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1 Introduction

In spite of substantive progress in the theory and empirics of general equilibrium models with

sticky-prices, the need for tractability leads most analyses to abstract from the interactions

between firms’ decisions in price setting. Yet such complementarities are appealing because

they seem empirically relevant, as argued by e.g. Cooper and Haltiwanger (1996); Amiti,

Itskhoki, and Konings (2014, 2019); Beck and Lein (2020), and because they amplify the

non-neutrality of nominal shocks, as argued by Nakamura and Steinsson (2010) and Klenow

and Willis (2016).

Existing general equilibrium analyses proceed by exploring these effects numerically, as in

Nakamura and Steinsson (2010), Klenow and Willis (2016) and Mongey (2021), or abstracting

from the decision about the timing of adjustments, as in Wang and Werning (2022), or

abstracting from idiosyncratic shocks, as in Caplin and Leahy (1997). In this paper we

develop a new analytic approach to study a general equilibrium where the dynamic path

of aggregates influences individual decisions, and viceversa. The results provide a complete

characterization of the sticky-price equilibrium in a Calvo model featuring both idiosyncratic

shocks and strategic complementarities, or substitutabilities, in pricing decisions.

2 General Equilibrium setup and Complementarities

This section presents an economy where households maximize the present value of lifetime

utility and firms maximize profits subject to costly price adjustments. We show that non-

negligible complementarities between the price setting strategies of firms can arise through

two channels, possibly coexisting. First, from consumers’ preferences that yield a demand

system with a non-constant price elasticity, a phenomenon the literature dubbed micro-

complementarities as in Kimball (1995). Second, a production structure that features sticky-

price intermediate goods, as in Klenow and Willis (2016) and Nakamura and Steinsson (2010),

referred to as macro-complementarities. We establish that the effects of both channels on

the firm’s pricing strategy are summarized by a single parameter and that, at a symmetric

equilibrium, the firm’s problem is approximated by a quadratic return function that depends

on the own price and the aggregate price, as in the classic work of Caplin and Leahy (1997).
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Households: We consider a continuum of households with time discount ρ and utility∫∞
0
e−ρ t

(
U(C(t))− aL(t) + log M(t)

P (t)

)
dt, where U denotes a CRRA utility function over the

consumption composite C, the labor supply is L, M is the money stock, P is the consumption

deflator, and a > 0 is a parameter. The linearity of the labor supply and the log specification

for real balances are convenient simplifications also used in Golosov and Lucas (2007) and

many other papers. We follow Kimball (1995) in modeling the consumption composite C using

an implicit aggregator over a continuum of varieties k as follows 1 =
(∫ 1

0
Υ
(
ck(t)
C(t) Ak(t)

)
dk
)

where Ak denotes a preference shock for variety k, and Υ(1) = 1, Υ′ > 0 and Υ′′ < 0. The

Kimball aggregator defines C implicitly, yielding an elasticity of substitution that varies with

the relative demand ck/C. The standard CES demand is obtained as a special case when Υ

is a power function.

The representative household chooses ck, money demand and labor supply to maximize

lifetime utility subject to the budget constraint

M(0) +

∫ ∞
0

e−
∫ t
0 R(s)ds

[
Π̃(t) + (1 + τL)W (t)L(t)−R(t)M(t)−

∫ 1

0

p̃k(t)ck(t)dk

]
dt = 0

where R(t) is the nominal interest rates, W (t) the nominal wage, τL a constant labor subsidy,

Π̃(t) is the sum of the aggregate (net) nominal profits of firms and the lump sum nominal

transfers from the government, and p̃k the price of each variety.

Firms. There is a continuum of firms indexed by k ∈ [0, 1], that use a labor (Lk) and

intermediate-good inputs (Ik) to produce the final good yk with a constant returns to scale

technology (omit time index) as follows: yk = ck+qk = (Lk /Zk)
α I1−α

k . Note that final goods

are used by consumers, ck, and also as an input in the production of the intermediate good

Q =
∫ 1

0
Ik dk through the production function 1 =

∫ 1

0
Υ
(
qk
Q
Ak

)
dk. The aggregates Q and

C have the same unit price, P , since they are produced with identical inputs and the same

function Υ. The labor productivity of firm k is 1/Zk and we assume that Zk = exp (σWk)

where Wk are standard Brownian motions, independent and identically distributed across

firms, so that the log of Zk follows a diffusion with variance σ2. The households’ labor

supply L is used to produce each of the k goods and the price-adjustment services Lp, so

L =
∫ 1

0
Lkdk + Lp.
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The demand for final goods. The first order conditions of consumers and intermediate

good producers yield the demand system, whose form depends on the function Υ. Given a

total expenditure E the demand for variety k, evaluated at a symmetric equilibrium, is

yk =
1

Υ−1(1)

E

PAk
D
( p
P

)
where D

( p
P

)
≡ (Υ′)

−1
( p
P

Υ′
(
Υ−1(1)

))
and p ≡ p̃/A .

The firm’s profit function. Let the nominal wage W be the numeraire, and p̃k = pAk be

the firm’s price. Notice that the firm’s marginal (and average) cost is χ ≡ (ZkW )α P 1−α

where P is the price of intermediate inputs. We can write the firm’s (nominal) profit

as yk · (pAk − (ZkW )α P 1−α). Assuming that Zα
k = Ak, i.e. that preference shocks are

proportional to marginal cost shocks, then we have that each firm maximizes Π(p, P ) =

ykAkW
(
p
W
−
(
P
W

)1−α
)

so the profits of the individual firm do not depend on Zk since

ykAk = E
Υ−1(1)P

D
(
p
P

)
. The notation emphasizes that the firm’s decision depends on both

the own price, p, and the aggregate price P , and that prices are homogenous in W .

Let us write the profit in terms of the demand D(p/P ) and the cost function χ = χ(P )

giving the marginal cost. We have Π(p,P )
W

= E
PΥ−1(1)

D(p/P ) (p− χ(P )). The first order

condition for optimality implicitly defines an optimal pricing function: p∗(P ) = η(p/P )
η(p/P )−1

χ(P )

where η(p/P ) ≡ − p
D(p/P )

∂D(p/P )
∂p

so η is the elasticity of the demand D with respect to the

own price p. We have the following:

Proposition 1. Consider a value for P such that p∗(P̄ ) = P̄ . Assume that D is decreasing

and that Π(p, P ) is strictly concave at (p∗(P̄ ), P̄ ) = (P̄ , P̄ ). We have

P̄

p∗(P̄ )

∂p∗(P̄ )

∂P
=

1

1 + η′(1)
η(1)(η(1)−1)

 η′(1)

η(1)(η(1)− 1)︸ ︷︷ ︸
micro elasticity

+
P

χ(P )

∂χ(P )

∂P︸ ︷︷ ︸
macro elasticity

 (1)

where η(1) > 1 and 1 + η′(1)
η(1)(η(1)−1)

> 0. Expanding the profit function around (P̄ , P̄ ):

Π(p, P )

Π(P̄ , P̄ )
= 1− 1

2
B

(
p− P̄
P̄

+ θ
P − P̄
P̄

)2

+ ι(P ) + o

(∣∣∣∣∣∣∣∣p− P̄P̄ ,
P − P̄
P̄

∣∣∣∣∣∣∣∣2
)

(2)
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where ι(·) is a function that does not depend on p, and where:

B ≡ −Π11(P̄ , P̄ )

Π(P̄ , P̄ )
P̄ 2 = [ η′(1) + η(1)(η(1)− 1) ] > 0 and θ ≡ Π12(P̄ , P̄ )

Π11(P̄ , P̄ )
= − P̄

p∗
∂p∗

∂P

∣∣∣
p∗=P̄

.

A few remarks are in order. First, equation (2) shows that the profit maximization

problem of the firm is approximated by the minimization of the quadratic period return

B(x+ θX)2, where x = p−P̄
P̄

and X = P−P̄
P̄

denote the percent deviation from the symmetric

equilibrium of the own and the aggregate price, respectively.

Second, the extent of strategic interactions between the own price and the other firms’

prices is captured by a single parameter, θ. Notice that static profits are maximized by setting

x = −θX. The parameter θ measures the presence of strategic interactions. The firm’s

strategy exhibits strategic complementarity if θ < 0, and it exhibits strategic substitutability

if θ > 0. Clearly, if θ 6= −1 the only static equilibrium is X = 0.

Third, in the absence of macro complementarity, e.g. if ∂χ
∂P

= 0, we have θ = − η′

η(η−1)+η′

so that θ < 0 occurs if η′ > 0. This condition has a clear economic interpretation: if η′ > 0

a higher P lowers the demand elasticity, which induces the firm to raise its markup. Thus

η′ > 0 implies that the own price and the aggregate price are strategic complements. Note

moreover that if ∂χ
∂P

= 0 the strength of strategic complementarities is bounded, since θ > −1.

Instead, if ∂χ
∂P

> 0, we can have θ < −1, a case of interest in the discussion of the equilibrium

characterization and existence (see Section 3).

Impulse response of Output to a monetary shock. Note that an increase in the

aggregate nominal wage for all firms reduces the average deviation of markups from its

optimal value, i.e. it lowers X. One of the most interesting objects is the path of X(t) after

a small displacement of the stationary distribution, given by the initial condition m0(x) =

m̃(x + δ), where m̃ is the stationary density. The value of X(t) is inversely proportional to

the deviation from steady-state output t periods after the monetary shock δ. Below we also

consider a more general perturbation m0(x) = m̃(x) + δν(x).
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3 Strategic complementarities in the Calvo model

This section discusses a problem with strategic complementarities and Calvo’s (1983) pricing.

Due to its tractability this is the most common case analyzed in the sticky-price literature.

The model offers a simple setup to introduce the essential elements of the analysis and several

key results, such as existence, uniqueness and the non-monotone impulse response profiles,

that will also appear in the state-dependent problem.1

The economy features a continuum of atomistic firms. Each firm takes as given the path

of average deviation of markups X(t) for all times t ≥ 0. The firm can change its price only

at random times {τ̄k}, given by a Poisson process with parameter ζ. We refer to these times

as adjustment opportunities, and to the state chosen at those times as the optimal reset value.

After resetting its price at time t, the firm deviation of its markup x(t) evolves as a drift-less

Brownian motion with variance σ2. The markup jumps right after a price change at t = τ̄k

by the amount J̄k, thus the firm’s deviation of its markup evolves as:

x(s) = x(t) + σ [W(s)−W(t)] +
∑
k: τ̄k≤s

J̄k for all s ∈ [t, T ] (3)

where W is a standard Brownian motion.

We assume that the strategic complementarities are at work only up to horizon T , and

allow T to be finite or infinite. In particular for t < T the period flow cost is B (x+ θX)2 with

B > 0, which feature strategic interactions, corresponding to the description in Proposition 1.

Each firm minimizes the expected discounted value of the flow cost – with discount rate ρ–

taking the path X(t) for t ∈ [0, T ) as given. At time t = T a firm with state x has a

continuation uT (x), independent of θ and X(t). We will assume that uT equals the steady

state value function ũ(x) = B
(ρ+ζ)

(
σ2

ρ
+ x2

)
, see Appendix A for the proofs.

Optimal price setting. For t ∈ [0, T ), the state of the firm is (x, t), the value function is

u(x, t), and the optimal reset value at t is x∗(t). The firm takes as given uT : R → R and

1We are thankful to an anonymous referee for suggesting us to study the Calvo problem.
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X : [0, T )→ R, and its value function u : R× [0, T )→ R solves:

u(x, t) = min
{J̄k}∞k=1

E
[∫ T

t

e−ρ(s−t)B (x(s) + θX(s))2 ds + e−ρ(T−t)uT (x(T ))
∣∣∣x(t) = x

]
(4)

where the state evolves subject to equation (3).

Lemma 1. The value function u : R× [0, T )→ R solves the p.d.e.:

ρu(x, t) = B (x+ θX(t))2 +
σ2

2
uxx(x, t) + ut(x, t) + ζ

(
min
z
u(z, t)− u(x, t)

)
(5)

with terminal condition u(x, T ) = û(x) for all x, and the optimal reset x∗ : [0, T )→ R solves

x∗(t) = arg minz u(z, t), and it is given by

x∗(t) = −(ρ+ ζ)θ

∫ T

t

e−(ρ+ζ)(s−t)X(s) ds for all t ∈ [0, T ) . (6)

The value function u(x, 0) is finite for all x if and only if

∫ T

0

e−ρtB (x∗(t) + θX(t))2 dt <∞ . (7)

Thus, the optimal policy at the times when t = τ̄k is for x to jump to x∗(t), i.e. J̄k =

x∗(t) − x(t−). Three features will hold, with appropriate modifications, in the general case:

the p.d.e. in equation (5), the condition that 0 = ux(x
∗(t), t), and that the optimal decision

rule x∗(t) is a (linear) function of the path of future X’s. One difference with the state

dependent model is that neither B nor σ2 affect the optimal reset price in equation (5). If

the condition in equation (7) is violated, expected discounted profits for the firm are minus

infinity; this condition, given equation (6), restricts the path of X(t). Furthermore, for

future reference, note that the integral equation (6) is equivalent to the following o.d.e. and

boundary condition:

ẋ∗(t) = (ρ+ ζ) (x∗(t) + θX(t)) for all t ∈ [0, T ) and lim
t→T

e−(ρ+ζ)tx∗(t) = 0 (8)
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Aggregation. For the models of interest, X(t) is the cross sectional average of the x’s.

Consider a discrete time version with a (short) interval of length dt. In this interval a

fraction of firm ζdt change its price, so their markup becomes x∗(t). The remaining firms

keep their (expected) value since x evolves as a drift-less Brownian Motion. Thus X(t+dt) =

(1− ζ dt)X(t) + ζ dt x∗(t). Taking the limit as dt→ 0 we obtain:

Ẋ(t) = ζ
(
x∗(t)−X(t)

)
for all ∈ [0, T ), with X(0) = −δ or equivalently (9)

X(t) = X(0)e−ζt + ζ

∫ t

0

e−ζ(t−s)x∗(s)ds for all t ∈ [0, T ) (10)

Equilibrium Definition. An equilibrium for an initial condition X(0) = −δ, are two

paths {x∗(t), X(t)} for t ∈ [0, T ) that solve the integral equation (6), encoding optimality,

the integral equation (10), encoding aggregation, and satisfy the finite-value condition in

equation (7). Alternatively, one could replace the two integral equations with the o.d.e’s and

boundary conditions in equation (8) and equation (9).

A few comments are in order, which anticipate our general case. First, the initial condition

X(0) = −δ has the interpretation of the impact effect of a once and for all shock to nominal

wages, triggered by a monetary shock. Second, optimal decisions are “forward looking”,

as usual, and are solved backward from the terminal condition x∗(T ) = 0. Aggregation is

“backward looking”, and is solved forward given the initial condition X(0). Third, both of

these (integral) equations are linear, so the equilibrium is the fixed point of a linear operator.

Fourth, for the case of T =∞, there is a constraint on the square discounted integral of the

paths.

The next lemma gives some features of the linear operator, such as the dominant eigen-

value µ1, that are needed to study the equilibrium existence and its characterization. The

proof is given for the general case in Lemma ??.

We define the effect on the steady state deviation of output after a monetary shock of

size one to be Yθ(t, T ) = −X(t), since output deviation is, up to first order, the negative

of markups deviations. We summarize the main properties of the equilibrium in the next

lemma.
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3.1 Solving equilibrium by solving two dimensional o.d.e. system

To recap, the two o.d.e. equation (8) and equation (9) can be written as the linear two

dimensional system:

ẏ(t) ≡

ẋ∗(t)
Ẋ(t)

 =

(ρ+ ζ) (ρ+ ζ)θ

ζ −ζ

x∗(t)
X(t)

 ≡ A(θ) y(t) (11)

when S(θ) in invertible, as ẏ(t) = S(θ) Λ(θ)S(θ)−1y(t), where Λ(θ) is the matrix with the

eigenvalues λ1(θ), λ2(θ) in the diagonal and S(θ) is the matrix of eigenvectors. Both Λ and

S are functions of θ. To simplify we write

A(θ) =
ζ

γ

1 θ

γ −γ

 where γ ≡ ζ

ζ + ρ
(12)

The eigenvalues of A(θ) are given by:

λ1(θ) = ζ
(1− γ −∆(θ))

2γ
, λ2(θ) = ζ

(1− γ + ∆(θ))

2γ
where ∆(θ) ≡

√
(1 + γ)2 + 4γθ (13)

There is a critical value of θ∗ which solves ∆(θ∗) = 0 given by

−1 ≥ θ∗ = −(1 + γ)2

4γ
= −1− 1

4

(
ρ
ζ

)2

+ o

((
ρ
ζ

)2
)

(14)

For θ ≥ θ∗ both eigenvalues of real, otherwise they are complex conjugates. If θ 6= θ∗, then

the elements of the matrix S(θ) of eigenvectors are given by

s11(θ) =
1 + γ −∆(θ)

2γ
, s12(θ) =

1 + γ + ∆(θ)

2γ
, and s21(θ) = s22(θ) = 1 (15)

In the case of θ = θ∗, the eigenvalues are repeated λ1(θ) = λ2(θ) = ρ/2, and hence to find

the solution we use the Jordan form to represent A(θ) as A(θ) = S(θ)J(θ)S−1(θ) where J(θ)

has ρ/2 on the diagonal, J1,2(θ) = 1 and zero otherwise. In this case S(θ) is given by:

s11(θ) =
1 + γ

2γ
, s12(θ) =

1

ζ
, s21(θ) = 1 and s22(θ) = 0 (16)
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If θ 6= θ∗ the two eigenvalues are different, so we can solve y(t) = S(θ)z(t) where ż(t) =

Λ(θ)z(t), or zj(t) = eλj(θ)tzj(0) for j = 1, 2. The boundary conditions for T < ∞ can be

written as

0 = x∗(T ) ≡ y1(T ) =
[
s11(θ)z1(0)eλ1(θ)T + s12(θ)z2(0)eλ2(θ)T

]
(17)

−1 = X(0) ≡ y2(0) = s21(θ)z1(0) + s22(θ)z2(0) (18)

From this system we obtain z(0) = (z1(0), z2(0)). Note that this include the case where the

eigenvalues Λ(θ) and the matrix S(θ) are complex.

If θ = θ∗, we have y(t) = S(θ)z(t) where ż(t) = J(θ)z(t), so z2(t) = e
ρ
2
tz2(0) and

z1(t) = e
ρ
2
tz1(0) + e

ρ
2
t t z2(0). for j = 1, 2.

0 = x∗(T ) ≡ y1(T ) = e
ρ
2
T [s11(θ) (z1(0) + Tz2(0)) + s12(θ)z2(0)] (19)

−1 = X(0) ≡ y2(0) = s21(θ)z1(0) + s22(θ)z2(0) (20)

From this system we obtain z(0) = (z1(0), z2(0)).

Lemma 2. Fix ρ ≥ 0 and ζ > 0 and let T <∞. If the system of two o.d.e’s and boundary

conditions equation (8) and equation (9) has a solution Yθ(t;T )

Yθ(t;T ) = (1 + c(θ, T ))eλ2(θ)t − c(θ, T )eλ1(θ)t for t ∈ (0, T ) (21)

c(θ, T ) =
(1 + γ + ∆(θ)) eλ2(θ)T

(1 + γ −∆(θ)) eλ1(θ)T − (1 + γ + ∆(θ)) eλ2(θ)T
(22)

for the case of θ 6= θ∗ and

Yθ∗(t;T ) = e
ρ
2
t

(
1− ζt

ζT + 2γ
1+γ

)
for t ∈ (0, T ) (23)

if θ = θ∗. Then

1. If θ > θ∗, then ∆(θ), λ1(θ), λ2(θ) are real. c(θ, T ) is finite, and well defined. The

solution is given by equation (21).

2. If θ = θ∗, then ∆(θ∗) = 0, and λ1(θ∗) = λ2(θ∗) = ρ/2. The solution is given by

9



equation (23).

3. If θ < θ∗, then ∆(θ) is purely complex, the roots λ1(θ), λ2(θ) are complex conjugates.

The solution is given by equation (23). c(θ, T ) is finite if and only if θ 6= θj where the

sequence {θj}∞j=1 is given by

θj = θ∗ − (∆j)
2

4γ
where ∆j solves ∆j = −(1 + γ) tan

(
∆j

ζT

2γ

)
and

θ1 ≈ θ∗ − γ

(
π

ζT + 2 γ
(1+γ)

)2

for large ζT and θ1 → θ∗ as ζT →∞

Proposition 2. Fix ρ ≥ 0 and ζ > 0. Let λ1(θ), λ2(θ), γ,∆(θ), θ∗ and {θj}∞j=1 be defined as

in Lemma 2. We look for a solution of the two o.d.e’s and boundary conditions equation (8)

and equation (9), which satisfies the inequality equation (7). The equilibrium output Yθ(t;T )

is given by equation (21) or equation (23) depending on θ. We have:

1. Whenever an equilibrium exists it is unique.

2. If T <∞:

(a) If θ > θ∗ the equilibrium exists and Yθ(t, T ) is monotone in t and given by equa-

tion (21). Moreover, for any t > 0, then Yθ(t, T )→ eλ1(θ)t as T →∞.

(b) If θ = θ∗ the equilibrium exists, Yθ(t, T ) is monotone in t, and it is given by

equation (23).

(c) If θ ∈ (θ1, θ
∗) the equilibrium exists, and it is given by equation (21). Yθ(t, T ) is

hump-shaped in t.

(d) If θ ≤ θ1 the equilibrium exists for all θ 6= θj and j = 1, 2, . . . . In this case Yθ(t, T )

oscillates with frequency |∆(θ)|(ρ+ζ)
4π

, and amplitude eρt/2. Moreover, for any t > 0,

then Yθ(t, T ) does not converge as T →∞.

(e) If θ = θj for some j, there is no equilibrium. Fix any t > 0, the function Yθ(t, T )

has a pole at θ = θj, so it changes sign and satisfies limθ→θj Yθ(t, T ) = ±∞.

3. If T =∞:
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(a) If θ > θ∗ there is a unique equilibrium given by Yθ(t,∞) = eλ1(θ)t. Fix any t > 0,

then Yθ(t,∞) is strictly increasing and convex in (−θ), converges to 1 for all t as

θ → θ∗, and converges to zero for all t as θ →∞.

(b) If θ ≤ θ∗, there is no equilibrium.

3.2 Solving equilibrium by solving linear operator

Lemma 3. The paths {x∗(t), X(t)} are an equilibrium if and only if the path {X(t)}

satisfies
∫ T

0
e−ρtX(t)2ds <∞ and solves the integral equation:

X(t) = X(0)e−ζt + θ

∫ T

0

K(t, s)X(s)ds for all t ∈ [0, T ) (24)

for the kernel K(t, s) ≡ ζ(ρ+ζ)
2ζ+ρ

(
1− e(2ζ+ρ) min{t,s}) e−ζ(t+s)−ρs for all(t, s) ∈ [0, T )2. The kernel

satisfies: (i)K(t, s) ≤ 0, (ii)K(t, s)e−ρt is symmetric in (t, s), (iii) for all T : supt
∫ T

0
|K(t, s)|ds ≤

1; (iv)
∫ T

0

∫ T
0
K(t, s)2dsdt = B(T ) < ∞, and B(T ) → ∞ as T → ∞; (v) for T < ∞ the

kernel has countably many eigenvalues µj < 0. They are ordered as |µ1| > |µ2| > |µ3| . . . ,

and |µj| → 0 as j →∞. The corresponding eigenfunctions form an orthonormal base.

The lemma shows that the equilibrium kernel K does not depend on θ. This feature will

also appear in the general problem. Thus, for instance, the dominant eigenvalue µ1, which

will be key to delimit the region where the equilibrium is well posed, does not depend on θ.

Moreover, since B(T ) < ∞ for finite T , then the operator is compact and we can employ a

spectral decomposition of K to characterize the solution (see Proposition ?? for the proof

and a more general case) in terms of eigenvalues and eigenfunctions, independent of θ.

We note that finding the equilibrium as the solution of the integral equation in equa-

tion (24) is less conventional in economics than using the equivalent system of two o.d.e’s

and boundary conditions. Nevertheless, we introduce this linear operator because it previews

the use of a similar operator that will be used in the state-dependent case.
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Online Appendix:

A Proofs

Proof. (of Proposition 1). Define the markup m(p/P ) ≡ η(p/P )
η(p/P )−1

. Totally differentiating

the first order condition p∗(P ) = m(p∗(P )/P )χ(P ) with respect to P , completing elasticities
and evaluating at p∗ = P gives

P

p∗
∂p∗

∂P

∣∣∣
p∗=P

= −
m(1)χ(P )

p∗

1−m′(1)χ(P )
p∗

(
m′(1)

m(1)

)
+

m(1)χ(P )
p∗

1−m′(1)χ(P )
p∗

(
P

χ(P )

∂χ(P )

∂P

)
and using that χ(P )/p∗ = 1/m(1):

P

p∗
∂p∗

∂P

∣∣∣
p∗=P

=

[
1

1− m′(1)
m(1)

][
−m

′(1)

m(1)
+

P

χ(P )

∂χ(P )

∂P

]

To get the expression in equation (1) note thatm(x) ≡ η(x)
η(x)−1

som′(x) = η′(x)(η(x)−1)−η(x)η′(x)
(η(x)−1)2

=

− η′(x)
(η(x)−1)2

and hence: m′(1)
m(1)

= − η′(1)
(η(1)−1)2

(η(1)−1)
η(1)

= − η′(1)
η(1)(η(1)−1)

. That η(1) > 1 is implied by
the first order optimality condition.

Next we show that 1 + η′(1)
η(1)(η(1)−1)

> 0. Recall the second order condition for a maximum

Π11(p∗, P ) = D′′(p∗/P )(p∗ − χ(P ))/P 2 + 2D′(p∗/P )/P < 0

Note that D′ < 0 and that χ/p∗ = 1/m and rewrite the second order condition as

D′′(p∗/P )

D′(p∗/P )

p∗

P

(
1− 1

m

)
+ 2 > 0 (25)

Next differentiate the elasticity η(x) ≡ −∂D(x)
∂x

x
D(x)

and evaluate it at x ≡ p∗/P = 1. We get

η′(1) = −D
′′(1)

D(1)
+

(
D′(1)

D(1)

)2

− D′(1)

D(1)
= −D

′′(1)

D(1)
+ η2 + η

where the second equality uses the elasticity definition. We can then write the second order
condition equation (25) as D′′(1)

D(1)
D(1)
D′(1)

1
η

+ 2 > 0 or, using the expression for D′′/D and the

elasticity definition (η′ − η2 − η) 1
η2

+2 = η′+η(η−1)
η2

> 0 which establishes that 1+ η′

η(η−1)
> 0,

where all η are evaluated at p∗ = P .

Finally, the expression for B ≡ −Π11(P̄ ,P̄ )

Π(P̄ ,P̄ )
P̄ 2, is obtained by direct computation evaluating

the objects at p∗ = P ≡ P̄ . We get

Π11

Π
=
D′′
(
1− 1

m

)
p∗

P 2 + 2D
′

P

DP
(
1− 1

m

) =
1

P 2

(
D′′

D
+ 2

D′

D
η

)
= − 1

P 2
(η′ + η(η − 1)) .
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Proof. (of Lemma 1). Equation (5) is the conventional Hamilton Jacobi equation giving
the recursive formulation of the sequence problem in equation (4). As usual the flow value
equals the period costs and the expected change in the value function, given by Ito’s term
and the possibility of a price adjustment. Likewise, the continuation value function for t > T
solves the HJB (ρ + ζ)û(x) = Bx2 + σ2

2
ûxx(x) + ζ (minz û(z)), whose solution is given by

û(x) = B
(ρ+ζ)

(
σ
ρ

+ x2
)

.

Equation (6) follows by taking the first order condition of equation (4) with respect
to x and using that the adjustment times are exponentially distributed with parameter ζ
to compute the expectation. Equation (7) holds since T is finite, the continuation value
function, e−ρT û(x), is bounded and since u(x, t) is a quadratic function of x (as can be shown
by equation (5)).

Proof. (of Proposition 2). Recall that Y (t) = −X(t). The solution in equation (21) is
obtained by solving the system of differential equations equation (8) and equation (9) with
boundary conditions x∗(T ) = 0 and X(0) = −1. This is a canonical 2 by 2 system whose
solution ẏ = Ay is readily obtained by a factorization of the matrix A = SΛS−1 into a
diagonal matrix Λ of eigenvalues λj, j = 1, 2, given in the proposition, and the matrix of

eigenvectors S ≡
[
s11 s12

1 1

]
where s11 ≡ 1+γ−∆

2γ
, s12 ≡ 1+γ+∆

2γ
and ∆ ≡

√
(1 + γ)2 + 4γθ is

the discriminant of the characteristic equation. The eigenvalues are real if ∆ ≥ 0. Using the
boundary conditions the constant c(θ, T ) appearing in the solution is c(θ, T ) ≡ s12eλ2T

s11eλ1T−s12eλ2T
.

�

Proof. (of Proposition ??). Here we argue that, if θ 6= −1, then the stationary solution
displayed above is unique. On the other hand, if θ = −1, then any value Xss corresponds
to a steady state. Define w ≡ x+ θXss. Consider the value function û corresponding to the
control problem:

û(w) = min
{τi,∆wi}

E

[∫ ∞
0

e−ρtBw2(t)dt+
∞∑
i=1

ψ1{τi 6=ti}e
−ρτi |w(0) = w

]

where dw = σdW for t ∈ [τi, τi+1) and w(τ+
i ) = w(τ−i ) + ∆wi and where ti are the realiza-

tions of the exogenously given times at which the fixed cost is zero, which are exponentially
distributed with parameter ζ.

We start making two claims about this problem, and then a third claim about the sta-
tionary distribution. First, the value function û is symmetric around zero, i.e. û(w) = û(−w)
for all w. This follows because the flow cost Bw2 is symmetric around zero, and because
a standard Brownian motion has, for any collection of times, increments that are normally
distributed, and hence symmetric around zero. Second, if the solution of the value function
is C2 then it must satisfy: (ρ+ ζ)û(w) = Bw2 + ûww(w)σ

2

2
+ ζu(w∗) for all w ∈ [−w, w̄] with

boundary conditions: û(w̄) = û(w) = û(w∗) + ψ and 0 = ûw(w̄) = ûw(w) = ûw(w∗). Thus,
since û is symmetric, it must be the case that w̄ = −w and w∗ = 0.

Third, and finally, using the symmetry of the thresholds {w,w∗, w̄}, we can find the

14



stationary density m̂(w) which is the unique solution of

0 = m̂ww(w)σ
2

2
− ζm̂(w) for all w ∈ [w,w∗) ∪ (w∗, w̄]

with boundary conditions: 0 = m̂(w̄) = m̂(w), limw↑w∗ m̂(w) = limw↓w∗ m̂(w), and 1 =∫ w̄
w
m̂(w)dw . Importantly, the density m̂ must be symmetric, centered at w∗ = 0.2 Hence,∫ w̄

w
w m̂(w)dw = 0. Thus, a stationary equilibrium solution of the original problem requires:

x∗ss = w∗ − θXss, xss = w − θXss, x̄ss = w̄ − θXss,

Xss =

∫ w̄

w

m̂(w) (w − θXss) dw =

∫ w̄

w

m̂(w)wdw − θXss

∫ w̄

w

m̂(w)dw

and thus we can construct a stationary state if and only if: Xss = −θXss. Hence if θ 6= −1,
then Xss = 0 is the only stationary state, and if θ = −1 one can construct a stationary state
for any Xss. �

2This can be shown since for [w, 0] and [0, w̄], the density is a linear combination of the same two exponen-
tials. Using the boundary conditions at w and w̄ we express each the density in each segment as function of
one constant of integration. Finally by continuity at w = 0 we find that the distribution must be symmetric.
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