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1 Introduction

A principal needs the expertise of a biased agent in order to assess applicants who are
available to fill the principal’s vacancies. The principal could control the hiring process
directly, but in doing so he would have to forego the expertise of the agent. The principal
could fully delegate the hiring process to the agent, but in doing so he would have to suffer
the consequences of the agent’s bias. The principal could assess the hiring record of the
agent every year and, depending on the fraction of applicants hired by the agent, he could
take over the hiring process or leave it in the hands of the agent. In this paper, we show
that none of these mechanisms– direct control of hiring by the principal, unconditional
delegation of hiring to the agent, or hiring quotas– are optimal.

The optimal mechanism, instead, is such that the agent is rewarded or punished in real
time for his hiring decisions. If the agent hires an applicant, the mechanism rewards him
with an increase in value. If the hire does not hire an applicant, the mechanism punishes
him with a decrease in value. The system of punishments and rewards moves the agent’s
reservation quality towards the one preferred by the principal and, hence, reduces the
impact of the agent’s bias on the hiring outcomes. The punishments and rewards are
ultimately delivered by the mechanism as changes in probability with which the hiring
decision is taken away from the agent. Once the hiring decision is taken away from the
agent, the principal permanently takes over and hires every applicant.

A fitting example of the type of problems studied in this paper is the relationship
between the Dean at a University and the Chair of one of the departments that fall
under the purview of the Dean. The Dean and the Chair both care about the quality of
new department hires. The Chair naturally has superior information about the quality
of different candidates. However, the Chair is biased against candidates belonging to
some demographic group or, equivalently, the Dean places some extra value on candidates
belonging to some demographic group. Occasionally, a candidate from such a demographic
group is available for hire. The paper characterizes the features of the mechanism that
the Dean should implement in order to minimize the consequences of the Chair’s bias.

In Section 2, we consider a basic version of the problem. In every period, there is a
vacancy and an applicant that may be hired to fill the vacancy. If the applicant is hired,
the principal’s payoff is given by the quality x of the applicant and the agent’s payoff is
the given by the quality x of the applicant net of a constant η > 0, which is meant to
capture the extent of the agent’s bias. If the applicant is not hired, the principal’s and the
agent’s payoffs are equal to zero. The quality of the applicant is privately observed by the
agent and it is drawn from some commonly known distribution. No monetary transfers
between the principal and the agent are feasible.

In the first period, the principal commits to a direct-revelation mechanism. In each
period, the mechanism elicits from the agent a report about the quality of the applicant.
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Depending on the realized history of play, the mechanism may make use of the agent’s
report to decide whether the applicant is hired, or it may ignore the agent’s report. In
the first case, the mechanism produces the same outcomes as if the agent was choosing
weather or not to hire the applicant taking as given the consequences of his decision on
the value that he will receive from the mechanism going forward. For this reason, we
refer to the first case as “delegation”. In the second case, the mechanism produces the
same outcomes as if the principal was directly choosing whether to hire the applicant.
For this reason, we refer to the second case as “control”. Since the upper envelope of
the principal’s values in delegation and control is unlikely to be a concave function of
the agent’s value, we allow the mechanism to specify, at the beginning of each period,
a public lottery between delegation and control. In Section 2, we restrict attention to
mechanisms with the property that: (i) once the mechanism enters control, it remains
in control forever; (ii) during control, the principal hires the applicant. In Section 3, we
prove that these restrictions are innocuous.

We formulate the optimal mechanism design recursively, using the agent’s promised
value as an auxiliary state variable. We first characterize the optimal lottery between
delegation and control as a function of the agent’s promised value V . We show that, if
V is lower than some threshold VC , the optimal lottery is non-degenerate, in the sense
that it assigns positive probability to both delegation and control. If the outcome of the
lottery is control, the principal hires every future candidate and the agent’s value falls to
some VP . If the outcome of the lottery is delegation, the agent keeps making the hiring
decisions and his value moves up to the threshold VC . If the agent’s promised value is
higher than the threshold VC , the optimal lottery is degenerate. In particular, the agent
keeps making the hiring decisions and his value remains equal to the promised value V .

We then characterize the optimal incentives in delegation as a function of the agent’s
promised value V̂ . We show that, if the agent hires the applicant in the current period,
he gets rewarded with a continuation value V1 that is strictly greater than his promised
value V̂ . If the agent does not hire the applicant, he gets punished with a continuation
value V0 that is strictly smaller than his promised value V̂ . The gap between the agent’s
continuation value conditional of hiring and not hiring moves the agent’s reservation
quality R away from the agent’s preferred reservation quality η and towards the principal’s
preferred reservation quality 0. If the agent keeps on hiring candidates, his value converges
towards (but never attains) VF , which is the value that the agent could obtain if he was
given unfettered discretion over hiring. In this limit, the mechanism gives no incentives
to the agent and his reservation quality R converges to η. If the agent keeps not hiring
candidates, his value eventually falls below the threshold VC and he is faced with the
threat of control. After any history of play, the agent faces a strictly positive probability
of having to permanently hand over hiring to the principal because the probability of not
hiring an applicant is always strictly positive. In contrast, after any history of play, the
agent has no chance of having permanent discretion over hiring because, even though the
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probability of hiring an applicant is always strictly positive, the mechanism never rewards
the agent with the value VF .

In Section 4, we show that the characterization of the optimal mechanism can be
directly applied to several generalizations of the baseline environment. First, we consider
a version of the model in which the agent is positively, rather than negatively, biased
against the applicants. The optimal mechanism in this version of the model has the same
features as in the baseline, except that the agent is rewarded with a higher value for not
hiring the applicant rather than for hiring the applicant. Second, we consider a version of
the model in which there are n > 1 applicants for each vacancy. We show that the optimal
mechanism design problem for this version of the model is isomorphic to the optimal
mechanism design problem in the baseline, except that the quality distribution is replaced
with the distribution of the maximum of n draws from the quality distribution. Third,
we consider a version of the model in which, for each vacancy, there is both a contentious
applicant– an applicant from a demographic group against which the agent is biased– and
an uncontentious applicant– an applicant from a demographic group towards which the
agent is unbiased. We show that the optimal mechanism design problem for this version of
the model is isomorphic to the optimal mechanism design problem in the baseline, except
that the quality distribution is replaced with the distribution of the difference between
the quality of the contentious applicant and the quality of the uncontentious applicant.
Lastly, we consider a version of the model in which the principal does not know whether
an applicant is available or not. We show that the optimal mechanism design problem for
this version of the model is nearly identical to the optimal mechanism design problem in
the baseline, except that not hiring an applicant and not having an applicant are treated
as identical events by the mechanism.

The paper relates to the literature on delegation, broadly defined as mechanism design
without transfers (Holmstrom 1977, Amador and Bagwell 2013). Important examples
of delegation include setting consumption rules for an individual with time-inconsistent
preferences (Angeletos, Werning and Amador 2006), setting rules of conduct for a time-
inconsistent monetary authority (Athey, Atkeson and Kehoe 2005), setting fiscal rules for
a time-inconsistent government (Halac and Yared 2018), setting hiring rules for a biased
employer (Frankel 2021). A common finding in this literature is that, as long as shocks
are independently drawn over time, the optimal mechanism is static, in the sense that it
makes the same prescriptions independently of the realized history of play. In contrast
to this literature, we find that the optimal mechanism is dynamic. Intuitively this is so
because, in our model the principal and the agent disagree not only today, but also in the
future.

Other papers on delegation find, like us, that the optimal mechanism is history-
dependent. Guo and Horner (2020) study the problem of a principal that needs to rely
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on a biased agent to assess the quality of investment opportunities. They restrict atten-
tion to an environment in which the investment can be of one of two qualities, while we
study an environment in which the investment can take on a continuum of qualities. The
difference is not a pure technicality, as it affects both the approach to characterizing the
optimal mechanism as well as the properties of the optimal mechanism. For example,
with a continuum of qualities, the mechanism delivers higher and lower value to the agent
by also inducing him to change his reservation quality. With two qualities, this margin is
inoperative. Moreover, with a continuum of qualities, it is immediate to extend the analy-
sis of the optimal mechanism to an environment with multiple investment opportunities,
some of which may be contentious and some of which are not.

Lipnowski and Ramos (2020) consider the same model as Guo and Horner (2020),
but under the assumption that the principal lacks commitment and, hence, they focus
on public perfect equilibria rather than optimal mechanisms. Jackson and Sonnenschein
(2007) study dynamic delegation in the limit as the principal and the agent become
infinitely patient. They find that, in the limit, the optimal mechanism can support the
first-best payoff of the principal and it can do so by leveraging the fact that in the long-
run the principal knows the realization of the quality of investment projects faced by the
agent. While the findings of Jackson and Sonneschein (2007) apply to our environment,
we focus on the case of impatient principal and agent.

2 Baseline Model

In this section, we describe the mechanism design problem of a principal who needs to rely
on the expertise of a biased agent in order to evaluate the quality of applicants that are
available for hire. Conditional on the realized history of play, a mechanism specifies the
probabilities of a lottery between delegation—where the agent’s report about the quality of
the applicant are used to decide whether to hire the applicant or not—and control—where
the agent’s report in which the agent’s report about the quality of the applicant is ignored.
Conditional on the realized history of play and on the delegation outcome of the lottery,
a mechanism specifies which agent’s reports about the quality of the applicant are such
that the applicant is hired and which reports are such that the agent is not hired. We
restrict attention to mechanisms such that, when the agent’s reports are ignored, they
are ignored permanently and the mechanism hires all the applicants. In section 2.2, we
formulate the optimal mechanism design problem recursively, using the agent’s promised
value as an auxiliary state variable. In Section 2.3, we characterize the properties of
the optimal lottery between delegation and control. In Section 2.4, we characterize the
properties of the optimal delegation. In Section 3, we show that the restriction to the
space of mechanisms is without loss in generality.
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2.1 Environment

In every period t = 0, 1, 2, ..., there is a vacancy that needs to be filled by the principal.
In every period, there is an applicant that is available to fill the vacancy. The quality of
the applicant x is drawn from a distribution F (x) with mean 0 and support X = [x, x].
Moreover, the distribution F is assumed to be continuously differentiable. If the applicant
is hired, the flow payoff to the principal is (1− β)x, where β ∈ (0, 1) is the rate at which
the principal discounts future payoffs. If the applicant is not hired, the flow payoff to
the principal is 0. The quality of the applicant is not observed by the principal, but
it is observed by the agent. The agent, however, does not have the same preferences
as the principal. In particular, if the applicant is hired, the flow payoff to the agent is
(1−β)(x−η), where β is the rate at which the agent discounts future payoffs and η ∈ (0, x)

is a measure of the agent’s negative bias against the applicants. If the applicant is not
hired, the flow payoff to the agent is 0. No monetary transfers between the principal and
the agent are possible.

One natural interpretation of the environment has the principal being a dean and the
agent being the chair of one of the departments that fall under the perview of the dean.
A candidate from some particular demographic group can be hired to the department.
The dean and the chair both care about the quality of the candidate. The chair, however,
is the only one with the expertise to evaluate the candidate, and he is biased against the
candidate because of his demographic characteristics.

If the principal and the agent had the same preferences, the principal could perma-
nently delegate hiring to the agent. Then, the agent would hire an applicant if and only
if his quality x was greater than 0 and, in doing so, he would maximize the present value
of payoffs to himself and the principal. However, since the agent is biased against the
applicants, delegating hiring to the agent does not work quite as well. Indeed, the agent
would only hire an applicant if his quality x exceeds η. In doing so, the agent would
maximize the present value of his own payoffs, but not the present value of the princi-
pal’s payoffs. If, alternatively, the principal took control of hiring, the present value of
his payoffs would only be 0. The principal however can do something more sophisticated
than either permanently delegate hiring to the agent or permanently control the hiring
process. The principal can use the threat of taking over hiring to reward and punsih the
agent for his hiring decisions and, in doing so, he can incentivize the agent to hire some
applicants with quality lower than η.

Formally, the principal can commit to a direct-revelation mechanism in period t = 0.
The principal chooses the mechanism so as to maximize the expectation of the present
discounted value of his payoffs. In every period t = 0, 1, 2, ..., the mechanism solicits a
report x̂ ∈ X from the applicant about the quality x ∈ X of the candidate and decides
whether or not to hire the applicant a ∈ {0, 1}. The mechanism may use the report
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from the agent, in the sense that it does or does not hire the applicant depending on the
report, or it may ignore the report from the agent, in the sense that it may or may not
hire the applicant irrespective of the report. In the first case, we say that the mechanism
is delegating the hiring decision to the agent. In the second case, we say that the hiring
decision is controlled by the principal.

Consider the case in which hiring is delegated to the agent. Let X0 denote the set
of reports such that the mechanism does not hire the applicant, i.e. a(x̂) = 0 for all
x̂ ∈ X0. Similarly, let X1 denote the set of reports such that the mechanism does not
hire the applicant, i.e. a(x̂) = 1 for all x̂ ∈ X1. If the agent reports x̂, his flow payoff
is a(x̂)(1 − β)(x − η). If the agent reports x̂, let βV (x̂) denote the agent’s discounted
continuation value from the mechanism. Since the mechanism must induce the agent to
report the applicant’s quality truthfully, it follows immediately that V (x̂) = V0 for all x̂ ∈
X0 and V (x̂) = V1 for all x̂ ∈ X1. That is, the mechanism must give the agent the same
continuation value V0 for all reports that lead the mechanism to pass on the applicant,
and the same continuation value V1 for all reports that lead the mechanism to hire the
applicant. Moreover, since the mechanism must induce the agent to report the applicant’s
quality truthfully, it has to be the case that X0 = [x,R).and X1 = (R, x], where R is the
quality of the candidate that makes the agent indifferent between (1−β)(x−η)+βV1 and
βV0. Overall, when the mechanism uses the agent’s report, it is as if the agent was directly
choosing whether or not to hire the applicant, taking into account that his continuation
value is V0 if he does not hire the applicant and V1 if he hires the applicant.

Consider the case in which hiring is controlled by the principal. In this case, the
mechanism either does not hire the applicant irrespective of the agent’s report, i.e. a(x̂) =

0 for all x̂ ∈ X, ot it hires the applicant irrespective of the agent’s report, i.e. a(x̂) = 0 for
all x̂ ∈ X. In either case, since the mechanism must induce the agent to report truthfully
the quality of the applicant, the agent’s continuation value is independent of the agent’s
report. Overall, when the mechanism ignores the agent’s report, it is as if the principal
was controlling the hiring process.

The agent’s and principal’s payoff combinations that can be achieved under delegation
and under control are likely to be different and, in turn, the upper envelope of the agent’s
and principal’s payoffs under delegation and under control need not be concave. Therefore,
it is natural to let the mechanism specify a public lottery between delegation and control
at the beginning of every period. Specifically, at the beginning of every period, the
mechanism specifies some probability p with which hiring is controlled by the principal
and some probability 1− p with which hiring is delegated to the agent, where p ∈ [0, 1].

In the remainder of this section, we are going to restrict attention to mechanisms such
that: (i) if the mechanism hands the control of the hiring process to the principal, it does
so forever; (ii) if the mechanism assigns control of the hiring process to the principal, the
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principal hires the applicant. In Section 3, we show that these restrictions are without
loss in generality. Even though starting with a restriction on the space of mechanisms
and then shwoing that it is without loss in generality may appear backwards to some of
our readers, it does afford for a simpler analysis of the optimal mechanism.

2.2 Recursive Formulation and Preliminaries

The principal’s mechanism design problem can be formulated recursively, using the agent’s
promised value as an auxiliary state variable. In the first-stage of the recursive problem,
the principal chooses a lottery between delegation and control, subject to delivering the
promised value to the agent. In the second-stage of the recursive problem, which is
the stage associated with the delegation branch of the lottery, the principal chooses the
agent’s continuation value conditional on the agent not hiring the applicant and the agent’s
continuation value conditional on the agent hiring the applicant, subject to delivering the
promised value to the agent.

Formally, the first-stage problem is

J(V ) = max
p∈[0,1],V̂ ∈V̂

pJP + (1− p)Ĵ(V̂ ) (2.1)

subject to the promise-keeping constraint

pVP + (1− p)V̂ = V . (2.2)

The first-stage problem is easy to understand. The mechanism chooses the probability p
with which the hiring decision is permanently made by the principal, the probability 1−p
with which the hiring decision is delegated to the agent and the value V̂ of delegation to
the agent. The mechanism maximizes the value to the principal, subject to delivering the
value V to the agent. If hiring is controlled by the principal, the value of the mechanism
to the principal is JP and the avlue to the agent is VP . If hiring is delegated to the agent,
the value to the principal is Ĵ(V̂ ) and the value to the agent is V̂ . The values JP and VP
are, respectively, given by

JP ≡
∫ x

x

xdF (x) = 0, VP ≡
∫ x

x

(x− η) dF (x) = −η. (2.3)

The second-stage problem is

Ĵ(V̂ ) = max
V0,V1∈V

(1− β)

∫
R

xdF (x) + β [F (R)J(V0) + (1− F (R))J(V1)] (2.4)

subject to the promise-keeping constraint

V̂ = (1− β)

∫
R

(x− η)dF (x) + β [F (R)V0 + (1− F (R)))V1] , (2.5)
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and the incentive-compatibility constraint

R = η − β

1− β (V1 − V0) . (2.6)

The second-stage problem is also easy to understand. The mechanism chooses the agent’s
continuation value V0 if the agent does not hire the applicant and the agent’s continuation
value V1 if the agent does hire the applicant. Given the continuation values V0 and V1,
the agent finds it optimal to hire the applicant if and only if the applicant’s quality x
exceeds the reservation threshold R in (2.6). The mechanism maximizes the value to the
principal, subject to delivering the value V to the agent. The value to the principal in
the current period is (1 − β)

∫
R
xdF (x). The continuation value to the principal is J(V0)

if the agent does not hire the applicant, an event that occurs with probability F (R), and
J(V1) if the agent hires the applicant, an event that occurs with probability 1 − F (R).
The value to the agent in the current period is (1− β)

∫
R

(x− η)dF (x). The continuation
value to the agent is V0 if he does not hire the applicant and V1 if he does.

The formulation of the first and second-stage problems (2.1) and (2.4) is not complete
yet, as it does not specify the feasible sets V̂ and V for the agent’s continuation values.
The agent’s continuation value V̂ in (2.1) must be deliverable by the mechanism in the
second-stage problem, in the sense that there exists a mechanims that delivers V̂ to the
agent in the second stage. The agent’s continuation values V0 and V1 in (2.4) must be
deliverable in the first-stage problem, in the sense that there exists a mechanism that
delivers V0 and V1 to the agent in the first stage. The set V denotes the values that can
be delivered in the first-stage to the agent. The set V̂ denotes the values that can be
delivered in the second-stage to the agent. The following lemma characterizes V and V̂.

Lemma 1. The sets V and V̂ are, respectively, given by

V = [VP , VF ], V̂ = [V`, VF ], (2.7)

where V` and VF are defined as

V` ≡ (1− β)VF + βVP , (2.8)

VF ≡
∫

max{x− η, 0}dF (x) =

∫
η

(x− η)dF (x). (2.9)

Proof. Consider the first-stage problem (2.1). Irrespective of what the set V̂ is, the mech-
anism p = 1 delivers the value VP to the agent. Hence, VP ∈ V. Now, consider the
second-stage problem (2.2). The mechanism (V0, V1) = (VP , VP ) is feasible, as VP ∈ V,
and delivers to the agent the value

V 1 = (1− β)
∫
η
(x− η)dF (x) + βVP

= (1− β)VF + βVP .
(2.10)
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Hence, V 1 ∈ V̂. Notice that V 1 ∈ (VP , VF ) since VF > 0 and VP = −η.

Return to the first-stage problem (2.1). Since V 1 ∈ V̂ and V1 > VP , the mechanism
can deliver to the agent any value V ∈ [VP , V

1]. Indeed, the mechanism (p, V̂ ) =

((V1 − V )/(V1 − VP ), V 1) is feasible for all V ∈ [VP , V
1] and delivers to the agent the

value V . Therefore, [VP , V
1] ⊆ V̂. Now, consider the second-stage problem (2.2). Since

[VP , V
1] ⊆ V̂, the mechanism can deliver to the agent any value V̂ ∈ [V 1, V 2], where

V 2 = (1− β)VF + βV 1. (2.11)

Indeed, the mechanism (V0, V1) = (V, V ) with V = (V̂ − (1 − β)VF )/β is feasible for all
V̂ ∈ [V 1, V 2] and delivers to the agent the value V̂ . Therefore, [V 1, V 2] ⊆ V̂. Notice that
V 2 ∈ (V 1, VF ), since V 1 < VF .

Iterating the argument n times, one obtains that [VP , V
n] ⊆ V and [V 1, V n+1] ⊆ V̂,

where
V k = (1− β)VF + βV k−1 for k = 1, 2, ...n+ 1. (2.12)

The sequence {V k}nk=1 is strictly increasing and converges to VF for n → ∞. Therefore,
[VP , VF ) ⊆ V and V ∈ [V 1, VF ) ⊆ V̂.

The flow payoff v to the agent is such that

v ≥ min

{
min
R

(1− β)

∫
R

(x− η)dF (x), (1− β)

∫ x

x

(x− η)dF (x)

}
. (2.13)

The first term on the right-hand side of (2.13) denotes the lowest flow payoff that the
agent may attain when the agent is in charge of hiring. The second term on the right-
hand side denotes the flow payoff that the agent attains when the principal is in charge
of hiring. Since the value of the right-hand side of (2.13) is −(1 − β)η, it follows that
no mechanism can deliver a value V < VP = −η to the agent. Hence, V /∈ V, V̂ for any
V < VP .

The flow payoff v to the agent is such that

v ≤ max

{
max
R

(1− β)

∫
R

(x− η)dF (x), (1− β)

∫ x

x

(x− η)dF (x)

}
. (2.14)

The first term on the right-hand side of (2.14) denotes the highest flow payoff that the
agent may attain when the agent is in charge of hiring. The second term on the right-
hand side denotes the flow payoff that the agent attains when the principal is in charge
of hiring. Since the value of the right-hand side of (2.14) is (1− β)VF , it follows that no
mechanism can deliver a value V > VF to the agent. Hence, V /∈ V, V̂ for any V > VF .
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Also, a mechanism can deliver the value VF to the agent by letting him choose whom to
hire in every period and giving him continuation values that are independent from his
hiring decision. Hence, VF ∈ V, V̂.

Lastly, notice that V̂ ∈ V̂ for any V̂ < V 1 = V`. To see why this is the case notice
that, in the second stage, the agent’s value is such that

V̂ = max
R

(1− β)
∫
R

(x− η)dF (x) + βF (R)V0 + β(1− F (R))V1

≥ max
R

(1− β)
∫
R
{x− η}dF (x) + βF (R)VP + β(1− F (R))VP

= (1− β)VF + βVP = V`.

(2.15)

2.3 Optimal Lottery between Delegation and Control

We now want to characterize the solution of the first-stage problem. To this aim, it is
useful to study the solution of the first stage problem at V ∈ {VP , VF} and the solution
of the second-stage problem at V̂ ∈ {V`, VF}.

Consider the first-stage problem. The only feasible mechanism for V = VP is such that
(p, V̂ ) = (1, V̂ ) for any V̂ . Hence, J(VP ) = JP . Similarly, the only feasible mechanism for
V = VF is (p, V̂ ) = (0, VF ). Hence, J(VF ) = Ĵ(VF ). Consider the second-stage problem. It
is immediate to verify that the only feasible mechanism for V̂ = VF is (V0, V1) = (VF , VF ).
Since V0 = V1 implies R = η, Ĵ(VF ) is such that

Ĵ(VF ) = (1− β)
∫
η
xdF (x) + βJ(VF )

= (1− β)
∫
η
xdF (x) + βĴ(VF ),

(2.16)

where the second line follows from the fact that J(VF ) = Ĵ(VF ). Solving the above
equation for Ĵ(VF ) yields

JF ≡ Ĵ(VF ) =

∫
η

xdF (x). (2.17)

Similarly, it is immediate to verify that the only feasible mechanism for V̂ = V` is
(V0, V1) = (VP , VP ). Since V0 = V1 implies R = η, Ĵ(V`) is such that

J` ≡ Ĵ(V`) = (1− β)
∫
η
xdF (x) + βJ(VP )

= (1− β)JF + βJP ,
(2.18)

where the second line follows from the definition of JF and from the fact that J(VP ) = JP .

The previous analysis has identified three key points. The “punishment”point P =

(VP , JP ), which is equal to (VP , J(VP )), denotes the value to the agent and to the principal
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when the principal permanently takes over the hiring decision. We refer to this point as
the punishment point. The “freedom”point F = (VF , JF ), which is equal to (VF , J(VF ))

and (VF , Ĵ(VF )), denotes the value to the agent and to the principal when the agent
always decides whom to hire without any interference from the principal. Indeed, the
implementation of VF is such that, in the current period, the agent hires an applicant if
and only if the applicant’s quality x ≥ η, exactly as he would do without a principal.
The implementation of VF is also such that, in the next period, the agent’s continuation
value is VF whether he does or does not hire today’s applicant. Hence, in the next period
(and in any period after that), the agent hires an applicant if and only if the applicant’s
quality x ≥ η. The point L = (V`, J`), which is equal to (V`, Ĵ(V`)), denotes the value to
the agent and to the principal when the agent freely chooses whom to hire in the current
period and the principal takes over hiring from tomorrow on. It is easy to see that the
points P, L and F lie on an upward sloping line in the (V, J) space. Indeed, P , L and F
are all points on the (V,H(V )) line, where

H(V ) = JP +
JF − JP
VF − VP

(V − VP ). (2.19)

Let S = (V ∗, J∗) denote the point where Ĵ(V̂ ) is maximized. That is, let V ∗ and J∗

denote, respectively, the argmax and the max of the function Ĵ(V̂ ) with respect to V̂ ∈ V̂.
Since J(V ) is a convex combination between JP and some Ĵ(V̂ ) and JP < Ĵ(VF ), V ∗ and
J∗ are also, respectively, the argmax and the max of the function J(V ) with respect to
V ∈ V. Therefore, when the principal chooses a mechanism in period t = 0, it will pick
a mechanism that delivers the point S = (V ∗, J∗). For some parameter values, J∗ = JF
and, in turn, V ∗ = VF . In this case, the mechanism chosen by the principal is such that
the hiring decisions are permanently delegated to the agent. For other parameter values,
J∗ > JF and, in turn, V ∗ ∈ (V`, VF ). In this case, the mechanism chosen by the principal
will not involve permanent, unfettered delegation. In the following lemma, we identify a
condition on the parameters of the model such that J∗ > JF . In the remainder of the
paper, we assume that the condition is satisfied.1

Lemma 2. The optimal mechanism S = (V ∗, J∗) is such that J∗ > JF as long as η and
F are such that

ηF ′(η)

F (η)
>

∫
η
xdF (x)∫

η
xdF (x) + ηF (η)

. (2.20)

Proof. Consider the following feasible mechanism. In the current period, the agent chooses
whether or not to hire the applicant. If the agent does hire the applicant in the current
period, the agent continuation value V1 is set to VF . If the agent does hire the applicant

1If, for instance, the quality distribution F is uniform over the interval [−δ, δ], the suffi cient condition
for J∗ > JF is η > δ/2.
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in the current period, the agent continuation value V0 is set to εVP + (1− ε)VF . The con-
tinuation value V0 is delivered as a lottery that assigns probability ε to VP and probability
1− ε to VF . The mechanism need not be optimal, but it is feasible.

The value Γ(ε) of the mechanism to the principal is

Γ(ε) = (1− β)

∫
R

xF ′(x)dx+ βF (R) [εJP + (1− ε)JF ] + β(1− F (R))JF , (2.21)

where the reservation quality R is

R = η − β

1− β [VF − εVP − (1− ε)VF ] . (2.22)

The derivative of Γ with respect to ε is

Γ′(ε) = −βF (R) (JF − JP )− dR

dε
{(1− β)RF ′(R) + βF ′(R)ε [JF − JP ]} , (2.23)

where
dR

dε
= − β

1− β (VF − VP ). (2.24)

When evaluated at ε = 0, the derivative of Γ with respect to ε becomes

Γ′(0) = −βF (η) (JF − JP ) + βηF ′(η)(VF − VP ). (2.25)

The above expression is strictly positive as long as

ηF ′(η)

F (η)
>
JF − JP
VF − VP

=

∫
η
xdF (x)∫

η
xdF (x) + ηF (η)

. (2.26)

The value Γ(ε) of the mechanism to the principal cannot exceed J∗, as the mechanism is
a feasible solution to the second-stage problem. The value Γ(ε) of the mechanism to the
principal is equal to JF for ε = 0. Hence, if condition (2.26) is satisfied, there exists an
ε∗ > 0 such that Γ(ε∗) > JF . Since J∗ ≥ Γ(ε∗), it follows that J∗ > JF .

In order to simplify the characterization of the optimal mechanism, we are going
to conjecture that the second-stage value function Ĵ is strictly concave. In most of our
numerical simulations, we find that Ĵ is indeed strictly concave. Having conjectured that Ĵ
is strictly concave, we can establish some useful properties relating Ĵ(V̂ ) to the line H(V̂ )

that connects the points P, L and F . Since Ĵ(V`) = H(V`) and Ĵ(V ∗) > JF > H(V ∗), the
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Figure 1: Points P , L, F and S, and locus (V̂ , Ĵ(V̂ )).

concavity of Ĵ implies that Ĵ ′(V`) > H ′ = (JF − JP )/(VF − VP ). Since Ĵ(VF ) = H(VF ),
the concavity of Ĵ implies that Ĵ ′(VF ) < H ′. Since J(V`) = H(V`), Ĵ(VF ) = H(VF ) and
Ĵ(V ∗) > H(V ∗), the concavity implies that Ĵ(V̂ ) > H(V̂ ) for all V̂ ∈ (V`, VF ).

We are now ready to characterize the solution of the first-stage problem (2.1). Using
the promise-keeping constraint (2.2) to substitute the probability p, we can rewrite (2.1)
as

J(V ) = max
V̂ ∈[V`,VF ]

V̂ − V
V̂ − VP

JP +
V − VP
V̂ − VP

Ĵ(V̂ ), s.t.

s.t. V̂ ≥ V .

(2.27)

The necessary condition for the optimality of V̂ is

V − VP
V̂ − VP

[
Ĵ ′(V̂ )− Ĵ(V̂ )− JP

V̂ − VP

]
= 0 if V̂ ∈ (max{V, V`}, VF ),
≤ 0 if V̂ = max{V, V`},
≥ 0 if V̂ = VF .

(2.28)

Let us examine the term in square brackets on the left-hand side of (2.27). The function
Ĵ ′(V̂ ) is the derivative of the second-stage problem value function. Since Ĵ is strictly
concave, Ĵ ′(V̂ ) is strictly decreasing and such that J ′(V`) > 0, Ĵ ′(V ∗) = 0, J ′(VF ) < 0.
The function (Ĵ(V̂ )−JP )/(V̂ −VP ) is the slope of the line connecting the points (VP , JP )

and (V̂ , J(V̂ )). Since Ĵ(V`) = H(V`) and Ĵ(VF ) = H(VF ), (Ĵ(V̂ )− JP )/(V̂ − VP ) is equal
to H ′ = (JF − JP )/(VF − VP ) at V` and VF . Since Ĵ(V̂ ) > H(V̂ ) for all V̂ ∈ (V`, VF ),
(Ĵ(V̂ ) − JP )/(V̂ − VP ) > H ′ for all V̂ ∈ (V`, VF ). The strict concavity of Ĵ implies that
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H ′ < J ′(V̂`) andH ′ > J ′(VF ). Since (Ĵ(V̂ )−JP )/(V̂ −VP ) is strictly smaller than J ′(V̂ ) at
V̂ = V` and strictly greater than J ′(V̂ ) at V̂ = VF , there exists at least one VC ∈ (V`, VF )

such that (Ĵ(VC) − JP )/(VC − VP ) = J ′(VC). Since (Ĵ(V̂ ) − JP )/(V̂ − VP ) ≥ H ′ and
H ′ > 0, VC is strictly smaller than V ∗. Since the derivative of (Ĵ(V̂ ) − JP )/(V̂ − VP )

with respect to V̂ is zero at any VC , VC is unique. Moreover, for all V̂ ∈ [V`, Vc), Ĵ ′(V̂ ) is
strictly greater than (Ĵ(V̂ )−JP )/(V̂ −VP ). For all V̂ ∈ (VC , VF ], Ĵ ′(V̂ ) is strictly smaller
than (Ĵ(V̂ )− JP )/(V̂ − VP ).

The above discussion implies that, for any V ∈ [VP , VC), the optimality condition
(2.28) and the promise-keeping constraint (2.2) are satisfied if and only if

V̂ = VC , p =
VC − V
VC − VP

> 0. (2.29)

Plugging the optimal choice for V̂ in (2.27) yields

J(V ) = JP +
V − VP
VC − VP

(JC − JP ). (2.30)

where JC ≡ Ĵ(VC). Differentiating (2.30) with respect to V yields

J ′(V ) =
JC − JP
VC − VP

> Ĵ ′(V ), (2.31)

where the last inequality follows from the fact that (Ĵ(VC)−JP )/(VC−VP ) = Ĵ ′(VC) and
Ĵ ′(V ) > Ĵ ′(VC).

For any V ∈ [VC , VF ], the optimality condition (2.28) and the promise-keeping con-
straint (2.2) are satisfied if and only if

V̂ = V , p = 0. (2.32)

Plugging the optimal choice for V̂ in (2.27) yields

J(V ) = Ĵ(V ). (2.33)

Differentiating (2.33) with respect to V yields

J ′(V ) = Ĵ ′(V ). (2.34)

The proposition below summarizes the characterization of the first-stage problem.

Proposition 3. (Optimal lottery) The solution to the first-stage problem is such that:

1. For V ∈ [VP , VC), the principal takes over hiring with probability p and the agent
retains control of hiring with probability 1 − p, where p = (VC − V )/(VC − VP ). If
the agent retains control of hiring, his continuation value V̂ is VC.

14



Figure 2: Value functions J(V ) and Ĵ(V̂ ).

2. For V ∈ [VC , VF ], the principal never takes over hiring. The agent’s continuation
value V̂ is V .

3. The value to the principal is

J(V ) =

 JP +
V − VP
VC − VP

(JC − JP ), if V ∈ [VP , VC)

Ĵ(V ) if V ∈ [VC , VF ]

(2.35)

4. The point (VC , JC) is such that JC = Ĵ(VC) and VC ∈ (V`, V
∗) is the unique solution

to
Ĵ ′(VC) =

JC − JP
VC − VP

. (2.36)

The properties of the optimal lottery between delegation and control are intuitive. The
lottery between control and delegation allows the mechanism to achieve any combination
of the agent’s and the principal’s values that lie on a line connecting the control values,
given by the point P , and one of the delegation values, given by some point on the
locus (V̂ , Ĵ(V̂ )). The optimal lottery between control and delegation is the highest line
connecting P to a point on the locus (V̂ , Ĵ(V̂ )), and it is obviously such that P is connected
to C = (VC , JC), where C is the point where Ĵ tangent to the line connecting P and C.
Hence, the optimal lottery is such that, for any V ∈ (VP , VC), the lottery randomizes with
between P and C with non-degenerate probabilities. For any V ∈ [VC , VF ], the optimal
lottery is degenerate and the hiring decision is delegated to the agent with probability 1.
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Figure 3: Optimal lottery p and V̂ as function of the promised value V .

2.4 Optimal Delegation

We now turn to the analysis of the second-stage problem. In the next proposition, we
show that the optimal mechanism induces the agent to follow a reservation quality that
is interior to the support of the quality distribution. The proposition implies that the
optimal mechanism is such that there is a strictly positive probability that the agent
does not hire the applicant, and a strictly positive probability that the agent hires the
applicant.

Proposition 4. (Optimal Reservation Quality) For all V̂ ∈ [VC , VF ], the solution to the
second-stage problem is such that the reservation quality R belongs to (x, x).

Proof. First, suppose that for some V̂a ∈ [VC , VF ], the solution to the second-stage problem
(2.4) specifies continuation values V0, V1 ∈ [VP , VF ] such that

R = η − β

1− β (V1 − V0) ≤ x. (2.37)

The value to the agent becomes

V̂a = (1− β)
∫ x
x

(x− η)dF (x) + βV1

= (1− β)VP + βV1,
(2.38)
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The value to the principal becomes

Ĵ(V̂a) = (1− β)
∫ x
x
xdF (x) + βJ (V1)

= (1− β)JP + βJ(V1)

= (1− β)JP + βĴ(V1)

(2.39)

where the second line in (2.39) makes use of the definition of VP , the second line in (2.39)
makes use of the definition of VP , and the third line in (2.39) makes use of the fact that
V̂a > VP implies V1 > V̂a > VC and, hence, J(V1) = Ĵ(V1).

Consider now the first-stage problem (2.1) for V = V̂a. The problem is

J(V̂a) = max
p∈[0,1],V̂ ∈V̂

pJP + (1− p)Ĵ(V̂ ),

s.t. V̂a = pVP + (1− p)V̂ .
(2.40)

Since p = β and V̂ = V1 is feasible. Since V1 6= VC , p = β and V̂ = V1 is not optimal.
Therefore, J(V̂a) > Ĵ(V̂a). However, J(V̂a) = Ĵ(V̂a) because V̂a ≥ VC and Ĵ(V̂ ) = J(V̂ )

for all V̂ ≥ VC . A contradiction.

Next, suppose that for some V̂b ∈ [Vc, VF ], the solution to the second-stage problem
(2.40) specifies continuation values V0, V1 ∈ [VP , VF ] such that

R = η − β

1− β (V1 − V0) ≥ x. (2.41)

In this case, the value to the agent becomes

V̂b = βV0. (2.42)

The value to the principal becomes

Ĵ(V̂b) = 0 + βJ (V0)

< (1− β)J(0) + βJ(V0)

≤ J((1− β)0 + βV0)

= J(V̂b)

(2.43)

The second line makes use of the fact that J(V ) ≥ H(V ) > 0 for all V > VP . The
third line makes use of the fact that J(V ) is weakly concave, as J ′(V ) = Ĵ ′(Vc) for all
V ∈ [V`, VC ] and J ′(V ) = Ĵ ′(V ) for all V ∈ [VC , VF ]. The fourth line makes use of the fact
that V0 = V̂b/β. Comparing the first and the last line, we obtain Ĵ(V̂b) < J(V̂b). However,
J(V̂b) = Ĵ(V̂b) because V̂b ≥ VC and Ĵ(V̂ ) = J(V̂ ) for all V̂ ≥ VC . A contradiction.

We now turn to the characterization of the optimal continuation values for the agent
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in the second-stage problem. For V0 ∈ (VP , VF ), the necessary condition for optimality is

0 = βF (R)J ′(V0) + βF ′(R) [J(V0)− J(V1)]
dR

dV0
− (1− β)RF ′(R)

dR

dV0

+λ

{
βF (R) + βF ′(R)(V0 − V1)

dR

dV0
− (1− β)(R− η)F ′(R)

dR

dV0

}
,

(2.44)

where λ denotes the Lagrange multiplier on the promise-keeping constraint (2.5) and
dR/dV0 denotes the derivative of the agent’s reservation quality (2.6) with respect to V0,
i.e.

dR

dV0
=

β

1− β . (2.45)

The first line on the right-hand side of (2.44) is the derivative of the principal’s value with
respect to V0. This derivative is given by the change in the principal’s continuation value
due to the change in V0 and the change in the principal’s flow payoff and continuation
value due to change in the agent’s reservation quality R. The second line on the right-
hand side of (2.44) is the derivative of the agent’s value with respect to V0 multiplied by λ.
The derivative is given by the change in the agent’s continuation value due to the change
in V0 and the change in the agent’s flow payoff and continuation value due to change in
the agent’s reservation quality R.

Using the fact that the agent’s reservation quality R is given by (2.6) and that the
derivative dR/dV0 of the agent’s reservation quality with respect to V0 is given by (2.45),
we can rewrite (2.44) as

J ′(V0) + λ =
F ′(R)

F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
. (2.46)

Similarly, for V1 ∈ (VP , VF ), the necessary condition for optimality is

0 = β(1− F (R))J ′(V1) + βF ′(R) [J(V0)− J(V1)]
dR

dV1
− (1− β)RF ′(R)

dR

dV1

+λ

{
β(1− F (R)) + βF ′(R)(V0 − V1)

dR

dV1
− (1− β)(R− η)F ′(R)

dR

dV1

}
,

(2.47)

where dR/dV1 denotes the derivative of the agent’s reservation quality (2.6) with respect
to V1

dR

dV1
= − β

1− β . (2.48)

Using the fact that the agent’s reservation quality R is given by (2.6) and that the deriv-
ative dR/dV1 of the agent’s reservation quality with respect to V0 is given by (2.48), we
can rewrite (2.47) as

J ′(V1) + λ = − F ′(R)

1− F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
. (2.49)
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Finally, the derivative Ĵ ′(V̂ ) of the principal’s value with respect to the agent’s promised
value V̂ is equal to the Lagrange multiplier λ on the promise-keeping constraint (2.5).
That is,

Ĵ ′(V̂ ) = −λ. (2.50)

In the next proposition, we first use the necessary conditions (2.46) and (2.49) to
show that the optimal continuation values V0 and V1 are such that V0 6= V1 for any agent’s
promised value V̂ ∈ (V`, VF ). Second, under the conjecture that the optimal continuation
values V0 and V1 are continuous with respect to V̂ , we show that the optimal continuation
values are such that V0 < V1 for any agent’s promised value V̂ ∈ (V`, VF ). Third, we
use the necessary conditions (2.46) and (2.49) and the envelope condition (2.50) to show
that the optimal continuation values are such that V0 < V̂ < V1 for any V̂ ∈ (VC , VF ).
Fourth, we show that Ĵ ′(VF ) = −∞ and, hence, V1 < VF for any V̂ ∈ (V`, VF ). Lastly, we
establsih that V0 = VP and V1 > VC at V̂ = VC .

Proposition 5. (Optimal Incentives in Delegation). The solution to the first-stage prob-
lem is such that:

1. For any promised value V̂ ∈ (V`, VF ), the optimal continuation values V0 and V1 are
such that V0 6= V1. For V̂ = V`, both V0 and V1 are equal to VP . For V̂ = VF , both
V0 and V1 are equal to VF .

2. For any V̂ ∈ (V`, VF ), V0 and V1 are such that V0 < V1 and, hence, the agent’s
reservation quality R is strictly smaller than η.

3. For any V̂ ∈ (VC , VF ), V0 and V1 are such that V0 < V̂ and V1 > V̂ .

4. For any V̂ ∈ (V`, VF ), V1 is such that V1 < VF .

5. For V̂ = VC, V0 and V1 are such that V0 = VP and V1 > VC.

Proof. Part 1. Consider some promised value V̂ ∈ (V`, VF ). Suppose that the optimal
continuation values V0 and V1 are both equal to V ∈ (VP , VF ). Then, the necessary
conditions (2.46) and (2.49) are

J ′(V0) + λ =
F ′(R)

F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
=
F ′(η)

F (η)
η,

J ′(V1) + λ = − F ′(R)

1− F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
= − F ′(η)

1− F (η)
η,

(2.51)

where the second equalities make use of the fact that V0 = V1 and, hence, J(V1) = J(V0)

and R = η. The necessary conditions (2.51) imply that J ′(V0) > J ′(V1). However, V0 = V1
implies that J ′(V0) = J ′(V1). A contradiction.

Next suppose that the optimal continuation values V0 and V1 are both equal to VP . Then
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the promise-keeping constraint becomes

V̂ = (1− β)
∫
R

(x− η)dF (x) + βVP

= (1− β)
∫
η
(x− η)dF (x) + βVP

= (1− β)VF + βVP = V`.

(2.52)

where the second line makes use of the fact that R = η if V0 = V1, and the third line
makes use of the definitions of VF and V`. Similarly, if the optimal continuation values V0
and V1 are both equal to VF , the promise-keeping constraint becomes

V̂ = (1− β)
∫
R

(x− η)dF (x) + βVF

= (1− β)
∫
η
(x− η)dF (x) + βVF

= (1− β)VF + βVF = VF .

(2.53)

In both cases, we have a contradiction because the agent’s promised value V̂ ∈ (V`, VF ).

Part 2. Conjecture that the optimal continuation values V0 and V1 are continuous with
respect to V̂ . Since V0 6= V1 for all V̂ ∈ (V`, VF ) and V0 and V1 are continuous, it follows
that either V0 > V1 for all V̂ ∈ (V`, VF ) or V0 < V1 for all V̂ ∈ (V`, VF ). On the way to
a contradiction, suppose that V0 > V1 for all V̂ ∈ (V`, VF ). Then, the agent’s reservation
quality R is greater than η for all V̂ ∈ (V`, VF ). For V̂ = V`, the only feasible continuation
values are V0 = V1 = VP and, hence, the agent’s reservation quality R is equal to η. For
V̂ = VF , the only feasible continuation values are V0 = V1 = VF and, hence, the agent’s
reservation quality R is equal to η. Overall, as long as the agent retains control over
whom to hire, the agent’s reservation quality is greater than R and the principal’s flow
payoff is

v ≤ max
R≥η

∫
R

xdF (x)

=

∫
η

xdF (x) = (1− β)JF ,
(2.54)

where the second line uses the fact that the integral is strictly decreasing in R for all
R > 0 and the definition of JF . Once the principal takes control over whom to hire, the
principal’s flow payoff is

vP =

∫ x

x

xdF (x) = (1− β)JP , (2.55)

where the second equality uses the definition of JP . Since the value of the mechanism to
the principal is the discounted sum of flow payoffs, it follows that

J(V̂ ) ≤ (1− β) max {JF , JP}
1− β = JF , for all V̂ ∈ [V`, VF ]. (2.56)

However, V ∗ ∈ (V`, VF ) and J(V ∗) > JF . A contradiction.
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Part 3. Consider some promised value V̂ ∈ (VC , VF ). The optimal continuation val-
ues V0 and V1 are such that V0 < V1. Suppose that the continuation values V0 and V1 are
both interior, in the sense that V0, V1 ∈ (VP , VF ). Using the envelope condition (2.50) to
substitute out the Lagrange multiplier λ, we can rewrite the necessary conditions for the
optimality (2.46) and (2.49) as

J ′(V0)− Ĵ ′(V̂ ) =
F ′(R)

F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
,

J ′(V1)− Ĵ ′(V̂ ) = − F ′(R)

1− F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
.

(2.57)

If V0 > VC , then subtract the second equation from the first equation in (2.57) to obtain

J ′(V0)− J ′(V1) =

[
F ′(R)

F (R)
+

F ′(R)

1− F (R)

]{
R +

β

1− β [J(V1)− J(V0)]

}
. (2.58)

Since V0, V1 > VC , J ′(V0) = Ĵ ′(V0) and J ′(V1) = Ĵ ′(V1). Since V1 > V0 and Ĵ is strictly
concave, Ĵ ′(V0) > Ĵ ′(V1). From these observations, it follows that J ′(V0) > J ′(V1) and, in
turn,

R +
β

1− β [J(V1)− J(V0)] > 0. (2.59)

The inequality in () implies that J ′(V0) > Ĵ ′(V̂ ). Since J ′(V0) = Ĵ ′(V0) and Ĵ is strictly
concave, V0 < V̂ . Similarly, the inequality in () implies that J ′(V1) < Ĵ ′(V̂ ). Since
J ′(V1) = Ĵ ′(V1) and Ĵ is strictly concave, V1 > V̂ . If V0 < VC , then J ′(V0) = Ĵ ′(VC).
Since V̂ > VC and Ĵ is strictly concave, J ′(V̂ ) < Ĵ ′(VC). From these observations, it
follows that

R +
β

1− β [J(V1)− J(V0)] > 0. (2.60)

The inequality in () implies that J ′(V1) < Ĵ ′(V̂ ). Since V̂ > VC , Ĵ ′(V̂ ) = J ′(V̂ ). Since J
is weakly concave, V1 > V̂ . Therefore, V0 < V̂ and V1 > V̂ . Similar arguments allow us
to prove that V0 < V̂ and V1 > V̂ also in case V0 and/or V1 are not interior.

Part 4. Since V0 is a continuous function of V̂ such that V0 = VF for V̂ = VF and
V0 < V̂ for all V̂ ∈ (VC , VF ), there must exist an interval (V̂a, VF ) such that V0 ∈ (VC , VF )

for all V̂ ∈ (V̂a, VF ). Hence, for all V̂ ∈ (V̂a, VF ), the first-order condition for V0 is given
by

Ĵ ′(V0)− Ĵ ′(V̂ )

Ĵ ′(V̂ )
=

1

Ĵ ′(V̂ )

F ′(R)

F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
, (2.61)

where the above expression is obtained by dividing (2.46) by Ĵ ′(V̂ ) and using J ′(V0) =

Ĵ ′(V0) and λ = −Ĵ ′(V̂ ). On the way to a contradiction, suppose that Ĵ ′(V̂ ) converges
to some k for V̂ → VF . If so, the left-hand side of (2.61) converges to 0 for V̂ → VF .
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The right-hand side of (2.61) converges to F ′(η)η/F (η)k 6= 0 since R converges to η for
V̂ → VF . Therefore, Ĵ ′(V̂ ) must diverge for V̂ → VF . Since Ĵ ′(V̂ ) < 0 for all V̂ > V ∗,
Ĵ ′(V̂ ) = −∞ for V̂ → VF .

For any V̂ ∈ (VC , VF ), V1 = VF is optimal only if

Ĵ ′(VF )− Ĵ ′(V̂ ) ≥ − F ′(R)

1− F (R)

{
R +

β

1− β [JF − J(V0)]

}
. (2.62)

The left-hand side of (2.62) is −∞ since Ĵ ′(VF ) = −∞ and Ĵ ′(V̂ ) is finite. The right-hand
side of (2.62) is finite, since R ∈ (x, x), F ′(R)/(1 − F (R)) is finite, and JF − J(V0) is
bounded between JF−J∗ and JF−JP . Hence, the condition for the optimality of V1 = VF
cannot hold for any V̂ ∈ (VC , VF ).

Part 5. Since V0 and V1 are continuous functions of V̂ such that V0 < V̂ for all
V̂ ∈ (VC , VF ) and V1 > V̂ for all V̂ ∈ (VC , VF ), it follows that, for V̂ = VC , the op-
timal continuation value V0 ≤ VC and the optimal continuation value V1 ≥ VC .

On the way to a contradiction, let us suppose that V1 = VC . If this is the case, the
solution to the second-stage problem for V̂ = VC has a very simple structure. The value
of the second-stage problem to the principal is JC = Ĵ(VC). The value of the second-stage
problem to the agent is VC . If, in the current period, the agent hires the applicant, the
agent retains control of hiring, the continuation value to the agent is V1 and the continu-
ation value to the principal is J(V1). Since V1 = VC , in the next period, the mechanism
delivers VC to the agent and JC to the principal. If, in the current period, the agent does
not hire the applicant, his continuation value is V0 and the principal’s continuation value
is J(V0). Since V0 < VC , in the next period, the mechanism delivers a lottery between the
the principal taking over hiring with probability p, in which case the agent and principal
values are VP and JP , and the agent retaining control over hiring with probability 1− p,
in which case the agent and the principal values are VC and JC . Therefore, the value of
the second-stage problem to the principal can be written as

JC = (1− β)

∫
R

xdF (x) + βF (R)pJP + β(1− F (R)p)JC . (2.63)

The value to the agent can be written as

VC = (1− β)

∫
R

(x− η)dF (x) + βF (R)pVP + β(1− F (R)p)VC . (2.64)

The reservation quality can be written as

R = η − βp

1− β (VC − VP ) . (2.65)
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Now consider the following mechanism. As long as the agent has control over whom
to hire, the mechanism specifies that, if the agent hires the applicant in the current pe-
riod, the agent will have control over whom to hire in the next period. If the agent does
not hire the applicant in the current period, the principal will permanently take over
hiring with some probability p and the agent will retain control over hiring in the next
period with probability 1 − p. Let V denote the value of this mechanism to the agent
and let Γ(V ) denote the value of this mechanism to the principal. Conditional on the
agent having control over hiring in the current period, the value of the mechanism to the
principal is

Γ(V ) = (1− β)

∫
R

xdF (x) + βF (R)pJP + β(1− F (R)p)Γ(V ). (2.66)

The value of the mechanism to the agent is

V = (1− β)

∫
R

(x− η)dF (x) + βF (R)pVP + β(1− F (R)p)V . (2.67)

The reservation quality is

R = η − βp

1− β (V − VP ) . (2.68)

For V = VC , the mechanism is the same as the solution of the second-stage problem.
That is Γ(VC) = Ĵ(VC). For any V 6= VC , the mechanism is feasible but need not be the
solution of the second-stage problem. That is Γ(V ) ≤ Ĵ(V ). Therefore, the derivative
of Γ(V ) is equal to the derivative of Ĵ(V ) for V = VC . That is, Γ′(VC) = Ĵ ′(VC). The
derivative of Γ(V ) with respect to V is such that

(1− β(1− pF (R))) Γ′(V )

= −βF (R)(Γ(V )− JP )
dp

dV
− [(1− β)R + βp(Γ(V )− JP )]F ′(R)

dR

dV
,

(2.69)

where dp/dV is such that

1− β(1− pF (R)) = −βF (R)(V − VP )
dp

dV
, (2.70)

and dR/dV is
dR

dV
= − β

1− β

[
p+ (V − VP )

dp

dV

]
. (2.71)
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When we evaluate Γ′(V ) at V = VC , we obtain

(1− β(1− pF (R))) Γ′(VC)

= −βF (R)(JC − JP )
dp

dV
− [(1− β)R + βp(JC − JP )]F ′(R)

dR

dV
,

(2.72)

where dp/dV is
dp

dV
= −1− β(1− pF (R))

βF (R)

1

VC − VP
, (2.73)

and dR/dV is
dR

dV
= − β

1− β

[
p+ (VC − VP )

dp

dV

]
. (2.74)

Combining (2.72), (2.73) and (2.74), we find that the derivative of Γ(V ) at V = VC
is

Γ′(VC) =
JC − JP
VC − VP

− (1− β)R + βp(JC − JP )

1− β(1− pF (R))

F ′(R)

F (R)
. (2.75)

The derivative of Ĵ(V ) at V = VC is

J ′(VC) =
JC − JP
VC − VP

. (2.76)

Therefore Γ′(VC) < J ′(VC), which contradicts Γ′(VC) = J ′(VC).

We have established that, for V̂ = VC , the optimal continuation value V1 is such that
V1 > VC . The necessary condition for the optimality of V0 can be written as

J ′(V0)− Ĵ ′(VC) ≤ F ′(R)

F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
(2.77)

and V0 ≥ VP , where the two inequalities hold with complementary slackness. The neces-
sary condition for the optimality of V1 can be written as

J ′(V1)− Ĵ ′(VC) ≥ − F ′(R)

1− F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
(2.78)

and V1 ≤ VF , where the two inequalities hold with complementary slackness.

Since V1 > VC , J ′(V1) = Ĵ ′(V1). Since Ĵ is strictly concave, Ĵ ′(V1) < Ĵ ′(VC). From
these observations, it follows that

R +
β

1− β [J(V1)− J(V0)] > 0. (2.79)
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Figure 4: Optimal continuation values V0 and V1 as functions of the promised value V̂ .

Since V0 ≤ VC , J ′(V0) = Ĵ ′(VC). From this observation and (2.79), it follows that

J ′(V0)− Ĵ ′(VC) = 0 <
F ′(R)

F (R)

{
R +

β

1− β [J(V1)− J(V0)]

}
. (2.80)

Therefore, V0 = VP .

The properties of the optimal mechanism in delegation are intuitive. The principal
would like to hire all and only applicants whose quality exceeds 0. The agent would
like to hire all and only applicants whose quality exceeds η > 0. In order to move
the agent’s preferences towards the principal’s preferences, the mechanism gives a higher
continuation value to the agent if the hires the applicant than if he does not. Moreover,
since the principal’s value function is conjectured to be strictly concave in the agent’s
value, the mechanism is such that the agent’s continuation value is strictly greater than
the agent’s promised value if he hires the applicant, and strictly smaller than the agent’s
promised value if he does not hire the applicant.

Combining the findings in Propositions 3, 4 and 5, we can characterize the dynamic
behavior generated by the optimal mechanism. In period t = 0, the mechanism gives the
value V ∗ ∈ (VC , VF ) to the agent. If the agent hires the applicant, the agent’s value strictly
increases. If the agent does not hire the applicant, the agent’s value strictly decreases. The
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probability of both events is strictly positive because the reservation quality R ∈ (x, η]

for all V ∈ [VC , VF ]. If the agent fails to hire an applicant enough times, the agent’s
continuation value does fall below VC . When this happens, the mechanism runs a lottery
between control and delegation that assigns a strictly positive probability p to control. If
the outcome of the lottery is control, the principal takes over. In this case, the principal
hires all the applicants and the agent’s value becomes VP = −η. If the outcome of the
lottery is delegation, the agent’s value is bumped up to VC . In this case, if the agent does
not hire the applicant, the principal takes over hiring with probability 1. If the agent
hires the applicant, the mechanism increases the value of the agent above VC , where the
agent will have control over hiring for at least one more period with probability 1.

As long as the agent keeps hiring applicants, the agent’s value keeps growing. Depend-
ing on the shape of V1 as a function of V , the agent’s value converges to VF . When the
agent is in a neighborhood of VF , the mechanism is such that the agent hires candidates
whose quality is above a threshold R that is approximately equal to η. Moroever, the
agent’s continuation values are both either approximately equal to VF . However, since
the agent approaches VF without ever reaching it, his value eventually slides back down
and may reach any point with positive probability.

In period t = 0, the mechanism gives the value J∗ to the principal. Since J∗ > JP ,
the value of the mechanism to the principal exceeds what the principal could obtain by
directly controlling the hiring process without the expertise of the agent. Since J∗ > JF ,
the value of the mechanism to the principal exceeds what the principal could obtain by
giving the agent complete discretion over hiring and suffering the consequences of the
agent’s bias. The mechanism delivers a higher value to the principal because it succeeds
in making use of the expertise of the agent without giving the agent complete discretion.
In particular, the mechanism induces the agent to lower his hiring standards by rising
and lowering the threat of giving control to the principle depending on whether the agent
hires or does not hire an applicant.

3 Optimal Control

Up to this point, we have restricted attention to mechanisms such that: (i) when the
mechanism assigns the hiring decision to the principal, it does so permanently; (ii) when
the mechanism assigns the hiring decision to the principal, it prescribes that the principal
hires the applicant. These seemingly aribitrary restrictions to the space of mechanisms
are made without loss in generality.

First, let us consider the space of mechanisms that allow for the hiring decision to be
assigned to either the principal or the agent in any period and after any history. The
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first-stage problem becomes

Γ(V ) = max
p,Ṽ ,V̂

pJ̃(Ṽ ) + (1− p)Ĵ(V̂ ), s.t.

V = pṼ + (1− p)V̂ ,

p ∈ [0, 1], Ṽ ∈ V, V̂ ∈ V̂,

(3.1)

where Ĵ denotes the value of the mechanism if the hiring decision in the current period is
assigned to the agent, and G denotes the value of the mechanism to the principal if the
hiring decision in the current period is assigned to the principal (who is still instructed to
hire the applicant). The value function J̃ is given by (2.4). The value function G is given
by

J̃(Ṽ ) = (1− β)

∫ x

x

xdF (x) + βΓ(V+)

= (1− β)JP + βΓ(V+),

(3.2)

where

Ṽ = (1− β)

∫ x

x

(x− η)dF (x) + βV+

= (1− β)VP + βV+.

(3.3)

Let V0 denote some arbitrary value that the mechanism needs to deliver to the agent.
Using the definitions of Γ and J̃ , we can write Γ(V0) as

Γ(V0) = p0(1− β)JP + (1− p0)Ĵ(V̂0) + p0βΓ(V1), (3.4)

where p0, Ṽ1 and V̂0 are optimal given V0, and V1 is such that Ṽ1 = (1 − β)VP + βV1.
Notice that the coeffi cients in front of JP , Ĵ(V̂0) and Γ(V1) are all positive and they sum
up to 1.

Using the definitions of Γ and J̃ to replace Γ(V1), we can write Γ(V0) as

Γ(V0) = p0(1− β)JP + βp0p1(1− β)JP

+(1− p0)Ĵ(V̂0) + βp0(1− p1)Ĵ(V̂1) + β2p0Γ(V2),
(3.5)

where p1, Ṽ2 and V̂1 are the optimal choices given V1, and V2 is such that Ṽ2 = (1 −
β)VP + βV2. Again, notice that the coeffi cient in front of JP , Ĵ(V̂0), Ĵ(V̂0) and Γ(V2)

are all positive and they sum up to 1. This is because, when we replaced Γ(V1) with
p1 [(1− β)JP + βΓ(V2)] + (1 − p1)Ĵ(V̂1) in (3.4), the coeffi cients on JP , Γ(V2) and Ĵ(V̂1)

are positive and sum up to 1.

Similarly, using the definitions of Γ and J̃ to replace Γ(Vτ ) for τ = 2, 3, ...T , we can
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write

Γ(V0) =
[
(1− β)

∑T

t=0
βt
(∏t

i=0 pi
)]
JP

+
∑T

t=0

[
βt(1− pt)

(∏t−1
i=0 pi

)
Ĵ(V̂t)

]
+
(
βT+1

∏T
i=0 pi

)
Γ(VT+1).

(3.6)

For T →∞, the expression above becomes

Γ(V0) =
[
(1− β)

∑∞

t=0
βt
(∏t

i=0 pi
)]
JP

+
∑∞

t=0

[
βt(1− pt)

(∏t−1
i=0 pi

)
Ĵ(V̂t)

]
.

(3.7)

As before, the coeffi cients in front of JP and Ĵ(V̂t) are all positive and sum up to 1.

Notice that we can write (3.7) as

Γ(V0) = pJP + (1− p)
∑∞

t=0

[
βt(1− pt)

(∏t−1
i=0 pi

)
1− p Ĵ(V̂t)

]
≤ pJP + (1− p)Ĵ

(
V
)
,

(3.8)

where p and V are given by

p = (1− β)
∞∑
t=0

βt
(

t∏
i=0

pi

)
and V =

βt(1− pt)
(∏t−1

i=0 pi
)

1− p̃ V̂t, (3.9)

and the second line in (3.8) makes use of the concavity of Ĵ .

Now consider the first-stage problem when the space of mechanisms is restricted to
those that, once they assign the hiring decision to the principal, they do so forever. This
first-stage problem is

J(V0) = max
p,V̂

pJP + (1− p)Ĵ(V̂ ), s.t.

V0 = pVP + (1− p)V̂ ,

p ∈ [0, 1], V̂ ∈ V̂.

(3.10)

Since (p, V̂ ) = (p, V ) is a feasible choice for (3.10), it follows that J(V0) ≥ Γ(V0). Since
any mechanism that assigns control of hiring to the principal permanently is feasible in
the space of mechanisms that allow hiring to be assigned to the principal or the agent
in any period and after any history, it follows that Γ(V0) ≥ J(V0). Combining the two
inequalities yields Γ(V0) = J(V0). In other words, any mechanism that is optimal in the
class of mechanisms that flexibly assigns control of hiring is payoff equivalent to some
mechanism that assigns control of hiring to the principal permanently.

Next, let us consider the space of mechanisms that can specify that the principal either
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hires or does not hire applicants when he is in control. We maintain the restriction to
mechanisms that turn the control over hiring to the principal permanently. The first-stage
problem now reads

Γ(V ) = max
p,V̂

pJP + qJQ + (1− p− q)Ĵ(V̂ ), s.t.

V = pVP + qVQ + (1− p− q)V̂ ,
p ∈ [0, 1], V̂ ∈ V̂,

(3.11)

where JQ and VQ are the values to the principal and the agent if the principal has control
over hiring and does not hire the applicants, i.e. (JQ, VQ) = (0, 0), and JP and VP are the
values to the principal and the agent if the principal has control over hiring and hires the
applicants, i.e. (JP , VP ) = (0,−η).

Let p0, q0 and V̂0 denote a solution to (3.11) for some V0. Suppose that VQ ≥ V`.
Notice that the value to the principal Γ(V0) is such that

Γ(V0) = p0JP + q0JQ + (1− p0 − q0)Ĵ(V̂0)

≤ p0JP + (1− p0)
[

q0
1− p0

Ĵ(VQ) +
1− p0 − q0

1− p0
Ĵ(V̂0)

]
≤ p0JP + (1− p0)Ĵ

(
V
)
,

(3.12)

where
V =

q0
1− p0

VQ +
1− p0 − q0

1− p0
V̂0. (3.13)

The second line in (3.12) uses the fact that Ĵ(VQ) > JQ = 0. The third line in (3.12)
makes use of the strict concavity of Ĵ . Similarly, notice that the value to the agent V0 is
such that

V0 = p0VP + (1− p0)V . (3.14)

Therefore, (p, V̂ ) = (p0, V̂ ) is a feasible choice for the first-stage problem (3.10). Hence,
J(V0) ≥ Γ(V0). Since any mechanism that involves the principal hiring applicants when
in control is a feasible choice for (3.11), it follows that Γ(V0) ≥ J(V0). Combining the
two inequalities yields Γ(V0) = J(V0). That is, any optimal mechanism in the space of
mechanisms that can instruct the principal to either hire or not hire applicants is payoff
equivalent to some mechanism in the restricted space of mechanisms.

Now, suppose that VQ < V` and, hence, V0 > VQ = 0. Notice that the value to the
principal Γ(V0) is such that

Γ(V0) = p0JP + q0JQ + (1− p0 − q0)Ĵ(V̂0)

≤ pJP + (1− p) Ĵ(V̂0),
(3.15)

where p is defined as

p = p0 + q0
V̂0 − VQ
V̂0 − VP

∈ [p0, p0 + q0] . (3.16)
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The inequality in (3.15) makes use of the fact that 1 − p ≥ 1 − p0 − q0 and Ĵ(V̂0) > JP .
Similarly, notice that the value to the agent V0 is such that

V0 = p0VP + q0VQ + (1− p0 − q0)V̂0.
= pVP + (1− p) V̂0.

(3.17)

Therefore, (p, V̂ ) = (p0, V̂ ) is a feasible choice for the first-stage problem (3.10). Hence,
J(V0) ≥ Γ(V0). Since any mechanism that involves the principal hiring applicants when
in control is a feasible choice for (3.11), it follows that Γ(V0) ≥ J(V0). Combining the two
inequalities yields Γ(V0) = J(V0).

Combining the above arguments, it is easy to immediate to verify that, for any optimal
mechanism in the class of mechanisms that can assign control of hiring to either the
principal or the agent in any period and after any history, and that can specify in every
period and after any history whether the principal hires or does not hire applicants, there
exists a payoff-equivalent mechanism is the class of restricted mechanism considered in
Section 2. We have thus established the following proposition.

Proposition 6. (Optimal Control). Consider the class of mechanisms that can assign
control of hiring to either the principal or the agent in any period and after any history,
and that can specify in every period and after any history whether the principal hires or
does not hire applicants. Given this class of mechanisms, let Γ denote the first-stage value
function and let J be given by (2.1). Then, Γ = J .

4 Extensions

In this section, we show that the analysis of the baseline model can be immediately
extended in a number of natural directions. First, we consider a version of the model in
which the agent is positively biased in favor of the applicants. We show that the optimal
mechanism has the same properties as in the baseline model, except that the agent is
rewarded for not hiring the applicant and punished for hiring the applicant. Second,
we consider a version of the model in which there are n applicants for each vacancy.
We show that the mechanism design problem has exactly the same structure as in the
baseline, except that the quality distribution F needs to be replaced with the distribution
F n of the maximum of n independent draws from F . Third, we consider a version of the
model in which the vacancy attracts both contentious applicants—applicants against whom
the agent is biased—and uncontentious applicants—applicants that the agent evaluates in
an unbiased way. We show that the mechanism design problem has exactly the same
structure as in the baseline, except that the relevant distribution is the distribution of
the gap between the quality of the best contentious applicant and the quality of the best
uncontentious applicant. Lastly, we consider a version of the model in which the principal
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does not know if an applicant is available for hire. We show that the mechanism design
problem has the same structure as in the baseline, except that the agent is punished
equally for not hiring an applicant and not meeting an applicant.

4.1 Positive Bias

We consider a version of the baseline model in which the agent is positively biased towards
the applicants, rather than negatively biased. In particular, the difference between the
payoff to the agent and the payoff to the principal if an applicant is hired is some φ > 0.

For this version of the model, the first-stage problem is

Jφ(Vφ) = max
p∈[0,1],V̂ ∈V̂φ

pJφP + (1− p)Ĵφ(V̂φ) (4.1)

subject to the promise-keeping constraint

qV φ
P + (1− q)V̂φ = Vφ. (4.2)

Adapting the arguments in Section 3, it is easy to show that the optimal mechanism is
such that, when the principal has control over hiring, he retains control forever and he
does not hire any of the applicants. Therefore, the “punishment”payoffs to the principal
and the agent are

JφP = V φ
P = 0. (4.3)

The second-stage problem is

Ĵφ(V̂φ) = max
V φ0 ,V

φ
1 ∈Vφ

(1− β)

∫
Rφ

xdF (x) + β
[
F (Rφ)J(V φ

0 ) + (1− F (Rφ))J(V φ
1 )
]

(4.4)

subject to the promise-keeping constraint

V̂φ = (1− β)

∫
Rφ

(x+ φ)dF (x) + β
[
F (Rφ)V φ

0 + (1− F (Rφ)))V φ
1

]
, (4.5)

and the incentive-compatibility constraint

Rφ = −φ− β

1− β

(
V φ
1 − V

φ
0

)
. (4.6)

Following the same argument as in Lemma 1, it is straightforward to show that the
set Vφ is given by the interval [V φ

P , V
φ
F ], and the set V̂φ is given by the interval [V φ

` , V
φ
F ],

where
V φ
` ≡ (1− β)V φ

F + βV φ
P , V φ

F ≡
∫
−φ

(x+ φ)dF (x). (4.7)
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Following the same argument as in Lemma 2, it is straightforward to show that J∗φ,
which is defined as the maximum of Ĵφ(V̂ ) with respect to V̂ , is strictly greater than J∗F ,
which is defined as Ĵφ(VF ) and is equal to

∫
−φxdF (x), if the quality distribution F and

the bias φ are such that

φF ′(−φ)

1− F (−φ)
>

∫
−φ xdF (x)∫

−φ(x+ φ)dF (x)
> 0. (4.8)

Under condition (4.8), we can follow the same arguments as in Section 2 to show that
the optimal mechanism has the same qualitative features when the agent is positively
biased as when the agent is negatively biased. There is only one difference between
the optimal mechanism when the agent is positively biased and the optimal mechanism
when the agent is negatively biased. When the agent is negatively biased, the mechanism
rewards the agent for hiring an applicant by increasing his value, and it punishes the agent
for not hiring an applicant by lowering his value. When the agent is positively biased, the
mechanism rewards the agent for not hiring an applicant and punsihes him for hiring an
applicant. This difference between the optimal mechanisms is easy to understand. When
the agent is negatively biased, the agent wants to hire fewer applicants than the principal.
The optimal mechanism reduces the gap between the preferences of the agent and the
principal by rewarding the agent for hiring applicants and by punishing him for not hiring
applicants. When the agent is positively biased, the agent wants to hire more applicants
than the principal. The optimal mechanism reduces the gap between the preferences
of the agent and the principal by rewarding the agent for not hiring applicants and by
punishing him for not hiring applicants. The following proposition contains a complete
characterization of the optimal mechanism when the agent is positively biased.

Proposition 7. (Optimal Mechanism with Positive Bias)

1. For all Vφ ∈ [V φ
P ,V

φ
C ), the optimal lottery between control and delegation is such that

the probability p of control is such that p > 0 and, conditional on delegation, the
agent’s value V̂φ is V

φ
C . For all Vφ ∈ [V φ

C ,V
φ
F ], p = 0 and V̂φ = V . The critical value

V φ
C is such that

Ĵ ′φ(V φ
C ) =

Ĵφ(V φ
C )− JφP

V φ
C − V

φ
P

. (4.9)

2. For all V̂φ ∈ (V φ
C , V

φ
F ), the optimal agent’s continuation values V φ

0 and V
φ
1 are such

that
V φ
1 < V̂ < V φ

0 < V φ
F . (4.10)

For V̂φ = V φ
C , the optimal continuation values are V

φ
0 > V φ

C and V φ
1 = V φ

P . For
V̂φ = V φ

F , the optimal continuation values are V
φ
0 = V φ

F and V φ
1 = V φ

F . For all
V̂φ ∈ [V φ

C , V
φ
F ], the optimal continuation values induce the agent to use a reservation
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quality Rφ such that Rφ ∈ (−φ, x).

A tight connection between the optimal mechanism with positive bias and the optimal
mechanism with negative bias can be drawn when the quality distribution is symmetric
around 0, i.e. F (x) = 1−F (−x) for all x ∈ [x, x], and the biases have the same magnitude,
i.e. φ = η. The connection is presented in the following proposition.

Proposition 8. (Positive and Negative Bias with Symmetry). Let the quality distribution
of applicants be symmetric around 0, in the sense that F (x) = 1−F (−x) for all x ∈ [x, x],
and let φ = η. Then:

1. The first-stage and second-stage value functions Jφ and Ĵφ are such that

Jφ(V + η) = J(V ), Ĵφ(V̂ + η) = Ĵ(V̂ ).

2. Given the promised value Vφ = V + η, the lottery (pφ, V̂φ) that solves (4.1) is such
that pφ = p and V̂φ = V̂ + η, where (pφ, V̂φ) solves (2.1) given the promised value V .

3. Given the promised value V̂φ = V̂ + η, the continuation values V φ
0 and V

φ
1 that solve

(4.4) are V φ
0 = V1+η and V φ

1 = V0+η, where V0 and V1 are the continuation values
that solve (2.4) given the promised value V̂ .

4. Given the promised value V̂φ = V̂ + η, the agent’s reservation quality Rφ that solves
(4.4) is Rφ = −R, where R is the agent’s reservation quality that solves (2.4) given
the promised value V̂ .

Proof. For V̂φ = V̂ + η, the functional equation (4.4) can be written

Ĵφ(V̂ + η)

= max
V φ0 ,V

φ
1

(1− β)

∫
Rφ

xdF (x) + β
[
F (Rφ)Jφ(V φ

0 ) + (1− F (Rφ))Jφ(V φ
1 )
]
,

s.t. V̂ + η = (1− β)

∫
Rφ

(x+ φ)dF (x) + β
[
F (Rφ)V φ

0 + (1− F (Rφ)))V φ
1

]
Rφ = −φ− β

1− β (V φ
1 − V

φ
0 ), V φ

0 , V
φ
1 ∈ [V φ

P , V
φ
F ].

(4.12)

Let us define V0 and V1 as, respectively, V
φ
1 − η and V φ

0 − η. Since the choice vari-
ables V φ

0 and V
φ
1 must belong to the interval [V φ

P , V
φ
F ], the alternative choice variables V0
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and V1 must belong to the interval[
V φ
P − η, V

φ
F − η

]
=

[
−η,

∫
−φ

(x+ φ)dF (x)− η
]

=

[
−η,

∫
−φ
xdF (x) + F (−φ)φ− η

]
=

[
−η,

∫
η

xdF (x) + (1− F (η))η − η
]

=

[
−η,

∫
η

(x− η)dF (x)

]
= [VP , VF ]

(4.13)

The first line makes use of the definitions of V φ
P and V

φ
F . The third line makes use of the

fact that F (−φ) equals 1 − F (φ) and φ = η, as well as of the fact that, by symmetry
of the quality distribution,

∫
−φ xdF (x) equals

∫
φ
xdF (x). The 0 and, hence,

∫
−φ xdF (x)

equals
∫
φ
xdF (x). The fourth line makes use of the definition of VP and VF .

Using the above definitions and observations, we can rewrite (4.12) as

Ĵφ(V̂ + η)

= max
V0,V1

(1− β)

∫
Rφ

xdF (x) + β [F (Rφ)Jφ(V1 + η) + (1− F (Rφ))Jφ(V0 + η)] , s.t.

V̂ + η = (1− β)

∫
Rφ

(x+ φ)dF (x) + β [F (Rφ)V1 + (1− F (Rφ))V0 + η]

Rφ = −η − β

1− β (V0 − V1), V0, V1 ∈ [VP , VF ].

(4.14)

Defining R as −Rφ and using the fact that F (Rφ) = 1 − F (−Rφ), we can rewrite (4.14)
as

Ĵφ(V̂ + η)

= max
V0,V1

(1− β)

∫
Rφ

xdF (x) + β [(1− F (R))Jφ(V1 + η) + F (R)Jφ(V0 + η)] , s.t.

V̂ + η = (1− β)

∫
Rφ

(x+ φ)dF (x) + β [(1− F (R))V1 + F (R)V0 + η)]

R = η − β

1− β (V1 − V0), V0, V1 ∈ [VP , VF ].

(4.15)

Using the symmetry of the quality distribution and the definition of R, we can now
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rewrite (4.15) as

Ĵφ(V̂ + η)

= max
V0,V1

(1− β)

∫
R

xdF (x) + β [(1− F (R))Jφ(V1 + η) + F (R)Jφ(V0 + η)] , s.t.

V̂ = (1− β)

∫
R

(x− η)dF (x) + β [(1− F (R))V1 + F (R)V0]

R = η − β

1− β (V1 − V0), V0, V1 ∈ [VP , VF ].

(4.16)

In the objective function, we used the fact that
∫
R
xdF (x) equals

∫
−R xdF (x) and the

definition Rφ = −R. In the promise-keeping constraint, we collected η on the right-hand
side and used the fact that

∫
R
xdF (x) equals

∫
Rφ
xdF (x).

For V̂ + η, the functional equation (4.1) can be written as

Jφ(V + η) = max
p,V̂φ

pJφP + (1− p)Ĵφ(V̂φ)

s.t. V + η = pV φ
P + (1− p)V̂φ,

V̂φ ∈
[
V φ
` , V

φ
F

]
, p ∈ [0, 1].

(4.17)

Let V̂ be defined as V̂φ − η. Since V̂φ belongs to the interval [V φ
` , V

φ
F ], V̂ belongs to

the interval[
V φ
` − η, V

φ
F − η

]
=
[
(1− β)V φ

P + βV φ
F − η, V

φ
F − η

]
=
[
(1− β)

(
V φ
P − η

)
+ β

(
V φ
F − η

)
, V φ

F − η
]

= [(1− β)VP + βVF , VF ] = [V`, VF ].

(4.18)

The third line makes use of the fact that

V φ
P − η = −η = VP . (4.19)

The third line also makes use of the fact that

V φ
F − η =

∫
−φ(x+ φ)dF (x)− η

=
∫
−φxdF (x) + φ(1− F (−φ))− η

=
∫
η
(x− η)dF (x) = VF .

(4.20)
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Using the definition of V̂ and the above observations, we can rewrite (4.17) as

Jφ(V + η) = max
p,V̂

pJφP + (1− p)Ĵφ(V̂ + η)

s.t. V + η = pV φ
P + (1− p)(V̂ + η),

V̂ ∈ [V`, VF ], p ∈ [0, 1].

(4.21)

Rearranging terms in the objective function and using the fact that JφP = JP , we can
rewrite (4.21) as

Jφ(V + η) = max
p,V̂

pJP + (1− p)Ĵφ(V̂ + η)

s.t. V = pVP + (1− p)V̂ ,

V̂ ∈ [V`, VF ], p ∈ [0, 1].

(4.22)

The value functions Ĵφ(V̂ + η) = Ĵ(V̂ ) and Jφ(V + η) = J(V ) solve the functional equa-
tions (4.16) and (4.22), since Ĵ(V̂ ) and J(V ) are the solution to (2.4) and (2.1), (4.16)
is identical to (2.4), and (4.22) is identical to (2.1). Parts 2, 3 and 4 of the proposition
directly follow from the change in choice variables implemented in the derivation of (4.16)
and (4.22).

4.2 Multiple Applicants

We now consider a version of the baseline model in which there are n ∈ N applicants for
each vacancy. Every applicant has a quality x that is independently from the distribution
F (x). Every applicant has a quality that is observed by the agent but not by the principal.
It is useful to denote as xn the maximum of the quality of the n applicants. It is also
useful to denote as Fn(xn) the distribution of xn, i.e. Fn(xn) = (F (xn))n.

For this version of the model, the first-stage problem is

J(V ) = max
p,V̂

pJP + (1− p)Ĵ(V̂ )

s.t. V = pVP + (1− p)V̂ ,

p ∈ [0, 1], V̂ ∈ V̂.

(4.23)
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The second-stage problem is

Ĵ(V̂ )

= max
V0,V1

(1− β)

∫
R

xndFn(xn) + β [Fn(R)J(V0) + (1− Fn(R))J(V1)] , s.t.

V̂ = (1− β)

∫
R

(xn − η)dFn(x) + β [Fn(R)V0 + (1− Fn(R)))V1]

R = η − β

1− β (V1 − V0), V0, V1 ∈ V.

(4.24)

Following the logic of Section 3, we restrict attention to mechanisms such that, when
the principal takes over hiring, he does so forever. Moroever, we restrict attention to
mechanisms such that, whenever the principal is in control of hiring, the agent reports
the ranking of the applicants and the principal hires the highest ranked one. The agent
has an incentive to correctly report the ranking of applicants because he is better off if
the principal hires an applicant with higher quality than an applicant with lower quality.
In our numerical examples, we verify that this restriction is without loss in generality.
Under this restrictions, the “punishment”payoffs to the principal and the agent are

JP =

∫ x

x

xndFn(xn), VP =

∫ x

x

(xn − η)dFn(xn). (4.25)

Following the same argument as in Lemma 1, it is easy to show that the set V is given
by the interval [VP , VF ], and the set V̂ is given by the interval [V`, VF ], where

V` ≡ (1− β)VF + βVP , VF ≡
∫
η

(xn − η)dFn(xn). (4.26)

Following the same argument as in Lemma 2, it is straightforward to show that

J∗ ≡ max
V̂ ∈V̂

J(V̂ ) >

∫
η

xndFn(xn) ≡ JF (4.27)

if the quality distribution Fn and the bias η are such that

ηF ′n(η)

1− Fn(η)
>
JF − JP
VF − VP

=

∫
η
xndFn(xn)−

∫ x
x
xndFn(xn)∫

η
(xn − η)dFn(xn)−

∫ x
x

(xn − η)dFn(xn)
.

(4.28)

The recursive formulation of the optimal mechanism for a model with n applicants
is identical to the recursive formulation of the optimal mechanism for the model with a
single applicant, except that the quality distribution Fn replaces the quality distribution
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F . Therefore, under condition (4.28), it is straightforward to generalize the characteriza-
tion of the optimal mechanism for the model with a single applicant to a model with n
applicants. The charcaterization of the optimal mechanism for a model with n applicants
is summarized in the following proposition.

Proposition 9. (Optimal Mechanism with Multiple Applicants)

1. For all V ∈ [VP ,VC), the optimal lottery between control and delegation is such that
the probability p of control is such that p > 0 and, conditional on delegation, the
agent’s value V̂ is VC. For all V ∈ [VC,VF ], p = 0 and V̂ = V . The critical value
VC is such that Ĵ ′(VC) equals (Ĵ(VC)− JP )/(VC − VP ).

2. For all V̂ ∈ (VC , VF ), the optimal agent’s continuation values V0 and V1 are such
that V0 < V̂ < V1 < VF . For V̂ = VC, the optimal continuation values are V0 = VP
and V1 > VC. For V̂ = VF , the optimal continuation values are V0 = VF and
V1 = VF . For all V̂ ∈ [VC , VF ], the optimal continuation values induce the agent to
use a reservation quality R such that R ∈ (x, η).

4.3 Contentious and Uncontentious Applicants

As in the previous extension, we consider a version of the model in which in there are
multiple applicants for every vacancy. In contrast to the previous extension, applicants
come from different groups. In particular, some applicants come from group X and some
applicants come from group Y . The quality x of an X-applicant is drawn from some
distribution Fx(x), with mean 0 and support [x, x]. The quality y of a Y -applicant is
independently drawn from some distribution Fy(y), with mean 0 and support [y, y]. The
agent is negatively biased towards X-applicants, with a bias equal to some η > 0. The
agent is unbiased towards Y -applicants. In this sense,X-applicants are contentious and Y -
applicants are not contentious. We assume that the group from which an applicant comes
from is known to both the principal and the agent, as it may refect readily observable
demographic characteristics. We assume that the quality of a particular applicant is
known only to the agent.

In order to streamline the analysis, let us assume that there are one X-applicant and
one Y -applicant per vacancy. It is useful to denote as ŷ the maximum between the quality
y of a Y -applicant and 0. It is also useful to denote as z the difference between the quality
x of an X-applicant and ŷ. That is, ŷ = max{y, 0} and z = x− ŷ. The joint distribution
of the random variables ŷ and z is determined by the quality distribution Fx and Fy for
X and Y -applicants. For our purposes, it is useful to describe the joint distribution of ŷ
and z with the marginal distribution Fz(z) of the random variable z and the conditional
distribution G(ŷ|z) of the random variable ŷ.
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For this version of the model, the first-stage problem is

J(V ) = max
p,V̂

pJP + (1− p)Ĵ(V̂ )

s.t. V = pVP + (1− p)V̂ ,

p ∈ [0, 1], V̂ ∈ V̂,

(4.29)

where Jp and VP are respectively given by

JP = 0, VP = −η. (4.30)

As in Section 3, we can show that the optimal mechanism is such that, once the principal
takes control of hiring, he does so forever and, whenever the principal controls hiring, he
always hire the contentious applicant.

At the second stage, the value of the mechanism to the agent is

V̂ =

∫
z

[∫
ŷ

max {(1− β) (ŷ + z − η) + βV1, (1− β)ŷ + βV0} dGŷ(ŷ|z)

]
dFz(z). (4.31)

The above expression is easy to understand. Consider a particular realization of the
random variables ŷ and z. If the agent hires the X-applicant, the agent’s flow payoff
is (1 − β)(ŷ + z − η), where ŷ + z is the quality x of the X-applicant, and the agent’s
continuation value is βV1. If the agent does not hire the X-applicant, the agent’s flow
payoff is (1− β)ŷ, where ŷ is the maximum between the quality y of the Y -applicant and
the flow payoff from not hiring, and the agent’s continuation payoff is βV0. The agent
chooses whether to hire or not hire the Y -applicant so as to maximize the sum of its flow
and continuation payoffs. Therefore, the agent hires the Y -applicant if and only if z ≥ R,
where

R = η − β

1− β (V1 − V0). (4.32)

Using the definition of the reservation quality R, we can rewrite (4.31) as

V̂ =

∫ R [∫
ŷ

[(1− β)ŷ + βV0] dGŷ(ŷ|z)
]
dFz(z)

+

∫
R

[∫
ŷ

[(1− β) (ŷ + z − η) + βV1] dGŷ(ŷ|z)
]
dFz(z)

= (1− β)

[
κ+

∫
R

(z − η) dFz(z)

]
+ βFz(R)V0 + β (1− Fz(R))V1

(4.33)

where κ denotes the unconditional mean of the random variable ŷ, i.e.,

κ =

∫
z

[∫
ŷ

ŷdGŷ(ŷ|z)

]
dFz(z). (4.34)
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Similarly, at the second stage, the value of the mechanism to the agent is

Ĵ =

∫ R [∫
ŷ

[(1− β)ŷ + βJ(V0)] dGŷ(ŷ|z)
]
dFz(z)

+

∫
R

[∫
ŷ

[(1− β) (ŷ + z) + βJ(V1)] dGŷ(ŷ|z)
]
dFz(z)

= (1− β)

[
κ+

∫
R

zdFz(z)

]
+ βFz(R)J(V0) + β (1− Fz(R)) J(V1)

(4.35)

The above expression is also easy to understand. Consider a particular realization of the
random variables ŷ and z. If z ≥ R, the agent hires the X-applicant. The principal’s flow
payoff is (1−β)(ŷ+z), where ŷ+z is the quality x of the X-applicant, and the principal’s
continuation value is βJ(V1). If z < R, the agent does not hire the X-applicant. The
agent’s flow payoff is (1 − β)ŷ, where ŷ is the maximum between the quality y of the
Y -applicant and the flow payoff from not hiring, and the principal’s continuation payoff
is βJ(V0).

Combining (4.33) and (4.35), we can write the second-stage problem as

Ĵ(V̂ )

= max
V0,V1

(1− β)

[
κ+

∫
R

zdFz(z)

]
+ β [Fz(R)J(V0) + (1− Fz(R))J(V1)] , s.t.

V̂ = (1− β)

[
κ+

∫
R

(z − η) dFz(z)

]
+ βFz(R)V0 + β (1− Fz(R))V1

R = η − β

1− β (V1 − V0), V0, V1 ∈ V.

(4.36)

Following the same argument as in Lemma 1, it is easy to show that the set V is given
by the interval [VP , VF ], and the set V̂ is given by the interval [V`, VF ], where

V` ≡ (1− β)VF + βVP , VF ≡ κ+

∫
η

(z − η)dFz(z). (4.37)

Following the same argument as in Lemma 2, it is straightforward to show that

J∗ ≡ max
V̂ ∈V̂

J(V̂ ) > κ+

∫
η

zdFz(z) ≡ JF (4.38)

if the marginal distribution Fz and the bias η are such that

ηF ′z(η)

1− Fz(η)
>
JF − JP
VF − VP

=
κ+

∫
η
zdFz(z)

κ+
∫
η
(z − η)dFz(z) + η

.

(4.39)
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Under condition (4.39), we can establish the following.

Proposition 10. (Optimal Mechanism with Contentious and Uncontentious Applicants)

1. For all V ∈ [VP ,VC), the optimal lottery between control and delegation is such that
the probability p of control is such that p > 0 and, conditional on delegation, the
agent’s value V̂ is VC. For all V ∈ [VC,VF ], p = 0 and V̂ = V . The critical value
VC is such that Ĵ ′(VC) equals (Ĵ(VC)− JP )/(VC − VP ).

2. For all V̂ ∈ (VC , VF ), the optimal agent’s continuation values V0 and V1 are such
that V0 < V̂ < V1 < VF . For V̂ = VC, the optimal continuation values are V0 = VP
and V1 > VC. For V̂ = VF , the optimal continuation values are V0 = VF and
V1 = VF . For all V̂ ∈ [VC , VF ], the optimal continuation values induce the agent to
use a reservation quality R such that R ∈ (z, η), with z ≡ x− y and z ≡ x.

4.4 Unobservable Arrival of Applicants

Lastly, we consider a version of the model in which an applicant may not always be
available. We assume that an applicant is available to fill the vacancy with probability φ,
and no applicant is available to fill the vacancy with probability 1− φ, with φ ∈ (0, 1). If
both the principal and the agent observe whether an applicant is available, this version of
the model simply boils down to the baseline model with flow payoffs premultiplied by the
factor φ. If the agent privately observes whether an applicant is available, this version of
the model is qualitatively different from the baseline model, as the principal cannot tell
whether the agent has not hired an applicant because none was available or because the
applicant’s quality was not high enough.

For this version of the model, the second-stage problem is

Ĵ(V̂ )

= max
V0,V1

(1− β)φ

∫
R

xdF (x) + β [(1− φ(1− F (R))) J(V0) + φ(1− F (R))J(V1)] , s.t.

V̂ = (1− β)φ

∫
R

(x− η)dF (x) + β [(1− φ(1− F (R))V0 + φ(1− F (R)))V1]

R = η − β

1− β (V1 − V0), V0, V1 ∈ V.
(4.40)

The problem above is easy to understand. In the current period, an applicant is available
with probability φ. If the applicant’s quality x is higher than R, the agent hires the
applicant. In this case, the principal’s flow payoff is x, the agent’s flow payoff is x − η,
the principal’s continuation value is J(V1), and the agent’s continuation value is V1. If
an applicant is not available or if an applicant is available and his quality x is lower than
R, the agent does not hire. In this case, the principal’s and the agent’s flow payoffs are
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0, the principal’s continuation value is J(V0), and the agent’s continuation value is V0.
Clearly, since the principal does not observe whether an applicant is or is not available,
the agent’s continuation payoff can only be contingent on whether an applicant is hired
or not.

The first-stage problem is

J(V ) = max
p,V̂

pJP + (1− p)Ĵ(V̂ )

s.t. V = pVP + (1− p)V̂ ,

p ∈ [0, 1], V̂ ∈ V̂,

(4.41)

where Jp and VP are respectively given by

JP = 0, VP = 0. (4.42)

The first-stage problem is the same as in the baseline. The “punishment” payoffs are
different than in the baseline, and they are the values from not hiring any applicants. In
fact, when the principal has control over hiring, the agent needs to report whether an
applicant is available or not. Since the agent is better off not hiring an applicant than
hiring an applicant irrespective of his quality, he would always report than no applicant
is available.

Following the same argument as in Lemma 1, it is easy to show that the set V is given
by the interval [VP , VF ], and the set V̂ is given by the interval [V`, VF ], where

V` ≡ (1− β)VF + βVP , VF ≡ φ

∫
η

(x− η)dF (x). (4.43)

Following the same argument as in Lemma 2, it is straightforward to show that

J∗ ≡ max
V̂ ∈V̂

J(V̂ ) > φ

∫
η

xdF (x) ≡ JF (4.44)

if the quality distribution F and the bias η are such that

φηF ′(η)

1− φ(1− F (η))
>
JF − JP
VF − VP

. (4.45)

Under condition (4.45), we can establish the following.

Proposition 11. (Optimal Mechanism with Unobservable Arrival)

1. For all V ∈ [VP ,VC), the optimal lottery between control and delegation is such that
the probability p of control is such that p > 0 and, conditional on delegation, the
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agent’s value V̂ is VC. For all V ∈ [VC,VF ], p = 0 and V̂ = V . The critical value
VC is such that Ĵ ′(VC) equals (Ĵ(VC)− JP )/(VC − VP ).

2. For all V̂ ∈ (VC , VF ), the optimal agent’s continuation values V0 and V1 are such that
V0 < V̂ < V1 < VF . For V̂ = VC, the optimal continuation values are V0 = VP and
V1 > VC. For V̂ = VF , the optimal continuation values are V0 = VF and V1 = VF .
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