the energy share in the final good production function ν from 0.04 to 0.17. Although this may
seem like a significant change compared to our benchmark, we confirm that using this higher value of
ν would not affect our results in the benchmark model. To remain consistent with our previous targets
for the initial labor supply, Frisch elasticity, initial emissions, share of utility damages, and capital share
relative to labor, we also adjust the values of ς, γ, A2,2015, α0, and α. The full procedure is described
in Appendix F.1, where we also report the value of the adjusted parameters and the distribution of
households’ energy consumption shares.
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Figure 7: Carbon Tax Decomposition With and Without Energy Necessity Inequality.

Notes: The black line represents the second-best carbon tax normalized to 1. The red and blue lines display the effects of
the MCF and inequalities (both in productivity and in energy necessity) respectively.

Results Figure 7 shows a decomposition similar to the one shown for the baseline in Figure 3 above,
for the case where (a) households have identical energy necessity levels and (b) heterogeneous energy
necessity levels. We see that in both cases the MCF has again a negligible impact on the second-best
carbon tax. For the two scenarios, the role of inequalities is also very comparable to the baseline of
3.9%, both at 4.1%. While we could expect that the presence of a necessity—which is akin to a fixed-
cost to households’ consumption—would further increase the effect of inequalities on the carbon tax,
this is in fact mitigated by an increase in transfers financed by a higher labor tax.

30The U.S. EPA reports that, in 2013 (our initial period), 17% of U.S. emissions were due to the residential sector,
11% to passenger cars, and 5% to light-duty trucks such as pickups, minivans, and SUVs (see EPA, 2017, Tables 2-12 and
2-13). Assuming households’ are directly responsible for the largest part of these emissions, the emissions coming from
households’ energy consumption represent about 30% of U.S. aggregate emissions.
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Introducing heterogeneous necessity levels has negligible effects on the optimal carbon tax. From
our calibration, we see that on the one hand the necessity level is on average higher for richer households,
which reduces inequalities, but on the other hand horizontal heterogeneity (i.e. differences in necessity
levels within productivity groups) increases inequalities. As a result, households’ necessity levels do
not strongly co-vary with their marginal utility of consumption, so heterogeneity in necessity barely
affects the carbon tax rates. For the same reason, optimal excise taxes on energy consumption are very
small, amounting to about −0.4% of energy prices in every period—it is exactly zero when there is no
heterogeneity in necessity levels.

Figure 8 displays the inter-temporal welfare gains from carbon taxation for each category. Between
income groups, we observe a U-shape pattern: while the poorest households benefit relatively more
from the increase in tax progressivity, the richest households benefit relatively more from future en-
vironmental improvements that they value proportionally more. Within income groups, we see that
households with lower energy needs benefit relatively more, as they pay relatively less of the carbon
tax while still enjoying the revenue-recycling and mitigation benefits.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Income Decile

1st

2nd

3rd

E
n
e
rg

y
 N

e
c
e
s
s
it
y
 T

e
rc

ile

8.4

6.3

4.5

7.1

5.5

4

6.4

4.7

3

6

4.5

3

5.8

4.2

2.6

5.6

4.1

2.6

5.5

4.1

2.6

5.3

4.1

2.8

5.4

4.2

3

5.7

5.1

4.5

3

4

5

6

7

8

Figure 8: Welfare Gains (%), Energy Necessity Inequality.

Notes: For each income decile and expenditure share tercile, the table shows the discounted welfare gains, in percentage
of consumption, from optimal carbon taxation relative to a scenario without carbon taxation.

6.4 Heterogeneous sensitivity to environmental damages

Several recent studies have highlighted that the impact of environmental degradation is heterogeneous
across individuals, and likely more negative for those more financially deprived (for recent reviews, see
Banzhaf et al., 2019; Hsiang et al., 2020). In the case of climate change, higher exposure to extreme tem-
peratures and weaker adaptation means make poorer households on average more vulnerable (see e.g.,
Dell et al., 2012; Ricke et al., 2018). While heterogeneity in income, wealth, and consumption patterns
are key to explain the unequal burden from environmental policies, we now introduce heterogeneous
exposure to environmental degradation to account for the unequal benefits from pollution mitigation.
Formally, we again assume that utility is strongly separable in Z and additionally consider households
with heterogeneous sensitivity to environmental degradation, so that agent’s i utility function can be
expressed as

ui (ci,t, hi,t, Zt) ≡ ũ (ci,t, hi,t) + ûi(Zt). (32)

While production damages still arise at the aggregate level, households are heterogeneously affected
by environmental degradation directly through their utility. In the context of climate change, this
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may capture heterogeneous effects on people’ health, exposure to conflicts, forced re-settlement, or
losses in various forms of amenity values. Although these types of damages may also affect households’
productivity, we abstract from heterogeneous impacts of Z on agents’ productivity ei to keep the
problem sufficiently tractable.

When environmental degradation Z heterogeneously affects households’ utility, the optimal pollu-
tion tax can still be expressed as the modified Pigouvian rule stated in Proposition 2, but the term VZ,t

entering the Pigouvian formula—that captures the marginal dis-utility from environmental degradation
for the planner—now depends on the joint distribution of utility damages and the planner’s welfare
weights,

VZ,t =
∑
i

πiû
′
i(Zt) + cov

(
λi, û

′
i(Zt)

)
.

Proposition 6 and corollary 1 state the role of heterogeneous utility damages on the optimal pollution
tax.

Proposition 6 If environmental utility is strongly separable from consumption and leisure as in (32),
heterogeneity in the marginal pollution damages to utility increases the pollution tax if and only if the
planner’s weights are positively correlated with marginal utility damages.

Corollary 1 If environmental utility is strongly separable from consumption and leisure as in (32) and
the planner is utilitarian, heterogeneity in the marginal pollution damages to utility has no effect on
the optimal pollution tax. If the planner is Rawlsian, the pollution tax is higher if and only if agents
with the lowest welfare experience larger marginal utility damages from pollution.

The logic behind Proposition 6 (see proof in Appendix E) is that, as long as environmental welfare is
additively separable from consumption and leisure, marginal utility losses from environmental damage
for the rich and the poor are perfect substitutes for the planner. Corollary 1 additionally states that if
the planner is utilitarian, then an extra unit of utility is valued equivalently for all households, hence
the distribution of environmental damage is inconsequential for the planner when setting the optimal
pollution tax. When the planner gives a higher direct value to households who are worse-off however,
the environmental utility damages experienced by these households are valued more by the planner. In
the extreme case where the planner cares only about the household with the lowest-welfare, the planner
determines the optimal pollution tax to internalize pollution on that household only, and sets it to a
higher level if this household is more exposed.

The previous results rely on an important separability assumption. If this assumption was relaxed,
then even in the utilitarian case heterogeneous climate damages could call for a higher pollution tax
if households with lower consumption levels were more impacted by pollution. Similarly, we have
abstracted from heterogeneous productivity damages that could reinforce the case for higher pollution
taxes even in the utilitarian case. The theoretical and quantitative exploration of these mechanisms
goes beyond the scope of this paper, but we see this topic as critical for future research.31

31As explained in Hsiang et al. (2020), heterogeneous impacts from climate change are difficult to measure as they are
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7 Conclusion

Should environmental policies be less stringent in the presence of inequalities? Do inequalities increase
when optimal environmental policies are implemented? This paper attempts to shed light on these
questions. We develop a climate-economy model where environmental degradation generates both
production and utility externalities. Our model features heterogeneous agents, which provides a micro-
foundation for the use of distortionary taxes on labor and capital income. We study both theoretically
and quantitatively how different sources of heterogeneity and a concern for redistribution affect the
optimal carbon tax.

We show that when households are heterogeneous but individualized lump-sum taxation is not
available, the optimal carbon tax is approximately equal to the social cost of carbon (SCC), but the
SCC is lower than it would be absent inequalities. Indeed, tax distortions do not significantly matter
for carbon taxation when distortionary taxes are optimally chosen to provide redistribution, and the
optimal carbon tax is approximately Pigouvian. However, inequalities call for lower carbon taxes
owing to the fact that the presence of poor households increases the marginal value of consumption
and increases the opportunity cost of pollution abatement. We also re-examine the double-dividend
hypothesis, and show that at the optimum the carbon tax revenue is divided about equally between
increasing transfers and reducing distortionary taxes. This revenue recycling increases the progressivity
of the tax system, making the carbon tax policy relatively more beneficial for poorer households. In
the long run however, rich households experience larger welfare gains from climate change mitigation
because their willingness to pay for environmental improvement is higher.

Our paper includes numerous extensions to study the implications of inequality for optimal carbon
taxation. We analyze alternative policy scenarios, and multiple sources of household heterogeneity,
including heterogeneous budget shares, unequal initial assets, and differences in the sensitivity to en-
vironmental damages. Still, there are other relevant aspects that deserve further investigation. In
particular, we have left for future research the role of risk—on the economic or climate side—which
could interact with inequalities and be an important determinant of fiscal policies. In addition, it would
be interesting to further explore theoretically and quantitatively the role of heterogeneous damages of
climate change.

determined by several sources of heterogeneity that are hard to disentangle: heterogeneity in initial climatic conditions, in
their evolution, in individuals’ response to these changes, as well as in other individuals’ characteristics influencing their
welfare impacts.
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Appendices

A Optimal tax rules in the benchmark model

A.1 Implementability conditions

Let φ ≡ {φi} be the market weights with φi ≥ 0. Then, given aggregate levels ct, ht and Zt, the
individual levels can be found by solving the following static subproblem for each period t:

U (ct, ht, Zt;φ) ≡ max
ci,t,hi,t

∑
i

πiφiu (ci,t, hi,t, Zt) , s.t.
∑
i

πici,t = ct, and
∑
i

πieihi,t = ht. (33)

The Lagrangian for this problem is

L =
∑
i

πiφiu (ci,t, hi,t, Zt) + θct

(
ct −

∑
i

πici,t

)
− θht

(
ht −

∑
i

πieihi,t

)
,

where θct and θht are Lagrange multipliers. Applying the envelope theorem to problem (33), we get

Uc,t = θct , and Uh,t = −θht .

From the first order conditions of problem (33), we also have

φiuc,i,t = θct , and φiuh,i,t = −eiθ
h
t .

It follows that

Uc,t = φiuc,i,t, (34)

Uh,t =
φiuh,i,t

ei
. (35)

In any competitive equilibrium these optimality conditions must hold for every agent i. Hence, using
(34), (35), and agents’ first order conditions given by

βt uc,i,t
uc,i,0

= pt, ∀ t ≥ 0,

uh,i,t
uc,i,t

= − (1− τH,t) eiwt, ∀ t ≥ 0,

we obtain
Uh,t

Uc,t
=

uh,i,t
uc,i,tei

= −wt (1− τH,t) , (36)

and
Uc,t

Uc,0
=

uc,i,t
uc,i,0

=
pt
βt

. (37)

Given the relationships above we can derive the implementation condition which relies only on the
aggregates ct, ht, and market weights φ. Let cmi,t (ct, ht;φ) and hmi,t (ct, ht;φ) be the argmax of problem
(33). The budget constraint of agent i implies

∞∑
t=0

Ntpt
(
cmi,t (ct, ht;φ)− (1− τH,t)wteih

m
i,t (ct, ht;φ)

)
≤ R0N0ai,0 + T,
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which using (36) and (37) can be restated as

Uc,0

(
R0N0ai,0 + T

)
=

∞∑
t=0

Ntβ
t

(
Uc,tc

m
i,t

(
ct, ht;φ

)
+ Uh,teih

m
i,t

(
ct, ht;φ

))
, ∀ i. (38)

A.2 Ramsey problem

A.2.1 Problem

Let λ ≡ {λi} be the planner’s welfare weight on type i, with
∑

i πiλi = 1. Define

W (ct, ht, Zt;φ, θ, λ) ≡
∑
i

πiλiu
(
cmi,t (ct, ht;φ) , h

m
i,t (ct, ht;φ) , Zt

)
+
∑
i

πiθi
[
Uc,tc

m
i,t (ct, ht;φ) + Uh,teih

m
i,t (ct, ht;φ)

]
where πiθi is the Lagrange multiplier on the implementability constraint of agent i, and θ ≡ {θi}. The
Ramsey problem can be written as

max
{Ct,H1,t,H2,t,K1,t,K2,t,

Et,Zt,µt}∞t=0,T,φ

∑
t,i

Ntβ
tW (ct, ht, Zt;φ, θ, λ)− Uc,0

∑
i

πiθi (R0N0ai,0 + T ) (39)

subject to

Ntct +Gt +Kt+1 +Θt (µt, Et) = (1−D (Zt))A1,tF (K1,t,H1,t, Et) + (1− δ)Kt, ∀ t ≥ 0,

Et = A2,tG (K2,t,H2,t) , ∀ t ≥ 0,

Zt = J
(
S0, E

M
0 , ..., EM

t , η0, ..., ηt
)
, ∀ t ≥ 0,

FK,tGH,t = GK,tFH,t, ∀ t ≥ 0,

K1,t +K2,t = Kt, ∀ t ≥ 0,

H1,t +H2,t = Ntht, ∀ t ≥ 0,

where βtνjt for j ∈ {1, 2, 3} are the Lagrange multipliers on the feasibility constraints in the order
above. When using a functional form for households’ utility below, it will also be convenient to add
an additional constraint from the normalization of market weights. Because this constraint is a simple
normalization, it has no impact on the resulting allocations.

In what follows, we assume that there is no initial wealth inequality, that is ai,0 = aj,0 for every i

and j. We relax this assumption in Appendix C.
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A.2.2 First order conditions

The first order conditions are

[ct] : Wc,t − ν1,t = 0, ∀ t ≥ 0, (40)

[H1,t] : Wh,t + ν1,t (1−Dt)A1,tFH,t = 0, ∀ t ≥ 0, (41)

[H2,t] : Wh,t + ν2,tA2,tGH,t = 0, ∀ t ≥ 0, (42)

[K1,t+1] : −ν1,t + [(1−Dt+1)A1,t+1FK,t+1 + (1− δ)]βν1,t+1 = 0, ∀ t ≥ 0, (43)

[K2,t+1] : −ν1,t +A2,t+1GK,t+1βν2,t+1 + (1− δ)βν1,t+1 = 0, ∀ t ≥ 0, (44)

[Et] : −ν1,t (ΘE,t − (1−Dt)A1,tFE,t)− ν2,t −
∞∑
j=0

βjν3,t+jJEM
t ,t+j (1− µt) = 0, ∀ t ≥ 0, (45)

[Zt] : NtWZ,t − ν1,tD
′
tA1,tFt + ν3,t = 0, ∀ t ≥ 0, (46)

[µt] : −ν1,tΘµ,t (µt, Et) +
∞∑
j=0

βjν3,t+jJEM
t ,t+jEt = 0, ∀ t ≥ 0, (47)

[T ] :
∑
i

πiθi = 0, (48)

and at t = 0, [
τk0

]
: Uc,0 ((1−D0)A1,0FK,0 − δ)N0

∑
i

πiθiai,0 = 0, (49)

[K1,0] : [(1−D0)A1,0FK,0 + (1− δ)] ν1,0 − κ = 0, (50)

[K2,0] : A2,0GK,0ν2,0 + (1− δ) ν1,0 − κ = 0, (51)

where κ is the Lagrange multiplier on the constraint K1,0 +K2,0 = K0, and it follows that

(1−D0)A1,0FK,0ν1,0 = A2,0GK,0ν2,0,

which together with (41) and (42), implies that

FK,0

FH,0
=

GK,0

GH,0
.

As in any other period, in t = 0 the requirement that the marginal rates of technical substitution are
equated between sectors is satisfied at the second-best allocation. Therefore, in most of what follows
we ignore the multiplier on this constraint.
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A.3 Optimal taxes

A.3.1 Capital and Labor income taxes

From (40) and (41) we obtain

(1−D (Zt))A1,tFH,t = −
Wh,t

Wc,t
, ∀ t ≥ 0, (52)

and using the intertemporal condition (43) we get

R∗
t+1 ≡ 1 + rt+1 − δ =

1

β

Wc,t

Wc,t+1
, ∀ t ≥ 0, (53)

These two equations can be used to back out the optimal taxes on labor and capital income. Plugging
(52) into (36) implies

Uh,t

Uc,t
=

Wh,t

Wc,t
(1− τH,t) ,

which can be rearranged into
τH,t = 1−

Uh,t

Uc,t

Wc,t

Wh,t
. (54)

In any competitive equilibrium (37) holds, which together with pt = Rt+1pt+1 implies

Uc,t+1

Uc,t
βRt+1 = 1.

Substituting this into (53), it follows that

Rt+1

R∗
t+1

=
Wc,t+1

Wc,t

Uc,t

Uc,t+1
. (55)

A.3.2 Excise taxes of energy and emissions

From the abatement first-order condition (47) and the energy firm abatement decision (9) we have that

τE,t =
Θµ,t

Et
=

1

ν1,t

∞∑
j=0

βjν3,t+jJEM
t ,t+j .

From the climate variable first-order condition (46) we have that

ν3,t = ν1,tD
′
tA1,tF (K1,t,H1,t, Et)−NtWZ,t,

hence the pollution tax is given by

τE,t =
1

ν1,t

∞∑
j=0

βj
(
ν1,t+jD

′
t+jA1,t+jFt+j −Nt+jWZ,t+j

)
JEM

t ,t+j . (56)

From the energy first-order condition (45) we have that

−ν1,t

(
ΘE,t + (1− µt)

Θµ,t

Et
− (1−D(Zt))A1,tFE,t

)
= ν2,t, (57)
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and combining the first-order conditions for sectoral labor supplies (41) and (42), it follows that

ν2,t
ν1,t

=
(1−D (Zt))A1,tFH,t

A2,tGH,t
.

From (4) and (8) we also have

(1−D (Zt))A1,tFH,t

A2,tGH,t
= pE,t − τI,t − τE,t(1− µt)−ΘE,t.

Hence, using (5), (9), and (57) we have

−ΘE,t − (1− µt)τE,t + pE,t = pE,t − τI,t − τE,t(1− µt)−ΘE,t,

and therefore
τI,t = 0. (58)

A.4 Explicit formulas

A.4.1 Characterization of equilibrium

Let us consider the following balanced-growth utility function

u (ci, hi, Z) =
(ci(1− ςhi)

γ)1−σ

1− σ
+

(
1 + α0Z

2
t

)−(1−σ)

1− σ
. (59)

To obtain explicit formulas, it is convenient to normalize market weights as follows∑
j

πj

(
φje

γ(σ−1)
j

) 1
σ−(1−σ)γ

= 1.

Using the period utility function defined in (59), the Lagrangian for the characterization problem
defined by (15) is

L =
∑
i

πiφi

[
(ci,t (1− ςhi,t)

γ)1−σ

1− σ
+

(
1 + α0Z

2
t

)−(1−σ)

1− σ

]
+θct

(
ct −

∑
i

πici,t

)
−θht

(
ht −

∑
i

πieihi,t

)
,

The first order conditions are

[ci,t] : φi (ci,t (1− ςhi,t)
γ)1−σ c−1

i,t = θct , ∀ t ≥ 0,

[hi,t] : φi (ci,t (1− ςhi,t)
γ)1−σ γς (1− ςhi,t)

−1 = eiθ
h
t , ∀ t ≥ 0,

rearranging yields

ci,t =
θht
θct

ei (1− ςhi,t)

γς
,

so that

ci,t =

(
θct
φi

(
θht
θct

ei
γς

)γ(1−σ)
)− 1

σ−(1−σ)γ

1− ςhi,t =
θct
θht

γς

ei

(
θct
φi

(
θht
θct

ei
γς

)γ(1−σ)
)− 1

σ−(1−σ)γ

,
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and summing across types (given that ct =
∑

i πici,t, and ht =
∑

i πieihi,t)

ct =

(
θct

(
θht
θct

1

γς

)γ(1−σ)
)− 1

σ−(1−σ)γ ∑
i

πi

(
e
γ(1−σ)
i

φi

)− 1
σ−(1−σ)γ

1− ςht =
θct
θht

γς

(
θct

(
θht
θct

1

γς

)γ(1−σ)
)− 1

σ−(1−σ)γ ∑
i

πi

(
ei
φi

γ(1−σ)
)− 1

σ−(1−σ)γ

It follows that

cmi,t (ct, ht;φ) = ωict, (60)

1− ςhmi,t (ct, ht;φ) =
ωi

ei
(1− ςht) , (61)

where

ωi =

(
φi (ei)

γ(σ−1)
) 1

σ−(1−σ)γ

∑
i πi

(
φje

γ(σ−1)
j

) 1
σ−(1−σ)γ

=
(
φi (ei)

γ(σ−1)
) 1

σ−(1−σ)γ
. (62)

Thus, we can write aggregate indirect utility U (ct, ht, Zt;φ) in terms of the aggregates ct, ht, and Zt

U (ct, ht, Zt, φ) =
∑
j

πjφj

(
ω1+γ
j

eγj

)1−σ
(ct (1− ςht)

γ)1−σ

1− σ
+
∑
i

πiφi

(
1 + α0Z

2
t

)−(1−σ)

1− σ

=
(ct (1− ςht)

γ)1−σ

1− σ
+ Γ

(
1 + α0Z

2
t

)−(1−σ)

1− σ
, (63)

since from the normalization of market weights we have

∑
j

πjφj

(
ω1+γ
j

eγj

)1−σ

=
∑
j

πj

(
φje

γ(σ−1)
j

) 1
σ−(1−σ)γ

= 1,

and with Γ ≡
∑

i πiφi.

A.4.2 Explicit tax formulas

From (38), substituting the derivatives of U (ct, ht, Zt;φ) into the definition of W (ct, ht, Zt;φ, θ, λ) we
get

W (ct, ht, Zt;φ, θ, λ) =
∑
i

πiλi

(
ωi

φi

(ct (1− ςht)
γ)1−σ

1− σ
+

(
1 + α0Z

2
t

)−(1−σ)

1− σ

)
+
∑
i

πiθi

[
(ct (1− ςht)

γ)1−σ ωi − γ (ct (1− ςht)
γ)1−σ (1− ςht)

−1 (ei − ωi (1− ςht))
]

Collecting terms and simplifying we obtain

W (ct, ht, Zt;φ, θ, λ) = Φ
(ct (1− ςht)

γ)1−σ

1− σ
+

(
1 + α0Z

2
t

)−(1−σ)

1− σ
+ΨUh,t. (64)
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where

Φ ≡
∑
i

πiωi

(
λi

φi
+ (1− σ) (1 + γ) θi

)
,

Ψ ≡
∑
i

πiθiei
ς

.

Substituting the derivatives into equation (54) we get

τH,t =
Ψς (1− ςht)

−1

Φ+Ψς (1− γ (1− σ)) (1− ςht)
−1 ,

substituting the derivatives into (55) yields

Rt+1

R∗
t+1

=
Φ−Ψςγ (1− σ) (1− ςht+1)

−1

Φ−Ψςγ (1− σ) (1− ςht)
−1 .

and substituting the derivatives into (56) we get

τE,t =
1

ν1,t

∞∑
j=0

βj

(
ν1,t+jD

′
t+jA1,t+jFt+j −Nt+jVZ(Zt+j)

)
JEM

t ,t+j , (65)

with ν1,t the multiplier of the resource constraint which we can express as

ν1,t = Wc,t = Vc,t +
∑
i

πiθiICc,i,t. (66)

If we add—without loss of generality—the normalization of market weights as a constraint into the
Ramsey problem, we obtain the following first order conditions with respect to market weights∑

t

βtNtWφi,t −
ζ

σ − (1− σ) γ

πiωi

φi
= 0, ∀ i.

From this equation we have that
∞∑
t=0

Ntβ
t (ct (1− ςht)

γ)1−σ

1− σ

(1− σ) (1 + γ)

σ − (1− σ) γ

πiωi

φi

(
λi

φi
+ θi

)
− ζ

σ − (1− σ) γ

πiωi

φi
= 0, ∀ i,

and therefore
λi

φi
+ θi =

ζ

(1− σ) (1 + γ)
∑∞

t=0NtβtŨ (ct, ht)
, ∀ i,

with

Ũ(ct, ht) =
(ct (1− ςht)

γ)1−σ

1− σ
.

Using the fact that ∑
i

πiθi = 0,
∑
i

πiωi = 1, and
∑
i

πiei = 1,

it follows that ∑
j

πjλj

φj
=

ζ

(1− σ) (1 + γ)
∑∞

t=0NtβtŨ (ct, ht)
,
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and, therefore
θi =

∑
j

πjλj

φj
− λi

φi
. (67)

This allows us to rewrite

Φ =
∑
i

πiωi

λi

φi
+ (1− σ) (1 + γ)

∑
j

πjλj

φj
− λi

φi


=
∑
j

πj
λj

φj
+
(
1− (1 + γ)(1− σ)

)
cov(λi/φi, ωi), (68)

Ψ =
1

ς

∑
j

πj
λj

φj
(1− ej) = −cov(λi/φi, ei)

ς
, (69)

where the last result is obtained using the normalization of productivity levels,
∑

i πiei = 1.
Notice that labor and capital income taxes are zero whenever Ψ = 0, which, according to equation

(69), occurs in three special cases: (i) when there is no agent heterogeneity, (ii) when the planner’s and
the market’s weights are perfectly aligned, and (iii) when agents’ productivity are uncorrelated with the
relative social weights. Intuitively, the first case corresponds to the outcome of a representative-agent
model in which lump-sum taxation is allowed: since there is no need to redistribute, the government
can rely only on non-distortionary taxes to finance its expenditures. The second case corresponds to
the situation in which the market allocation happens to be the one preferred by the planner: although
there might be inequalities due to differences in productivity and asset holdings, they are consistent
with the relative weight the planner gives to each type of individual. The third situation encompasses
the two previous ones, but also includes situations in which the planner would want to redistribute but
faces a targeting problem, i.e. it cannot reach a better allocation than the market one using anonymous
linear instruments due to the absence of correlation between the source of inequalities and its relative
preference over agents’ types.

The implementability conditions can be rewritten as

ωi =
Uc,0 (R0N0ai,0 + T ) +Mei

(1− σ) (1 + γ)
∑∞

t=0NtβtŨ (ct, ht)
, ∀ i,

with

M ≡
∞∑
t=0

Ntβ
tγ (ct (1− ςht)

γ)1−σ (1− ςht)
−1 . (70)

Since
∑n

i=1 ωi = 1, it follows that

ωi = 1 +
Uc,0R0N0(ai,0 −A0) +M(ei − 1)

(1− σ) (1 + γ)
∑∞

t=0NtβtŨ (ct, ht)
, ∀ i. (71)

Moreover, since

ωi =
(
φie

γ(σ−1)
i

) 1
σ−(1−σ)γ

,

we can express market weights as

φi =
ω
σ−(1−σ)γ
i

e
γ(σ−1)
i

=
1

e
γ(σ−1)
i

(
1 +

Uc,0R0N0(ai,0 −A0) +M(ei − 1)

(1− σ) (1 + γ)
∑∞

t=0NtβtŨ (ct, ht)

)σ−(1−σ)γ

. (72)

51



A.5 Comparison with Pigou

First-best pollution tax To compare our second-best results with the first-best, we solve the same
Ramsey problem except that we now allow for individualized lump-sum transfers. All first order
conditions remain the same except for the one with respect to T given by (48): since we now have
individualized instruments Ti, we obtain

θi = 0, ∀i,

hence for all t,
∑

i πiθiICc,i,t = 0. From (67), this also implies that

λi

φi
=
∑
j

πjλi

φi
, ∀i,

and as a consequence we have Ψ = 0, so that for all t, τH,t = 0 and τK,t = 0. Substituting for ν1,t in
(56), we can express the first-best tax as

τFB
E,t =

∞∑
j=0

βj

(
Vc,t+j

Vc,t
D′

t+jA1,t+jFt+j −
Nt+jVZ,t+j

Vc,t

)
JEM

t ,t+j .

The first-best tax is equal to the social cost of the externality—i.e., to the Pigouvian tax—evaluated
at the first-best allocation.
Proof of Proposition 2: Recall the following definitions from Section 3.3:

MCFt ≡
ν1,t
Vc,t

,

τPigou,Y
E,t ≡

∞∑
j=0

βj Vc,t+j

Vc,t
D′

t+jA1,t+jFt+jJEM
t ,t+j ,

τPigou,U
E,t ≡ (−1)

∞∑
j=0

βjNt+jVZ,t+j

Vc,t
JEM

t ,t+j ,

τPigou
E,t ≡ τPigou,Y

E,t + τPigou,U
E,t ,

ωU
t ≡

τPigou,U
E,t

τPigou
E,t

,

∆t+s ≡
βsVc,t+sD

′
t+sA1,t+sFt+sJEM

t ,t+s∑∞
j=0 β

jVc,t+jD′
t+jA1,t+jFt+jJEM

t ,t+j

.

Substituting into equation (65), we obtain equation (22) stated in Proposition 2,

τE,t = τPigou
E,t

∣∣∣
SB

( ∞∑
j=0

MCFt+j

MCFt
∆t+j(1− ωU

t ) +
ωU
t

MCFt

)
.

Using equation (66) to substitute in the definition of the MCF, we also obtain equation (23) stated in
Proposition 2,

MCFt = 1 +
cov(θi, ICc,i,t)

Vc,t
.
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With balanced-growth preferences, using the expression of U(ct, ht, Zt, φ) given by (63) and the solutions
for cmi,t and hmi,t given by (60) and (61), we can show that ICi,t defined by (19) can be expressed as

ICi,t =
(
ct(1− ςht)

γ
)(1−σ)

(
ωi + γ

(
ωi −

ei
(1− ςht)

))
, (73)

from which we obtain
ICc,i,t = (1− σ)

ICi,t

ct
.

Using the fact that
∑

i πiθi = 0, we can re-write the marginal reduction in implementation cost as

∑
i

πiθiICc,i,t = (1− σ)
cov(θi, ICi,t)

ct
. (74)

This term is equal to 0 when either σ tends to 1 or θi and ICi,t are uncorrelated. Thus, when the IES
tends to 1, the MCF is equal to 1 in all periods. Using the binding implementability conditions, we
can also express the discounted sum of ICi,t,

∞∑
t=0

Ntβ
tICi(ct, ht, φ) = Uc,0(R0ai,0 + T ).

When there is no initial wealth inequality, or when initial wealth is expropriated—which, as we have
shown, is optimal as long as initial wealth and productivity are positively correlated—then for any i, j,
R0ai,0 = R0aj,0. We can then write the discounted sum of ICi,t as a constant κIC that does not depend
on agents’ type,

∞∑
t=0

Ntβ
tICi(ct, ht, φ) = κIC .

Using this expression, we can show that the welfare-weighted average MCF from period 0 onward is
equal to 1, since with Vt ≡ V (ct, ht, Zt;φ, λ),∑∞

t=0Ntβ
tVt × MCFt∑∞

t=0NtβtVt
=

1∑∞
t=0NtβtVt

( ∞∑
t=0

Ntβ
tVt +

∞∑
t=0

Ntβ
tVt

∑
i

πiθi
(1− σ)ICi,t

Vc,tct

)

=
1∑∞

t=0NtβtVt

( ∞∑
t=0

Ntβ
tVt +

∑
i

πiθi

∞∑
t=0

Ntβ
tICi,t

)

=
1∑∞

t=0NtβtVt

( ∞∑
t=0

Ntβ
tVt + κIC

∑
i

πiθi

)
= 1,

with
∑

i πiθi = 0. ■

Link with the capital income tax From (18), using balanced-growth utility, we can show that

V (ct, ht, Zt;φ, λ) =
∑
i

πiωi
λi

φi

(ct (1− ςht)
γ)1−σ

1− σ
+

(
1 + α0Z

2
t

)−(1−σ)

1− σ
,
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hence using the explicit expression of U(ct, ht, Zt, φ) given by (63) and taking derivatives we have

Vc,t =
∑
i

πiωi
λi

φi
Uc,t, (75)

from which we can show that
Vc,t+j

Vc,t
=

Uc,t+j

Uc,t
.

From (55), and using the fact that
MCFt =

Wc,t

Vc,t
, (76)

we can write the ratio of MCFs as
MCFt+j

MCFt
=

j∏
k=1

Rt+k

R∗
t+k

.

Thus, from Proposition 2 we see that production damages are perfectly internalized if the capital tax
is optimally set to zero for all future periods where current emissions generate production damages.

Price effect To understand the role of the IES, it is useful to go back to the origin of the term ICi,t.
This term comes from households’ budget constraint (2) in which we have substituted for the price
and real wage using (36) and (37). From these equations, it appears that when making more resources
available to households, the price goes down since

pt = βt
( ct
c0

)−σ( 1− ςht
1− ςh0

)γ(1−σ)
.

When σ tends to 1, the price effect exactly offsets the volume effect so that households’ expenditures
and nominal income remain unchanged after an inflow of aggregate consumption, hence the planner
does not need to change the value of the lump-sum transfer and the implementation cost remains
constant.

Labor supply effect To determine the sign of the covariance term driving the MCF, we can examine
the ratio of the period implementation cost for two agents i and j such that ei > ej . From (73), we
have

ICi,t

ICj,t
=

ωi + γ
(
ωi − ei

(1−ςht)

)
ωj + γ

(
ωj − ej

(1−ςht)

) .
Although the discounted sum of ICi,t is invariant across type, in period t this ratio may be below or
above 1 depending on the value of the aggregate labor supply. In particular, we have

∂
ICi,t

ICj,t

∂ht
=

ςγ(1 + γ)
(
ejωi − eiωj

)
(1− ςht)2

(
ωj(1 + γ)− γej

(1−ςht)

)2 . (77)

From (71), we can also show that with homogeneous initial wealth (or full expropriation of initial
wealth), when transfers plus initial assets are positive (as they are in our quantitative analysis) then
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ωi/ei is strictly declining in ei, hence for ei > ej , the derivative in (77) is negative. This result
means that when ht is high relative to its average value, the relative labor supply of highly productive
households compared to less productive households is higher, hence more productive households need
lower transfers to satisfy the planners’ allocation at that period. If the more productive also have a
lower marginal utility of consumption (hence a higher θi), then cov(θi, ICi,t) < 0. Thus, when the IES
is less than unity so that the price effect dominates, an increase in aggregate consumption reduces the
planner’s implementation cost and the MCF is higher than 1 in a given period if and only if the labor
supply is relatively high compared to its long-run value.
Proof of Proposition 3: From our characterization problem, we know that market weights are
determined by the following expression,

φiuc,i,t = Uc,t, ∀i,

hence substituting into equation (75) and using the fact that for any period t, ωi = ci,t/ct and∑
i πi(ci,t/ct) = 1, we have

Vc,t =
∑
i

πiλi
uc,i,tci,t

ct

=
∑
i

πiλiuc,i,t + cov
(
λiuc,i,t,

ci,t
ct

)
. (78)

Thus, between the first-best and the second-best case, the marginal utility of consumption will differ
due to the path of aggregate consumption, as well as the distribution of individual allocations. Holding
aggregate consumption constant, we see that an increase in the variance of ci,t has ambiguous effects.
On the one hand, since uc is convex in c for σ > 0, from Jensen’s inequality the average marginal utility
is increasing with consumption inequalities. On the other hand, higher marginal utilities are weighted
by lower consumption levels, hence increasing consumption dispersion reduces the relative weight given
to high marginal utilities. The net effect depends on the curvature of the utility function. From (62),
when σ tends to 1 we have ωi = φi, hence from (75) and using the normalization of the planner’s
weights we have

Vc,t = Uc,t.

Thus, when σ tends to 1, the two previous effects cancel each other and the distribution of individual
allocations has no incidence on the marginal utility of consumption. ■

B Optimal tax rules in a third-best environment

B.1 Given labor taxes

Suppose that labor taxes are given, τH,t = τ̄H . Then, the planner’s problem described in Appendix
A.2.1 has the following additional constraints,

Uh,t

Uc,t
= − (1− τ̄H) (1−Dt)A1,tFH,t, (79)

FH,tGK,t = FK,tGH,t. (80)
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Although the second of these two constraints is already required in the benchmark model, it happens
to be endogenously satisfied in that case. With an additional constraint on instruments, this is not
necessarily the case anymore. Let βtΛH

t and βtΓH
t be the multipliers on these constraints. Then, the

first-order conditions of the planner’s problem become

[ct] : Wc,t − ν1,t + ΛH
t ϑc,t = 0, ∀ t ≥ 0, (81)

[H1,t] : Wh,t + ν1,t (1−Dt)A1,tFH,t + ΛH
t

(
ϑh,t + (1− τ̄H) (1−Dt)A1,tFHH,t

)
+ ΓH

t

(
FHH,tGK,t − FKH,tGH,t

)
= 0, ∀ t ≥ 0, (82)

[H2,t] : Wh,t + ν2,tA2,tGH,t + ΛH
t ϑh,t + ΓH

t (FH,tGKH,t − FK,tGHH,t) = 0, ∀ t ≥ 0, (83)

[K1,t+1] : −ν1,t +
(
(1−Dt+1)A1,t+1FK,t+1 + (1− δ)

)
βν1,t+1 + βΛH

t+1

(
(1− τ̄H) (1−Dt+1)A1,t+1FHK,t+1

)
+ βΓH

t+1

(
FHK,t+1GK,t+1 − FKK,t+1GH,t+1

)
= 0, ∀ t ≥ 0, (84)

[K2,t+1] : −ν1,t +A2,t+1GK,t+1βν2,t+1 + (1− δ)βν1,t+1

+ βΓH
t+1 (FH,t+1GKK,t+1 − FK,t+1GHK,t+1) = 0, ∀ t ≥ 0, (85)

[Et] : −ν1,t (ΘE,t − (1−Dt)A1,tFE,t)− ν2,t −
∞∑
j=0

βjν3,t+jJEM
t ,t+j (1− µt)

+ ΛH
t ((1− τ̄H) (1−Dt)A1,tFHE,t) + ΓH

t (FHE,tGK,t − FKE,tGH,t) = 0, ∀ t ≥ 0,

(86)

[Zt] : NtWZ,t − ν1,tD
′
tA1,tFt + ν3,t − ΛH

t (1− τ̄H)D′
tA1,tFH,t = 0, ∀ t ≥ 0, (87)

[µt] : −ν1,tΘµ,t +
∞∑
j=0

βjν3,t+jJEM
t ,t+jEt = 0, ∀ t ≥ 0, (88)

[T ] :
∑
i

πiθi = 0, (89)

[φi] :
∑
t

βtNtWφi,t −
ζ

σ − (1− σ) γ

πiωi

φi
= 0, (90)

where

ϑc,t ≡
Uch,tUc,t − Uh,tUcc,t

NtU2
c,t

,

ϑh,t ≡
Uhh,tUc,t − Uh,tUch,t

NtU2
c,t

.

B.1.1 Capital income taxes and multipliers on new constraints

From (82) and (81) we obtain

(1−Dt)A1,tFH,t = −
Wh,t + ΛH

t

(
ϑh,t + (1− τ̄H) (1−Dt)A1,tFHH,t

)
+ ΓH

t

(
GK,tFHH,t −GH,tFKH,t

)
Wc,t + ΛH

t ϑc,t
, ∀ t ≥ 0,

(91)
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and using the intertemporal condition (84) we get

R∗
t+1 ≡ 1 + rt+1 − δ

=
1

β

Wc,t + Λtϑc,t − βΛH
t+1

(
(1− τ̄H) (1−Dt+1)A1,t+1FHK,t+1

)
− βΓt+1 (FHK,t+1GK,t+1 − FKK,t+1GH,t+1)

Wc,t+1 + ΛH
t+1ϑc,t+1

, ∀ t ≥ 0.

(92)

Solving (82) and (83), and (84) and (85) for ν2,t/ν1,t, and equating both equations, using (80), yields

ΓH
t = ζtΛ

H
t ,

where

ζt ≡
(1− τ̄H) (1−Dt)A1,t (GK,tFHH,t −GH,tFKH,t) GH,t

(
(FKH,tGK,t − FKK,tGH,t)− (FH,tGKK,t − FK,tGKH,t)

)
−GK,t

(
(FHH,tGK,t − FKH,tGH,t)− (FH,tGKH,t − FK,tGHH,t)

)

, ∀ t ≥ 0.

Combining this equation with (91) we can then solve for

ΛH
t = −

Wh,t + (1−Dt)A1,tFH,tWc,t

ϑh,t + (1−Dt)A1,tFH,tϑc,t + (1− τ̄H) (1−Dt)A1,tFHH,t + ζt (GK,tFHH,t −GH,tFKH,t)
.

In any competitive equilibrium (37) holds, which together with pt = Rtpt+1 implies

Uc,t+1

Uc,t
βRt+1 = 1.

Substituting this into (92), it follows that

Rt+1

R∗
t+1

=
Wc,t+1 + ΛH

t+1ϑc,t+1 Wc,t + ΛH
t ϑc,t − βΛH

t+1

(
(1− τ̄H) (1−Dt+1)A1,t+1FHK,t+1

)
−βΓH

t+1

(
FHK,t+1GK,t+1 − FKK,t+1GH,t+1

)


Uc,t

Uc,t+1
.

B.1.2 Excise taxes of energy and emissions

From (9) and the abatement first-order condition (88) we have that

τE,t =
Θµ,t

Et
=

1

ν1,t

∞∑
j=0

βjν3,t+jJEM
t ,t+j . (93)

From the climate variable first-order condition (87) we have that

ν3,t = ν1,tD
′
tA1,tFt −WZ,t + ΛH

t (1− τ̄H)D′
tA1,tFH,t. (94)

Substituting (94) into (93) we obtain the optimal pollution tax

τE,t =
1

ν1,t

∞∑
j=0

βj

(
ν1,t+jD

′
t+jA1,t+jFt+j −Nt+jWZ,t+j + ΛH

t+j

(
(1− τ̄H)D′

t+jA1,t+jFH,t+j

))
JEM

t ,t+j .
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From the energy first-order condition (86) we have that

(1−Dt)A1,tFE,t−
ν2,t
ν1,t

=
(
ΘE,t+(1−µt)τE,t

)
−ΛH

t

ν1,t
(1− τ̄H) (1−Dt)A1,tFHE,t−

ΓH
t

ν1,t
(FHE,tGK,t − FKE,tGH,t) .

Combining the first-order conditions for sectoral labor supplies (82) and (83), it follows that

ν2,t
ν1,t

=
(1−Dt)A1,tFH,t

A2,tGH,t
+

ΛH
t

ν1,t

(1− τ̄H) (1−Dt)A1,tFHH,t

A2,tGH,t

+
ΓH
t

ν1,t

(FHH,tGK,t − FKH,tGH,t)− (FH,tGKH,t − FK,tGHH,t)

A2,tGH,t
,

and, therefore

(1−Dt)A1,tFE,t =
(
ΘE,t + (1− µt)τE,t

)
+

(1−Dt)A1,tFH,t

A2,tGH,t
+

ΛH
t

ν1,t
(1− τ̄H) (1−Dt)A1,t

(
FHH,t

A2,tGH,t
− FHE,t

)
+

ΓH
t

ν1,t

(
(FHH,tGK,t − FKH,tGH,t)− (FH,tGKH,t − FK,tGHH,t)

A2,tGH,t
− (FHE,tGK,t − FKE,tGH,t)

)
.

Then, from (4), (5), and (8) we have that

(1−Dt)A1,tFH,t =
(
(1−Dt)A1,tFE,t − τI,t −

(
ΘE,t + (1− µt)τE,t

))
A2,tGH,t,

and therefore

τI,t =
ΛH
t

ν1,t
(1− τ̄H) (1−Dt)A1,t

(
FHH,t

A2,tGH,t
− FHE,t

)
+

ΓH
t

ν1,t

(
(FHH,tGK,t − FKH,tGH,t)− (FH,tGKH,t − FK,tGHH,t)

A2,tGH,t
− (FHE,tGK,t − FKE,tGH,t)

)
.

B.2 Given capital taxes

Now suppose that labor capital are given, τK,t = τ̄K . Then, the planner’s problem has the following
additional constraints,

Uc,t

Uc,t+1
= β

(
1 + (1− τ̄K) ((1−Dt+1)A1,t+1FK,t+1 − δ)

)
, (95)

FH,tGK,t = FK,tGH,t. (96)
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Let βtΛK
t+1 and βtΓK

t be the multipliers on these constraints. Then the first-order conditions of the
planner’s problem become

[ct] : Wc,t − ν1,t −
ΛK
t+1

Nt

Ucc,t

Uc,t+1
+

ΛK
t

Nt

Uc,t−1Ucc,t

βU2
c,t

= 0, ∀ t ≥ 0, (97)

[H1,t] : Wh,t + ν1,t (1−Dt)A1,tFH,t −
ΛK
t+1

Nt

Uch,t

Uc,t+1
+

ΛK
t

Nt

Uc,t−1Uch,t

βU2
c,t

+ ΛK
t (1− τ̄K) (1−Dt)A1,tFKH,t + ΓK

t

(
FHH,tGK,t − FKH,tGH,t

)
= 0, ∀ t ≥ 0, (98)

[H2,t] : Wh,t + ν2,tA2,tGH,t −
ΛK
t+1

Nt

Uch,t

Uc,t+1
+

ΛK
t

Nt

Uc,t−1Uch,t

βU2
c,t

+ ΓK
t

(
FH,tGKH,t − FK,tGHH,t

)
= 0, ∀ t ≥ 0, (99)

[K1,t+1] : −ν1,t +
(
(1−Dt+1)A1,t+1FK,t+1 + (1− δ)

)
βν1,t+1 + βΛK

t+1

(
(1− τ̄K) (1−Dt+1)A1,t+1FKK,t+1

)
+ βΓK

t+1

(
FHK,t+1GK,t+1 − FKK,t+1GH,t+1

)
= 0, ∀ t ≥ 0, (100)

[K2,t+1] : −ν1,t +A2,t+1GK,t+1βν2,t+1 + (1− δ)βν1,t+1

+ βΓK
t+1

(
FH,t+1GKK,t+1 − FK,t+1GHK,t+1

)
= 0, ∀ t ≥ 0, (101)

[Et] : −ν1,t (ΘE,t − (1−Dt)A1,tFE,t)− ν2,t −
∞∑
j=0

βjν3,t+jJEM
t ,t+j (1− µt)

+ ΛK
t

(
(1− τ̄K) (1−Dt)A1,tFKE,t

)
+ ΓK

t

(
FHE,tGK,t − FKE,tGH,t

)
= 0, ∀ t ≥ 0,

(102)

[Zt] : NtWZ,t − ν1,tD
′
tA1,tFt + ν3,t − ΛK

t

(
(1− τ̄K)D′

tA1,tFK,t

)
= 0, ∀ t ≥ 0, (103)

[µt] : −ν1,tΘµ,t +

∞∑
j=0

βjν3,t+jJEM
t ,t+jEt = 0, ∀ t ≥ 0, (104)

[T ] :
∑
i

πiθi = 0, (105)

[φi] :
∑
t

βtWφi,t −
ζ

σ − (1− σ) γ

πiωi

φi
= 0. (106)

B.2.1 Capital income taxes and multipliers on new constraints

From(98) and (97) we obtain

(1−Dt)A1,tFH,t =

−

 Wh,t −
ΛK
t+1

Nt

Uch,t

Uc,t+1
+

ΛK
t

Nt

Uc,t−1Uch,t

βU2
c,t

+ ΛK
t (1− τ̄K) (1−Dt)A1,tFKH,t

+ΓK
t (FHH,tGK,t − FKH,tGH,t)


Wc,t −

ΛK
t+1

Nt

Ucc,t

Uc,t+1
+

ΛK
t

Nt

Uc,t−1Ucc,t

βU2
c,t

,

(107)
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and using the intertemporal condition (100) we get

R∗
t+1 ≡1 + rt+1 − δ

=
1

β

 Wc,t −
ΛK
t+1

Nt

Ucc,t

Uc,t+1
+

ΛK
t

Nt

Uc,t−1Ucc,t

βU2
c,t

− βΛK
t+1 (1− τ̄K) (1−Dt+1)A1,t+1FKK,t+1

−βΓK
t+1 (FHK,t+1GK,t+1 − FKK,t+1GH,t+1)


Wc,t+1 −

ΛK
t+2

Nt+1

Ucc,t+1

Uc,t+2
+

ΛK
t+1

Nt+1

Uc,tUcc,t+1

βU2
c,t+1

. (108)

Solving (82) and (83), and (84) and (85) for ν2,t/ν1,t, and equating both equations, using (96), yields

ΓK
t = ζtΛ

K
t ,

where

ζt ≡
(1− τ̄K) (1−Dt)A1,t (GK,tFKH,t −GH,tFKK,t) GH,t

(
(FKH,tGK,t − FKK,tGH,t)− (FH,tGKK,t − FK,tGKH,t)

)
−GK,t

(
(FHH,tGK,t − FKH,tGH,t)− (FH,tGKH,t − FK,tGHH,t)

)

, ∀ t ≥ 0.

In any competitive equilibrium (37) holds, which together with pt = Rtpt+1 implies

Uc,t+1

Uc,t
βRt+1 = 1.

Substituting this into (108), it follows that

βR∗
t+1 =

 Wc,t +
(RtΛK

t −βRt+1ΛK
t+1)

Nt

Ucc,t

Uc,t
− βΛK

t+1 (1− τ̄K) (1−Dt+1)A1,t+1FKK,t+1

−βΛK
t+1ζt+1 (FHK,t+1GK,t+1 − FKK,t+1GH,t+1)


Wc,t+1 +

(Rt+1ΛK
t+1−βRt+2ΛK

t+2)
Nt+1

Ucc,t+1

Uc,t+1

.

Plugging (107) into (36) implies

Uh,t

Uc,t
=

 Wh,t −
ΛK
t+1

Nt

Uch,t

Uc,t+1
+

ΛK
t

Nt

Uc,t−1Uch,t

βU2
c,t

+ ΛK
t (1− τ̄K) (1−Dt)A1,tFKH,t

+ΓK
t (FHH,tGK,t − FKH,tGH,t)


Wc,t −

ΛK
t+1

Nt

Ucc,t

Uc,t+1
+

ΛK
t

Nt

Uc,t−1Ucc,t

βU2
c,t

(1− τH,t) ,

which can be rearranged into

τH,t = 1−
Uh,t

Uc,t

Wc,t −
ΛK
t+1

Nt

Ucc,t

Uc,t+1
+

ΛK
t

Nt

Uc,t−1Ucc,t

βU2
c,t Wh,t −

ΛK
t+1

Nt

Uch,t

Uc,t+1
+

ΛK
t

Nt

Uc,t−1Uch,t

βU2
c,t

+ΛK
t (1− τ̄K) (1−Dt)A1,tFKH,t + ΓK

t (FHH,tGK,t − FKH,tGH,t)


. (109)
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B.2.2 Excise taxes of energy and emissions

From (9) and the abatement first-order condition (104) we have that

τE,t =
Θµ,t

Et
=

1

ν1,t

∞∑
j=0

βjν3,t+jJEM
t ,t+j . (110)

From the climate variable first-order condition (103) we have that

ν3,t = ν1,tD
′
tA1,tFt −NtWZ,t + ΛK

t (1− τ̄K)D′
tA1,tFK,t. (111)

Substituting (111) into (110) we obtain the optimal pollution tax

τE,t =
1

ν1,t

∞∑
j=0

βj

(
ν1,t+jD

′
t+jA1,t+jFt+j −Nt+jWZ,t+j + ΛK

t+j

(
(1− τ̄K)D′

t+jA1,t+jFK,t+j

))
JEM

t ,t+j .

From the energy first-order condition (102) we have that

(1−Dt)A1,tFE,t−
ν2,t
ν1,t

=
(
ΘE,t+(1−µt)τE,t

)
−ΛK

t

ν1,t
(1− τ̄K) (1−Dt)A1,tFKE,t−

ΓK
t

ν1,t
(FHE,tGK,t − FKE,tGH,t) .

Combining the first-order conditions for sectoral labor supplies (98) and (99), it follows that

ν2,t
ν1,t

=
(1−Dt)A1,tFH,t

A2,tGH,t
+

ΛK
t

ν1,t

(1− τK) (1−Dt)A1,tFKH,t

A2,tGH,t

+
ΓK
t

ν1,t

(FHH,tGK,t − FKH,tGH,t)− (FH,tGKH,t − FK,tGHH,t)

A2,tGH,t
,

and, therefore

(1−Dt)A1,tFE,t =
(
ΘE,t + (1− µt)τE,t

)
+

(1−Dt)A1,tFH,t

A2,tGH,t
+

ΛK
t

ν1,t
(1− τ̄K) (1−Dt)A1,t

(
FKH,t

A2,tGH,t
− FKE,t

)
+

ΓK
t

ν1,t

(
(FHH,tGK,t − FKH,tGH,t)− (FH,tGKH,t − FK,tGHH,t)

A2,tGH,t
− (FHE,tGK,t − FKE,tGH,t)

)
.

Then, from (4), (5), and (8) we have that

(1−Dt)A1,tFH,t =
(
(1−Dt)A1,tFE,t − τI,t −

(
ΘE,t + (1− µt)τE,t

))
A2,tGH,t,

and therefore

τI,t =
ΛK
t

ν1,t
(1− τ̄K) (1−Dt)A1,t

(
FKH,t

A2,tGH,t
− FKE,t

)
+
ΓK
t

ν1,t

(
(FHH,tGK,t − FKH,tGH,t)− (FH,tGKH,t − FK,tGHH,t)

A2,tGH,t
− (FHE,tGK,t − FKE,tGH,t)

)
.

C Optimal tax rules with initial wealth inequality

In Appendix A.2.1, we describe the Ramsey problem with wealth inequality.
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C.1 Time-inconsistency

The tax rules we have described in our benchmark apply unchanged for every period including period
0. This is the result of two features of the benchmark model. The first is the ability of the Ramsey
planner to choose lump-sum transfers (or taxes), and the second is the assumption that the planner can
set the initial capital tax to expropriate initial wealth, thereby eliminating any initial wealth inequality.
To see this, notice that the planner’s problem (see equation (39)) is symmetric with respect to time
except for the last term in the objective function of the Ramsey planner, which we denote here by W0,

W0 ≡ Uc,0

∑
i

πiθi (N0R0ai,0 + T ) .

As argued above, the optimality condition associated with the choice of T implies that
∑

i πiθi = 0.
Thus, if there is no initial wealth inequality, i.e. if ai,0 = a0 for every i, it follows that W0 = 0 and that
the tax rules are time invariant. Moreover, if there is initial wealth inequality, the planner can set τK,0

such that R0 = 0, and we again have W0 = 0.
This does not mean that the tax rules are time-consistent: if the Ramsey planner was allowed

to re-optimize in a future period, they would want to deviate from the choices made by the planner
in period 0. The reason for the time-inconsistency is, however, different from the one in the usual
representative-agent version of the Ramsey problem in which the planner cannot choose lump-sum
transfers. In that case, in general

∑
i πiθi ̸= 0, and W0 ̸= 0 regardless of initial wealth inequality, which

leads to the usual reason for time-inconsistent Ramsey policies; initial capital income taxes mimic the
unavailable and undistortive lump-sum taxes. In our setup, the reason for time inconsistency has to do
instead with the use of capital income taxes to redistribute unequal asset income. Since asset inequality
evolves endogenously over time, starting the Ramsey problem in a future period would mean having a
different initial asset distribution.

There is a sense in which the time-inconsistency problem in our setup is less severe than in the
usual representative agent case. If there is no initial wealth inequality, and the optimal Ramsey policy
was such that the economy was in a balanced-growth path starting from period 0, then there would
still be no wealth inequality in every future period and the Ramsey policy would be time-consistent.
In any case, in this section we address how the Ramsey policy changes in the presence of initial wealth
inequality.

C.2 First order conditions

Here we consider the problem of the planner assuming that τK,0 is taken as given. For t ≥ 1, the
conditions are exactly the same as the ones derived above, in particular, we have that

∑
i πiθi = 0, which

we use to simplify the equations below. The period-0 marginal rate of technical substitution constraint
is no longer automatically satisfied, so let Γ0 denote the Lagrange multiplier on this constraint. The
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first order conditions for period 0 are

[c0] : Wc,0 − ν1,0 − Ucc,0

∑
i

πiθiR0ai,0 = 0, (112)

[H1,0] : Wh,0 + ν1,0 (1−D0)A1,0FH,0 − Uch,0

∑
i

πiθiR0ai,0 (113)

−N0Uc,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)A1,0FKH,0 + Γ0 (FHH,0GK,0 − FKH,0GH,0) = 0,

[H2,0] : WH,0 + ν2,0A2,0GH,0 − Uch,0

∑
i

πiθiR0ai,0 + Γ0 (FH,0GKH,0 − FK,0GHH,0) = 0, (114)

[K1,0] : ((1−D0)A1,0FK,0 + (1− δ)) ν1,0 −N0Uc,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)A1,0FKK,0 − κ

+ Γ0 (FHK,0GK,0 − FKK,0GH,0) = 0, (115)

[K2,0] : A2,0GK,0ν2,0 + (1− δ) ν1,0 − κ+ Γ0 (FH,0GKK,0 − FK,0GHK,0) = 0, (116)

[E0] : − (ΘE,0 − (1−D0)A1,0FE,0) ν1,0 − ν2,0 −
∞∑
j=0

βjν3,jJEM
0 ,j (1− µ0) (117)

−N0Uc,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)A1,0FKE,0 + Γ0 (FHE,0GK,0 − FKE,0GH,0) = 0,

[Z0] : N0WZ,0 − ν1,0D
′
0A1,0F0 + ν3,0 +N0Uc,0

∑
i

πiθiai,0 (1− τK,0)D
′
0A1,0FK,0 = 0, (118)

[µ0] : −ν1,0Θµ,0 +
∞∑
j=0

βjν3,jJEM
0 ,jE0 = 0. (119)

C.3 Multiplier on period-0 marginal rate of technical substitution constraint

From (115) and (116), it follows that

ν2,0
ν1,0

= (1−D0)
A1,0FK,0

A2,0GK,0
− N0Uc,0

ν1,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)
A1,0FKK,0

A2,0GK,0

+
Γ0

ν1,0

((FHK,0GK,0 − FKK,0GH,0)− (FH,0GKK,0 − FK,0GHK,0))

A2,0GK,0
.

From (113) and (114), it follows that

ν2,0
ν1,0

= (1−D0)
A1,0FH,0

A2,0GH,0
− N0Uc,0

ν1,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)
A1,0FKH,0

A2,0GH,0

+
Γ0

ν1,0

((FHH,0GK,0 − FKH,0GH,0)− (FH,0GKH,0 − FK,0GHH,0))

A2,0GH,0
.

Hence, putting these two equations together, we obtain

Γ0 =
N0Uc,0

∑
i πiθiai,0 (1− τK,0) (1−D0)A1,0 (GK,0FKH,0 −GH,0FKK,0){

GK,0 ((FHH,0GK,0 − FKH,0GH,0)− (FH,0GKH,0 − FK,0GHH,0))

−GH,0 ((FHK,0GK,0 − FKK,0GH,0)− (FH,0GKK,0 − FK,0GHK,0))

} .
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C.4 Labor income taxes

From (113) and (112) we obtain

(1−D0)A1,0FH,0 =

{
−Wh,0 + Uch,0

∑
i πiθiR0ai,0

+N0Uc,0
∑

i πiθiai,0 (1− τK,0) (1−D0)A1,0FKH,0 − Γ0 (FHH,0GK,0 − FKH,0GH,0)

}
Wc,0 − Ucc,0

∑
i πiθiR0ai,0

(120)
Plugging (120) into (36) implies

Uh,0

Uc,0
=

{
Wh,0 − Uch,0

∑
i πiθiR0ai,0

−N0Uc,0
∑

i πiθiai,0 (1− τK,0) (1−D0)A1,0FKH,0 + Γ0 (FHH,0GK,0 − FKH,0GH,0)

}
Wc,0 − Ucc,0

∑
i πiθiR0ai,0

(1− τH,0) ,

which can be rearranged into

τH,0 = 1−
Uh,0

Uc,0

Wc,0 − Ucc,0
∑

i πiθiR0ai,0{
Wh,0 − Uch,0

∑
i πiθiR0ai,0

−N0Uc,0
∑

i πiθiai,0 (1− τK,0) (1−D0)A1,0FKH,0 + Γ0 (FHH,0GK,0 − FKH,0GH,0)

} .

C.5 Capital income taxes

From (43) and (112) we obtain

R∗
1 ≡ 1 + r1 − δ =

1

β

Wc,0 − Ucc,0
∑

i πiθiR0ai,0
Wc,1

.

In any competitive equilibrium (37) holds, which implies

Uc,1

Uc,0
βR1 = 1.

Substituting this into (53), it follows that

R1

R∗
1

=
Wc,1

Wc,0 − Ucc,0
∑

i πiθiR0ai,0

Uc,0

Uc,1
. (121)

C.6 Excise taxes of energy and emissions

From (9) and the abatement first-order condition (119) we have that

τE,0 =
Θµ,0

E0
=

1

ν1,0

∞∑
j=0

βjν3,jJEM
0 ,j . (122)

From the climate variable first-order condition (118) we have that

ν3,0 = ν1,0D
′
0A1,0F0 −N0WZ,0 −N0Uc,0

∑
i

πiθiai,0 (1− τK,0)D
′
0A1,0FK,0. (123)
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Substituting (123) into (122) we obtain the initial pollution tax

τE,0 =
1

ν1,0

∞∑
j=0

βj
(
ν1,jD

′
jA1,jFj −NjWZ,j

)
JEM

0 ,j −N0
Uc,0

ν1,0

∑
i

πiθiai,0 (1− τK,0)D
′
0A1,0FK,0JEM

0 ,0.

From the energy first-order condition (117) we have that

(1−D0)A1,0FE,0 −
ν2,0
ν1,0

=
(
ΘE,0 + (1− µ0)τE,0

)
+N0

Uc,0

ν1,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)A1,0FKE,0

− Γ0

ν1,0
(FHE,0GK,0 − FKE,0GH,0) .

Combining the first-order conditions for sectoral labor supplies (113) and (114), it follows that

ν2,0
ν1,0

= (1−D0)
A1,0FH,0

A2,0GH,0
− N0Uc,0

ν1,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)
A1,0FKH,0

A2,0GH,0

+
Γ0

ν1,0

((FHH,0GK,0 − FKH,0GH,0)− (FH,0GKH,0 − FK,0GHH,0))

A2,0GH,0
,

and, therefore

(1−D0)A1,0FE,0 =
(
ΘE,0 + (1− µ0)τE,0

)
+ (1−D0)

A1,0FH,0

A2,0GH,0

+N0
Uc,0

ν1,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)

(
A1,0FKE,0 −

A1,0FKH,0

A2,0GH,0

)
+

Γ0

ν1,0

(
(FHH,0GK,0 − FKH,0GH,0)− (FH,0GKH,0 − FK,0GHH,0)

A2,0GH,0
− (FHE,0GK,0 − FKE,0GH,0)

)
.

Then, from (4), (5), and (8) we have that

(1−D0)A1,0FH,0 =
(
(1−D0)A1,0FE,0 − τI,0 −

(
ΘE,0 + (1− µ0)τE,0

))
A2,0GH,0,

and therefore

τI,0 = N0
Uc,0

ν1,0

∑
i

πiθiai,0 (1− τK,0) (1−D0)

(
A1,0FKE,0 −

A1,0FKH,0

A2,0GH,0

)
+

Γ0

ν1,0

(
(FHH,0GK,0 − FKH,0GH,0)− (FH,0GKH,0 − FK,0GHH,0)

A2,0GH,0
− (FHE,0GK,0 − FKE,0GH,0)

)
.

D Optimal tax rules with Stone-Geary utility

The derivation of optimal tax rules in this extended version of the model closely follows the method
applied to solve the benchmark model. This appendix highlights the differences with the benchmark
presented in Appendix A.
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D.1 Characterization of equilibrium

Let φ ≡ {φi} be the market weights normalized so that∑
j

πj

(
φje

γ(σ−1)
j

) 1
1−(1+ϵ+γ)(1−σ)

= 1,

with φi ≥ 0. Then, given aggregate levels ct, dt, ht and Zt, the individual levels can be found by solving
the following static subproblem for each period t:

U (ct, dt, ht, Zt;φ) ≡ max
ci,t,di,t,hi,t

∑
i

πiφiui (ci,t, di,t, hi,t, Zt) ,

s.t.
∑
i

πici,t = ct, and
∑
i

πidi,t = dt, and
∑
i

πieihi,t = ht.
(124)

Using the utility function defined by equation (30) and following the same steps as in Appendix A, we
obtain the following solutions for this problem

cmi,t (ct, dt, ht;φ) = ωict,

dmi,t (ct, dt, ht;φ) = d̄i,t + ωi

(
dt − d̄t

)
,

1− ςhmi,t (ct, dt, ht;φ) =
ωi

ei
(1− ςht),

with d̄t =
∑

i πid̄i,t, and where

ωi =
(
φie

γ(σ−1)
i

) 1
1−(1+ϵ+γ)(1−σ)

,

which enables us to write the aggregate indirect utility in terms of the aggregates and market weights

U (ct, dt, ht, Zt) =

(
ct(dt − d̄t)

ϵ (1− ςht)
γ
)1−σ

1− σ
+ Γ

(
1 + α0Z

2
t

)−(1−σ)

1− σ
,

with Γ ≡
∑

i πiφi.

D.2 Implementability condition

From the first order conditions of problem (124) and applying the envelope theorem we have

Uc,t = φiuc,i,t,

Ud,t = φiud,i,t,

Uh,t =
φiuh,i,t

ei
,

which together with the first order conditions of individual agents’ problems give

Uh,t

Uc,t
=

uh,i,t
uc,i,tei,t

= −wt (1− τH,t) , (125)

Ud,t

Uc,t
=

ud,i,t
uc,i,t

= pE,t + τD,t, (126)
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and
Uc,t

Uc,0
=

uc,i,t
uc,i,0

=
pt
βt

. (127)

Using (125), (126), and (127) to substitute in households’ budget constraint (31), we obtain the imple-
mentability conditions

Uc,0 (R0N0ai,0 + T ) =
∞∑
t=0

Ntβ
t
(
Uc,tc

m
i,t

(
ct, dt, ht;φ

)
+Ud,td

m
i,t (ct, dt, ht;φ)+Uh,teih

m
i,t (ct, dt, ht;φ)

)
, ∀i.

D.3 Ramsey problem

Let again λ ≡ {λi} be the planner’s welfare weight on type i, with
∑

i πiλi = 1. Define the pseudo-utility
function

W
(
ct, dt, ht, Zt;φ, θ, λ

)
≡
∑
i

πiλiui
(
cmi,t
(
ct, dt, ht;φ

)
, dmi,t

(
ct, dt, ht;φ

)
, hmi,t

(
ct, dt, ht;φ

)
, Zt

)
+
∑
i

πiθi

[
Uc,tc

m
i,t

(
ct, dt, ht;φ

)
+ Ud,td

m
i,t

(
ct, dt, ht;φ

)
+ Uh,tei,th

m
i,t

(
ct, dt, ht;φ

)]
,

where πiθi is the Lagrange multiplier on the implementability constraint of agent i, and θ ≡ {θi}. The
new Ramsey problem can be written as

max
{ct,H1,t,H2,t,K1,t,K2,t,
dt,E1,t,Zt,µt}∞t=0,T,φ

∑
t,i

Ntβ
tW (ct, dt, ht, Zt;φ, θ, λ)− Uc,0

∑
i

πiθi (R0N0ai,0 + T ) ,

subject to

Ntct +Gt +Kt+1 +Θt (µt, Et) = (1−D (Zt))A1,tF (K1,t,H1,t, E1,t) + (1− δ)Kt, ∀ t ≥ 0,

Et = A2,tG (K2,t,H2,t) , ∀ t ≥ 0,

Zt = J
(
S0, E

M
0 , ..., EM

t , η0, ..., ηt
)
, ∀ t ≥ 0,

FK(K1,tH1,t, E1,t)GH(K2,tH2,t) = FH(K1,tH1,t, E1,t)GK(K2,tH2,t), ∀ t ≥ 0,

K1,t +K2,t = Kt, ∀ t ≥ 0,

H1,t +H2,t = Ntht, ∀ t ≥ 0,

Ntdt + E1,t = Et, ∀ t ≥ 0,∑
j

πj

(
φje

γ(σ−1)
j

) 1
1−(1+ϵ+γ)(1−σ)

= 1,

where Ntdt + E1,t = Et is the only additional constraint compared to the benchmark problem.

D.4 Optimal taxes

Tax formulas From the first order conditions of the Ramsey problem, and using the same steps as
in Appendix A, we can show that

τH,t = 1−
Uh,t

Uc,t

Wc,t

Wh,t
, (128)
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Rt+1

R∗
t+1

=
Wc,t+1

Wc,t

Uc,t

Uc,t+1
, (129)

τE,t =
1

ν1,t

∞∑
j=0

βj
(
ν1,t+jD

′
t+jA1,t+jFt+j −Nt+jWZ,t+j

)
JEM

t ,t+j , (130)

and
τI,t = 0.

Using the first order conditions with respect to dt, E1,t and ct we have

Wd,t = Wc,t(1−D(Zt))A1,tFE,t,

which together with (126) and the final good firm’s first order condition with respect to E1,t (given by
(5) in the benchmark model) gives

τD,t =
Ud,t

Uc,t
−

Wd,t

Wc,t
. (131)

Proof of Proposition 4: The proof follows the same steps as the proof of Proposition 2. If we define

V
(
ct, dt, ht, Zt;φ, θ, λ

)
≡
∑
i

πiλiui
(
cmi,t
(
ct, dt, ht;φ

)
, dmi,t

(
ct, dt, ht;φ

)
, hmi,t

(
ct, dt, ht;φ

)
, Zt

)
,

and

ICi(ct, dt, ht, φ) ≡ Uc,tc
m
i,t

(
ct, dt, ht;φ

)
+ Ud,td

m
i,t

(
ct, dt, ht;φ

)
+ Uh,tei,th

m
i,t

(
ct, dt, ht;φ

)
, (132)

we can express the marginal cost of funds as

MCFt = 1 +
cov(θi, ICc,i,t)

Vc,t
,

and we can re-write the optimal pollution tax given by (130) as

τE,t =
∞∑
j=0

βj

(
Vc,t+j +

∑
i πiθiICc,i,t+j

Vc,t +
∑

i πiθiICc,i,t
D′

t+jA1,t+jFt+j −
Nt+jVZ,t+j

Vc,t +
∑

i πiθiICc,i,t

)
JEM

t ,t+j .

Using the definitions of τPigou
E,t , ∆t, and ωU

t stated in Section 3.3, and substituting for the MCF, we can
write

τE,t = τPigou
E,t

∣∣∣
SB

( ∞∑
j=0

MCFt+j

MCFt
∆t+j(1− ωU

t ) +
ωU
t

MCFt

)
.

With balanced-growth preferences, substituting into (132) we obtain

ICc,i,t = (1− σ)Uc,t

(
(1 + γ + ϵ)ωi − γ

ei
1− ςht

+ ϵ
d̄i,t

dt − d̄t

)
. ■

Proof of Proposition 5: Using our functional form assumption, we can rewrite the pseudo-utility
function as follows

W (ct, dt, ht, Zt;φ, θ, λ) = Φ
(ct(dt − d̄t)

ϵ(1− ςht)
γ)1−σ

1− σ
+

(1 + α0Z
2
t )

−(1−σ)

1− σ
+ΨUh,t + ΛtUd,t ,
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where

Φ ≡
∑
i

πiωi

(λi

φi
+
(
1− σ

)(
1 + ϵ+ γ

)
θi

)
,

Ψ ≡ 1

ς

∑
i

πiθiei,

Λt ≡
∑
i

πiθid̄i,t.

We can use the first order conditions with respect to market weights to obtain

θi =
∑
j

πjλj

φj
− λi

φi
,

from which we can rewrite

Φ =
∑
i

πiωi

(λi

φi
+
(
1− σ

)(
1 + ϵ+ γ

)(∑
j

πjλj

φj
− λi

φi

))
=
∑
j

πj
λj

φj
+
(
1− (1 + ϵ+ γ)(1− σ)

)
cov(λi/φi, ωi),

Ψ =
1

ς

∑
i

πi

(∑
j

πjλj

φj
− λi

φi

)
ei

= −cov(λi/φi, ei)

ς
,

Λt =
∑
i

πi

(∑
j

πjλj

φj
− λi

φi

)
d̄i,t

= −cov(λi/φi, d̄i,t).

Substituting the derivatives of U into equation (131), we get

τD,t =
Λt(dt − d̄t)

−1Ud,t

ΦUc,t +ΨUhc,t + ΛtUdc,t
=

Λt
ϵct

(dt−d̄t)2

Φ+ Ψςγ(σ−1)
(1−ςht)

− Λtϵ(σ−1)

(dt−d̄t)

. ■

Explicit income tax formulas We can additionally obtain expressions for the other tax rates. In
particular, substituting the derivatives of U and W into equations (128) and (129), we have

τH,t = 1−
Φ+Ψ

Uch,t

Uc,t
+ Λt

Ucd,t

Uc,t

Φ+Ψ
Uhh,t

Uh,t
+ Λt

Udh,t

Uh,t

=
Ψς(1− ςht)

−1

Φ+Ψ
ς
(
1−γ(1−σ)

)
(1−ςht)

+ Λt
ϵ(1−σ)

(dt−d̄t)

,

Rt+1

R∗
t+1

=
Φ+ Λt+1

Ucd,t+1

Uc,t+1
+Ψ

Uch,t+1

Uc,t+1

Φ+ Λt
Ucd,t

Uc,t
+Ψ

Uch,t

Uc,t

=
Φ+ Λt+1

ϵ(1−σ)

(dt+1−d̄t+1)
−Ψ ςγ(1−σ)

(1−ςht+1)

Φ+ Λt
ϵ(1−σ)

(dt−d̄t)
−Ψ ςγ(1−σ)

(1−ςht)

,

and following the same steps as in Appendix A.4.2 we can obtain an expression for market weights

φi =
1

e
γ(σ−1)
i

(
1 +

Uc,0R0N0(ai,0 −A0) +
∑

tNtβ
t
(
Uh,t

ς (ei − 1)− Ud,t(d̄i,t − d̄t)
)

(1− σ)(1 + ϵ+ γ)
∑

tNtβtŨ(ct, dt, ht)

)1−(1+ϵ+γ)(1−σ)

.
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Comparison with the benchmark formula The previous expression is the same as the one found
in our benchmark, and the optimal tax will again be equal to the social cost of pollution when the
marginal reduction in implementation cost (

∑
i πiθiICc,i,t) is null, which is the case in the first-best.

Compared to our benchmark, the marginal implementation cost now includes an additional term from
the derivative of Ud with respect to consumption. In particular, we again have∑

i

πiθiICc,i,t = (1− σ)
cov(θi, ICi,t)

ct
,

but now the ratio of the period implementation cost for two agents i and j is

ICi,t

ICj,t
=

(1 + ϵ+ γ)ωi +
ϵd̄i,t

(dt−d̄t)
− γei

(1−ςht)

(1 + ϵ+ γ)ωj +
ϵd̄j,t

(dt−d̄t)
− γej

(1−ςht)

.

Thus, the sign of the marginal implementation cost depends on a price effect through σ, and on an
energy demand and labor supply effects from cov(θi, ICi,t). The covariance term is higher in periods
when richer households (higher θi) work relatively less, or when they have higher energy needs relative
to poor households compared to an average period.

E Heterogeneous climate damages

Proof of Proposition 6: When utility is separable in consumption-leisure and environmental quality,
the benchmark model presented in Appendix A can easily be generalized to the case where households
experience heterogeneous climate damages on their utility. If we write agents’ utility function as

ui (ci,t, hi,t, Zt) ≡ ũ (ci,t, hi,t) + ûi(Zt),

and apply the same steps as in Appendix A, we can again show that

τE,t =
∞∑
j=0

βj

(
Vc,t+j +

∑
i πiθiICc,i,t+j

Vc,t +
∑

i πiθiICc,i,t
D′

t+jA1,t+jFt+j −
Nt+jVZ,t+j

Vc,t +
∑

i πiθiICc,i,t

)
JEM

t ,t+j .

The only difference with the benchmark model is the expression of VZ,t, the marginal dis-utility from
environmental degradation for the planner, which now writes

VZ,t =
∑
i

πiλiû
′
i(Zt).

Using the fact that
∑

i πiλi = 1, we obtain

VZ,t =
∑
i

πiû
′
i(Zt) + cov

(
λi, û

′
i(Zt)

)
,

hence heterogeneity in marginal utility damages matters for the optimal pollution tax if and only if
these marginal damages correlate with the planner’s weight. ■

Corollary 1 is a straightforward application of Proposition 6.
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F Calibration

F.1 Household heterogeneity

Productivity distribution We calibrate the ability distribution on the basis of hourly wage data
that we obtain from the Survey of Consumer Finances (SCF). For each of the 6,015 households in the
2013 wave of the survey, we sum the hours worked on their main job and potential additional job(s)
in a normal week. Annual labor supply of the respondent and their partner is then calculated by
multiplying weekly hours worked by 52 minus the number of weeks they have spent unemployed during
the past 12 months minus the number of weeks spent on holidays (which we assume to be equal to 3
for each worker). The household’s hourly wage is then obtained as the household’s annual income from
wages and salaries before taxes, divided by the household’s total annual labor supply (i.e., the sum of
the respondent and their partner’s labor supply). This number reflects how much households members
were paid on average for each hour of work they supplied in the past year.

To obtain the hourly wage distribution, we make a few additional adjustments. We first drop all
households with an hourly wage below $1 or above $1,000. We also restrict the sample to households
who have worked at least 1 week over the past 12 months, who work at least 1 hour on a normal
week, and with no member working above 100 hours. Finally we restrict the sample to households
whose respondent is at least 18 years old, and at most 65 years old. Using this sub-sample, we divide
households in ten groups of hourly wage deciles. These correspond to I = 10 groups with size πi = 0.10.
For each group, we compute the average hourly wage.

Asset distribution For each of the ten productivity groups, we divide again households in ten deciles
of net worth. For each sub-group, we compute the average net worth. This provides a table in which
households are split in 100 groups of equal size, with for each of these groups the average hourly wage
and the net worth.32

Because agents in our model are infinitely lived but hourly wage and asset holdings are positively
correlated with age, we control for generational heterogeneity. To do so, we divide households in ten
generations based on the age of the respondent, and compute the average hourly wage and net worth of
each of the 100 groups within each generation. We then obtain the average hourly wage and net worth
for each group as the average of that group over all generations. Table II below provides the results.

Distribution of energy consumption Our objective is to estimate households’ subsistence level
(d̄) and relative preference for the dirty good (ϵ). From the households’ first order conditions, we have

ud,h,t
uc,h,t

=
ϵch,t

dh,t − d̄h,t
= pE,t + τD,t,

32On the sub-sample of households from whom we compute the productivity distribution, we find a correlation coefficient
of 0.60 between income and wealth, a figure consistent with the 0.58 found by Kuhn and Ríos-Rull (2016) on the general
population.
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Table II: Distribution of Households Hourly Wages and Net Worth by Productivity Deciles (Rows) and
Net Worth Deciles (Columns).

Net worth deciles

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Hourly wage

Pr
od

uc
tiv

ity
de

ci
le

s

1st -4.59e+04 -7.00e+03 1.22e+03 7.45e+03 1.79e+04 3.25e+04 6.44e+04 1.12e+05 2.18e+05 1.10e+06 6.44e+00
2nd -2.99e+04 -1.97e+03 4.89e+03 1.23e+04 2.50e+04 3.97e+04 6.46e+04 1.03e+05 1.83e+05 1.04e+06 1.11e+01
3rd -4.13e+04 -6.00e+03 3.72e+03 1.29e+04 2.76e+04 4.47e+04 7.69e+04 1.09e+05 2.01e+05 7.19e+05 1.42e+01
4th -4.56e+04 -2.65e+03 1.44e+04 3.31e+04 5.38e+04 7.48e+04 1.01e+05 1.50e+05 2.67e+05 7.64e+05 1.73e+01
5th -4.94e+04 -2.15e+03 1.55e+04 3.58e+04 6.72e+04 9.53e+04 1.40e+05 2.07e+05 2.98e+05 1.10e+06 2.05e+01
6th -3.82e+04 1.21e+04 3.94e+04 7.26e+04 1.14e+05 1.60e+05 2.13e+05 2.88e+05 4.60e+05 1.75e+06 2.41e+01
7th -2.41e+04 3.79e+04 6.75e+04 1.03e+05 1.54e+05 2.06e+05 2.63e+05 3.58e+05 5.32e+05 1.23e+06 2.86e+01
8th -2.93e+04 3.00e+04 7.10e+04 1.34e+05 2.11e+05 2.80e+05 3.90e+05 5.04e+05 6.94e+05 2.57e+06 3.48e+01
9th 4.38e+03 6.86e+04 1.44e+05 2.11e+05 3.07e+05 4.20e+05 5.53e+05 7.45e+05 1.08e+06 3.50e+06 4.47e+01
10th -8.53e+04 1.40e+05 2.77e+05 4.43e+05 6.38e+05 8.55e+05 1.29e+06 2.14e+06 3.45e+06 1.00e+07 1.01e+02

Note: The rows correspond to productivity (i.e. hourly wage) decile groups. The last column corresponds to the average
hourly wage in dollars for each productivity group. Columns 1 to 10 correspond to net worth decile groups within
productivity groups. The number reported in these columns are the average net worth for each group in dollars. All
groups are defined for a given generation, and values correspond to the weighted average across ten generation groups.
Example: 1.10e+06 in the 1st row, 10th column, means that among the people that belong to the bottom 10% of the
hourly wage distribution of their generation, the 10% wealthiest have an average net worth of $1.10e+06.

with ud,h,t, uc,h,t the marginal utility of energy and final good consumption of household h at time t.
Rearranging the previous equation, we obtain for each household h, and for each period t,

dh,t(pE,t + τD,t) = d̄h,t(pE,t + τD,t) + ϵch,t. (133)

We quantitatively investigate two scenarios: one where all households share the same subsistence level d̄,
and one where different groups share different subsistence levels. Under the assumption that households
all face the same subsistence level d̄, we can write the following regression from equation (133),

dh(pE + τD) = βd + βϵch + µh, (134)

where µh is the error term and βd and βϵ are the empirical counterparts to d̄(pE + τD) and ϵ in the
model. These parameters are estimated based on the cross-sectional distribution of energy and non-
energy expenditures (dh(pE + τD) and ch) observed in the Consumer Expenditure Surveys (CEX). We
estimate regression (134) using OLS and abstracting from endogeneity issues as our aim is simply to
inform our structural model so that it is consistent with the observed distribution of energy expenditure
shares across groups.

In order to quantify the importance of heterogeneity in subsistence levels, we then use the estimated
value of ϵ to compute—from equation (133)—household-specific values for d̄h(pE + τD) that we regress
against a set of binary variables denoting the subsistence type of different households,

d̄h(pE + τD) =
∑
j∈J

βjIj
h + ηh, (135)
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Table III: Distribution of Households Energy Expenditure Shares by Productivity Quintiles (Rows) and
Expenditure Share Terciles (Columns).

Expenditure share terciles

1st 2nd 3rd

Pr
od

uc
tiv

ity
qu

in
til

es

1st 6.39% 10.80% 15.59%
2nd 6.47% 10.59% 15.21%
3th 6.08% 9.85% 14.59%
4th 5.65% 9.00% 13.73%
5th 5.10% 8.03% 12.86%

Note: The rows correspond to productivity (i.e. hourly wage) quintile groups. The columns correspond to energy
expenditure share tercile groups within productivity quintile groups. The numbers reported in these columns are the
average energy expenditure shares for each group. All groups are defined for a given month and year, and values correspond
to the average across all periods. Example: 6.39% in the 1st row, 1st column, means that among the people that belong
to the bottom 20% of the hourly wage distribution at the month × year they were interviewed, the 33.3% with lowest
energy shares spend on average 6.39% of their total expenditures in energy. Sample: CEX from 2011 to 2015, only workers
included, outliers excluded.

where ηh is the error term, and {Ij
h}j∈J is a set of subsistence-type binary variables defined as

Ij
h =

1, if h ∈ j,

0, otherwise.

To be consistent with the timing of DICE, we pool surveys from the 20 quarters between January
2011 and December 2015, for a total of 129,573 observations. Energy expenditures (dh(pE + τD)) are
obtained by summing expenditures on gasoline and motor oil, electricity, natural gas, fuel oil, and
other fuels. Non-energy expenditures (ch) are obtained by subtracting energy expenditures from total
expenditures. In order to characterize the joint distribution of productivity and necessity types, we
compute the hourly wage following the same procedure as with the SCF. We first restrict our sample
to working households. We again compute the household annual wage by summing the income received
from salary or wages before taxes. We then compute the annual labor supply of the respondent and
its partner: we multiply the number of hours usually worked per week by the number of weeks worked
in the past twelve months, minus 3 weeks of imputed holidays. The household hourly wage is then
the ratio of the household’s annual wage over annual hours. Just like with the SCF data, this number
reflects how much households members were paid on average for each hour of work they supplied in
the past year.33

To avoid extreme values potentially driven by consumers’ misreporting of their expenditures, we
eliminate outliers that we define as the households whose energy expenditure shares are in the top or
bottom 10% of the distribution. Using this sub-sample, we divide households in five groups of hourly

33The bottom hourly wage is $6.59 and the top hourly wage is $110.12 (without generational adjustments).
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Table IV: Estimated Parameters for Energy Preferences with Homogeneous Necessity.

Dependent variable:
energy consumption (d)

βϵ 0.0529
(0.000)

βd 592.48
(3.78)

Observations 67,520
adjusted-R2 0.405

Note: The numbers give the estimated values of the parameters. Standard errors are reported in parentheses. βϵ

corresponds to the empirical counterpart of ϵ in the model. βd represents the empirical counterpart of the initial d̄ in the
model. Sample: CEX from 2011 to 2015, only workers included, outliers excluded.

wage quintiles. For each of the five groups, we divide again households in three terciles of energy
expenditure shares, and compute the average energy expenditure share for each group. This provides
a table in which households are split into 15 groups of equal size.34 Since energy consumption shares
do not appear to be strongly determined by age among working households, we do not control for
generational differences. However, we control for seasonality and yearly variations that could lead to
overestimate consumption heterogeneity. We proceed in the same way as with generational controls:
we group households based on their ranking relative to the households interviewed in the same month
and same year. The resulting distribution of initial energy shares by subsistence type j, {Xj}j∈J , is
presented in Table III, and the outputs of regressions (134) and (135) are given in Tables IV and V,
respectively.

The values of βj reported in Table V provide the initial distribution of d̄j(pE+τD). These estimates
are in dollars, and need to be normalized in order to target an average expenditure share of 10.8% in
the model, as observed in the CEX. Relative to our baseline, we divide each of our ten productivity
groups in three necessity types, and impute to each of the 30 groups the value of d̄j corresponding to
its productivity quintile (two deciles pooled together) and necessity tercile. Finally, we set d̄j,t to grow
over time following the same trajectory as the other aggregate variables on the balanced-growth path.

F.2 Parameters choice

Baseline hours worked We also use the SCF 2013 to compute the initial labor supply that we
impute to the model. To do so, we again restrict the sample to individuals between 18 and 65 years old.
However, because our aim is not to compute hourly wages but to look at the average labor supply, we
do not eliminate outliers based on their hourly wage or labor supply. In particular, we keep unemployed
households for whom the hourly wage is not observed, as dropping them would lead to overestimate

34We divide households in only 15 necessity groups to mitigate the potential over-estimation of consumption hetero-
geneity due to measurement error at the household level in the CEX, and to avoid negative values for the necessity
levels.
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Table V: Estimated Parameters for Type-Specific Subsistence Levels.

Dependent variable:
energy consumption (d)

β1,1 128.7
(5.6)

β2,1 170.5
(5.6)

β3,1 148.1
(5.5)

β4,1 111.0
(5.5)

β5,1 0.2
(5.4)

β1,2 497.3
(5.6)

β2,2 599.1
(5.6)

β3,2 659.1
(5.6)

β4,2 651.8
(5.5)

β5,2 617.1
(5.4)

β1,3 811.9
(5.6)

β2,3 1001.3
(5.6)

β3,3 1120.7
(5.6)

β4,3 1174.5
(5.5)

β5,3 1229.4
(5.5)

Observations 67,520
adjusted-R2 0.542

Note: The numbers give the estimated values of the parameters. Standard errors are reported in parentheses. Each
parameter βa,b represents the empirical counterpart of the initial d̄h for an agent h belonging to the ath productivity
quintile, and the bth energy-share tercile within this productivity quintile. Sample: CEX from 2011 to 2015, only workers
included, outliers excluded.

the average labor supply. For all households in the sample, we divide the annual labor supply by the
number of working age individuals (individuals between 18 and 65). This yields an average of 1440
hours annually. Assuming a maximum labor supply capacity of 52 weeks per year and 100 hours per
week per individual, this yields an average labor supply of 0.277 of the maximum capacity.
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Table VI: Calibration Summary: Climate Parameters (from DICE 2016).

Parameter Description Value

Carbon stocks
SAt
2015 Initial carbon concentration in atmosphere (in GtC) 851

SUp
2015 Initial carbon concentration in upper strata (in GtC) 460

SLo
2015 Initial carbon concentration in lower strata (in GtC) 1740
SAt
eq Equilibrium carbon concentration in atmosphere (in GtC) 588

Eland
2015 Initial CO2 emissions from land (GtCO2 per year) 2.6

gEland Decline rate of land emissions (per period) 0.115

Carbon cycle transition matrix
b1,1 Carbon cycle coefficient 0.88
b2,1 Carbon cycle coefficient 0.047
b3,1 Carbon cycle coefficient 0
b1,2 Carbon cycle coefficient 0.12
b2,2 Carbon cycle coefficient 0.94796
b3,2 Carbon cycle coefficient 0.00075
b1,3 Carbon cycle coefficient 0
b2,3 Carbon cycle coefficient 0.005
b3,3 Carbon cycle coefficient 0.99925

Radiative forcing
κ Forcings of equilibrium CO2 doubling (Wm-2) 3.6813

FEx
2015 Initial forcings of non-CO2 GHG (Wm-2) 0.5

FEx
2100 2100 forcings of non-CO2 GHG (Wm-2) 1

gFEx Rate of convergence of F 1/17

Temperature
T2015 Initial atmospheric temperature change (C since 1900) 0.85
TLo
2015 Initial lower stratum temperature change (C since 1900) 0.0068
ζ1 Climate model coefficient 0.1005
ζ2 Climate model coefficient 1.1875
ζ3 Climate model coefficient 0.088
ζ4 Climate model coefficient 0.025
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Table VII: Calibration Summary: Economic Parameters in the Baseline.

Parameter Description Value Source

Preferences
β Utility discount rate (per year) 1/(1.015) DICE 2016
σ Inverse of IES 1.45 DICE 2016
ηF Frisch elasticity of labor supply 0.75 Chetty et al (2011)
ς Labor dis-utility coefficient 1.875 To target ηF and h2015

γ Labor dis-utility exponent 0.753 To target ηF and h2015

α0 Relative preference for the environment 7.88e-05 Adapted from Barrage (2019)

Production damages
a1 Damage intercept 0 DICE 2016
a2 Damage coefficient quadratic term 0.00175 DICE 2016 adjusted
a3 Damage exponent 2 DICE 2016

Production first sector
α Return to scale on labor sector 1 0.3 DICE 2016
ν Return to scale on energy sector 1 0.04 Golosov et al (2014)
δ Depreciation rate on capital (per year) 0.1 DICE 2016

r2015 − δ Initial net rate of return on capital 0.032 At steady state
Y2015 Initial output (in trillions 2015 USD) 70.807 World Bank (2011-2015)

hh1,2015 Initial share of labor in sector 1 0.977 To equate MPL across sectors
kk1,2015 Initial share of capital in sector 2 0.928 To equate MPL across sectors
E2015 Initial industrial emissions (GtCO2 per year) 35.85 DICE 2016
h2015 Initial labor supply per capita 0.277 Computed from SCF
A1,2015 Initial TFP sector 1 141.9 To target Y2015

Production second sector
αE Return to scale on capital sector 2 0.403 Barrage (2019)

A2,2015 Initial TFP sector 2 86.9 To target E2015

Abatement costs
P backstop
2015 Backstop price in 2015 (in $/tCO2) 550 DICE 2016

gPbackstop Decline rate backstop price (per period) 2.5% DICE 2016
c2 Exponent abatement cost function 2.6 DICE 2016

µ2015 Initial abatement share 0.03 DICE 2016

Government
Gt/Yt Government spending to GDP ratio 0.3030 IMF-GFS
B2015 Initial public debt to GDP ratio 0.2220 IMF-GFS
τH,2015 Initial tax rate on labor income 0.255 Trabandt & Uhlig (2012)
τK,2015 Initial tax rate on capital income 0.411 Trabandt & Uhlig (2012)
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Calibration Summary: Economic Parameters in the Baseline (continued).

Exogenous growth parameters
gA1,2015 Initial TFP growth rate sector 1 (per period) 0.076 DICE 2016
ggA1,t Decline rate TFP growth sector 1 (per year) 0.005 DICE 2016
gA2,2015 Initial TFP growth rate sector 2 (per period) 0.076 DICE 2016
ggA2,t Decline rate TFP growth sector 2 (per year) 0.005 DICE 2016
N2015 Initial population (in millions) 1,309 World bank (2015)
Nmax Asymptotic population (in millions) 2,034 DICE 2016 US-adjusted
gN Rate of convergence of population 0.134 DICE 2016

Table VIII: Calibration Summary: Economic Parameters with Stone-Geary Preferences.

Parameter Description Value

ϵ Energy consumption utility exponent 0.053
d̄ Initial average energy subsistence (GtCO2 per year) 6.05
ν Return to scale on energy sector 1 0.169
α Return to scale on labor sector 1 0.259
ς Labor dis-utility coefficient 1.881
γ Labor dis-utility exponent 0.728

A2,2015 Initial TFP sector 2 20.4
α0 Relative preference for the environment 7.92e−05

Notes: The table reports the values of the parameters used in the calibration of the extended version of the model with
two goods and Stone-Geary utility (see Section 6.3). The parameters are selected to obtain energy expenditure shares
consistent with the CEX and a share of aggregate emissions coming from households’ energy consumption consistent with
EPA’s estimates.
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G Additional quantitative results

G.1 Alternative damages
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(b) Optimal capital income taxes

Figure 9: Optimal Income Taxes, Alternative Damages.

Notes: Figures show the path of second-best labor and capital income taxes for the baseline calibration (black) and for
the alternative-damages calibration (red). Initial tax rates (for 2015) are set exogenously to their current levels obtained
from Trabandt and Uhlig (2012).
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Figure 10: Optimal Carbon Taxes ($/tCO2), Alternative Damages.

Notes: Figure shows the path of second-best carbon taxes for the baseline calibration (black) and for the alternative-
damages calibration (red), expressed in dollars per ton of CO2. Initial level (for 2015) is set exogenously to its current
level obtained from Nordhaus (2017).
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Figure 11: Temperature on the Optimal Path, Alternative Damages.

Notes: Figure shows the path of atmospheric temperature (ZAt
t ) for the baseline calibration (black) and for the alternative-

damages calibration (red), expressed in degree Celsius.
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Figure 12: Carbon Tax Decomposition, Alternative Damages.

Notes: The black line represents the second-best carbon tax normalized to 1. The red line shows what this tax would be
if the MCF was set to 1 in all periods, holding aggregates constant (see Proposition 2). The blue line shows what this tax
would be absent consumption inequalities, again holding aggregates constant (see Proposition 3). All taxes are computed
under the alternative-damages calibration.
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G.2 Third-best policies
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Figure 13: Optimal Income Taxes, Given Labor Tax.

Notes: Figures show the path of second-best labor and capital income taxes for the baseline calibration (black) and for
the economy with given labor income taxes (red). Initial tax rates (for 2015) are set exogenously to their current levels
obtained from Trabandt and Uhlig (2012).

2020 2040 2060 2080 2100 2120

year

0

0.2

0.4

0.6

0.8

1

(a) Optimal labor income taxes

2020 2040 2060 2080 2100 2120

year

0

0.2

0.4

0.6

0.8

1

(b) Optimal capital income taxes

Figure 14: Optimal Income Taxes, Given Capital Tax.

Notes: Figures show the path of second-best labor and capital income taxes for the baseline calibration (black) and for
the economy with given capital income taxes (red). Initial tax rates (for 2015) are set exogenously to their current levels
obtained from Trabandt and Uhlig (2012).
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Figure 15: Optimal Carbon Taxes ($/tCO2), Given Income Taxes.

Notes: Figure shows the path of second-best carbon taxes for the baseline calibration (black) and for the economies with
fixed labor and capital income taxes (red), expressed in dollars per ton of CO2. Initial level (for 2015) is set exogenously
to its current level obtained from Nordhaus (2017). Differences with the baseline are due to the change in tax formulas,
as well as differences in individual and aggregate allocations.

Table IX: Government Budget Adjustment, Given Labor Income Taxes.

Revenue Source Revenue Use

Labor Capital Carbon Gov. Cons. Transfer Interest

No Carbon Tax 17.2% 5.5% 0.0% 15.9% 5.1% 2.0%

Optimal Carbon Tax 17.0% 5.3% 1.0% 15.7% 6.1% 2.0%

Change −0.2% −0.2% 1.0% −0.2% 1.0% 0.0%

Notes: For given labor income taxes, the numbers represent the present value of each component of the government budget
constraint divided by the present value of GDP, in the scenarios without carbon taxes (first row) and with carbon taxes
(second row). The third row displays the difference between the two scenarios.
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Table X: Government Budget Adjustment, Given Capital Income Taxes.

Revenue Source Revenue Use

Labor Capital Carbon Gov. Cons. Transfer Interest

No Carbon Tax 31.5% 6.2% 0.0% 18.5% 16.6% 2.0%

Optimal Carbon Tax 30.7% 6.0% 1.3% 18.2% 17.4% 2.1%

Change −0.8% −0.1% 1.3% −0.3% 0.8% 0.0%

Notes: For given capital income taxes, the numbers represent the present value of each component of the government
budget constraint divided by the present value of GDP, in the scenarios without carbon taxes (first row) and with carbon
taxes (second row). The third row displays the difference between the two scenarios.
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Figure 16: Period Welfare Gains (%), Given Labor Income Taxes.

Notes: For each decade and each income decile the table shows the welfare gains, in percentage of consumption, from
optimal carbon taxation relative to a scenario without carbon taxation. Numbers are computed under the baseline
calibration with given labor income taxes.
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Figure 17: Period Welfare Gains (%), Given Capital Income Taxes.

Notes: For each decade and each income decile the table shows the welfare gains, in percentage of consumption, from
optimal carbon taxation relative to a scenario without carbon taxation. Numbers are computed under the baseline
calibration with given capital income taxes.
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G.3 Initial wealth inequality
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Figure 18: Optimal Income Taxes, Initial Wealth Heterogeneity and Exogenous Initial Capital Tax.

Notes: Figures show the path of second-best labor and capital income taxes for the baseline calibration (black) and for
the economy with initial wealth inequality (red). Initial tax rates (for 2015) are set exogenously to their current levels
obtained from Trabandt and Uhlig (2012).
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Figure 19: Optimal Carbon Taxes ($/tCO2), Initial Wealth Heterogeneity and Exogenous Initial Capital
Tax.

Notes: Figure shows the path of second-best carbon taxes for the baseline calibration (black) and for the economy with
initial wealth inequality (red), expressed in dollars per ton of CO2. Initial level (for 2015) is set exogenously to its current
level obtained from Nordhaus (2017). Differences with the baseline are due to the change in tax formulas, as well as
differences in individual and aggregate allocations.
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Table XI: Government Budget Adjustment, Initial Wealth Heterogeneity.

Revenue Source Revenue Use

Labor Capital Carbon Gov. Cons. Transfer Interest

No Carbon Tax 34.2% 3.2% 0.0% 16.4% 18.0% 1.5%

Optimal Carbon Tax 33.5% 3.2% 1.1% 16.1% 18.8% 1.5%

Change −0.7% 0.0% 1.1% −0.3% 0.8% 0.0%

Notes: For the economy with initial wealth inequality and fixed initial capital income tax, the numbers represent the
present value of each component of the government budget constraint divided by the present value of GDP, in the
scenarios without carbon taxes (first row) and with carbon taxes (second row). The third row displays the difference
between the two scenarios.
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Figure 20: Welfare Gains (%), Initial Wealth Heterogeneity and Exogenous Initial Capital Tax.

Notes: For each income and wealth decile the table shows the discounted welfare gains, in percentage of consumption,
from optimal carbon taxation relative to a scenario without carbon taxation. Numbers are computed under the calibration
with wealth inequality.
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G.4 Sensitivity of inequality effects to calibration choices
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Figure 21: How Inequality Effects Change with Different Levels of Labor Income Inequality, Different
Shares of Utility Damages in Total Damages, and Different σ’s

Notes: The y-axis of the three figures represents the average percentage increase in optimal carbon taxes over the next
100 years that would result from ignoring labor income inequality. (a) To obtain different levels of labor income inequality
we take a convex combination between the vector of productivities from the baseline economy and a vector with equal
productivities. In the x-axis we have the weight put on the baseline vector. A weight of zero implies no labor income
inequality, and a weight of one implies the baseline level of inequality. (b) In the baseline calibration, we choose α0 so
that 26% of total damages are utility damages. The x-axis represents different targets for the share of utility damages.
(c) In the baseline calibration, we set σ equal to 1.45, following DICE 2016. For each alternative σ, we recalibrate γ, ς,
and A2,2015 to match the targets described in Table VII.
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H Algorithm to compute Ramsey policies

To solve the Ramsey problem numerically we apply an algorithm that directly uses the first-order
conditions obtained above. Here, we explain the procedure we used to obtain the benchmark results.
The idea behind the algorithm is simple. Given a policy (a sequence of taxes and transfers), standard
methods can be used to compute the associated equilibrium aggregate. Given equilibrium aggregates,
we can use the optimality conditions derived from the Ramsey problem to update the policy. We then
iterate on these two steps until convergence. The steps below explain the algorithm in more detail:

1. Guess a policy: {τH,t, τK,t, τI,t, τE,t}∞t=0 and T .

2. Compute the associated equilibrium aggregate allocation and prices: {ct, ht,K1,t,K2,t,H1,t,H2,t,

Et, µt, Zt, rt, wt, pE,t, Rt}∞t=0. We use a shooting algorithm but different standard methods could
be used, so we will not elaborate further on this part.

3. Compute terms that appear in the optimality conditions of the Ramsey planner: Compute M

using equation (70), then obtain ωi and φi, for all i, from equations (71) and (72)—equations
(60) and (61) can be used to obtain individual allocations and welfare. Next, obtain Φ and Ψ

using equations (68) and (69). Equation (64) then gives Wc,t, Wh,t, and WZ,t, for all t.

4. Update policy: Use equations (54), (55), (58), and (65) to update {τH,t, τK,t, τI,t, τE,t}∞t=0. Use
the government budget constraint to update T .

5. Iterate: If the updated policy differs from the initial guess, return to step 2.
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