Pricing Inequality

Simon Mongey
University of Chicago, Federal Reserve Bank of Minneapolis, NBER

Michael Waugh
Federal Reserve Bank of Minneapolis, NBER

Federal Reserve Bank of Minneapolis - December 2022

The views expressed herein are those of the authors and not those of the Federal Reserve System.

Introduction

Core idea of this paper
Household wealth and income \rightarrow Sensitivity to differences in prices \rightarrow Price setting

Introduction

Core idea of this paper
Household wealth and income \rightarrow Sensitivity to differences in prices \rightarrow Price setting

Motivating example 1 - Auer Burstein Lein Vogel (2022)

- Swiss Franc appreciation
- Main result - Higher income households \rightarrow ? \rightarrow Lower substitution toward French goods

Introduction

Core idea of this paper
Household wealth and income \rightarrow Sensitivity to differences in prices \rightarrow Price setting

Motivating example 2 - Stroebel Vavra (2018)

- Increase in local house prices
- Main result - Areas with more owners \rightarrow ? \rightarrow Larger increases in markups on goods

Introduction

Core idea of this paper
Household wealth and income \rightarrow Sensitivity to differences in prices \rightarrow Price setting

Motivating example 2 - Stroebel Vavra (2018)

- Increase in local house prices
- Main result - Areas with more owners \rightarrow ? \rightarrow Larger increases in markups on goods

Scenario 1 - Poor households receive large increase in transfers
Scenario 2 - Firms selling to poor households hit with a cost shock
Welfare - How do prices change? How is expenditure reallocated?

Today

1. Theory

- Incomplete markets + Extensive margin demand in general equilibrium Bewley, Aiyagari, Hugget Multinomial logit
- Characterize (i) price elasticities of demand, (ii) sorting, (iii) pass-through

2. Numerical example

- Counterfactual 1 - Lump sum transfer financed by an increase in marginal income tax
- Reduction in demand elasticities of most elastic households \rightarrow Higher markups
- Counterfactual 2 - Marginal cost shock to all / some firms
- Rich households' decline in welfare is insulated by trading down to cheaper varieties

Environment

Differentiated goods - Goods $g \in \mathcal{G}$. Each good produced by J firms $j \in\{1, \ldots, J\}$

$$
y_{j g t}=\bar{Z}_{d} z_{j g} n_{j g t} \quad, \quad z_{j g} \sim \Gamma_{z}(z)
$$

Homogeneous goods - Continuum of identical firms

$$
Y_{c t}=\bar{Z}_{c} N_{c t} .
$$

Environment

Differentiated goods - Goods $g \in \mathcal{G}$. Each good produced by J firms $j \in\{1, \ldots, J\}$

$$
y_{j g t}=\bar{Z}_{d} z_{j g} n_{j g t} \quad, \quad z_{j g} \sim \Gamma_{z}(z)
$$

Homogeneous goods - Continuum of identical firms

$$
Y_{c t}=\bar{Z}_{c} N_{c t} .
$$

Households - Continuum of households $i \in[0,1]$

- Stochastic productivity $e_{t}^{i}: e_{i t+1}^{i} \sim \Gamma_{e}\left(e \mid e_{t}^{i}\right)$
- Each period choose a good g and producer j, and purchase one unit from them

$$
\mathbb{E}_{0}\left[\sum_{t=0}^{\infty} \beta^{t} \widetilde{u}_{j g t}^{i}\right], \widetilde{u}_{j g t}^{i}=\underbrace{u\left(c_{t}^{i}\right)}_{\text {Homog. good }}+\underbrace{\zeta_{j g t}^{i}}_{\text {Diff. good }}, \underbrace{\zeta_{t}^{i} \sim \Gamma_{\zeta}(\zeta)}_{\text {iid each period }}
$$

- Savings a_{t}^{i} in government debt, interest rate r, borrowing constraint $a_{t+1}^{i} \geq a$.

Environment - Preferences - Nested Gumbel

$$
\zeta^{i} \sim \Gamma_{\zeta}\left(\zeta^{i}\right)=\prod_{g \in \mathcal{G}} \exp \left\{-\left(\sum_{j \in g} e^{-\eta \zeta_{j g}^{i}}\right)^{\theta / \eta}\right\}
$$

A. Example draw of preferences

Environment - Preferences - Nested Gumbel

$$
\zeta^{i} \sim \Gamma_{\zeta}\left(\zeta^{i}\right)=\prod_{g \in \mathcal{G}} \exp \left\{-\left(\sum_{j \in g} e^{-\eta \zeta_{j g}^{i}}\right)^{\theta / \eta}\right\}
$$

A. Example draw of preferences
B. Higher η

Environment - Preferences - Nested Gumbel

$$
\zeta^{i} \sim \Gamma_{\zeta}\left(\zeta^{i}\right)=\prod_{g \in \mathcal{G}} \exp \left\{-\left(\sum_{j \in g} e^{-\eta \zeta_{j g}^{i}}\right)^{\theta / \eta}\right\}
$$

A. Example draw of preferences

C. Higher θ

Environment - Preferences - Nested Gumbel

A. Example draw of preferences

B. Higher η
C. Higher θ

$$
\zeta^{i} \sim \Gamma_{\zeta}\left(\zeta^{i}\right)=\underbrace{\prod_{g \in \mathcal{G}} \prod_{j \in g} \exp \left\{-e^{-\eta \zeta_{j g}^{i}}\right\}}_{\theta=\eta}
$$

Household problem

1. Given all prices $p_{j g}$ and preferences $\zeta_{j g}$, choice over goods g and producers j

$$
\bar{V}(a, e):=\mathbb{E}_{\zeta}\left[\max _{j, g}\left\{V\left(a, e, p_{j g}\right)+\zeta_{j g}\right\}\right]
$$

Household problem

1. Given all prices $p_{j g}$ and preferences $\zeta_{j g}$, choice over goods g and producers j

$$
\bar{V}(a, e):=\mathbb{E}_{\zeta}\left[\max _{j, g}\left\{V\left(a, e, p_{j g}\right)+\zeta_{j g}\right\}\right]
$$

2. Conditional on choosing firm $p_{j g}$, and given W, r, Π, choose consumption/savings

$$
\begin{aligned}
V\left(a, e, p_{j g}\right) & =\max _{a^{\prime}, c} u(c)+\beta \int \bar{V}\left(a^{\prime}, e^{\prime}\right) d \Gamma_{e}\left(e^{\prime} \mid e\right) \\
P_{c} c+p_{j g}+a^{\prime} & =(1-\tau) W e+(1+r) a+\Pi \\
a^{\prime} & \geq \underline{a}
\end{aligned}
$$

Household problem

1. Given all prices $p_{j g}$ and preferences $\zeta_{j g}$, choice over goods g and producers j

$$
\begin{aligned}
\bar{V}(a, e) & =\frac{1}{\boldsymbol{\theta}} \log \left[\sum_{g \in \mathcal{G}} e^{\theta \widetilde{V}\left(a, e, \mathbf{p}_{g}\right)}\right] \\
\widetilde{V}\left(a, e, \mathbf{p}_{g}\right) & =\frac{1}{\eta} \log \left[\sum_{j \in g} e^{\eta V\left(a, e, p_{j g}\right)}\right]
\end{aligned}
$$

2. Conditional on choosing firm $p_{j g}$, and given W, r, Π, choose consumption/savings

$$
\begin{aligned}
V\left(a, e, p_{j g}\right) & =\max _{a^{\prime}, c} u(c)+\beta \int \bar{V}\left(a^{\prime}, e^{\prime}\right) d \Gamma_{e}\left(e^{\prime} \mid e\right) \\
P_{c} c+p_{j g}+a^{\prime} & =(1-\tau) W e+(1+r) a+\Pi \\
a^{\prime} & \geq \underline{a}
\end{aligned}
$$

Household problem

1. Given all prices $p_{j g}$ and preferences $\zeta_{j g}$, choice over goods g and producers j

$$
\begin{aligned}
\bar{V}(a, e) & =\frac{1}{\boldsymbol{\theta}} \log \left[\sum_{g \in \mathcal{G}} e^{\theta \widetilde{V}\left(a, e, \mathbf{p}_{g}\right)}\right] \\
\widetilde{V}\left(a, e, \mathbf{p}_{g}\right) & =\frac{1}{\eta} \log \left[\sum_{j \in g} e^{\eta V\left(a, e, p_{j g}\right)}\right]
\end{aligned}
$$

2. Conditional on choosing firm $p_{j g}$, and given W, r, Π, choose consumption/savings

$$
\begin{aligned}
V\left(a, e, p_{j g}\right) & =\max _{a^{\prime}, c} u(c)+\beta \int \bar{V}\left(a^{\prime}, e^{\prime}\right) d \Gamma_{e}\left(e^{\prime} \mid e\right) \\
P_{c} c+p_{j g}+a^{\prime} & =(1-\tau) W e+(1+r) a+\Pi \quad, \quad \frac{\partial V\left(a, e, p_{j g}\right)}{\partial p_{j g}}=-\Lambda\left(a, e, p_{j g}\right) \\
a^{\prime} & \geq \underline{a}
\end{aligned}
$$

Firm problem

Given Competitors' Prices \mathbf{p}_{g} and Aggregates, choose Price $p_{j g}$ to maximize profits

$$
p_{j g}^{*}=\arg \max _{p_{j g}} \underbrace{x\left(p_{j g}, \mathbf{p}_{g}, \mathbf{S}\right)}_{\text {Demand }} \underbrace{\left(p_{j g}-\frac{W}{\bar{Z}_{d} z_{j g}}\right)}_{\text {Per unit profit }}
$$

Firm problem

Given Competitors' Prices \mathbf{p}_{g} and Aggregates, choose Price $p_{j g}$ to maximize profits

$$
p_{j g}^{*}=\arg \max _{p_{j g}} \underbrace{x\left(p_{j g}, \mathbf{p}_{g}, \mathbf{S}\right)}_{\text {Demand }} \underbrace{\left(p_{j g}-\frac{W}{\bar{Z}_{d} z_{j g}}\right)}_{\text {Per unit profit }}
$$

Demand - The equilibrium quantity sold is

$$
\begin{aligned}
x\left(p_{j g}, \mathbf{p}_{g}, \mathbf{S}\right) & =\int_{A \times E} \rho\left(a, e, p_{j g}, \mathbf{p}_{g}, \mathbf{S}\right) \mathrm{d} \Gamma_{a, e}(a, e) \\
\rho\left(a, e, p_{j g}, \mathbf{p}_{g}, \mathbf{S}\right) & =\frac{e^{\eta V\left(a, e, p_{j g}\right)}}{e^{\eta \widetilde{V}\left(a, e, p_{j g}, \mathbf{p}_{g}\right)}} \times \frac{e^{\theta \widetilde{V}\left(a, e, p_{j g}, \mathbf{p}_{g}\right)}}{e^{\theta \bar{V}(a, e)}}
\end{aligned}
$$

Firm problem

Given Competitors' Prices \mathbf{p}_{g} and Aggregates, choose Price $p_{j g}$ to maximize profits

$$
p_{j g}^{*}=\arg \max _{p_{j g}} \underbrace{x\left(p_{j g}, \mathbf{p}_{g}, \mathbf{S}\right)}_{\text {Demand }} \underbrace{\left(p_{j g}-\frac{W}{\bar{Z}_{d} z_{j g}}\right)}_{\text {Per unit profit }}
$$

Demand - The equilibrium quantity sold is

$$
\begin{aligned}
x_{j g} & =\int \rho_{j g}^{i} d i \\
\rho_{j g}^{i} & =\rho_{j \mid g}^{i} \rho_{g}^{i}=\frac{e^{\eta V^{i}\left(p_{j g}\right)}}{e^{\eta \widetilde{V}^{i}\left(\mathbf{p}_{g}\right)}} \frac{e^{\theta \widetilde{V}^{i}\left(\mathbf{p}_{g}\right)}}{e^{\theta \bar{V}^{i}}}
\end{aligned}
$$

Firm problem

Given Competitors' Prices \mathbf{p}_{g} and Aggregates, choose Price $p_{j g}$ to maximize profits

$$
p_{j g}^{*}=\arg \max _{p_{j g}} \underbrace{x\left(p_{j g}, \mathbf{p}_{g}, \mathbf{S}\right)}_{\text {Demand }} \underbrace{\left(p_{j g}-\frac{W}{\bar{Z}_{d} z_{j g}}\right)}_{\text {Per unit profit }}
$$

Optimality / Nash - Standard markup condition

$$
\begin{aligned}
& p_{j g}^{*}=\underbrace{\frac{\varepsilon_{j g}}{\varepsilon_{j g}-1}}_{\text {Markup }} \underbrace{\frac{W}{\bar{Z}_{d} z_{j g}}}_{\text {Marginal cost }} \\
& \varepsilon_{j g}=-\left.\frac{\partial \log x_{j g}}{\partial \log p_{j g}}\right|_{\mathbf{p}_{-j g}^{*}}
\end{aligned}
$$

Next couple of slides

Key objects for welfare effect of a change in marginal cost to firm $j g$:

1. How do prices change?

$$
\text { Pass-through: } \frac{\partial \log p_{j g}}{\partial \log m c_{j g}}
$$

2. Who does it affect?

$$
\text { Sorting: } \quad \rho_{j g}^{i} \quad, \frac{\partial \log \rho_{j g}^{i}}{\partial a^{i}}
$$

3. How does spending reallocate?

$$
\text { Elasticities: } \quad \varepsilon_{j g}^{i}=-\frac{\partial \log \rho_{j g}^{i}}{\partial \log p_{j}} \quad, \quad \varepsilon_{j g}=-\frac{\partial \log x_{j g}}{\partial \log p_{j}}
$$

1. Elasticity of demand

Recap: $\underbrace{\rho_{j g}^{i}=\frac{e^{\eta V^{i}\left(p_{j g}\right)}}{e^{\eta \widetilde{V}^{i}\left(\mathbf{p}_{g}\right)}} \frac{e^{\theta \widetilde{V}^{i}\left(\mathbf{p}_{g}\right)}}{e^{\theta \bar{V}^{i}}}}_{\text {Individual demand: } \rho_{j \mid g}^{i} \rho_{g}^{i}}, \underbrace{\widetilde{V}^{i}\left(\mathbf{p}_{g}\right)=\frac{1}{\eta} \log \left[\sum_{k \in g} e^{\left.\eta V^{i}\left(p_{k g}\right)\right]}\right.}_{\text {Market } g \text { value }}, \underbrace{x_{j g}=\int \rho_{j g}^{i} d i}_{\text {Firm demand }}$

1. Elasticity of demand

Recap: $\underbrace{\rho_{j g}^{i}=\frac{e^{\eta V^{i}\left(p_{j g}\right)}}{e^{\eta \widetilde{V}^{i}\left(\mathbf{p}_{g}\right)}} \frac{e^{\theta \widetilde{V}^{i}\left(\mathbf{p}_{g}\right)}}{e^{\theta \bar{V}^{i}}}}_{\text {Individual demand: } \rho_{j \mid g}^{i} \rho_{g}^{i}}, \underbrace{\widetilde{V}^{i}\left(\mathbf{p}_{g}\right)=\frac{1}{\eta} \log \left[\sum_{k \in g} e^{\eta V^{i}\left(p_{k g}\right)}\right]}_{\text {Market } g \text { value }}, \underbrace{x_{j g}=\int \rho_{j g}^{i} d i}_{\text {Firm demand }}$

Individual: $\quad \varepsilon_{j g}^{i}=-\frac{\partial \log \rho_{j g}^{i}}{\partial \log p_{j g}}$

1. Elasticity of demand

Recap: $\underbrace{\rho_{j g}^{i}=\frac{e^{\eta V^{i}\left(p_{j g}\right)}}{e^{\eta \widetilde{V}^{i}\left(\mathbf{p}_{g}\right)}} \frac{e^{\theta \widetilde{V}^{i}\left(\mathbf{p}_{g}\right)}}{e^{\theta \bar{V}^{i}}}}_{\text {Individual demand: } \rho_{j \mid g}^{i} \rho_{g}^{i}}, \underbrace{\widetilde{V}^{i}\left(\mathbf{p}_{g}\right)=\frac{1}{\eta} \log \left[\sum_{k \in g} e^{\eta V^{i}\left(p_{k g}\right)}\right]}_{\text {Market } g \text { value }}, \underbrace{x_{j g}=\int \rho_{j g}^{i} d i}_{\text {Firm demand }}$
Individual: $\quad \varepsilon_{j g}^{i}=-\frac{\partial \log \rho_{j g}^{i}}{\partial \log p_{j g}}=\underbrace{\left[\eta\left(1-\rho_{j \mid g}^{i}\right)+\theta \rho_{j \mid g}^{i}\right]}_{\text {Market structure }} \underbrace{u^{\prime}\left(c_{j g}^{i}\right)\left(\frac{p_{j g}}{P_{c}}\right)}_{\text {Bewley }}$

1. Elasticity of demand

Recap: $\underbrace{\rho_{j g}^{i}=\frac{e^{\eta V^{i}\left(p_{j g}\right)}}{e^{\eta} \widetilde{V}^{i}\left(\mathbf{p}_{g}\right)} \frac{e^{\theta \widetilde{V}^{i}\left(\mathbf{p}_{g}\right)}}{e^{\theta \bar{V}^{i}}}}_{\text {Individual demand: } \rho_{j \mid g}^{i} \rho_{g}^{i}}, \underbrace{\widetilde{V}^{i}\left(\mathbf{p}_{g}\right)=\frac{1}{\eta} \log \left[\sum_{k \in g} e^{\eta V^{i}\left(p_{k g}\right)}\right]}_{\text {Market } g \text { value }}, \underbrace{x_{j g}=\int \rho_{j g}^{i} d i}_{\text {Firm demand }}$
Individual: $\quad \varepsilon_{j g}^{i}=-\frac{\partial \log \rho_{j g}^{i}}{\partial \log p_{j g}}=\underbrace{\left[\eta\left(1-\rho_{j \mid g}^{i}\right)+\theta \rho_{j \mid g}^{i}\right]}_{\text {Market structure }} \underbrace{u^{\prime}\left(c_{j g}^{i}\right)\left(\frac{p_{j g}}{P_{c}}\right)}_{\text {Bewley }}$
Firm: $\quad \varepsilon_{j g}=-\frac{\partial \log x_{j g}}{\partial \log p_{j g}}=\int\left(\frac{\rho_{j g}^{i}}{x_{j g}}\right) \varepsilon_{j g}^{i} d i$

1. Elasticity of demand

Individual: $\quad \varepsilon_{j g}^{i}=-\frac{\partial \log \rho_{j g}^{i}}{\partial \log p_{j g}}=\underbrace{\left[\eta\left(1-\rho_{j \mid g}^{i}\right)+\theta \rho_{j \mid g}^{i}\right]}_{\text {Market structure }} \underbrace{u^{\prime}\left(c_{j g}^{i}\right)\left(\frac{p_{j g}}{P_{c}}\right)}_{\text {Bewley }}$
Firm: $\quad \varepsilon_{j g}=-\frac{\partial \log x_{j g}}{\partial \log p_{j g}}=\int\left(\frac{\rho_{j g}^{i}}{x_{j g}}\right) \varepsilon_{j g}^{i} d i$

Result 1: Price elasticity decreases in wealth and income

- Poor: Higher $u^{\prime}\left(c_{j g}^{i}\right)$, higher $\varepsilon_{j g}^{i}$, driven by switching across products
- Bewley: Rich model for the endogenous distribution of $u^{\prime}\left(c_{j g}^{i}\right)$ or, equivalently, V_{a}^{i}

2. Sorting

Result 2: High price firms sell more to wealthy households

Fix prices \mathbf{p}_{g}, do conditional choices probabilities $\rho_{j \mid g}^{i}$ increase or decrease in a^{i} ?
$\log \rho_{j \mid g}^{i}=\eta\left\{V^{i}\left(p_{j g}\right)-\widetilde{V}^{i}\left(\mathbf{p}_{g}\right)\right\} \quad, \quad \frac{\partial \log \rho_{j \mid g}^{i}}{\partial a^{i}}=\eta\left\{V_{a}^{i}\left(p_{j g}\right)-\mathbb{E}_{\rho_{k \mid g}^{i}}\left[V_{a}^{i}\left(p_{k g}\right)\right]\right\}$
$(+)$ If j has a high price, then the marginal value of resources is high if buy from j

- For a high price firm, its customer base is increasing in assets
(-) If j has a low price, then marginal value of resources is low if buy from j
- For a low price firm, its customer base is decreasing in assets

3. Pass-through

Result 3: Off-setting forces shape pass-through

$$
p_{j g}=\frac{\varepsilon_{j g}}{\varepsilon_{j g}-1} m c_{j g} \quad, \quad \frac{\partial \log p_{j g}}{\partial \log m c_{j g}}=\frac{\left[\varepsilon_{j g}-1\right]}{\left[\varepsilon_{j g}-1\right]+\left\{\frac{\partial \log \varepsilon_{j g}}{\partial \log p_{j g}}\right\}_{(+)}} \in(0,1)
$$

3. Pass-through

Result 3: Off-setting forces shape pass-through

$$
\begin{aligned}
p_{j g} & =\frac{\varepsilon_{j g}}{\varepsilon_{j g}-1} m c_{j g} \quad, \quad \frac{\partial \log p_{j g}}{\partial \log m c_{j g}}=\frac{\left[\varepsilon_{j g}-1\right]}{\left[\varepsilon_{j g}-1\right]+\left\{\frac{\partial \log \varepsilon_{j g}}{\partial \log p_{j g}}\right\}_{(+)}} \in(0,1) \\
\text { Recap: } \quad \varepsilon_{j g} & =\int\left[\eta\left(1-\rho_{j \mid g}^{i}\right)+\theta \rho_{j \mid g}^{i}\right] p_{j g} u^{\prime}\left(c_{j g}^{i}\right)\left(\frac{\rho_{j g}^{i}}{x_{j g}}\right) d i
\end{aligned}
$$

3. Pass-through

Result 3: Off-setting forces shape pass-through

$$
\begin{gathered}
p_{j g}=\frac{\varepsilon_{j g}}{\varepsilon_{j g}-1} m c_{j g} \quad, \quad \frac{\partial \log p_{j g}}{\partial \log m c_{j g}}=\frac{\left[\varepsilon_{j g}-1\right]}{\left[\varepsilon_{j g}-1\right]+\left\{\frac{\partial \log \varepsilon_{j g}}{\partial \log p_{j g}}\right\}_{(+)}} \in(0,1) \\
\text { Recap: } \varepsilon_{j g}=\int\left[\eta\left(1-\rho_{j \mid g}^{i}\right)+\theta \rho_{j \mid g}^{i}\right] p_{j g} u^{\prime}\left(c_{j g}^{i}\right)\left(\frac{\rho_{j g}^{i}}{x_{j g}}\right) d i \\
\frac{\partial \log \varepsilon_{j g}}{\partial \log p_{j g}}=\underbrace{\mathbb{E}\left[\frac{\eta(\eta-\theta) \rho_{j \mid g}^{i}\left(1-\rho_{j \mid g}^{i}\right)}{\eta\left(1-\rho_{j \mid g}^{i}\right)+\theta \rho_{j \mid g}^{i}} p_{j g} u^{\prime}\left(c_{j g}^{i}\right)\right]}_{\text {1. Market share effect }} \underbrace{+1+\sigma \mathbb{E}\left[m p c_{j g}^{i}\left(\frac{p_{j g}}{c_{j g}^{i}}\right)\right]}_{\text {2. Elasticity effect }} \underbrace{-\mathbb{V}\left[\frac{\varepsilon_{j g}^{i}}{\varepsilon_{j g}}\right]}_{\text {3. Composition effect }}
\end{gathered}
$$

3. Pass-through

Result 3: Off-setting forces shape pass-through

$$
\frac{\partial \log \varepsilon_{j g}}{\partial \log p_{j g}}=\underbrace{\mathbb{E}\left[\frac{\eta(\eta-\theta) \rho_{j \mid g}^{i}\left(1-\rho_{j \mid g}^{i}\right)}{\eta\left(1-\rho_{j \mid g}^{i}\right)+\theta \rho_{j \mid g}^{i}} p_{j g} u^{\prime}\left(c_{j g}^{i}\right)\right]}_{\text {1. Market share effect }} \underbrace{+1+\sigma \mathbb{E}\left[m p c_{j g}^{i}\left(\frac{p_{j g}}{c_{j g}^{i}}\right)\right]}_{\text {2. Elasticity effect }} \underbrace{-\mathbb{V}\left[\frac{\varepsilon_{j g}^{i}}{\varepsilon_{j g}}\right]}_{\text {3. Composition effect }}
$$

- Here pass-through is endogenous ... and ambiguous:
$(+)$ Lose quantity, smaller share, increases elasticity
$(+)$ Make all consumers more price elastic. More so if high MPC, or high expenditure share on j
(-) Lose high elasticity buyers first, reduces overall elasticity

Direct evidence on substitution of poor / rich households

Model

$$
\begin{aligned}
\text { Budget share: } b_{i j t} & =\frac{p_{j t} \phi_{j t} \exp \left\{\eta V_{i}\left(p_{j t}\right)\right\}}{\sum_{k} p_{k t} \phi_{k t} \exp \left\{\eta V_{i}\left(p_{k t}\right)\right\}} \\
\log \left(\frac{b_{i j t}}{b_{i k t}}\right)-\log \left(\frac{b_{m j t}}{b_{m k t}}\right) & \approx \underbrace{\left\{\varepsilon_{i k t}\right\}\{\sigma\}\left\{\frac{\partial \log c_{i}\left(p_{k t}\right)}{\partial \log e_{i}}\right\}}_{\text {Coefficient estimated in Auer et al (2022) }} \underbrace{\log \left(\frac{e_{i}}{e_{m}}\right) \log \left(\frac{p_{j t}}{p_{k t}}\right)}_{\text {Interaction term }}
\end{aligned}
$$

Data

$$
\log \left(\frac{b_{i t}^{M}}{b_{i t}^{D}}\right)=\beta_{0}-\boldsymbol{\beta}_{1} \log \left(\frac{p_{t}^{M}}{p_{t}^{D}}\right)+\boldsymbol{\beta}_{2} \log e_{i} \log \left(\frac{p_{t}^{M}}{p_{t}^{D}}\right)+\varepsilon_{i t} \quad, \quad \widehat{\boldsymbol{\beta}}_{2}=2.2
$$

Auer et al (2022) - Unequal Expenditure Switching: Evidence from Switzerland

Numerical example

Simplifying assumption: $\theta=\eta$

Calibration - Quarterly - 1/2

Key parameters

- η such that average markup is 1.20
- \bar{Z}_{d} such that 15% of spending on differentiated good
- Close to log preferences $\sigma=1.50$

Income

- $A R(1)$ in income, only persistent shocks for now

$$
\log e_{i t+1}=\rho_{e} \log e_{i t}+\varepsilon_{i t+1} \quad, \quad \varepsilon_{i t+1} \sim \mathcal{N}\left(-\frac{1}{2} \frac{v_{e}^{2}}{1+v_{e}}, v^{2}\right)
$$

- Krueger Perri Mitman (2016) - $\rho_{e}=0.99, v_{e}=0.023$

Calibration - Quarterly - 2/2-Wealth and general equilibrium

- GE version of the 'Liquid wealth' calibration in Kaplan Violante (2022)
- Average liquid wealth to average income $\mathbb{E}\left[a_{i}\right] / \mathbb{E}\left[y_{i}\right]=0.56$ (SCF)
- Borrowing constraint $\underline{a}=0$ and baseline annual $r=0.02$
- Demand for debt:

$$
B^{d}(r)=\frac{T-G}{r} \quad, \quad T=\tau \int W e_{i} d i \quad, \quad \tau=0.20
$$

- Supply of debt:

$$
B^{s}(r)=\int a d \lambda(a, e)
$$

- Calibrate $\beta=0.92\left(r_{R A}=38 \%\right)$ to give 0.56 . Implies $G / Y=0.19$. In US ≈ 0.30
- Implies a quarterly MPC out of \$500 of 16.9\%

1. Elasticities - $\varepsilon\left(a, e, p_{j}\right)$

- Cross-sectional regression in same form as interaction terms in Auer et al (2022)

$$
\varepsilon_{i}=\alpha-6.25 \log \operatorname{Income}_{i} \quad, \quad \text { overstates their estimate of }-2.19
$$

2. Sorting - $\rho\left(a, e, p_{j}\right)$

Percentile of income distribution - e

- At low priced firms, more than 60 percent of sales to below median income households
- At high priced firms, less than 40 percent of sales to below median income households

3. Markups - μ_{j}

- Low price firms sell to poorer households, operate with lower price-cost margins
- Consistent with Sanghani (2022) - Markups Across the Income Distribution

4. Pass-through - $\varphi\left(p_{j}\right)$

5. Low priced firms sell to higher MPC households, and p_{j} is a larger share of budget 2. More heterogeneity in buyers at low priced firms: $\uparrow \mathbb{C V}\left[u^{\prime}\left(c_{i j}\right)\right]$

4. Pass-through $-\varphi\left(p_{j}\right)$

- Issue (i) Too much sorting, (ii) Too steep relationship between e_{i} and ε_{i}
- Optimistic This is fine, as we also miss the data in these directions too!

4. Pass-through - $\varphi\left(p_{j}\right)$ - Marginal propensities to consume

- Low priced firms sell to higher MPC consumers

Counterfactual 1 - Shock to costs

- Distributional change in prices in partial equilibrium (W, r and Π_{d} fixed)

1. Decrease productivity of all differentiated goods. Raise prices by 30%
2. Decrease productivity of cheap differentiated goods. Raise cheap prices by 30%

- What does the first order approximation of welfare effects miss?

$$
\Delta \log V(a, e) \approx \sum_{j} b_{j}\left(a, e, p_{j}\right) \Delta \log p_{j} \quad \text { v.s. } \quad \Delta \log \bar{V}(a, e)
$$

- First order welfare effects used as an empirical benchmark in leading studies
E.g. Borusyak, Jaravel (2021) - Distributional Effects of Trade: Theory and Evidence from the United States

Counterfactual 1 - Shock to costs

- Trading down of high wealth consumers to cheaper products mitigates welfare losses
- Consistent with behavior in the Great Recession documented by Argente Lee (2021)

Counterfactual 1 - Shock to costs

- Trading down of high wealth consumers to cheaper products mitigates welfare losses
- Consistent with behavior in the Great Recession documented by Argente Lee (2021)

Combine standard models for pricing, consumption and savings

- Endogenous general equilibrium model for demand and pricing
- Refine, and then use for normative questions

1. Heterogeneity in inflation incidence across households in 2021/2022

- Are real wages really going up for poor households, or are their price indexes wiping out gains?
- Inflation in core categories of goods vs. in luxury goods

2. Targeted vs. Non-targeted transfers. What goes into prices? quantities?

- Transfers to poor, more elastic, more competitive product markets
- Transfers to rich, more inelastic, lower pass-through
- E.g. Stroebel Vavra (2019) - How changes in wealth feed into local prices

Appendix slides

Previous approaches

1. Consumer demand - Low income households

(i) Buy at low prices, markups
(ii) Have more elastic demand
(iii) Expenditure switch across goods
(iv) Experience larger price changes

Faber Fally (2022), Sanghani (2022)
Apoorv Gupta (2021)
Auer, Burstein, Lein, Vogel (2022)
Jaravel, Sager (2021) Non-homothetic CES: Matsuyama (2019), Handbury (2021), Comin, Lashkari, Mestieri (2021)
2. Firm pricing - The following seem to be correlated across firms:
(i) Higher markups Burstein, Carvalho, Grassi (2022), Edmond, Midrigan Xu (2021)
(ii) Lower pass-through Amiti, Itskhoki, Konnings (2019), Baqaee, Farhi, Sanghani (2021)

Homothetic Non-CES: Edmond Midrigan Xu (2021), Baqaee Farhi (2021), Boar Midrigan (2021), Bornstein Peters (2022)

Household problem - When choices are not feasible

- Cases of (a, e) in which setting $a^{\prime}=\underline{a}$ and buying j implies $c<0$:

$$
(1-\tau) W e+(1+r) a+\Pi-\underline{a}-p_{j}<0
$$

- Let $\mathcal{J}(a, e, \boldsymbol{p})$ be the set of all budget-feasible j
- Then choice is

$$
\begin{aligned}
\widetilde{V}(a, e) & =\mathbb{E}\left[\max _{j \in \mathcal{J}(a, e, p)}\left\{V\left(a, e, p_{j}\right)+\zeta_{j}\right\}\right], \quad \zeta \sim G(\zeta ; \boldsymbol{\eta}) \\
\rho\left(a, e, p_{j}\right) & =\frac{e^{\eta V\left(a, e, p_{j}\right)}}{\sum_{k \in \mathcal{J}(a, e, p)} e^{\eta V\left(a, e, p_{k}\right)}}
\end{aligned}
$$

1. Love-of-variety is valued:

$$
\widetilde{V}(a, e)=\frac{1}{\eta} \log \left(\sum_{j \in \mathcal{J}(a, e, p)} \exp \left\{\eta V\left(a, e, p_{j}\right)\right\}\right)=\underbrace{\frac{1}{\eta} \log |\mathcal{J}(a, e, \boldsymbol{p})|+V(a, e, \bar{p})}_{\text {If for all } j \in \mathcal{J}(a, e, \boldsymbol{p}), \text { then } p_{j}=\bar{p}}
$$

2. Everyone buying Gucci can buy Walmart. Some can only buy from Walmart. Competitive: Walmart ignores this.

Household problem - Monotonicity and discounting

- Bellman equation

$$
\begin{aligned}
V\left(a, e, p_{j}\right) & =\max _{a^{\prime}, c} u(c)+\beta \int \frac{1}{\eta} \log \left[\sum_{k} \exp \left\{\eta V\left(a, e, p_{k}\right)\right\}\right] d \Gamma\left(e^{\prime} \mid e\right) \\
P_{c} c+p_{j}+a^{\prime} & =(1-\tau) W e+(1+r) a+\Pi, \quad a^{\prime} \geq \underline{a} .
\end{aligned}
$$

1. Discounting

$$
\beta \int \frac{1}{\eta} \log \left[\sum_{k} \exp \left\{\eta\left[V\left(a, e, p_{k}\right)+a\right]\right\}\right] d \Gamma\left(e^{\prime} \mid e\right)=\beta \int \frac{1}{\eta} \log \left[\sum_{k} \exp \left\{\eta V\left(a, e, p_{k}\right)\right\}\right] d \Gamma\left(e^{\prime} \mid e\right)+\beta a
$$

2. Monotonicity

- Transformations are monotonic

Relationship with Fajgelbaum, Grossman, Helpman (JPE 2011)

Our paper

- Preferences

$$
u_{i j}=v\left(c_{i j}, \phi_{j}\right)+\varepsilon_{i j} \quad, \quad v\left(c_{i j}, \phi_{j}\right)=u\left(c_{i j}\right)+\eta^{-1} \log \phi_{j}
$$

- Demand elasticity

$$
\varepsilon_{j}=\eta p_{j} \iint u^{\prime}\left(c\left(a, e, p_{j}\right)\right) \omega_{j}(a, e) d a d e
$$

FGH (2011)

- Preferences

$$
u_{i j}=v\left(c_{i j}, \phi_{j}\right)+\varepsilon_{i j} \quad, \quad v\left(c_{i j}, \phi_{j}\right)=c_{i j} \phi_{j}
$$

- Demand elasticity

$$
\varepsilon_{j}=\eta p_{j} \phi_{j} \quad, \quad p_{j}=\frac{W}{z_{j}}+\frac{1}{\eta \phi_{j}} \quad, \quad \text { Choose } \eta(\phi), \text { s.t. } \uparrow \phi, \downarrow \eta(\phi)
$$

Firm problem - Second order conditions

- Definitions

$$
\varepsilon_{x}(p)=-\frac{x^{\prime}(p) p}{x(p)} \quad, \quad \varepsilon_{x x}(p)=-\frac{x^{\prime \prime}(p) p}{x^{\prime}(p)} \quad, \quad \sigma_{x}(p)=\frac{\partial \log \varepsilon_{x}(p)}{\partial \log p}
$$

- Second order condition

$$
\begin{aligned}
\varepsilon_{x x}(p) / \varepsilon_{x}(p) & <2 \\
-\sigma_{x}(p) & <2 \varepsilon_{x}(p)+1
\end{aligned}
$$

- $\sigma_{x}(p)>0$ - Sufficient condition is a positive super-elasticity

$$
\uparrow p, \uparrow \varepsilon_{x}, \downarrow \mu, \downarrow p
$$

- $\sigma_{x}(p)<0$ - If the super-elasticity $\sigma_{x}(p)$ is very negative then

$$
\uparrow p, \downarrow \varepsilon_{x}, \uparrow \mu, \uparrow p
$$

- We check second order conditions in quantitative exercise

Key departure - Dynamic budgeting

Key departure - Two-stage budgeting - E.g. Nested CES / Kimball

E.g. Eeckhout, De Loecker, Mongey (2022), EMX (2022), Boar Midrigan (2021)

3. Pass-through - BLP

Nevo's (2000) interpretation of Berry, Levinsohn, Pakes (1995)

$$
V\left(e_{i}, p_{j}\right)=\phi_{j}+\alpha_{e_{i}}\left(e_{i}-p_{j}\right)+\zeta_{i j}
$$

Then we have:

$$
\begin{aligned}
\varepsilon_{j} & =\int \varepsilon_{i j} s_{i j} d i \quad, \quad \varepsilon_{i j}=\eta p_{j} \alpha_{e} \quad, \quad s_{i j}=\frac{\rho_{i j}}{x_{j}} \\
\frac{\partial \log \varepsilon(p)}{\partial \log p} & =\int \underbrace{\int \rho_{k j} \alpha_{k} d k}_{\text {Elasticity weights }} \\
\underbrace{1}_{\text {1. Elasticity effect }} & \underbrace{-\left(\alpha_{e}-\varepsilon_{j}\right)}_{\text {2. Composition effect }}] d i
\end{aligned}
$$

- No effect via marginal value of left-over resources
- Distribution of elasticities (mostly) exogenous
- If $\alpha_{e}=\bar{\alpha}$, then super-elasticity is 1

Debt-to-GDP and interest rates

- Krishnamurthy Vissing-Jorgensen (JPE, 2012) - Aggregate Demand for Treasury Debt x-axis: Data mean of 0.43 adjusted to target $B=0.56, y$-axis: Data mean spread of 8.1% adjusted to target 2%

Counterfactual - Distorted productivity shock

- First order approximation still misses expenditure switching

Counterfactual - Distorted productivity shock

- With higher price of cheap goods, both shift to higher priced goods.
- Rich, more so.

Implied restriction on parameters

- Plot combinations of (σ, ε) that give $\varepsilon \times \sigma \times \frac{\partial \log c_{i}}{\partial \log y_{i}}=2.2$

Calibration - Quarterly - 2/3-Productivity and quality

- Higher marginal cost \leftrightarrow Higher quality

$$
\log z_{j} \sim\left(-\frac{1}{2} \sigma_{z}^{2}, \sigma_{z}\right) \quad, \quad \log \phi_{j}=-\gamma \log z_{j} \quad, \quad \gamma=1
$$

- Manova, Zhang (QJE, 2012)
- Firms that export more, and charge higher export prices, import more expensive inputs
- Hottman, Redding, Weinstein (QJE, 2016)
- Large role ($\approx 70 \%$) for "appeal" differences
- House of Gucci (2022)
- High quality, high cost, high price, selling to less price sensitive consumers

