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Abstract

We prove the uniqueness of the equilibrium in Mean Field Games (MFG) in a class
of problems where the decision makers control (and reset) the state at optimally chosen
times. We consider a MFG in which each decision maker cares about the cross sectional
distribution of the state across agents, and where the dynamics of the distribution is
generated by the optimal decisions of the agents. This setup accommodates several
problems featuring non-convex adjustment costs, and complements the well known
drift-control case studied by Lasry-Lions. Example of these problems are described by
Caballero and Engel in several papers, which introduce the concept of the generalized
hazard function of adjustment. We extend the analysis to a general “impulse control
problem” by introducing the concept of the “Impulse Hamiltonian”. Under the mono-
tonicity assumption (a form of strategic substitutability), we establish the uniqueness of
equilibrium. In this context, the Impulse Hamiltonian and its derivative play a similar
role to the classical Hamiltonian that arises in the standard drift control case.
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1 Introduction

Several economic problems feature a continuum of agents subject to idiosyncratic shocks and

aggregate dynamics. The equilibrium of these economies is a fixed point problem in which

individual decisions depend on aggregates, and aggregate dynamics depend on individual de-

cisions. The feedback between individual decision and aggregates raises non-trivial questions

about the uniqueness of the equilibrium, that cannot be addressed computationally. Such

fixed point problems can be represented by the mathematical structure of Mean Field Games

(MFG). The hallmark of MFG is a system of two partial differential equations with appropri-

ate boundary conditions: a “forward-looking” Hamilton-Jacobi-Bellman equation, describing

individual choices, coupled with a “backward-looking” Kolmogorov equation describing the

dynamics of the cross sectional distribution. The MFG formulation rigorously defines the

problem to analyze the uniqueness of the equilibrium.

For a broad class of MFG problems, in which the decision maker controls the drift of a

diffusion process, Lasry and Lions (2007) establish an important uniqueness result. These

problems are akin to e.g., a dynamic savings problem, as described by Aiyagari (1994) and

analyzed as a MFG by Achdou et al. (2021). A remarkable feature of the Lasry-Lions result is

that the uniqueness is ensured by a property of the period return function, the so called Lasry-

Lions monotonicity condition and an appropriate separability assumption. This property is

a form of “strategic substitutability” when applied to a game defined by the period return

function. To be clear, this implies the uniqueness of the equilibrium of a dynamic game for

an arbitrary initial condition.

In this paper we present a complementary uniqueness result for a class of problems where

the control by the decision maker consists in choosing the stopping times for resetting the

state, rather than in controlling the drift. In other words, we examine the uniqueness of the

equilibrium in a Mean Field Games (MFG) characterized by a form of “Impulse Control”

instead of “drift control”. These problems are akin to e.g., optimal investment or price setting

problems in the presence of fixed costs, pioneered by Caballero and Engel (1999). Our setup
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assumes that the uncontrolled state follows a diffusion process, and that the decision maker

can take (costly) actions that affect the probability to control the state. When such a control

opportunity arises, the decision maker can reset the state to any desired level. Consequently,

the state follows a diffusion process with jumps, and the intensity and size of these jumps

are optimally determined.1 We demonstrate that under standard monotonicity conditions a

MFG possesses a unique classical equilibrium.

We now describe three decision problems that fit within the formulation we are con-

sidering. We note that these problems consider the case where the decision maker faces

a time-invariant environment, and that they are not embedded into a MFG. In the first

problem the decision maker draws a fixed cost of adjustment from an arbitrary distribution

with a constant probability per unit of time. If the decision maker pays the fixed cost she

can exercise control and reset the state to any desired value. Otherwise the state remains

uncontrolled and continues to follow a diffusion process until the next (random) time when

the decision maker has the opportunity to change the state. This type of decision problem

was first proposed in Caballero and Engel (1993b), analyzed in Caballero and Engel (1999,

2007), and recently further characterized in Alvarez, Lippi, and Oskolkov (2021), where it

has been applied to optimal investment and pricing decisions of firms. In these problems, the

decision maker selects a time invariant probability of adjustment as a function of the state,

referred to as the generalized hazard function. Additionally, upon adjusting, the state’s is

optimally reset to a time-invariant value, known as the return point. The second problem

stems from papers in applied mathematics that consider continuous-time setups where the

decision maker controls a diffusion process only at random Poisson times. Some notable

contributions in this area include Wang (2001), Dupuis and Wang (2002), and Menaldi and

Robin (2016).2 These papers develop the appropriate variational inequality that applies to

the decision maker’s value function. Finally, the third type of problems are economic mod-

1As mentioned, a key aspect of the MFG concept is that the decision maker’s flow return depends on the
cross-sectional distribution of the state.

2Menaldi and Robin (2016) considers a more general specifications for the distribution of the random
times where the decision maker can control the state, and a different specification of the adjustment cost.
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els such as the one in Costain and Nakov (2011), based on Woodford (2009), where agents

choose a probability of adjustment per unit of time subject to a cost that increases with this

probability. Instead in this paper we consider these decision problems as part of a MFG. In

particular we analyze the uniqueness of the MFG equilibrium, i.e. the uniqueness of the fixed

point, where the decision maker’s flow return depends on the cross-sectional distribution, and

the cross-sectional distribution evolves according to the optimal decisions of the agents.

We consider a MFG without aggregate uncertainty, i.e. in the language of MFG the case

with “no aggregate noise”. Consequently, the optimal decisions can be summarized by two

objects. The first is the optimal return, which represents the value of the state that the

decision maker will choose if she has an opportunity to make an adjustment. This optimal

return is a function of time. The second is the probability per unit of time of an adjustment

opportunity, which is also a function of the state and time. These two objects depend on

time because the cross sectional distribution evolves through time, and the decision maker

is forward looking. Equivalently, using the terms introduced by Caballero and Engel, the

generalized hazard rate and the optimal return point are time dependent and endogenous.

They are time dependent because the future path of cross sectional distribution is time

varying. They are endogenous because the cross sectional distribution depends on the optimal

decision rules.

To analyze the problems described above we introduce a function which we label Impulse

Hamiltonian. The Impulse Hamiltonian gives the optimized expected reduction in the cost,

as a function of the difference between the value function at the current time and state, and

the minimized value function at the current time. The Impulse Hamiltonian serves a similar

purpose than the Hamiltonian in the case of drift control. The Impulse Hamiltonian has

convexity properties which are analogous to the ones of the standard Hamiltonian. Moreover,

Impulse Hamiltonian has the property analogous to the one in the drift control in which its

derivative gives the drift of the diffusion used in the Kolmogorov-Fokker-Planck equation. In

particular, in the case of the Impulse Hamiltonian, the probability per unit of time of a change
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of the state equals (the negative) of its derivative. It turns out that, as in the standard case,

the coupling of the Hamilton-Jacobi-Bellman equation with the Kolmogorov-Fokker-Planck

equation can be done using the Impulse Hamiltonian and its derivative.

Our main result are sufficient conditions for the uniqueness of equilibrium of the MFG.

The conditions for uniqueness of the MFG equilibrium are similar to the ones in the drift con-

trol case, which essentially require monotonicity of the flow cost and terminal value function,

and some uniformity in the convexity of the Hamiltonian. Recall that monotonicity of the

period return function has the the same interpretation that strategic substitution in static

games. In our case, besides the same monotonicity condition on the period return, we require

some uniformity on first and second derivative of the Impulse Hamiltonian. We can translate

the conditions of the Impulse Hamiltonian to the distribution of random adjustment cost.

For instance, the uniformity of the first derivative is equivalent to have mass point of zero

cost of adjustment, which in economic models translate to have some adjustment as in the

Calvo model, or in the Calvo+ model. The uniformity of the second derivative, is equivalent

to a density of the fixed cost bounded from below.

We consider two extensions. The first extension is one where only part of the state is

controlled, as often occurs in many applications in economics. The second one is a version

where the controlled state is multidimensional. Examples of multidimensional control are the

multiproduct pricing models of Midrigan (2011), Alvarez and Lippi (2014), and Bhattarai

and Schoenle (2014). In the multidimensional case we obtain the main uniqueness result by

considering a relaxed version where the decision maker, upon exercising control, instead of

setting the state at the optimal value it sets to that value plus a zero mean noisy, which can

be taken to have an arbitrarily small variance.

Our contributions relates to the literature in MFGs. In particular, there is a large liter-

ature on uniqueness on MFGs based on the seminal contribution by Lasry and Lions (2007)

and the literature that follows it. The vast majority of this literature focuses in the case of

drift control, and has extended their initial results to different set ups. Our work is related to
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the one by Bertucci (2020), and our own work in Alvarez, Lippi, and Souganidis (2023). In

the models in these two papers, at any time agents chose to pay a fixed cost and change the

value of the state. As a consequence, the optimal decision rule at each time has the form of

dividing the state space in two regions, one where there is inaction, and one where control is

exercised, i.e. for a given state either adjustment occurs or not. Instead, in the context of the

model in current paper, at each time the optimal adjustment occurs with a probability rate

per unit of time, which varies with the value of the state. There are two more differences of

our paper. In Alvarez, Lippi, and Souganidis (2023) we consider only a perturbation from the

MFG equilibrium, but we allow both for the case of monotonicity and “anti-monotonicity”,

i.e. strategic substitutability and complementarity. In Bertucci (2020), like in our current

work, we consider the uniqueness of the equilibrium, not just a perturbation.

Organization. In Section 2 we set up the equilibrium of the mean field game in the simplest

case of one dimensional variable. We define the decision maker problem, the aggregation, and

how the equilibrium relates them as a fixed point. In this section we introduce the concept

of an Impulse Hamiltonian. In Section 3 we write two decision problems that give rise to an

Impulse Hamiltonian. In Section 4 we develop the result of uniqueness of the equilibrium for

the mean field game. In Section 5 we introduce an exogenous random variable, in addition

to the idiosyncratic state that the decision maker controls. This is closest to the cases used

in economic. We use this set up to illustrate how in price setting models one may obtain the

Lasry-Lions monotonicity. We show the main result that leads to uniqueness for this case. In

Section 6 we outline the extension of the set up and uniqueness result to a multidimensional

case. For this case we use a version with noisy control, but the extent of the noise can be

taken to be arbitarily small.
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2 Set Up

We describe the elements that define a MFG. Let P ≡ {m : R → R+,
∫
m(x)dx = 1}

be the space of densities, and 0 < T < ∞ be the time horizon. A MFG is defined by

{ρ, F,H, µ, σ,m0, uT} where: (i) ρ ≥ 0 is the discount rate, (ii) F : R × P → R is the flow

cost with global coupling, (iii) H : R+×R→ R− is the Impulse-Hamiltonian, (iv) µ : R→ R,

and σ : R→ R+ are the drift and diffusion coefficients of the uncontrolled state, (v) m0 ∈ P

is the initial cross sectional density, (vi) uT : R× P → R is the terminal value function.

The equilibrium of the MFG is given by triple {x̄, u,m} : (a) a path for the optimal

return x̄ : [0, T ] → R, (b) a value function u : R × [0, T ] → R, and (c) a cross-sectional

density m : R× [0, T ]→ R+. This triplet has to solve the coupled Hamilton-Jacobi-Bellman

equation, and the corresponding Kolmogorov Forward equation. We describe each one in

turn.

Hamilton-Jacobi-Bellman equation. Given a path {m(x, t)}, the value function u and

the path x̄ solves the following HJB equation and boundary conditions:

ρu(x, t) = H (u(x, t)− u(x̄(t), t), x) + F (x,m(t)) + L (u(x, t))

+ ∂tu(x, t) for all t ∈ [0, T ], x ∈ R (1)

u(x, t) ≥ u(x̄(t), t) for all t ∈ [0, T ], x ∈ R (2)

u(x, T ) = uT (x,m(T )) for all x ∈ R (3)

where L gives the expected change on the value function per unit of time due to the change

in x, and is defined as

L (f) (x, t) = µ(x)∂xf(x, t) + 1
2
σ2(x)∂xxf(x, t)
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for any function f(·, t) that is twice differentiable. The equation (2) defines x̄(t) as the optimal

return point at t, i.e. it is the optimal decision for an agent that can adjust her state. Finally,

equation (3) specifies when the games end at t = T , the decision makers receives the given

terminal reward uT . Next we give the interpretation of the Impulse Hamiltonian H.

Interpretation of Impulse-Hamiltonian. The Impulse-Hamiltonian H : R+ ×R→ R−

gives the expected change (decrease) in the value function per unit of time when the highest

difference between the current value function and the minimum of the value function is v, i.e.

v = u(x, t)−u(x̄(t), t), conditional on the current state x. This change occurs as consequence

of an optimal impulse –i.e. a discrete adjustment– that changes the state from x to x̄(t), i.e.

from the current value x to the value that minimizes u(·, t). We let λ∗(v, x) the probability

(per unit of time) of an adjustment given v. We impose that H(0, x) = 0 for all x, since at the

optimal there is nothing that can be gain. We postulate that λ∗ is positive, and increasing

in v, i.e.:

λ∗(v, x) ≥ 0, λ∗(0, x) = 0, and λ∗v(v, x) > 0

Furthermore, we postulate that Hv is (minus) the probability per unit of adjustments, i.e.:

Hv(v, x) = −λ∗(v, x) and Hvv(v, x) = −λ∗v(v, x) < 0

To comments are in order. First, as of now it is not clear why (minus) the derivative of

the Impulse Hamiltonian has to be the probabilty per unit of time of an impulse in the

state. In Section 3 we present two examples of explicit problems a decision maker solves were

we derive the Impulse Hamiltonian with all the properties we assumed here. Second, if we

evaluate the derivative of the Impulse Hamiltonian gives the extension of what Caballero and

Engel (1993a) and Alvarez, Lippi, and Oskolkov (2021) call the generalized hazard function

Λ(x, t) ≡ λ∗(u(x, t)− u(x̄(t), t)) = −Hv(u(x, t)− u(x̄(t), t), x)
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Fokker-Planck-Kolmogorov Forward equation. Given the value function {u(x, t)} and

path {x̄(t)} the cross sectional density m solves the following partial differential equation:

∂tm(x, t) = L∗ (m) (x, t)− λ∗ (u(x̄(t), x)− u(x, t), x) m(x, t) (4)

for all t ∈ [0, T ], all x ∈ R, x 6= x̄(t), where L∗ is defined at x for a function f(·, t) that is

twice differentiable as:

L∗ (f) (x, t) = −∂x (µ(x)f(x, t)) + 1
2
∂xx
(
σ2(x)f(x, t)

)
Few comments are in order. First, the term λ∗ (u(x̄(t), x)− u(x, t), x) m(x, t) is the proba-

bility flux that leaves the state (x, t) as a consequence of the optimal adjustment. Second,

this flux is the product of the probability of adjustment λ∗ (u(x̄(t), x)− u(x, t), x) per unit of

time, multiplied by the density at that point m(x, t). Third, this equation does not apply

to (x, t) = (x̄(t), t). In this point there is a flux of probability coming in from all the other

points (x, t) with x 6= x̄(t), so its evolution is not local. We return to this in Lemma 1.

We can rewrite the time evolution of m using the assumed property of the Impulse

Hamiltonian, namely that λ∗(v, t) = −Hv (v, x) is the probability of an adjustment, per unit

of time, if v = u(x, t)− u(x̄(t), t). Using this property we can rewrite the time evolution as:

∂tm(x, t) = L∗ (m) (x, t)

+Hv (u(x̄(t), x)− u(x, t), x) m(x, t) for all t ∈ [0, T ], x ∈ R, x 6= x̄(t) (5)

Finally, to completely determine the time evolution we require that m must preserve the

probability and that it is initialized by m0, namely:

1 =

∫ ∞
−∞

m(x, t)dx for all t ∈ [0, T ] (6)

m0(x) = m(x, 0) for all x ∈ R (7)
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Relative value function. Note that in both H in the Hamilton-Bellman-Jacobi equation

and in Hv Kolmogorov forward equation the argument is u(x, t) − u(x̄(t), t). Motivated by

this we define v as:

v(x, t) = u(x, t)− u(x̄(t), t) for all x and for all t ∈ [0, T ] (8)

We are ready to define an equilibrium for a MFG.

Definition 1. Fix an initial density m0 and a terminal value uT . A classical equilibrium

of the MFG is a triplet of functions {u,m, x̄} where (a) {u, x̄} satisfies the p.d.e. 1, the

boundary conditions 2, and terminal condition 3 given m, and where (b) m satisfies the

p.d.e. 5, the condition 6, and the initial condition 7 given {u, x̄}.

3 Two examples of Impulse Hamiltonians

In this section we present two decision problems where we can define the impulse Hamiltonian

with the properties we used above. Wang (2001) and Dupuis and Wang (2002) also study

similar decision problems, which can be written using an Impulse Hamiltonian. Menaldi and

Robin (2016) study a decision problem with in some dimension, a more general setup which

cannot be accommodated by using an Impulse Hamiltonean.

3.1 Costly probabilistic adjustment

In this example, the decision maker pays a flow cost c(λ, x) and obtain a probability per unit

of time of changing the state, λ, i.e. she decides the Poisson arrival rate of an opportunity

to change the state. The cost depends on the current level of the state x and on the chosen

probability λ. If the opportunity materializes, which occur with probability λ, the decision

maker can chose the level of the state freely, and it will do so to minimize u(·, t). The model

here is a generalization of the one in Costain and Nakov (2011). In Appendix 8 we write the
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discrete time version of this problem. The value function u(x, t) must then solve:

ρu(x, t) = ut (x, t) + L (u) (x, t) + F (x,m(t)) (9)

+ min
λ≥0

[
c(λ, x)− λ

(
u(x, t)−min

z
u(z, t)

)]
for all x ∈ R and t ∈ [0, T ] and

u(x, T ) = uT (x,m(T )) for all x ∈ R . (10)

We assume that the cost function depends on the probability λ and the current value of the

state x, i.e. c : R+ × R → R. We assume that for each x ∈ R then c(·, x) is differentiable

with :

c(λ, x) ≥ 0, c(0, x) = 0, cλ(λ, x) ≥ 0, cλ(0, x) = 0, and cλλ(λ, x) > 0 if cλ(λ, x) > 0

We now rewrite this problem introducing the optimal choice x̄(t) as before x̄(t) = arg minz u(z, t)

for all t ∈ [0, T ]. Then we can define the impulse Hamiltonenan any v ≥ 0 as:

H(v, x) = min
λ≥0

c(λ, x)− λv and its optimal choice (11)

λ∗(v, x) = arg min
λ≥0

c(λ, x)− λv (12)

with the following properties:

1. H(0, x) = 0.

2. H(v, x) ≤ 0, and Hv(v, x) < 0 for v > 0.

3. Hv(v, x) = −λ∗(v, x) solving v = cλ (λ∗(v, x), x) for v > 0.

4. Hvv(v, x) = −λ∗v(v, x) = −1/cλλ (λ∗(v, x), x) < 0 for v > 0.

Uniform bounds. For future reference note that if there is an ` > 0 such that c(λ, x) = 0

for all λ ∈ [0, `] and x, then Hv(v, x) ≤ H̄v ≡ −` < 0. Also, assume there is an L > 0 such

that cλλ(λ, x) > L > 0 for all λ > l and x, then Hvv(v, x) ≤ H̄vv ≡ −L < 0 for all v, x.
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3.2 Random Fixed Costs

In this case, with probability κ(x) > 0 per unit of time, the decision maker draws a fixed

cost of adjustment ψ from a distribution with a mass point G(0, x) ≥ 0 for ψ = 0, and with

a density g(ψ, x) for ψ > 0. The mass point G, and density g is allowed to depend on the

state x, so g : (0,∞) × R → [0,∞). It is assumed that successive draws of the fixed cost,

conditional on x are independently distributed. A decision maker with state (x, t) and a

realization ψ of the cost at hand can either pay the cost ψ and adjust, changing its value

function from u(x, t) to ψ + u(x̄(t), x) where x̄(t) = arg minx u(x, t), or not pay the fixed

cost and let the the state x evolve as uncontrolled. This is a continuous time version of the

decision problem in Caballero and Engel (1991, 1993c,b, 2007), as characterized in Alvarez,

Lippi, and Oskolkov (2021). In Appendix 9, we describe the discrete time version of this

problem, and derive its continuous time limit displayed in this section.

Again, the firm takes as given the path m(t) for t ≥ 0.

ρu(x, t) = ut (x, t) + L (u) (x, t) + F (x,m(t)) + κ(x)G(0, x) (u(x̄(t), t)− u(x, t)) (13)

+ κ(x)

∫ ∞
0

min {0 , ψ + u(x̄(t), t)− u(x, t)} g(ψ, x)dψ for all x ∈ R and t ∈ [0, T ] and

u(x, T ) = uT (x,m(T )) for all x ∈ R . (14)

For this case we can define for any v ≥ 0, the function H : R+ × R→ R:

H(v, x) = κ(x)

[
−G(0, x)v +

∫ ∞
0

min {0 , ψ − v} g(ψ, x)dψ

]
= κ(x)

[
−G(0, x)v +

∫ v

0

(ψ − v) g(ψ, x)dψ

]
(15)

Hv(v, x) = −κ(x)

[
G(0, x) +

∫ v

0

g(ψ, x)dψ

]
≤ 0 so that

λ∗(v, x) = κ(x)

[
G(0, x) +

∫ v

0

g(ψ, x)dψ

]
≥ 0 and (16)

Hvv(v, x) = −κ(x)g(v, x) ≤ 0 so that λ∗v(v, x) = κ(x)g(v, x) ≥ 0 (17)
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Uniform bounds. For future reference note that if there is an ` > 0 such that κ(x)G(0, x) ≥

` > 0 for all x, then Hv(v, x) ≤ H̄v ≡ −` < 0. Moreover, if there is an L > 0 such that

κ(x)g(v, x) ≥ L, then Hvv(v, x) ≤ H̄vv ≡ −L < 0.

4 Uniqueness of MFG: benchmark case

In this section we show the uniqueness of a classical MFG in one dimension. We start by

stating the assumptions that we use on the flow return F , the terminal value function uT ,

the drift and volatility µ, σ2, and the impulse Hamiltonian H. Then we show two lemmas,

the second one being the key for the proof. Finally, we state the main result.

1. Monotonicity Assumption. F and uT are weakly monotone if

∫ (
F (x,ma)− F (x,mb)

) (
ma(dx)−mb(dx)

)
≥ 0 (18)∫ (

uT (x,ma)− uT (x,mb)
) (
ma(dx)−mb(dx)

)
≥ 0 (19)

for any ma,mb ∈ P . F or uT are strictly monotone if the inequality holds strictly every

time that
∫

(ma −mb)2dx > 0.

2. Single peaked and boundedness of F : We assume that F is continuously differen-

tiable and that:

∃B > 0 s.t. for all m ∈ P and x ∈ R : |F (x,m)| ≤ B (20)

∀m ∈ P there is a unique x∗(m) : ∂xF (x∗(m),m) = 0 (21)

3. Regularity of drift and volatility: We assume that µ(·) is once continuous differ-
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entiable, and σ2(·) is twice continuous differentiable with:

∃B s.t. : ||σ2||∞ ≤ B, ||µ||∞ ≤ B, ||∂xµ||∞, ||∂xσ2||∞ ≤ B and

∃ s > 0 s.t. : s2 ≤ σ2(x) all x (22)

4. Impulse Hamiltonian. We assume that the impulse Hamiltonian is twice continu-

ously differentiable and it satisfies the following properties for all x:

H : R+ × R→ R−, H(0, x) = 0, and Hv(v, x) ≤ 0, Hvv(v, x) ≤ 0 for all v > 0. (23)

Finally, we add some regularity conditions to the triplet {u,m, x̄} defining a MFG.

Definition 2. Let {u,m, x̄} be a classical equilibrium of the MFG, specified as in Defini-

tion 1. We say that {u,m, x̄} is a classical regular equilibrium if in addition:

1. x̄ is a continuously differentiable function of time,

2. u is once continuously differentiable with respect to t, twice continuously differentiable

with respect to x, and there is a function M : [0, T ]→ R+ such that for all t ∈ (0, T ):

||u(·, t)||∞ ≤M(t), ||∂xu(·, t)||2 ≤M(t), ||∂xxu(·, t)||2 ≤M(t) (24)

3. m is continuous on (x, t), once continuously differentiable with respect to t for all t,

and twice continuously differentiable with respect to x for (x, t) 6= (x̄(t), t) and there is

a function M : [0, T ]→ R+ such that for all t ∈ (0, T ):

||m(·, t)||2, ||∂xm(·, t)||2 ≤M(t), ||∂xxm(·, t)||2 ≤M(t) (25)

As a final preliminary definition we let the constants H̄v and H̄vv be the bounds for the
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first and second derivative of the Impulse Hamiltonian:

Hv(z, x) ≤ H̄v ≤ 0 for all z ∈ R and all x (26)

Hvv(z, x) ≤ H̄vv ≤ 0 for all z ∈ R and all x (27)

The next lemma uses the conservation of probability to obtain a useful equality between

the probabilities flows of adjustment.

Lemma 1. Assume that m solves the Kolmogorov Forward Equation given {v, x̄} as

described by 5, 6 and 7. Assume that m satisfies the integrability conditions of a classical

regular equilibrium in (25), and that σ2, µ satisfies the assumptions in (22). Then for all

t ∈ [0, T ] we have:

1
2
σ2(x̄(t)) [∂xm(x̄(t)−, t)− ∂xm(x̄(t)+, t)] = −

∫ ∞
−∞

m(x, t)Hv(v(x, t), x)dx > 0 (28)

For each t the left hand side of equation (28) is the probability inflow at x̄(t), which equals

the probability outflow everywhere else. Note that this requires that ∂xm(·, t) has a different

right and left limit.

Given two classical regular equilibria of the MFG {ua,ma, x̄a, } and {ua,mb, x̄b} we define

K(t) ≡
∫ ∞
−∞

(
ua(x, t)− ub(x, t)

) (
ma(x, t)−mb(x, t)

)
dx for all t ∈ [0, T ] (29)

for all t ∈ [0, T ].

The next Proposition obtains the key result to establish uniqueness, in a similar manner

than the classical Lasry-Lions inequality.

Proposition 1. Assume that F satisfy the weak monotonicity conditions given by 18, and

that H satisfy the conditions given by equation (23). Furthermore, assume that µ and σ2 are

once and twice continuously differentiable in x. Suppose that {ua,ma, x̄a, } and {ua,mb, x̄b}
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are two classical regular equilibria of the MFG. Let va, vb be defined as in equation (8). Then

d

dt
K(t) = ρK(t) + S(t) for all t ∈ [0, T ] where

S(t) ≤ S̄(t) ≡ H̄v

[
vb(x̄a(t), t) + va(x̄b(t), t)

]
+ H̄vv

∫ ∞
−∞

[
ma(x, t) +mb(x, t)

] (
va(x, t)− vb(x, t)

)2
dx all t ∈ (0, T ) (30)

The strategy of the proof of Proposition 1 is similar to the one pioneered by Lasry and

Lions, i.e. reminiscent of an energy method. There are three differences. First, m(·, t) cannot

be differentiable at x = x̄(t). Second the p.d.e.’s for the HBJ uses of Impulse Hamiltonian

H which depends on v(x, t) = u(x, t) − u(x̄(t), t), as opposed to the Hamiltonian which

depends on the the space derivative of u in the drift control case. Third, the p.d.e. for the

KFE is coupled using the level of the Impulse Hamiltonian H, as opposed to the divergence

in the case of the drift control case. Nevertheless, the convexity properties of the Impulse

Hamiltonian allows a similar proof strategy as the classical result by Lasry and Lions. Finally,

the integrability conditions assumed in Definition 2 are used here for K(t) and its time

derivative. To be concrete, letting ũi, m̃i be the value functions and distributions for the case

of drift control, and let H̃pp be a lower bound on the second derivative of the corresponding

Hamiltonian. The classical Lasry-Lions inequality for the drift control case is:

K̃(t) ≡
∫ (

ũa(x, t)− ũb(x, t)
) (
m̃a(x, t)− m̃b(x, t)

)
=

∫ t

0

eρ(t−τ)S̃(τ)dτ and

S̃(τ) ≤ H̃pp

∫ (
m̃a(x, τ) + m̃b(x, τ)

) (
∂̃xu

a(x, τ)− ∂̃xub(x, τ)
)2

dx ≤ 0

This expression is to be compared with equation (30) for our case.

Note that in equation (30), va and vb are both positive, and H̄v ≤ 0 and H̄vv ≤ 0. Then,

the together with the monotonicity assumption of uT , the next lemma obtains that S(t) = 0.

Lemma 2. Let {ua,ma, x̄a} and {ub,mb, x̄b} be two classical regular equilibria of the MFG,
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with initial density m0 and terminal condition uT . Let K defined as in equation (29). Assume,

in addition to the assumptions for Proposition 1 that uT satisfies the weak monotonicity

condition 19. Then: K(t) = S(t) = 0 for all t ∈ [0, T ], where S is defined in equation (30).

The next lemma uses the conclusions of the previous one, to obtain two intermediate

results used to establish uniqueness. In particular, Lemma 3, shows that the optimal return

is the same in any classical equilibrium of the MFG.

Lemma 3. Let {ua,ma, x̄a} and {ub,mb, x̄b} be two equilibria of the MFG, with initial

density m0 and terminal condition uT . Assume that K(t) = S(t) = 0. Furthermore, assume

that H̄v < 0 and that F (·,m) has a unique minimum as in condition (21). Then x̄a(t) = x̄b(t)

for all t ∈ [0, T ]. Furthermore, if H̄vv < 0, then va(x, t) = vb(x, t) for all x and t ∈ [0, T ].

Using the previous two lemmas we can show the main result, i.e. the uniqueness of the

classical MFG equilibrium.

Theorem 1. Assume that (i) F is strongly monotone and uT weakly monotone as defined

in 18 and 19, that (ii) H satisfy the conditions given by equation (23) with H̄vv < 0 and

H̄v < 0, that iii) µ, σ2 satisfies (22), and that (iv) F (·,m) has a unique minimum as in

condition (21). Let {ua,ma, x̄a} and {ub,mb, x̄b} two classical regular MFG equilibrium as in

Definition 2 for the initial distribution m0 and terminal value uT . Then ma = mb, ua = ub,

and x̄a = x̄b, i.e. a classical regular equilibrium is unique.

The previous theorem is the main result for the paper. We now discuss the role of strong

vs weak monotonicity on this theorem. Theorem 1 uses a strong form of Monotonicity of F

while the previous results, i.e. Lemma 1, Proposition 1, Lemma 2 and Lemma 3 only use

weak monotonicity of F . We note that without strong monotonicity, there is uniqueness of

the value function u(x, t), of the path optimal return point x̄, and of the generalized hazard

function −Hv(u(x∗(t), t)−u(x, t)). In particular the values of F (x,m(t)) are unique too. Yet,

we have not shown, without the strong monotonicity assumption, that m is unique. Note

that in this case, if there were more that one m, this lack of uniqueness would not be due
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to strategic considerations, and will have no effect on the values for agents. We next write

down an assumption that, almost by fiat, eliminates this lack of uniqueness.

Fix an optimal return x̄ and a relative value function v, so we can define the Poisson rate

λ∗(x, t) = −Hv(v(x, t), x). Fix a λ∗ function and consider equation (4) for a given initial

condition m0.

Assumption: uniqueness of m given policy. Assume that given a function λ∗ and an

initial condition m0, the functions µ are σ are such that there is a unique solution m of the

Kolmogorov forward equation (4).

We can then relax the strong monotonicity of F , and instead add the assumption of

uniqueness of m given a policy. In this case we note that Lemma 1, Proposition 1, Lemma 2

and Lemma 3 only use weak monotonicity of F . Thus adding the assumption of uniqueness

of m for a given pollicy we have the following variation on the main theorem.

Theorem 2. Assume that (i) F is weakly monotone and uT weakly monotone as defined in

18 and 19, that (ii) H satisfy the conditions given by equation (23) with H̄vv < 0 and H̄v < 0,

that iii) µ, σ2 satisfies (22), that (iv) F (·,m) has a unique minimum as in condition (21),

and that (v) m is unique for a given policy. Let {ua,ma, x̄a} and {ub,mb, x̄b} two classical

regular MFG equilibrium as in Definition 2 for the initial distribution m0 and terminal value

uT . Then ma = mb, ua = ub, and x̄a = x̄b, i.e. a classical regular equilibrium is unique.

The proof is straightforward given Lemma 1, Proposition 1, Lemma 2 and Lemma 3.

5 Adding a exogenous state

In this section we consider the case where the state of the problem is given by a triplet

(x, z, t), where x is the state that can be controlled and affects the flow cost, and where z

is a state that can not be affected by the decision maker, but that affects the flow cost. In

this problem, the decision maker controls the probability of an adjustment of x, given the
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state (x, z, t). If an adjustment takes place, then the state will go from (x, z) at time t to

(x̄(z, t), z) so x̄(z, t) is the optimally chosen value of x. The value function u has arguments

(x, z, t). The jump Hamiltonian depends on the decrease in cost, conditional on adjustment,

which we denote by u(x, z, t)− u(x̄(z, t), z, t), as well as the value of (x, z).

The state z follows a diffusion dz = µz(z)dt+σz(z)dWz, where Wz is a standard Brownian

motion. In this case the law of for the density of z can be written as:

∂tn(z, t) = −∂z (µz(z)n(z, t)) + ∂zz

(
σ2
z(z)

2
n(z, t)

)
(31)

To simplify the analysis we assume that the cross sectional distribution of z is at steady

state and we omit the t index and simply write

0 = −∂z (µz(z)n(z)) + ∂zz

(
σ2
z(z)

2
n(z)

)

Hamilton-Jacobi-Bellman equation. Given a path {m(x, z, t)}, the value function u

and the path x̄(z, t) solves the following HJB equation and boundary conditions:

ρu(x, z, t) = H (u(x, z, t)− u(x̄(z, t), z, t), x, z) + F (x, z,m(t)) + L (u) (x, z, t)

+ ∂tu(x, z, t) for all t ∈ [0, T ], x ∈ R (32)

u(x, z, t) ≥ u(x̄(t, z), z, t) for all t ∈ [0, T ], x ∈ R (33)

u(x, z, T ) = uT (x, z,m(T )) for all x ∈ R (34)

where L gives the expected change on the value function per unit of time due to the change

in x, z, and is defined as

L (f) (x, z, t) = µz(x)∂xf(x, z, t) + µx(x, z)∂xf(x, z, t)

+ 1
2
σ2
x(x, z)∂xxf(x, z, t) + 1

2
σ2
z(x)∂zzf(x, z, t)
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Note that the optimal return x̄(z, t) depends both on t and z. So, upon an adjustment at

time t the state of the decision maker jumps from (x, z) to (x̄(z, t), z). Also, implicit in the

notation for L is the simplified hypothesis that the brownian form x and z are independent,

i.e. at times where there is no adjustment we assume that dx = µx(x, z)dt + σx(x, z)dWx

where E[dWz, dWx] = 0.

In this section we define v as

v(x, z, t) = u(x, z, t)− u(x̄(x, z), z, t) (35)

Fokker-Planck-Kolmogorov Forward equation. Given the value function {u(x, z, t)}

and path {x̄(z, t)} the cross sectional density m solves the following partial differential equa-

tion:

∂tm(x, z, t) = L∗ (m(x, z, t)) +Hv (u(x, z, t)− u(x̄(z, t), x), x, z) m(x, t)

for all t ∈ [0, T ], (x, z) ∈ R2, x 6= x̄(z, t) (36)

1 =

∫ ∞
−∞

∫ ∞
−∞

m(x, z, t)dxdz for all t ∈ [0, T ] (37)

with initial condition m(x, z, 0) = m0(x, z), and where L∗ is defined at x, z for a function

f(·, t) that is twice differentiable as:

L∗ (f) (x, z, t) =− ∂x (µx(x, z)f(x, z, t)) + 1
2
∂xx
(
σ2
x(x, z)f(x, z, t)

)
− ∂z (µz(z)f(x, z, t)) + 1

2
∂zz
(
σ2
z(z)f(x, z, t)

)
As before, −Hv (u(x, z, t)− u(x̄(z, t), x), x, z), gives the optimally chosen probability of ad-

justment.

The initial condition for m has to satisfy:

m(x, z, 0) = m0(x, z) for all x, z with

∫ ∞
−∞

m0(x, z)dx = n(z) for all z (38)
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We define the conditional probability as:

m(x, t|z) = m(x, z, t)/n(z, t) = m(x, z, t)/n(z) (39)

and note that for each (z, t):

∫
m(x, z, t)dx = n(z) and

∫
∂tm(x, z, t)dx = 0 (40)

5.1 Two Price Setting Examples

In this section we give two simple price setting examples where we describe the flow profits

of the firm F . In both examples x denotes the price charged for the firm. In both cases,

the firm can only change the price if it pays a cost, where this can be a random menu cost

as described in Section 3.2 or a costly probability adjustment as in Section 3.1. In the first

example the marginal cost of the firm depends on the output of the rest of the industry. In

the second example the demand of the firm depends on the average price charged by the

other firms. Both cases are simple enough to that checking monotonicity is trivial.

Example 1: Input price dependent on industry output. The demand is given by

D(x, z) where z is an exogenous shock. The marginal cost of the firm depend on the price

of the input, which instead, depends on the the aggregate output of the industry. This

aggregate output is given by D̄ ≡
∫
D(x′, z′)m(x′, z′)dx′dz′, where m is the cross sectional

distribution of firms indexed by x, z. The marginal cost is given by c(D̄, z) = γ(z) + θD̄

where the constant θ > 0. We let F be minus the profits, since we will be minimizing the

objective function. Then the flow cost, or minus profits are
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F (x, z,m) = −
[
x− c

(
D̄, z

)]
D(x, z) = −

[
x− γ(z)− θD̄

]
D(x, z)

= −xD(x, z) + γ(z)D(x, z) + θD(x, z)

∫
D(x′, z′)m(x′, z′)dx′dz

We can easily check weak monotonicity in this example. Consider ma(x, z) = fa(x|z)n(z)

and mb(x, z) = f b(x|z)n(z)

∫ ∫ (
F (x, z,ma)− F (x, z,mb)

)
(dma − dmb)

=

∫
n(z)

∫ (
F (x, z,ma)− F (x, z,mb)

)
(fa − f b)dxdz

= θ

[∫
n(z)

(∫
D(x, z)fa(x|z)dx−

∫
D(x, z)f b(x|z)dx

)
dz

]2

≥ 0 ⇐⇒ θ > 0

Thus monotonicity requires that the marginal cost increases with the industry output.

Example 2: Cross demand elasticity dependent on average price. The demand of

the good for the firm depend on its own price x and the average price X =
∫
x′ dm(x′, z′).

We consider the following demand D(x, z,X) = D0(x, z) + θ(z)X, where θ is a constant.

Note that θ > 0 corresponds to the case of gross substitutes. We assume that the marginal

cost is given by γ(z). The the flow cost, or minus profits are:

F (x, z,m) = − (x− γ(z)) (D0(x, z) + θX)

= −(x− γ(z))D0(x, z) + γ(z)θ

∫ ∫
x′m(x′, z′)dx′dz′ + θx

∫ ∫
x′m(x′, z′)dx′dz′

Again, we can easily check monotonicity in this example. Let Xk =
∫ ∫

xmk(x, z)dxdz
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for k = a, b so that

∫ (
F (x, z,ma)− F (x, z,mb)

)
(dma − dmb)

= θ

[
Xa

∫ ∫
x (ma(x, z)−mb(x, z))dxdz −Xb

∫ ∫
x (ma(x, z)−mb(x, z)) dxdz

]
= θ(Xa −Xb)2 ≥ 0 ⇐⇒ θ > 0

Thus monotonicity requires the goods to be substitutes, i.e. that holding constant the price

of the good, its demand increases when the other prices increase.

5.2 Uniqueness of Equilibrium of MFG

We first list the assumptions on µx, µz, σ
2
x, σ

2
z , F and uT . We then list the regularity of

assumption on the equilibrium objects u,m, x̄. For the exogenous objects we assume that:

1. Boundedness of µ and σ2 and its derivatives – to be written

2. We assume that F and uT satisfies LL weak monotonicity, that that they are continuous

and bounded.

The definition of monotonicity is the same, i.e f : R2 × P → R, then we say f is weakly

monotone if:

∫ ∞
−∞

∫ ∞
−∞

(
f(x, z,ma)− f(x, z,mb)

) (
ma(x, z)−mb(x, z)

)
dxdz ≥ 0

for any two densities ma,mb.

In the definition of a classical regular equilibrium we require u,m, x̄ to be smooth and

integrable as follows

1. The function x̄(z, t) is continuously differentiable function of time –to be written

2. Boundedness of u and integrability of derivatives for each t – to be written
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3. Integrability of derivatives for each m and its derivatives for t – to be written

Now we start with the characterization. The next lemma is a generalization of the analysis

of the probability flux from the benchmark case. Note that here it holds for all z.t.

Lemma 4. For any z ∈ R and t ∈ (0, T ), if m solves the KFE we have

1
2
σ2(x̄(z, t), z) [∂xm(x̄−(z, t), z, t)− ∂xm(x̄+(z, t), z, t)]

= −
∫ ∞
−∞

m(x, z, t)Hv(v(x, z, t), x, z) dx (41)

The next lemma has a simple observation of equality in the key expression for uniqueness

of using value functions or relative value functions.

Lemma 5. For any z ∈ R and t ∈ (0, T ). Let {ua, x̄a,ma} and {ub, x̄b,mb} be two classical

regular equilibrium of the MFG. Recall vi(x, z, t) ≡ ui(x, z, t)− ui(x̄i(z, t), z), t) for i = a, b.

Then

K(t, z) ≡
∫ ∞
−∞

(
ua(x, z, t)− ub(x, z, t)

) (
ma(x, z, t)−mb(x, z, t)

)
dx

=

∫ ∞
−∞

(
va(x, z, t)− vb(x, z, t)

) (
ma(x, z, t)−mb(x, z, t)

)
dx

The next lemma gives gives a decomposition on the change of K through time. It uses

the p.d.e.’s for the HBJ and KF equations.
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Lemma 6. Define K̄(t) =
∫
K(t, z)dz. Then for all t ∈ [0, T ]:

d

dt
K̄(t) = ρK̄(t)

+

∫ ∫ (
(va(x, z, t)− vb(x, z, t)

)
L∗(ma −mb)(x, z, t)dxdz

−
∫ ∫ (

(ma(x, z, t)−mb(x, z, t)
)
L(va − vb)((x, z, t)dxdz

−
∫ ∫ (

ma(x, z, t)−mb(x, z, t)
) (
F (x, z,ma(t))− F (x, z,mb(t))

)
dxdz

−
∫ ∫ (

(ma(x, z, t)−mb(x, z, t)
)

(H(va(x, z, t), x, z)−H(vb(x, z, t), x, z))dxdz

+

∫ ∫ (
(va(x, z, t)− vb(x, z, t)

) (
Hv(v

a(x, z, t), x, z)ma(x, z, t)−Hv(v
b(x, z, t), x, z)mb(x, z, t)

)
dxdz

The next lemma analysis two of the expressions in the previous lemma. Repeated inte-

gration by parts, consideration of the limit behavior of different elements imply the following

key result:

Lemma 7. Let {ma, ua, x̄a} and {mb, ub, x̄b} two regular classical equilibrium of the MFG.

Then:

∫ ∞
−∞

∫ ∞
−∞

(
va(x, z, t)− vb(x, z, t)

)
L∗(ma −mb)(x, z, t)dxdz

−
∫ ∞
−∞

∫ ∞
−∞

(
ma(x, z, t)−mb(x, z, t)

)
L(va − vb)(x, z, t)dxdz

≤ H̄v

∫ ∞
−∞

n(z)
(
vb(x̄a(z, t), z, t) + va(x̄b(z, t), z, t)

)
dz

The concavity properties of the impulse Hamiltonian imply the following result, which

bounds two of the terms expressed in Lemma 6.
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Lemma 8. For any va,ma, vb,mb given the concavity of H we have

−
(
(ma(x, z, t)−mb(x, z, t)

)
(H(va(x, z, t), x, z)−H(vb(x, z, t), x, z))

+
(
(va(x, z, t)− vb(x, z, t)

) (
Hv(v

a(x, z, t), x, z)ma(x, z, t)−Hv(v
b(x, z, t), x, z)mb(x, z, t)

)
≤ H̄vv

(
ma(x, z, t) +mb(x, z, t)

) (
va(x, z, t)− vb(x, z, t)

)2

The previous lemmas imply the main proposition for this model, which is at the center

of the Lasry-Lions style of argument, as we used in the previous section.

Proposition 2. Let {ua, x̄a,ma} and {ub, x̄b,mb} be two classical regular equilibrium of

the MFG. Assume that F is monotone. Using the definition of K̄ and the previous result we

get:

K̄(t) =

∫ ∞
−∞

∫ ∞
−∞

(
ua(x, z, t)− ub(x, z, t)

) (
ma(x, z, t)−mb(x, z, t)

)
dxdz then

d

dt
K̄(t) = ρK̄(t) + S(t) for all t ∈ [0, T ] where S(t) ≥ S̄(t) with

S̄(t) ≤ H̄v

∫ ∞
−∞

n(z)
(
vb(x̄a(z, t), z, t) + va(x̄b(z, t), z, t)

)
dz

+ H̄vv

∫ ∞
−∞

∫ ∞
−∞

(
ma(x, z, t) +mb(x, z, t)

) (
va(x, z, t)− vb(x, z, t)

)2
dxdz

The uniqueness of equilibrium is obtained following similar steps as in the benchmark

case.

6 Multidimensional, noisy optimal decision

In this section we develop a version of the model where we have two generalizations. First

we allow that x ∈ Rn for n ≥ 1, i.e. we consider the multidimensional case. Second, when
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the decision makers decides to adjust the state, instead of jumping to x̄(t), the adjustment

is distributed with a density νε centered around x̄(t). This distribution is indexed by ε > 0,

where ε measure the dispersion of x around x̄(t). The distribution νε is defined as follows:

νε(x− x̄(t)) = εg

(
x− x̄(t)

ε

)

where g : R→ R+ is a smooth density with a maximum at zero, so g(0) > g′(0) = 0. We use

νε to smooth out the choice of optimal return, i.e. when the decision maker selects to move

to state from x to x̄(t), the state will will be randomly distributed around x̄(t) according to

the density νε.

In this case the impulse Hamiltonian is H : R+ × Rn → R−. The function H(·, x), for

a fixed x ∈ Rn, as the same properties as before, i.e it is negative, monotone, and concave.

In this case, the first argument of the jump Hamiltonian is the (negative) of the expected

change conditional on an adjustment.

We note that in this section where we let x ∈ Rn, when the decision maker decides to

exercise control, it changes the entire n−dimensional state, i.e. it changes all the components

of the state. This is similar to the multiproduct pricing model of Midrigan (2011), Alvarez

and Lippi (2014), and Bhattarai and Schoenle (2014). An interesting alternative assumption,

which we explore separately, is the one in which the decision maker can only control some

subset of the state.

Additionally, each of the n coordinates of x when it is uncontrolled follow dxi = µi(x)dt+

σi(x)dWi for i = 1, 2, . . . , n, where to simplify the notation we assume that {Wi,Wj} are

orthogonal for i 6= j, i.e. E [dWi dWj] = δi,j. Thus we have two vectors fields:

µ(x) = {µ1(x), µ2(x), . . . , µn(x)} and σ2(x) = {σ2
1(x), σ2

2(x), . . . , σ2
n(x)}

Corresponding to this process, or to µ and σ2, we have that for any smooth function f :
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Rn × [0, T ]→ R we define the operators L(f) and L∗(f) for all x ∈ Rn as follows:

L(f)(x, t) ≡
n∑
i=1

µi(x)
∂

∂xi
f(x, t) +

1

2

n∑
i=1

σ2
i (x)

∂2

∂xi∂xi
f(x, t)

L∗(f)(x, t) ≡ −
n∑
i=1

∂

∂xi
(f(x, t)µi(x)) +

1

2

n∑
i=1

∂2

∂xi∂xi

(
f(x, t)σ2

i (x)
)

We also adapt the notation of P , the set of densities, i.e. P =
{
f : Rn → R+ with

∫
f(x)dx = 1

}
.

Likewise we adapt the conditions on the vector fields for the drift and volatility. In particular,

the function µ : Rn → Rn is once continuously differentiable, and σ2 : Rn → Rn
+ is twice

continuously differentiable, with

∃B s.t. : ||σ2||∞ ≤ B, ||µ||∞ ≤ B, ||∂xµ||∞, ||∂xσ2||∞ ≤ B and

∃ s > 0 s.t. : s2 ≤ σ2
j (x) all x, all j = 1, . . . , n (42)

Next we define a classical regular equilibrium, for a given ε as follows:

Definition 3. Fixing ε > 0, a classical regular ε-MFG, given (uT ,m0) is given by a

triplet (u,m, x̄), where u : Rn × [0, T ]→ R and m : Rn × [0, T ]→ R+ are once continuously

differentiable with respect to t and twice continuously differentiable with respect to x, and

where x̄ : [0, T ] → Rn is once continuously differentiable on t. We say a classical regular

ε-MFG must satisfy:

(a) There is a function M : [0, T ]→ R+ for which

||u(·, t)||∞ ≤M(t), ||∂xu(·, t)||2 ≤M(t), ||∂xxu(·, t)||2 ≤M(t) for all t ∈ [0, T ]. (43)

(b) The density m(·, t) : Rn× [0, T ] is once continuously differentiable in t and twice contin-

uously differentiable in x with a function M : [0, T ]→ R+ for which:

||m(·, t)||2, ||∂xm(·, t)||2 ≤M(t), ||∂xxm(·, t)||2 ≤M(t) (44)
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(c) The HBJ for all (x, t) ∈ Rn × [0, T ]:

ρu(x, t) = F (x,m(t)) + L(u)(x, t) + ut(x, t) (45)

+H

(
u(x, t)−

∫
u(z, t)νε(z − x̄(t))dz, x

)

(d) The KFE for all (x, t) ∈ Rn × [0, T ]:

mt(x, t) = Hv

(
u(x, t)−

∫
u(z, t)νε(z − x̄(t))dz, x

)
m(x, t) + L∗(m)(x, t) (46)

−
[∫

Hv

(
u(x′, t)−

∫
u(z, t)νε(z − x̄(t))dz, x′

)
m(x′, t)dx′

]
νε(x− x̄(t))

(e) The Optimal return for all t ∈ [0, T ] : x̄(t) = arg minx u(x, t)

(f) The Terminal and Initial condition for all x ∈ Rn:

u(x, T ) = uT (x,m(T )) and m(x, 0) = m0(x) (47)

Few comments on the Definition 3 are in order:

1. It is convenient to adapt our definition of v to the case of noisy control as follows:

v(x, t) = u(x, t)−
∫
u(z, t)νε(z − x̄(t))dz (48)

2. The term −Hv (v(x, t), x) ≥ 0 gives the probability of an adjustment at (x, t).

3. The term −
[∫
Hv (v(x′, t), x′)m(x′, t)dx′

]
νε(x − x̄(t)) in the KFE is the product of

the fraction of the values which adjust, given by −
∫
Hv(v(x′, t), x′)m(x′)dx′, times the

density of those that adjust to the value x, given by νε(x− x̄(t)). This is the probability

flow that “enters” at x at time t.
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4. The KFE holds for all x, including x = x̄(t). This is because the function νε regularizes

the problem.

5. As ε ↓ 0, then νε becomes a delta function, and then the KFE does not hold at

(x, t) = (x̄(t), t).

6. If ε = 0 and n = 1 we have exactly the baseline case. If ε = 0 and n > 1 we have the

extension of the baseline case to the case where the decision maker controls the entire

n− dimensional state.

7. As in the baseline case, L gives the (n−dimensional version of the) linear operator

describing the effect on the expected change on u of the drift µ(x) and volatility σ2(x).

8. As in the baseline case, L∗ gives the (n−dimensional version of the) linear operator

describing the propagation of the density m due to effect of the drift µ(x) and volatility

σ2(x)

We redefine the constants H̄v and H̄vv analogously:

Hv(z, x) ≤ H̄v ≤ 0 for all z ∈ R and all x ∈ Rn (49)

Hvv(z, x) ≤ H̄vv ≤ 0 for all z ∈ R and all x ∈ Rn (50)

and redefine monotonicity in the natural way:

∫ (
F (x,ma)− F (x,mb)

) (
ma(dx)−mb(dx)

)
> 0 if ma 6= mb ∈ P (51)∫ (

uT (x,ma)− uT (x,mb)
) (
ma(dx)−mb(dx)

)
> 0 if ma 6= mb ∈ P (52)

where P =
{
f : Rn → R+ with

∫
f(x)dx = 1

}
.

We show that a classical ε-MFG equilibrium is unique under the analogous assumptions

as in the baseline case. We don’t write the entire Theorem. Instead, only prove the key
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proposition for the uniqueness result, establishing the Lasry-Lions type of inequality. In

particular we have:

Proposition 3. Assume that ε > 0, that F satisfy the monotonicity conditions given by

51, and that H satisfy the conditions given by equation (49) and equation (50). Furthermore,

assume that µ and σ2 are once and twice continuously differentiable in x ∈ Rn. Suppose

that {ua,ma, x̄a, } and {ua,mb, x̄b} are two classical equilibria of the ε-MFG as stated in

Definition 3. Let va, vb be defined as in equation (48). Let

K(t) ≡
∫ (

ua(x, t)− ub(x, t)
) (
ma(x, t)−mb(x, t)

)
dx for all t ∈ [0, T ] then (53)

d

dt
K(t)− ρK(t) ≤ S̄(t) for all t ∈ [0, T ] where

S̄(t) ≡ H̄vv

∫ [
ma(x, t) +mb(x, t)

] (
va(x, t)− vb(x, t)

)2
dx all t ∈ (0, T ) (54)

Given Lemma 3, the proof of uniqueness of the classical regular equilibria of the ε-MFG

follows similar steps as in the baseline one dimensional case with ε = 0. Comparing the

expression for S̄ in this case, with the previous case, we note that the effect of ε > 0 is to

have a differentiable m(·, t), and that the first term S̄ no longer applies.
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7 Proofs

Proof. (of Lemma 1) Differentiating equation (6) with respect to time we obtain and re-
placing 5 :

0 =

∫
∂tm(x, t)dx

= −
∫ ∞
−∞

∂x (µ(x)m(x, t)) dx+

∫ ∞
−∞

1
2
∂xx
(
σ2(x)m(x, t)

)
dx+

∫ ∞
−∞

Hv(v(x, t), x)m(x, t)dx

= −µ(x)m(x, t)|∞−∞ + 1
2
∂x
(
σ2(x)m(x, t)

)
|∞x̄+(t) + 1

2
∂x
(
σ2(x)m(x, t)

)
|x̄−(t)
−∞

+

∫ ∞
−∞

Hv(v(x, t), x)m(x, t)dx

Using that µ(x) is bounded and m(x, t)→ 0 as |x| → ∞, and that σ2, σ2
x, and that mx(x, t)→

0 as |x| → ∞ then

0 = 1
2
∂x
(
σ2(x)m(x, t)

)
|x̄−(t)
x̄+(t) +

∫ ∞
−∞

Hv(v(x, t), x)m(x, t)dx

Since m(·, t), σ2
x(·, t) and σ2(·, t) are continuous at x = x̄(t) then

∂x
(
σ2(x)m(x, t)

)
|x̄−(t)
x̄+(t) = σ2(x̄(t))∂x (∂xm(x, t)) |x̄−(t)

x̄+(t)

obtaining the desired result. �

Proof. (of Proposition 1) By definition of a classical regular equilibrium of the MFG, we
have that ||ui(·, t)|| ≤M(t) for i = a, b so that

K(t) =

∫ ∞
−∞

(
ua(x, t)− ub(x, t)

) (
ma(x, t)−mb(x, t)

)
dx

is well defined. Since, by definition, v(x, t)−u(x, t) = −u(x̄(t), t) does not depend on x, then

∂xu(x, t) = ∂xv(x, t), and ∂xxu(x, t) = ∂xxv(x, t)

Using that
∫∞
−∞

(
ma(x, t)−mb(x, t)

)
dx = 0, then:

K(t) =

∫ ∞
−∞

(
va(x, t)− vb(x, t)

) (
ma(x, t)−mb(x, t)

)
dx
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We differentiate with K with respect to time to obtain:

d

dt
K(t) =

d

dt

∫ ∞
−∞

(
va(x, t)− vb(x, t)

) (
ma(x, t)−mb(x, t)

)
dx

=

∫ ∞
−∞

(
va(x, t)− vb(x, t)

)
∂t
(
ma(x, t)−mb(x, t)

)
dx

+

∫ ∞
−∞

(
ma(x, t)−mb(x, t)

)
∂t
(
va(x, t)− vb(x, t)

)
dx

Below we check on sufficient conditions on the different integrals o interchange integrals and
time derivatives. Using the properties of vi(x, t) − ui(x, t) = −ui(x̄i(t), t) for i = a, b, and
that

∫
(ma −mb)dx and its time derivative are zero:

d

dt
K(t) =

d

dt

∫ ∞
−∞

(
ua(x, t)− ub(x, t)

) (
ma(x, t)−mb(x, t)

)
dx

=

∫ ∞
−∞

(
va(x, t)− vb(x, t)

)
∂t
(
ma(x, t)−mb(x, t)

)
dx

+

∫ ∞
−∞

(
ma(x, t)−mb(x, t)

)
∂t
(
ua(x, t)− ub(x, t)

)
dx

Using the p.d.e for the HJB in equation (1), using that ∂xv = ∂xu and ∂xxv = ∂xxu, and the
p.d.e for the KBF in equation (5) to replace in the previous integrals as follows:

d

dt

∫ ∞
−∞

(
ua(x, t)− ub(x, t)

) (
ma(x, t)−mb(x, t)

)
dx

=

∫ ∞
−∞

(
va − vb

) (
∂xx(

σ2

2
ma − σ2

2
mb)
)
−
(
ma −mb

)
σ2

2

(
∂xx(v

a − vb)
)
dx

+

∫ ∞
−∞

(
va − vb

) (
−∂x(µma − µmb)

)
−
(
ma −mb

)
µ
(
∂x(v

a − vb)
)
dx

+ ρ

∫ ∞
−∞

(
ua − ub

) (
ma −mb

)
dx

+

∫ ∞
−∞

(
va − vb

) (
maHv(v

a)−mbHv(v
b)
)
dx−

∫ ∞
−∞

(
ma −mb

) (
H(va)−H(vb)

)
dx

−
∫ ∞
−∞

(
ma −mb

) (
F (x,ma)− F (x,mb)

)
dx

where we omit the arguments (x, t) or x from the different functions to simplify the notation.
Thus we write:

d

dt
K(t) =

d

dt

∫ ∞
−∞

(
ua − ub

) (
ma −mb

)
dx = ρ

∫ ∞
−∞

(
ua − ub

) (
ma −mb

)
dx

+ IV (t) + ID(t) + IH(t) + IF (t)
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where

IV (t) ≡
∫ ∞
−∞

(
va − vb

) (
∂xx(

σ2

2
ma − σ2

2
mb)
)
−
(
ma −mb

)
σ2

2

(
∂xx(v

a − vb)
)
dx

ID(t) ≡
∫ ∞
−∞

(
va − vb

) (
−∂x(µma − µmb)

)
−
(
ma −mb

)
µ
(
∂x(v

a − vb)
)
dx

IH(t) ≡
∫ ∞
−∞

(
va − vb

) (
maHv(v

a)−mbHv(v
b)
)
dx−

∫ ∞
−∞

(
ma −mb

) (
H(va)−H(vb)

)
dx

IF (t) ≡ −
∫ ∞
−∞

(
ma −mb

) (
F (ma)− F (mb)

)
dx

Note that the integrals in IV (t), ID(t), and IH(t) are all well defined given the integrability
assumptions of a classical regular equilibrium, as well as the integrability assumptions on µ
and σ2. Next, we obtain an inequality for each term, i.e. for IV (t), ID(t), IH(t) and IF (t).

1. We will show that
IV (t) ≤

[
vb(x̄a(t), t) + va(x̄b(t), t)

]
H̄v

To simplify the notation we let v̂ ≡ va − vb and m̂ ≡ ma −mb. With this notation we
have

IV (t)|UL ≡
∫ U

L

[(
va − vb

) (
∂xx(

σ2

2
ma − σ2

2
mb)
)
−
(
ma −mb

)
σ2

2

(
∂xx(v

a − vb)
)]
dx

=

∫ U

L

[
v̂ ∂xx

(
σ2

2
m̂
)
− m̂ σ2

2
∂xxv̂

]
dx

In an interval x ∈ [L,U ] where m̂x is twice continuously differentiable we have:

IV (t)|UL =

∫ U

L

[
v̂ ∂xx

(
σ2

2
m̂
)
− m̂ σ2

2
∂xxv̂

]
dx

=

∫ U

L

v̂ ∂xx

(
σ2

2
m̂
)
dx+

∫ U

L

∂x

(
m̂σ2

2

)
∂xv̂dx− m̂σ2

2
∂xv̂|UL

= v̂ ∂x

(
m̂σ2

2

)
|UL − m̂σ2

2
∂xv̂|UL

where we integrate by parts each term. Assume, without loss of generality that −∞ <
x̄a(t) < x̄b(t) <∞, so we can write:

IV (t)|∞−∞ = IV (t)|x̄a−∞ + IV (t)|x̄bx̄a + IV (t)|∞x̄b

We use that, given the assumption on integrability for a classical regular equilibrium,
then |mi| → 0 and |∂xmi| → 0, that ∂xv

i → 0 as |x| → ∞, and vi is bounded for
i = a, b to obtain:

0 = lim
|x|→∞

v̂ ∂x

(
m̂σ2

2

)
(x)− lim

|x|→∞
m̂σ2

2
∂xv̂(x)
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Thus can write:

IV (t)|∞−∞ = IV (t)|x̄
a
−
x̄a+

+ IV (t)|x̄
b
−
x̄b+

Let concentrate on the first term, IV (t)|x̄
a
−
x̄a+

. We use that va(x̄a(t), t) = 0 and ∂xv
a(x, t)|x=xa =

0 to obtain:

IV (t)|x̄
a
−
x̄a+

= v̂ ∂x

(
m̂σ2

2

)
|x̄

a
−
x̄a+
− m̂σ2

2
∂xv̂|

x̄a−
x̄a+

= v̂ ∂x

(
m̂σ2

2

)
|x̄

a
−
x̄a+

where the second line uses that mi and ∂vi are continuous on x, and hence 0 =

m̂σ2

2
∂xv̂|

x̄a−
x̄a+

. Then

IV (t)|x̄
a
−
x̄a+

= v̂ ∂x

(
m̂σ2

2

)
|x̄

a
−
x̄a+

= −vb σ2

2
∂xm

a|x̄
a
−
x̄a+
< 0

where we use that σ2 is continuously differentiable, and that m̂ = ma −mb, and that
∂xm

b is continuous at x = x̄a. Using Lemma 1 we obtain:

IV (t)|x̄
a
−
x̄a+

= vb(x̄a(t), t)

∫
ma(x, t)Hv(v

a(x, t), x)dx ≤ vb(x̄a(t), t)H̄v

The argument for IV (t)|x̄
b
−
x̄b+

is identical, giving:

IV (t)|x̄
b
−
x̄b+

= va(x̄b(t), t)

∫
mb(x, t)Hv(v

b(x, t), x)dx ≤ va(x̄b(t), t)H̄v

Combining the two results we obtain the desired inequality.

2. We will show that ID(t) = 0. This follows by using integration by parts, since v̂(·, t) is
continuously differentiable. The boundaries at x = ∞ and x = −∞, the terms vanish
given the assumption on the tails. In particular:

ID(t) =

∫ ∞
−∞

(
va − vb

) (
−∂x(µma − µmb)

)
−
(
ma −mb

)
µ
(
∂x(v

a − vb)
)
dx

=−
(
va − vb

) (
µma − µmb

)
|∞−∞

using that vi(·, t), and µ are bounded, and that mi → 0 as |x| → ∞. Thus ID(t) = 0.

3. We will show that

IH(t) ≤ H̄vv

∫ ∞
−∞

[
ma(x, t) +mb(x, t)

] (
va(x, t)− vb(x, t)

)2
dx ≤ 0

We use the concavity of H and the definition of IH(t). In particular, we use a first
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order expansion:

H(y1, x) = H(y2, x) +Hv(y2, x) (y1 − y2) +Hvv(ỹ, x) (y1 − y2)2

for some ỹ ∈ [y1, y2]. Letting y1 = vb(x, t) and y2 = va(x, t), or reversing it with
y1 = va(x, t) and y2 = vb(x, t) , and omitting arguments:

H(vb)−H(va) = Hv(v
a)
(
vb − va

)
+Hvv(ṽ

ba, x)
(
va − vb

)2

H(va)−H(vb) = Hv(v
b)
(
va − vb

)
+Hvv(ṽ

ba, x)
(
va − vb

)2

Thus:(
va − vb

) (
maHv(v

a)−mbHv(v
b)
)
−
(
ma −mb

) (
H(va)−H(vb)

)
=
(
va − vb

) (
maHv(v

a)−mbHv(v
b)
)

+ma
(
H(vb)−H(va)

)
+mb

(
H(va)−H(vb)

)
=
[
maHvv(ṽ

ba, x) +mbHvv(ṽ
ba, x)

] (
va − vb

)2

≤
[
ma +mb

] (
va − vb

)2
H̄vv

Integrating across x:

IH(t) ≡
∫ (

va − vb
) (
maHv(v

a)−mbHv(v
b)
)
−
(
ma −mb

) (
H(va)−H(vb)

)
dx

≤
∫ ∞
−∞

[
ma +mb

] (
va − vb

)2
H̄vv dx

4. We will show that IF (t) ≤ 0. This follows directly by Assumption (18) on monotonicity
for F .

Combining the bounds obtained by IV (t), ID(t), IH(t) and IF (t) we get the desired result.
�

Proof. (of Lemma 2) Proposition 1 implies that

K(t) = eρtK(0) +

∫ t

0

eρ(t−τ)S(τ)dτ ≤ eρtK(0) +

∫ t

0

eρ(t−τ)S̄(τ)dτ all t ∈ (0, T )

Now we use that, since ma and mb are part of the equilibrium, they must satisfy the initial
condition ma(x, 0) = mb(x, 0) = m0(x), so that K(0) = 0. Thus K(t) =

∫ t
0
eρ(t−τ)S(τ)dτ all

t ∈ [0, T ]. Note that, given that ua and ub, by definition of a MFG, should be equal to the
terminal condition uT then

K(T ) =

∫ ∞
−∞

(
ua(x, T )− ub(x, T )

) (
ma(x, T )−mb(x, T )

)
dx

=

∫ ∞
−∞

(
uT (x,ma(T ))− uT (x,mb(T ))

) (
ma(x, T )−mb(x, T )

)
dx ≥ 0
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where the inequality follows by the monotonicity condition 19 on uT . Thus

0 ≤ K(T ) =

∫ T

0

eρ(T−τ)S(τ)dτ ≤
∫ T

0

eρ(T−τ)S̄(τ)dτ ≤ 0

where we use that S̄(t) ≤ 0 since H̄v ≥ 0, H̄vv ≥ 0 and va ≥ 0 and vb ≥ 0. Hence, if S(τ) ≥ 0
for all τ ∈ [0, T ], then it must be that S(τ) = 0 for all τ ∈ [0, T ]. In this case K(t) = 0 for
all t ∈ [0, T ] too.

�

Proof. (of Lemma 3) Assume, by contradiction that x̄a 6= x̄b. Given the assumed continuity,
then without loss of generality we can assume that x̄a(t) < x̄b(t) for t ∈ (t0, t1). Since
S(t) = 0 for t ∈ [t0, t1] and H̄v < 0 then va(x̄b(t), t) = vb(x̄a(t), t) = 0 for t ∈ [t0, t1].

This implies that ui(x, t) = ui(x̄(t), t) for all for x ∈ (x̄a(t), x̄b(t)) and t ∈ (t1, t0), and
i = a, b. Hence, for each t ∈ (t1, t0), then ∂xu

i(x, t) = ∂xxu
i(x, t) = ∂xtu

i(x, t) = 0 for all
x ∈ (x̄a(t), x̄b(t)). Replacing this into the p.d.e. for ui we have:

ρui(x̄(t), t) = ρui(x, t) = F (x,m(t)) +H(0, x) + ∂tu
i(x, t) = F (x,m(t)) + ∂tu

i(x, t)

Differentiating again with respect to x we get:

0 = ∂xF (x,m(t)) + ∂xtu
i(x, t) = ∂xF (x,m(t))

which is a contradiction with the assumption that F (·,m) is strictly single peaked. Hence
x̄a = x̄b.

�

Proof. (of Theorem 1) Under the stated assumptions we can verify the conditions for
Proposition 1 and Lemma 2 and hence S̄(t) = 0. Furthermore, we assume that H̄vv < 0, and
hence

0 =

∫ ∞
−∞

(
ma(x, t) +mb(x, t)

) (
va(x, t)− vb(x, t)

)2
dx

implies va(x, t) = vb(x, t) for all x, since ma and mb are supported on the entire real line.
Thus, using the definition of va, vb and the p.d.e. for ua, ub we have:

ρva(x, t) ≡ ρua(x, t)− ρua(x̄a(t), t)
= F (x,ma(t))− ρua(x̄a(t), t) + L(va)(x, t) +H(va(x, t), x)− ∂tua(x, t)

ρvb(x, t) ≡ ρub(x, t)− ρub(x̄b(t), t)
= F (x,mb(t))− ρub(x̄b(t), t) + L(vb)(x, t) +H(vb(x, t), x)− ∂tub(x, t)

for all x, t. But since va(x, t) = vb(x, t) we have:

F (x,ma(t))− ρua(x̄a(t), t) + ∂tu
a(x, t) = F (x,mb(t))− ρub(x̄b(t), t) + ∂tu

b(x, t) for all x, t

Differentiating vi(x, t) = ui(x, t)−ui(x̄i(t), t) with respect to time and using ∂xu
i(x̄i(t), t) = 0
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for i = a, b we get:

∂tv
i(x, t) = ∂tu

i(x, t)− ∂tui(x̄i(t), t)

Then replacing this into the previous equality

F (x,ma(t))− ρua(x̄a(t), t) + ∂tv
a(x, t) + ∂tu

a(x̄a(t), t)

=F (x,mb(t))− ρub(x̄b(t), t) + ∂tv
b(x, t) + ∂tu

b(x̄a(t), t) for all x, t

Differentiating va(x, t) = vb(x, t) with respect to time we have ∂tv
a(x, t) = ∂tv

b(x, t), so we
can write:

F (x,ma(t))− ρua(x̄a(t), t) + ∂tu
a(x̄a(t), t)

=F (x,mb(t))− ρub(x̄b(t), t) + ∂tu
b(x̄a(t), t) for all x, t

Defining gi(t) ≡ −ρua(x̄i(t), t) + ∂tu
i(x̄i(t), t) for i = a, b and all t, we can write:

F (x,ma(t)) + ga(t) = F (x,mb(t)) + gb(t) for all x, t

Multiplying by ma(x, t)−mb(x, t) and integrating with respect to x we get:∫ [
F (x,ma(t))− F (x,mb(t))

] (
ma(x, t)−mb(x, t)

)
dx

=

∫ (
gb(t)− ga(t)

) (
ma(x, t)−mb(x, t)

)
dx

=
(
gb(t)− ga(t)

) ∫ (
ma(x, t)−mb(x, t)

)
dx = 0

which, if
∫

(ma(x, t)−mb(x, t))2dx > 0, gives a contradiction with the (strong) monotonicity
of F as stated in condition 18. Thus ma = mb.

Once ma = mb, then it must be the case that not only va = vb, but also ua = ub.
Finally, Lemma 3 implies that x̄a = x̄b, and hence the equilibrium is unique.
�
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Proof. (of Lemma 4) Since
∫∞
−∞m(x, z, t)dx = n(z) with does not depend on time:

0 =

∫ ∞
−∞

∂tm(x, z, t)dx

= −
∫ ∞
−∞

∂x(µx(x, z, t)m(x, z, t))dx−
∫ ∞
−∞

∂z(µz(z)n(z)m(x, t|z))dx

+

∫ ∞
−∞

∂xx(
1
2
σ2
x(x, z, t)m(x, z, t))dx+

∫ ∞
−∞

∂zz(
1
2
σ2
z(z, t)n(z)m(x, t|z))dx

+

∫ ∞
−∞

Hv(v(x, z, t), x, z)m(x, z, t)dx

= −
∫ ∞
−∞

∂x(µx(x, z, t)m(x, z, t))dx− ∂z(µz(z)n(z))

∫ ∞
−∞

m(x, t|z)dx

− µz(z)n(z)

∫ ∞
−∞

∂z(m(x, t|z))dx

+

∫ ∞
−∞

∂xx(
1
2
σ2
x(x, z, t)m(x, z, t))dx+ ∂zz(

1
2
σ2
z(z, t)n(z))

∫ ∞
−∞

m(x, t|z)dx

+ 2∂z(
1
2
σ2
z(z, t)n(z))

∫ ∞
−∞

∂zm(x, t|z)dx+ 1
2
σ2
z(z, t)n(z)

∫ ∞
−∞

∂zzm(x, t|z)dx

+

∫ ∞
−∞

Hv(v(x, z, t), x, z)m(x, z, t)dx

Using the p.d.e for n:

0 =−
∫ ∞
−∞

∂x(µx(x, z, t)m(x, z, t))dx

− µz(z)n(z)

∫ ∞
−∞

∂zm(x, t|z)dx+

∫ ∞
−∞

∂xx(
1
2
σ2
x(x, z, t)m(x, z, t))dx

+ 2∂z(
1
2
σ2
z(z, t)n(z))

∫ ∞
−∞

∂zm(x, t|z)dx+ 1
2
σ2
z(z, t)n(z)

∫ ∞
−∞

∂zzm(x, t|z)dx

+

∫ ∞
−∞

Hv(v(x, z, t), x, z)m(x, z, t)dx

Exchanging the integrals with derivatives:

0 =−
∫ ∞
−∞

∂x(µx(x, z, t)m(x, z, t))dx

− µz(z)n(z)∂z

∫ ∞
−∞

m(x, t|z)dx+

∫ ∞
−∞

∂xx(
1
2
σ2
x(x, z, t)m(x, z, t))dx

+ 2∂z(
1
2
σ2
z(z, t)n(z))∂z

∫ ∞
−∞

m(x, t|z)dx

+ 1
2
σ2
z(z, t)n(z)∂zz

∫ ∞
−∞

m(x, t|z)dx+

∫ ∞
−∞

Hv(v(x, z, t), x, z)m(x, z, t)dx
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But since for all z:

1 =

∫ ∞
−∞

m(x, t|z)dx then 0 = ∂z

∫ ∞
−∞

m(x, t|z)dx = ∂zz

∫ ∞
−∞

m(x, t|z)dx

then

0 =−
∫ ∞
−∞

∂x(µx(x, z, t)m(x, z, t))dx+

∫ ∞
−∞

∂xx(
1
2
σ2
x(x, z, t)m(x, z, t))dx

+

∫ ∞
−∞

Hv(v(x, z, t), x, z)m(x, z, t)dx

Using the boundedness of µ and integrability of m:∫
∂x(µx(x, z, t)m(x, z, t))dx = µx(x, z, t)m(x, z, t)|x=∞

x=−∞ = 0

Finally, using the boundedness and integrability of m at infinity, we get:∫ ∞
−∞

∂xx(
1
2
σ2
x(x, z, t)m(x, z, t))dx = ∂x(

1
2
σ2
x(x, z, t)m(x, z, t))|x=∞

x=−∞

+ ∂x(
1
2
σ2
x(x, z, t)m(x, z, t))|x=x̄−(z,t)

x=x̄+(z,t) = ∂x(
1
2
σ2
x(x, z, t)m(x, z, t))|x=x̄−(z,t)

x=x̄+(z,t)

= 1
2
σ2
x(x̄(z), z, t)∂x(m(x, z, t))|x=x̄−(z,t)

x=x̄+(z,t)

Replacing these expression we obtain the desired result. �
Proof. (of Lemma 5). Let g(z, t) = ua(x̄a(z, t), z), t)−ub(x̄b(z, t), z), t) then

∫
(ua−ub)(ma−

mb)dx =
∫

(va − vb)(ma −mb)dx+
∫
g(ma −mb)dx. But

∫
ma(x, z, t)dx =

∫
mb(x, z, t)dx =

n(z) so that
∫
g(z, t)(ma(x, z, t)−mb(x, z, t))dx = g(z, t)[n(z)− n(z)] = 0.

�

Proof. (of Lemma 6) Start with

d

dt
K̄(t) =

∫
d

dt
K(t, z)dz =

∫ ∫
d

dt
(ua − ub)(ma −mb)dxdz

=

∫ ∫
(ma −mb)∂t(u

a − ub)dxdz +

∫ ∫
(ua − ub)∂t(ma −mb)dxdz

Using p.d.e. obtained from the HJB equation:∫ ∫
(ma −mb)∂t(u

a − ub)dxdz

=

∫ ∫
(ma −mb)ρ(ua − ub)dxdz −

∫ ∫
(ma −mb)(F (ma)− F (mb))dxdz

−
∫ ∫

(ma −mb)(H(va)−H(vb))dxdz −
∫ ∫

(ma −mb)L(ua − ub)dxdz
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and using the p.d.e. obtained from the KF equation:∫ ∫
(ua − ub)∂t(ma −mb)dxdz

=

∫ ∫
(ua − ub)L∗(ma −mb)dxdz +

∫ ∫
(ua − ub)(Hv(v

a)ma −Hv(v
b)mb)dxdz

Use that [ua(x, z, t)− ub(x, z, t)]− [va(x, z, t)− vb(x, z, t)] = g(z, t) where the function g
does not depend on x, then∫ ∫

(ua − ub)∂t(ma −mb)dxdz −
∫ ∫

(va − uv)∂t(ma −mb)dxdz

=

∫ ∫
g∂t(m

a −mb)dxdz =

∫
g

[∫
∂t(m

a −mb)dx

]
dz = 0

since
∫
∂tm

adx =
∫
∂tm

bdx = 0 for any z. Thus:∫ ∫
(ua − ub)∂t(ma −mb)dxdz =

∫ ∫
(va − vb)∂t(ma −mb)dxdz

=

∫ ∫
(va − vb)L∗(ma −mb)dxdz +

∫ ∫
(va − vb)(Hv(v

a)ma −Hv(v
b)mb)dxdz

Finally, using the linearity of L and the definition of g above:∫ ∫
(ma −mb)L(ua − ub)dxdz −

∫ ∫
(ma −mb)L(va − vb)dxdz

=

∫ ∫
(ma −mb)L(g)dxdz =

∫
L(g)

[∫
(ma −mb)dx

]
dz = 0

since
∫
madx =

∫
mbdx = n for any z.

Thus

d

dt
K̄(t) = −

∫ ∫
(ma −mb)(F (ma)− F (mb))dxdz −

∫ ∫
(ma −mb)(H(va)−H(vb))dxdz

+ ρK(t) +

∫ ∫
(va − vb)L∗(ma −mb)dxdz −

∫ ∫
(ma −mb)L(va − vb)dxdz

+

∫ ∫
(va − vb)(Hv(v

a)ma −Hv(v
b)mb)dxdz

�

Proof. (of Lemma 7)
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Let v̂ = va − vb and m̂ = ma −mb. Use the linearity of the operator to get:∫ ∫
(va − vb)L∗(ma −mb) dxdz =

∫ ∫
v̂L∗(m̂) dxdz

= −
∫ ∫

v̂ ∂x(µxm̂) dxdz −
∫ ∫

v̂ ∂z(µzm̂) dzdx

+

∫ ∫
v̂ ∂xx(

1
2
σ2
xm̂) dxdz +

∫ ∫
v̂ ∂zz(

1
2
σ2
zm̂) dzdx

Likewise: ∫ ∫
(ma −mb)L(va − vb) dxdz =

∫ ∫
m̂L(v̂) dxdz

=

∫ ∫
m̂µx ∂xv̂ dxdz +

∫ ∫
m̂µz ∂zv̂ dzdx

+

∫ ∫
m̂1

2
σ2
x ∂xxv̂ dxdz +

∫ ∫
m̂1

2
σ2
z ∂zzv̂ dzdx

Notice we have changed the order of integration across terms.
To compute

∫ ∫
v̂L∗(m̂)dxdz we use that for a fixed z we integrate by parts with respect

to x to obtain:

−
∫
v̂ ∂x(µxm̂) dx =

∫
µxm̂∂x(v̂) dx− v̂µxm̂|∞−∞∫

v̂ ∂xx(
1
2
σ2
xm̂) dx = −

∫
∂xv̂ ∂x(

1
2
σ2
xm̂) dx

+ v̂ ∂x(
1
2
σ2
xm̂)|x̄

a
−
−∞ + v̂ ∂x(

1
2
σ2
xm̂)|x̄

b
−
x̄a+

+ v̂ ∂x(
1
2
σ2
xm̂)|∞x̄b+

and for a fixed x we integrate by parts with respect to z to obtain:

−
∫
v̂ ∂z(µzm̂) dz =

∫
µzm̂ ∂zv̂ dz − v̂µzm̂|∞−∞∫

m̂1
2
σ2
z ∂zzv̂ dz = −

∫
∂z(m̂

1
2
σ2
z) ∂zv̂ dz + m̂1

2
σ2
z ∂zv̂|∞−∞

Likewise to compute −
∫ ∫

m̂L(v̂) dxdz we use that for a fixed z we integrate by parts
with respect to x to obtain:

−
∫
m̂µx ∂xv̂ dx =

∫
v̂ ∂xm̂µx dx− m̂µxv̂|∞−∞

−
∫
m̂1

2
σ2
x ∂xxv̂ dx =

∫
∂x(m̂

1
2
σ2
x) ∂xv̂ dx− m̂1

2
σ2
x ∂xv̂|∞−∞
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and for a fixed x we integrate by parts with respect to x to obtain:

−
∫
m̂µz ∂zv̂ dz =

∫
v̂ ∂z(m̂µz) dz − m̂µz ∂zv̂|∞−∞

−
∫
m̂1

2
σ2
z ∂zzv̂ dz =

∫
∂z(m̂

1
2
σ2
z) ∂zv̂ dz − m̂1

2
σ2
z ∂zv̂|∞−∞

Using the properties assumed for µ, σ2 and the integrability assumptions for vi and mi at
a regular classical equilibrium we get that for a fixed z:

0 = v̂µxm̂|∞−∞ = v̂ ∂x(
1
2
σ2
xm̂)|∞−∞ = m̂µxv̂|∞−∞ = m̂1

2
σ2
x ∂xv̂|∞−∞

and likewise for a fixed x we get:

0 = v̂µzm̂|∞−∞ = m̂1
2
σ2
z ∂zv̂|∞−∞ = m̂µz ∂zv̂|∞−∞ = m̂1

2
σ2
z ∂zv̂|∞−∞

Note that

A = v̂ ∂x(
1
2
σ2
xm̂)|x̄

a
−
−∞ + v̂ ∂x(

1
2
σ2
xm̂)|x̄

b
−
x̄a+

+ v̂ ∂x(
1
2
σ2
xm̂)|∞x̄b+

= v̂ ∂x(
1
2
σ2
xm̂)|x̄

a
−
x̄a+

+ v̂ ∂x(
1
2
σ2
xm̂)|x̄

b
−
x̄b+

Using that ∂xσ
2
x(x, z) and m(x, z, t) are continuous on x everywhere we obtain:

A ≡v̂ ∂x(1
2
σ2
xm̂)|x̄

a
−
x̄a+

+ v̂ ∂x(
1
2
σ2
xm̂)|x̄

b
−
x̄b+

= v̂ 1
2
σ2
x ∂xm̂)|x̄

a
−
x̄a+

+ v̂ 1
2
σ2
x ∂xm̂|

x̄b−
x̄b+

At this point it may be more clear to write all the arguments. In particular

A(z, t) =
(
va(x̄a(z, t), z, t)− vb(x̄a(z, t), z, t)

)
1
2
σ2
x(x̄

a(z, t), z)

×
(
∂xm

a(x, z, t)− ∂xmb(x, z, t)
)
|x=x̄a−(z,t)

x=x̄a+(z,t)

+
(
va(x̄b(z, t), z, t)− vb(x̄b(z, t), z, t)

)
1
2
σ2
x(x̄

b(z, t), z)

×
(
∂xm

a(x, z, t)− ∂xmb(x, z, t)
)
|x=x̄b−(z,t)

x=x̄b+(z,t)

Using that ∂xm
a(x, z, t) is continuous at x̄b(z, t) and that ∂xm

b(x, z, t) is continuous at x̄a(z, t)
whenever x̄a(z, t) 6= x̄b(z, t). Also we use that va(x̄a(z, t), z, t) = vb(x̄b(z, t), z, t) = 0, then

A(z, t) =− vb(x̄a(z, t), z, t)1
2
σ2
x(x̄

a(z, t), z)∂xm
a(x, z, t)|x=x̄a−(z,t)

x=x̄a+(z,t)

− va(x̄b(z, t), z, t)1
2
σ2
x(x̄

b(z, t), z)∂xm
b(x, z, t)|x=x̄b−(z,t)

x=x̄b+(z,t)
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And using Lemma 4, we have:

1
2
σ2
x(x̄

a(z, t), z)∂xm
a(x, z, t)|x=x̄a−(z,t)

x=x̄a+(z,t) = −
∫ ∞
−∞

ma(x, z, t)Hv(v
a(x, z, t), x, z) dx

≥ −H̄v

∫ ∞
−∞

ma(x, z, t)dx = −H̄v n(z)

1
2
σ2
x(x̄

b(z, t), z)∂xm
b(x, z, t)|x=x̄b−(z,t)

x=x̄b+(z,t)
= −

∫ ∞
−∞

mb(x, z, t)Hv(v
a(x, z, t), x, z) dx

≥ −H̄v

∫ ∞
−∞

mb(x, z, t)dx = −H̄v n(z)

Hence we have that:∫ ∫
v̂L∗(m̂)dxdz −

∫ ∫
m̂L(v̂) dxdz

≡
∫ ∞
−∞

∫ ∞
−∞

(
va(x, z, t)− vb(x, z, t)

)
L∗(ma −mb)(x, z, t)dxdz

−
∫ ∞
−∞

∫ ∞
−∞

(
ma(x, z, t)−mb(x, z, t)

)
L(va − vb)(x, z, t)dxdz

≤ H̄v

∫ ∞
−∞

n(z) vb(x̄a(z, t), z, t)dz + H̄v

∫ ∞
−∞

n(z) va(x̄b(z, t), z, t)dz

�
Proof. (of Lemma 8) Fix a (x, z, t) an omit them to simplify the notation.

−
(
ma −mb

) (
H(va)−H(vb)

)
+
(
va − vb

) (
Hv(v

a)ma −Hv(v
b)mb

)
=ma

(
H(vb)−H(va) +Hv(v

a)
(
va − vb

))
+mb

(
H(va)−H(vb) +Hv(v

b)
(
vb − va

))
The concavity of H and the upper bound on the second derivative

H(vb)−H(va) +Hv(v
a)(va − vb) ≤ H̄vv(v

a − vb)2

H(va)−H(vb) +Hv(v
b)(vb − va) ≤ H̄vv(v

a − vb)2

Thus

−
(
ma −mb

) (
H(va)−H(vb)

)
+
(
va − vb

) (
Hv(v

a)ma −Hv(v
b)mb

)
≤ H̄vv(m

a +mb)(va − vb)2

�

Proof. (of Proposition 3) Since v(x, t) = u(x, t) −
∫
u(z, t)νε(z − x̄(t))dz does not depend

on x, then

∂xu(x, t) = ∂xv(x, t), and ∂xxu(x, t) = ∂xxv(x, t)
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Using that
∫ (

ma(x, t)−mb(x, t)
)
dx = 0, then:∫ (

va(x, t)− vb(x, t)
) (
ma(x, t)−mb(x, t)

)
dx

=

∫ (
ua(x, t)− ub(x, t)

) (
ma(x, t)−mb(x, t)

)
dx

We start with:

d

dt

∫ (
ua(x, t)− ub(x, t)

) (
ma(x, t)−mb(x, t)

)
dx

=

∫ (
ua(x, t)− ub(x, t)

)
∂t
(
ma(x, t)−mb(x, t)

)
dx

+

∫ (
ma(x, t)−mb(x, t)

)
∂t
(
ua(x, t)− ub(x, t)

)
dx

Using the properties of vi(x, t)−ui(x, t) = −ui(x̄i(t), t) for i = a, b, and that
∫

(ma−mb)dx
and its time derivative are zero:

d

dt

∫ (
ua(x, t)− ub(x, t)

) (
ma(x, t)−mb(x, t)

)
dx

=

∫ (
ua(x, t)− ub(x, t)

)
∂t
(
ma(x, t)−mb(x, t)

)
dx

+

∫ (
ma(x, t)−mb(x, t)

)
∂t
(
ua(x, t)− ub(x, t)

)
dx

=

∫ (
va(x, t)− vb(x, t)

)
∂t
(
ma(x, t)−mb(x, t)

)
dx

+

∫ (
ma(x, t)−mb(x, t)

)
∂t
(
ua(x, t)− ub(x, t)

)
dx

Using the p.d.e for the HJB in equation (45) and the one in KBF equation (46) to replace in
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the previous integrals as follows:

d

dt

∫ (
ua(x, t)− ub(x, t)

) (
ma(x, t)−mb(x, t)

)
dx

=

∫ (
va − vb

) (
L∗(ma −mb)

)
−
(
ma −mb

) (
L(ua − ub)

)
+ ρ

∫ (
ua − ub

) (
ma −mb

)
dx

+

∫ (
va − vb

) (
maHv (va)−mbHv

(
vb
))
dx

−
∫ (

ma −mb
) (
H (va)−H

(
vb
))
dx

−
∫ (

ma −mb
) (
F (x,ma)− F (x,mb)

)
dx

−
∫ (

va − vb
)((∫

Hv (va)ma

)
νa −

(∫
Hv

(
vb
)
mb

)
νb
)
dx

where we omit the arguments (x, t) or x from the different functions to simplify the notation,
and where we use the notation:

H
(
vi
)

as H

(
u(x, t)−

∫
ui(z, t)νε(z − x̄i(t))dz, x

)
Hv

(
vi
)

as Hv

(
u(x, t)−

∫
ui(z, t)νε(z − x̄i(t))dz, x

)
vi as u(x, t)−

∫
ui(z, t)νε(z − x̄i(t))dz

νi as νε(z − x̄i(t))

Using that ∂xv = ∂xu and ∂xxv = ∂xxu we can write:

d

dt

∫ (
ua(x, t)− ub(x, t)

) (
ma(x, t)−mb(x, t)

)
dx

=

∫ (
va − vb

) (
L∗(ma −mb)

)
−
(
ma −mb

) (
L(va − vb)

)
dx

+ ρ

∫ (
ua − ub

) (
ma −mb

)
dx

+

∫ (
va − vb

) (
maHv (va)−mbHv

(
vb
))
dx

−
∫ (

ma −mb
) (
H (va)−H

(
vb
))
dx

−
∫ (

ma −mb
) (
F (x,ma)− F (x,mb)

)
dx

−
∫ (

va − vb
)((∫

Hv (va)ma

)
νa −

(∫
Hv

(
vb
)
mb

)
νb
)
dx
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Thus we write:

d

dt

∫ (
ua − ub

) (
ma −mb

)
dx = ρ

∫ (
ua − ub

) (
ma −mb

)
dx

+ IL(t) + IH(t) + IF (t)

where

IL(t) ≡
∫ (

va − vb
) (
L∗(ma −mb)

)
−
(
ma −mb

) (
L(va − vb)

)
dx

IF (t) ≡ −
∫ (

ma −mb
) (
F (x,ma)− F (x,mb)

)
dx

IH(t) ≡
∫ (

va − vb
) (
maHv (va)−mbHv

(
vb
))
dx

−
∫ (

ma −mb
) (
H (va)−H

(
vb
))
dx

−
∫ (

va − vb
)((∫

Hv (va)ma

)
νa −

(∫
Hv

(
vb
)
mb

)
νb
)
dx

Next, we obtain an inequality from each of the following terms.

1. We have that
IL(t) = 0

since L and L∗ are adjoints. In particular by integrating by parts twice, and using the
boundary conditions in equation (43) and equation (44).

2. IF (t) ≤ 0: holds directly by Assumption on monotonicity of F , i.e. that∫ (
ma −mb

) (
F (x,ma)− F (x,mb)

)
dx ≥ 0.

3. IH(t) ≤
∫ [
ma +mb

] (
va − vb

)2
H̄vvdx. This follows from expanding each term, i.e

IH(t) ≡
∫ (

va − vb
) (
maHv (va)−mbHv

(
vb
))
dx

−
∫ (

ma −mb
) (
H (va)−H

(
vb
))
dx

−
∫ (

va − vb
)((∫

Hv (va)ma

)
νa −

(∫
Hv

(
vb
)
mb

)
νb
)
dx

We use a first order expansion:

H(y1, x) = H(y2, x) +Hv(y2, x) (y1 − y2) +Hvv(ỹ, x) (y1 − y2)2

for some ỹ ∈ [y1, y2]. Letting y1 = vb(x, t) and y2 = va(x, t), or reversing it with
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y1 = va(x, t) and y2 = vb(x, t) , and omitting arguments:

H(vb)−H(va) = Hv(v
a)
(
vb − va

)
+Hvv(ṽ

ba, x)
(
va − vb

)2

H(va)−H(vb) = Hv(v
b)
(
va − vb

)
+Hvv(ṽ

ba, x)
(
va − vb

)2

Thus:(
va − vb

) (
maHv(v

a)−mbHv(v
b)
)
−
(
ma −mb

) (
H(va)−H(vb)

)
=
(
va − vb

) (
maHv(v

a)−mbHv(v
b)
)

+ma
(
H(vb)−H(va)

)
+mb

(
H(va)−H(vb)

)
=
[
maHvv(ṽ

ba, x) +mbHvv(ṽ
ba, x)

] (
va − vb

)2

≤
[
ma +mb

] (
va − vb

)2
H̄vv

Integrating across x:

IH(t) =

∫ [
ma +mb

] (
va − vb

)2
H̄vvdx

−
∫ (

va − vb
)((∫

Hv (va)ma

)
νa −

(∫
Hv

(
vb
)
mb

)
νb
)
dx

We can rewrite the last line to get:

IH(t) =

∫ [
ma +mb

] (
va − vb

)2
H̄vvdx

−
(∫

Hv (va)madx

)∫ (
va − vb

)
νadx

−
(∫

Hv

(
vb
)
mbdx

)∫ (
vb − va

)
νbdx

Using the definition we have:∫
vaνadx =

∫ [
ua(x, t)−

∫
ua(z, t)νε(z − x̄a(t))dz

]
νε(x− x̄a(t))dx

=

∫
ua(x, t)νε(x− x̄a(t))dx−

∫
ua(z, t)νε(z − x̄a(t))dz = 0

and ∫
vbνadx =

∫ [
vb(x, t)

]
νε(x− x̄a(t))dx ≥ 0

Thus: ∫ (
va − vb

)
νadx ≤ 0 and

∫ (
vb − va

)
νbdx ≤ 0
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and using that

−
(∫

Hv (va)madx

)
≥ 0 and −

(∫
Hv

(
vb
)
mbdx

)
≥ 0

Hence we obtain the desired result:

IH(t) ≤H̄vv

∫ [
ma +mb

] (
va − vb

)2
dx

Combining the expressions for IL(t), IH(t), IF (t) we obtain the desired results.
�

8 Discrete Time Version: Costly Probabilities

In this section we write a discrete time version of the problem in Section 3.1, and show that
its continuous time limit is given by equation (9).

We let ∆ be the length of the time period. We assume that when x is uncontrolled it
evolves as:

xt+∆ = xt + µ(xt)∆ + σ(xt)
√

∆ et+∆

where

et+∆ =

{
+1 with probability = 1

2

−1 with probability = 1
2

and where et+∆ is independent of eτ for any τ .
To simplify notation, we let f(x, t) = F (x, (m(t)). We use a discount factor given by

1/(1 + ∆ρ).
We denote the value function by u(x, t). We measure the value function at the end of the

period t, after the decision of adjustment has been made. At this time the agent has a value
x and the time is t. So the agent gets f(x, t)∆ flow cost during the discrete time period t
to t + ∆. At the end of period t the agent decides the probability λ per unit of time for an
adjustment opportunity. The agent pays a cost c(x, λ)∆ if it chooses λ. After λ is chosen,
at the beginning of next period, the binomial random variable at+∆ is realized. If at+∆ = 1,
then the agent can set the state at any desired value. We assume that the agent decides the
new value of x, before seeing the realization of et+∆.

Before writing down the discrete time Bellman equation, we introduce the following no-
tation for the conditional expectation of the next period value function:

Ex(ut+∆) ≡ 1

2
u
(
x+ µ(x)∆ + σ(x)

√
∆, t+ ∆

)
+

1

2
u
(
x+ µ(x)∆− σ(x)

√
∆, t+ ∆

)
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We can now write the discrete time Bellman equation for this problem:

u(x, t) = f(x, t)∆ + min
{0≤λ≤1/∆}

c(x, λ)∆

+
1

1 + ρ∆
(1− λ∆)Ex(ut+∆) +

1

1 + ρ∆
λ∆u(x̄t+∆, t+ ∆)

where x̄t+∆ = arg min
z
u(z, t+ ∆)

The first term of the right hand side is the period cost. The second term has the cost
of selecting λ. The third and fourth terms correspond to the continuation. The third term
corresponds to the case where the agent does not get the opportunity to adjust. The last
one contains the case where the agent has a possibility of adjusting the state.

Now we derive, heuristically, the continuous time limit HJB equation. Multiplying both
sides by (1 + ρ∆)

(1 + ρ∆)u(x, t) = f(x, t)(1 + ρ∆)∆ + min
{0≤λ≤1/∆}

c(x, λ)(1 + ρ∆)∆

+ (1− λ∆)Ex(ut+∆) + λ∆u(x̄t+∆, t+ ∆)

rearranging

ρ∆u(x, t) = f(x, t)(1 + ρ∆)∆ + (1 + ρ∆) min
{0≤λ≤1/∆}

c(x, λ)(1 + ρ∆)∆

+ Ex(ut+∆)− u(x, t) + λ∆ [u(x̄t+∆, t+ ∆)− Ex(ut+∆)]

Dividing by ∆

ρu(x, t) = f(x, t)(1 + ρ∆) + (1 + ρ∆) min
{0≤λ≤1/∆}

c(x, λ)(1 + ρ∆)

+
Ex(ut+∆)− u(x, t)

∆
+ λ [u(x̄t+∆, t+ ∆)− Ex(ut+∆)]

Taking ∆ ↓ 0 and using that :

Ex(ut+∆)− u(x, t)

∆
→ ux(x, t)µ(x) +

σ2(x)

2
uxx(x, t) + ut(x, t)

Ex(ut+∆)→ u(x, t)

u(x̄t+∆, t+ ∆)→ u(x̄(t), t)

f(x, t)(1 + ρ∆)→ f(x, t)

We obtain the desired result:

ρu(x, t) = f(x, t) + min
{0≤λ}

c(x, λ) + λ [u(x̄(t), t)− u(x, t)]

+ ux(x, t)µ(x) +
σ2(x)

2
uxx(x, t) + ut(x, t)
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9 Discrete Time Version: Random Fixed Cost Model

In this section we write a discrete time version of the problem in Section 3.2, and show that
its continuous time limit is given by equation (14).

We let ∆ be the length of the time period. We assume that when x is uncontrolled it
evolves as:

xt+∆ = xt + µ(xt)∆ + σ(xt)
√

∆ et+∆

where

et+∆ =

{
+1 with probability = 1

2

−1 with probability = 1
2

and where et+∆ is independent of eτ for any τ . We consider another random variable, bino-
mially distributed, which we denote by a which has the interpretation than when a = 1 the
firm has an opportunity to adjust, and when a = 0 it does not.

at+∆ =

{
1 with probability = κ(xt)∆

0 with probability = 1− κ(xt)∆

for some function κ. Conditionally on xt, we assume that the realization of at+∆ are inde-
pendently distributed of eτ for any τ .

To simplify notation, we let f(x, t) = F (x, (m(t)). We use a discount factor given by
1/(1 + ∆ρ).

We denote the value function by u(x, t). We measure the value function at the end of the
period t, after the decision of adjustment has been made. At this time the agent has a value
x and the time is t. So the agent gets f(x, t)∆ flow cost during the discrete time period t to
t+ ∆. At the beginning of next period, two random variables are realized, independently of
each other, are realized: at+∆ and et+∆. If at+∆ = 1, which occurs with probability κ(x)∆,
the firm can adjust its state. In particular, if at+∆ = 1, the agent draws a fixed cost ψ from
a distribution with CDF given by G. The realization of ψ is independent of the realizations
of eτ and a′τ for all τ, τ ′. We assume that the agent has to decide whether to adjust x or not,
before seeing the realization of et+∆.

Before writing down the discrete time Bellman equation, we introduce the following no-
tation for the conditional expectation of the next period value function:

Ex(ut+∆) ≡ 1

2
u
(
x+ µ(x)∆ + σ(x)

√
∆, t+ ∆

)
+

1

2
u
(
x+ µ(x)∆− σ(x)

√
∆, t+ ∆

)
We can now write the discrete time Bellman equation for this problem:

u(x, t) = f(x, t)∆ +
1

1 + ρ∆
(1− κ(x)∆)Ex(ut+∆)

+
1

1 + ρ∆
κ(x)∆

∫
min {Ex(ut+∆) , ψ + u(x̄t+∆, t+ ∆)} dG(ψ)

where x̄t+∆ = arg min
z
u(z, t+ ∆)

The first term of the right hand side is the period cost. The second and third term correspond
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to the continuation. The second term corresponds to the case where the agent does not get
the opportunity to adjust. The last one contains the case where the agent has a possibility
of adjusting the state. This last term contains the only decision of the problem.

Now we derive, heuristically, the continuous time limit HJB equation. Multiplying both
sides by (1 + ρ∆)

(1 + ρ∆)u(x, t) = f(x, t)(1 + ρ∆)∆ + (1− κ(x)∆)Ex(ut+∆)

+ κ(x)∆

∫
min {Ex(ut+∆) , ψ + u(x̄t+∆, t+ ∆)} dG(ψ)

rearranging

u(x, t)ρ∆ = f(x, t)(1 + ρ∆)∆ + Ex(ut+∆)− u(x, t)

+ κ(x)∆

[∫
min {Ex(ut+∆) , ψ + u(x̄t+∆, t+ ∆)} dG(ψ)− Ex(ut+∆)

]
collecting terms in the minimum:

u(x, t)ρ∆ = f(x, t)(1 + ρ∆)∆ + Ex(ut+∆)− u(x, t)

+ κ(x)∆

∫
min {0 , ψ + u(x̄t+∆, t+ ∆)− Ex(ut+∆)} dG(ψ)

Dividing by ∆

u(x, t)ρ = f(x, t)(1 + ρ∆) +
Ex(ut+∆)− u(x, t)

∆

+ κ(x)

∫
min {0 , ψ + u(x̄t+∆, t+ ∆)− Ex(ut+∆)} dG(ψ)

Taking ∆ ↓ 0 and using that :

Ex(ut+∆)− u(x, t)

∆
→ ux(x, t)µ(x) +

σ2(x)

2
uxx(x, t) + ut(x, t)

Ex(ut+∆)→ u(x, t)

u(x̄t+∆, t+ ∆)→ u(x̄(t), t)

f(x, t)(1 + ρ∆)→ f(x, t)

We obtain the desired result:

ρu(x, t) = f(x, t) + ux(x, t)µ(x) +
σ2(x)

2
uxx(x, t) + ut(x, t)

+ κ(x)

∫
min {0 , ψ + u(x̄(t), t)− u(x, t)} dG(ψ)
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