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a b s t r a c t

We address the problem of estimating generalized linear models when some covariate values aremissing
but imputations are available to fill-in the missing values. This situation generates a bias-precision trade-
off in the estimation of the model parameters. Extending the generalized missing-indicator method
proposed by Dardanoni et al. (2011) for linear regression, we handle this trade-off as a problem of
model uncertainty using Bayesian averaging of classical maximum likelihood estimators (BAML). We also
propose a blockmodel averaging strategy that incorporates information on themissing-data patterns and
is computationally simple. An empirical application illustrates our approach.
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1. Introduction

In this paper we address the problem of estimating general-
ized linear models (GLMs) when the outcome of interest is always
observed, some covariate values are missing, and imputations are
available to fill-in the missing values. This situation is becoming
quite common, as public-use data files increasingly include impu-
tations of key variables affected by item nonresponse. The focus of
this paper is on how to make use of the available imputations, not
on methods to impute the missing values.

Two standard approaches to the problem of missing covari-
ate values are complete-case analysis and the fill-in approach.
The first drops all the observations with missing values ignoring
the imputations altogether, while the second fills-in the missing
values with the available imputations without distinguishing be-
tween observed and imputed values. Under certain conditions on
themissing-datamechanism and the imputationmodel, the choice
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between these two approaches generates a trade-off between
bias and precision in the estimation of the parameters of interest.
When the complete cases are few the loss of precisionmay be sub-
stantial, but just filling-in the missing values with the imputations
may lead to bias when the imputation model is either incorrectly
specified or uncongenial in the sense of Meng (1994), that is, the
imputation model is more restrictive than the model used to ana-
lyze the filled-in data. Validity of the assumptions behind the fill-in
approach is often taken for granted, so this bias-precision trade-off
is usually ignored. However, when imputations are provided by
an external source, the congeniality assumption may fail because
the two models are based on different parametric assumptions or
they condition on different sets of covariates. The estimates from
the fill-in approachmay therefore be inconsistent, especially in the
case of nonlinear estimators.

Using the generalized missing-indicator approach originally
proposed for linear regression byDardanoni et al. (2011), we trans-
form the bias-precision trade-off between complete-case analysis
and the fill-in approach into a problem of model uncertainty re-
garding which covariates should be dropped from an augmented
GLM, or ‘grand model’, which includes two subsets of regressors:
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the focus covariates, corresponding to the observed or imputed
covariates, and a set of auxiliary regressors consisting of binary
indicators for the various missing-data patterns and their inter-
actions with the focus regressors. Our formulation of the bias-
precision trade-off in terms of model uncertainty exploits the fact
that complete-case analysis and the fill-in approach correspond
to two extreme specifications of the grand model. Complete-case
analysis corresponds to using an unrestricted specification, while
the fill-in approach corresponds to using a restricted specification
that includes only the focus regressors. Instead of focusing on these
extreme specifications of the grand model, we consider Bayesian
averaging of classical maximum likelihood estimators (BAML) that
takes into account all the intermediate specifications obtained by
dropping from the grand model alternative subsets of auxiliary re-
gressors associated with the various missing-data patterns. In this
waywe avoid restricting attention to the complete cases but, at the
same time, we exploit the available imputations in a sensible way
by allowing the imputationmodel to be incorrectly specified or un-
congenial with the GLM of interest. The extreme choices of using
either the complete-case or the fill-in approach are still available,
but neither is likely to emerge as the best one since all the interme-
diatemodels in the expandedmodel space carry information about
the parameters of interest.

In addition to extending the generalized missing-indicator
method to the wide class of GLMs, we depart from Dardanoni et al.
(2011) in three important respects. First, we propose a new block
model averaging strategy that incorporates the information on the
available patterns of missing data while being computationally
simple. Second, we allow the observed outcome to bemultivariate,
thus covering the case of seemingly unrelated regression equations
models and ordered, multinomial or conditional logit and probit
models. Third, we investigate the robustness of our block-BAML
procedure to the choice of priors by considering two families of
prior distributions: the calibrated information criteria priors intro-
duced by Clyde (2000), which use approximations based on the
Laplace method for integrals to calibrate posterior model proba-
bilities to classical model section criteria, and the conjugate priors
for GLMs introduced by Chen and Ibrahim (2003), which allow to
directly estimate posterior model probabilities using a computa-
tionally simple Markov chain Monte Carlo algorithm.

In our empirical illustrationwe analyze how cognitive function-
ing varies with physical health and socio-economic status using
data from the fourth wave of the Survey on Health, Aging and Re-
tirement in Europe (SHARE). Like for other household surveys, sen-
sitive variables such as household income, household net worth,
and other objective health measures are affected by substantial
item nonresponse. Using the imputations contained in the public-
use SHARE data, we investigate the bias-precision trade-off arising
fromdifferent approaches for dealingwith the problem of imputed
covariates inGLMs. Further,we employmultiple imputationmeth-
ods to account for the additional sampling uncertainty due to the
imputation of missing covariate values.

The remainder of the paper is organized as follows. Section 2
presents our statistical framework. Section 3 discusses complete-
case analysis and the fill-in approach. Section 4 describes the gen-
eralized missing-indicator method. Section 5 discusses our BAML
procedure. Section 6 extends our results to the case of multivari-
ate outcomes. Section 7 presents an empirical application. Finally,
Section 8 offers some conclusions.

2. Statistical framework

We represent the available set ofN observations on an outcome
of interest as a realization of a random vector Y = (Y1, . . . , YN),
whose components are independently distributed random vari-
ables with mean µn and finite nonzero variance σ 2
n .

1 We assume
that the distribution of any component Yn of Y belongs to the one-
parameter linear exponential family with density function of the
form

f (y; γn) = exp [γn y − b(γn) + c(y)] , (1)

where γn is a scalar parameter called the canonical parameter, b(·)
is a known, strictly convex and twice differentiable function, and
c(·) is a known function.2 By the properties of the linear exponen-
tial family, the mean and variance of Yn are equal to µn = b′(γn)
and σ 2

n = b′′(γn) respectively (McCullagh and Nelder, 1989). Dif-
ferent choices of the functions b(·) and c(·) result in different distri-
butions within this family. For example, letting b(γn) = γ 2

n /2 and
c(y) = −1/2[y2 + ln(2π)] gives the density of a normal distribu-
tionwithmean γn and unit variance, while letting b(γn) = exp(γn)
and c(y) = − ln(y!) gives the density of a Poisson distributionwith
intensity parameter equal to exp(γn).

In a GLM the dependence of Yn on a vector of covariates Xn (as-
sumed to include a constant term) is modeled by assuming that
there exists a continuously differentiable and invertible function
h(·), known as the inverse link, such that the mean of Yn is equal
to µn = h(X⊤

n β) for a unique value of the K -dimensional parame-
ter vector β . The linear combination ηn = X⊤

n β is called the linear
predictor associated with the nth observation. Collecting together
the linear predictors associatedwith the sample observations gives
the N-dimensional vector η = Xβ , where X is the N × K matrix of
observations on the covariates with nth row equal to X⊤

n .
In the absence of missing data, the classical approach to esti-

mating β is maximum likelihood (ML). The sample log-likelihood
for the missing-free data is

L(β) = c +

N
n=1

[γn(β) Yn − b (γn(β))] ,

where γn(β) is the unique root of the equation b′(γ ) = h(X⊤
n β)

and the missing-free data ML estimatorβ of β is obtained by solv-
ing the system of K likelihood equations

0 = L′(β) =

N
n=1

v(X⊤

n β)

Yn − h(X⊤

n β)

Xn,

with v(X⊤
n β) = h′(X⊤

n β)/b′′(γn(β)). Provided the assumed
model is correctly specified, and the mild regularity conditions in
Fahrmeir and Kaufmann (1985) hold, β is unique, consistent, and
asymptotically normal with asymptotic variance equal to the in-
verse of the Fisher information matrix. The fact that β enters the
likelihood equations only through the linear predictor ηn = X⊤

n β is
the key property of GLMs that drives ourmain result in Theorem 1.
If b′(·) = h(·) (the ‘‘canonical link’’ case), then γn(β) = X⊤

n β and
the likelihood equations simplify considerably because v(X⊤

n β) =

1 for all n. An example is the Gaussian model with identity link
h(X⊤

n β) = X⊤
n β , where the likelihood equations reduce to the fa-

miliar normal equations for OLS.
In this paper we depart from the standard GLM setup by al-

lowing some covariate values to be missing. We also assume that
imputations, as provided by an external source (typically the pro-
ducers of the dataset), are available to fill-in the missing covariate
values. Since the constant term is always observed, the number of
possiblemissing-data patterns is equal to 2K−1. Not all the possible

1 Vectors are always column vectors, and boldface denotes vector and matrices
of sample observations or of functions of sample observations.
2 In the original formulation of Nelder andWedderburn (1972), the density in Eq.

(1) includes an additional dispersion parameter which, without loss of generality,
we set equal to one.
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patterns need be present in the data, so we index by j = 0, . . . , J
the patterns that are present, with j = 0 corresponding to the
subsample with complete data and J ≤ 2K−1

− 1. We assume
that the jth subsample contains Nj observations, Kj observed (non
missing) covariates and K − Kj missing covariates. By definition,J

j=0 Nj = N, K0 = K , and 1 ≤ Kj ≤ K for j = 1, . . . , J . For
each missing-data pattern, let Yj be the Nj × 1 vector of observa-
tions on the outcome and let Xj be theNj ×K matrix containing the
values of the covariates, which could be either observed or miss-
ing. Clearly X0 is always observed. To keep track of which covariate
values are missing we define the N × K missing indicator matrix
M , with (n, k)th element equal to one if the kth covariate is miss-
ing for the nth observation, and to zero otherwise. Finally, for each
subsample j = 1, . . . , J with missing covariates we denote by Wj
the Nj × K matrix containing the values of the Kj observed covari-
ates and the imputed values of the K − Kj missing covariates. We
shall refer toWj as the filled-in designmatrix for the jth subsample.

3. Complete-case analysis and the fill-in approach

This section discusses the two standard approaches to the prob-
lem of missing covariate values, namely complete-case analysis
and the fill-in approach.

3.1. Complete-case analysis

This amounts to estimating a GLM on the subsample [X0, Y0]

without missing covariates, ignoring the imputations altogether.
Complete-case analysis is a useful benchmark because it gives
a consistent ML estimator β0 of β under the following two
assumptions (Wooldridge, 2010, p. 798):

Assumption 1. The Fisher information matrix for the subsample
with complete data is positive definite with probability approach-
ing one as N → ∞.

Assumption 2. Y and M are independent conditionally on X .

Assumption 1 guarantees that the model parameters are iden-
tified using only the information in the subsample with complete
data. Because the function b(·) is strictly convex, this identifiability
assumption holds if the matrix N−1X⊤

0 X0 converges in probability
to a positive definite matrix as N → ∞.

Assumption 2 implies that the conditional distribution of
Y given X is the same in subsamples with and without
missing covariates. Given the true value of the covariates, the
pattern of missing data can then be ignored when predicting Y .
Notice that this conditional independence assumption is stronger
than the conditional mean independence assumption needed to
ensure unbiasedness of the complete-case OLS estimator of β in
classical linear regression models, but is weaker than the missing
completely at random (MCAR) assumption which instead requires
that the distribution of M does not depend on Y and X . Also
notice that Assumption 2 is not the same as the standard missing
at random (MAR) assumption usually imposed when imputing
missing values. Indeed, MAR requires the missing-data process
to be independent of the missing covariates given the observed
data (Rubin, 1976, Seaman et al., 2013). For example, suppose
that health is the outcome of interest and income is a covariate
subject to missing data problems. If missing income depends on
true income but not on health, then conditional independence
is satisfied but MAR is not, while if missing income depends on
health but not on true income thenMAR is satisfied but conditional
independence is not. Thus Assumption 2 is neither stronger nor
weaker than MAR.

However, even when Assumptions 1 and 2 hold, the severe
loss of precision that complete-case entails when the fraction of
missing data is substantial cannot be ignored.
3.2. Fill-in approach

Reordering the observations by stacking on top of each other
the J + 1 available missing-data patterns gives

Y =


Y0
Y1
...
YJ

 , W =


X0
W1
...

WJ

 ,

where the N × K matrix W is the filled-in design matrix for the
whole sample. The fill-in approach consists of estimating a GLM
for Y replacing X byW .

In addition to the assumption that the population model is cor-
rectly specified and identifiable, the validity of this approach re-
quires two conditions. The first is that the model used to create
the imputations is correctly specified, including the assumptions
on the posited missing-data mechanism. The second is that the
imputation model and the GLM for the filled-in data [Y ,W ] are
congenial in the sense of Meng (1994), i.e. the imputation model
cannot be more restrictive than the model used to analyze the
filled-in data. Uncongeniality may occur, for instance, when the
model of interest and the imputationmodel are based either on dif-
ferent parametric assumptions or on different sets of explanatory
variables.When these two conditions hold, the fill-inML estimatorβF is asymptotically equivalent to themissing-free dataML estima-
torβ introduced in Section 2. Further, as shown in Appendix,βF is
asymptotically more precise than the complete-case ML estimatorβ0 introduced in Section 3.1. Since the number of unknown param-
eters is the same in the complete-case and the fill-in approaches,
but the number of observations is greater in the latter,βF may be
expected to have higher precision thanβ0 provided that the addi-
tional sampling variability induced by imputation is small. On the
other hand, if the imputation model is not correctly specified or is
not congenial, then βF is likely to be biased and inconsistent be-
cause it ignores the fact that the imputations are not the same as
the missing covariate values.

An additional issue with the fill-in approach is how to account
for the additional variability induced by the imputation process
when assessing the precision ofβF . As illustrated in our empirical
application, this problem can be easily handled by applying the
combination rules of Rubin (1987) to multiple imputations of the
missing covariate values.

4. The generalized missing-indicator approach

The key idea of this approach is to augment the set ofK observed
or imputed covariates in the filled-in designmatrixW with a set of
JK additional regressors corresponding to binary indicators for the
subsamples with missing covariate values and their interactions
with the regressors inW . Thus we define the N × JK matrix

Z =


0 · · · 0
W1 · · · 0
...

. . .
...

0 · · · WJ

 .

The statistical model for the full sample is an augmented GLM
where the conditional density of Y given W and Z is assumed to
belong to the exponential family (1) with linear predictor equal to
η = Wβ + Zδ, where δ = (δ⊤

1 , . . . , δ⊤

J )⊤ is a JK -dimensional
parameter vector. In the terminology of Danilov and Magnus
(2004), the columns ofW represent our focus regressors, while the
columnsofZ represent our auxiliary regressors. Similarly, the com-
ponents of β are called focus parameters, and the components of
δ auxiliary parameters. Following Dardanoni et al. (2011), we shall
refer to this augmented GLM as the grand model.
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4.1. Equivalence theorem

The following theorem extends to GLMs the result obtained by
Dardanoni et al. (2011) for linear regression models.

Theorem 1. Let β andδj, j = 1, . . . , J , denote the ML estimators
of β and δj in the grand model with linear predictor equal to η =

Wβ + Zδ. Then, for any set of imputations,β = β0.
Proof. Let

Y =


Y0
Y∗


, W =


X0
W∗


, Z =


0
Z∗


,

where

Y∗ =

Y1
...
YJ

 , W∗ =

W1
...

WJ

 , Z∗ =

W1
. . .

WJ

 .

The complete-case ML estimate β0 solves the system of K likeli-
hood equations

X⊤

0 U0(β) = 0,

whereU0(β) is theN0×1 vector of generalized residuals (Gourier-
oux et al., 1987) with generic element of the form v(X⊤

n β) [Yn −

h(X⊤
n β)]. Similarly, the ML estimates (β,δ) in the grand model

with linear predictor equal toWβ+Zδ solve the systemof (1+J)K
likelihood equations

X⊤

0 U0(β) + W⊤

∗
U∗(β, δ) = 0,

Z⊤

∗
U∗(β, δ) = 0,

(2)

where U∗(β, δ) is the (N − N0) × 1 vector with generic element
of the form v(W⊤

n β + Z⊤
n δ) [Yn − h(W⊤

n β + Z⊤
n δ)]. Since Z∗ is a

block-diagonal matrix, the last JK equations in (2) imply that

W⊤

j Uj(β, δj) = 0, j = 1, . . . , J,

where Uj(β, δj) is the Nj × 1 vector obtained by selecting from
U∗(β, δ) the observations in the jth subsample, andW⊤

∗
U∗(β, δ) =J

j=1 W
⊤

j Uj(β, δj) = 0. TheML estimateβ then solvesX⊤

0 U0(β) =

0, soβ = β0. �

Theorem 1 shows that the unrestricted ML estimate of β in the
grandmodel is numerically the same as the complete-caseML esti-
mate. To interpret theunrestrictedMLestimateδj, letηj = Wβj de-
note the linear predictor in theGLM for the jth samplewithmissing
covariates and letβj denote theML estimate ofβj in the jth subsam-
ple. Under Assumptions 1 and 2, β0 = β but in general βj ≠ β for
j = 1, . . . , J . The next corollary shows thatδj coincides numerically
with the difference betweenβj and the complete-caseML estimate.

Corollary. For any set of imputations,δj = βj − β0, j = 1, . . . , J ,
whereβj is the ML estimator of βj in the jth missing-data pattern.

Proof. The ML estimate βj in the jth subsample with missing
covariates satisfiesW⊤

j Vj(βj) = 0, where Vj(β) is theNj ×1 vector
with generic element of the form v(W⊤

n β) [Yn−h(W⊤
n β)]. Because

the linear predictor for the jth subsample in the grand model is of
the form ηj = Wj(β + δj), the ML estimateδj in the grand model
must satisfy

0 = W⊤

j Uj(β,δj) = W⊤

j Vj(β +δj), j = 1, . . . , J.

Thusβ +δj = βj. Sinceβ = β0, it follows thatδj = βj − β0. �

Notice that the fill-in estimator of β coincides with the re-
stricted ML estimator when all elements of δ in the grand model
are set to zero. If the population model is correctly specified and
the imputations are valid, then this estimator is asymptotically
more precise than the complete-case estimator (Appendix). How-
ever, if the population model is misspecified or the imputations
are not valid, then the fill-in estimator is inconsistent. The gener-
alized missing-indicator approach handles this trade-off between
bias and precision by considering all intermediatemodels obtained
from the grand model by setting to zero arbitrary subsets of el-
ements in δ. This strategy has two advantages. First, the original
bias-precision trade-off is transformed into a problem of uncer-
tainty about a subset of covariates of the grand model, for which
a variety of strategies are available. Second, instead of focusing on
two extreme specifications of the grand model, any intermediate
model in the expanded model space may now play a role in con-
structing an improved estimator of β .

4.2. A dual result

Theorem 1 says that the complete-case approach is equivalent,
as far as estimation of β is concerned, to using the grand model
that includes all the observations (observed or imputed) and all the
auxiliary regressors. Our next theorem shows that, more generally,
pooling together the subsample with complete data and arbitrary
subsamples with missing covariates is equivalent to removing
blocks of auxiliary regressors from the grand model. This result,
which may be regarded as the dual of Theorem 1, provides a
justification for the block model averaging approach presented in
Section 5.4.

Given a collection J of subsamples with missing covariates, let

Y =


Y+

Y−


, W =


W+

W−


, Z−

=


0
Z−

∗


,

where Y+ is the subvector of Y obtained by stacking Y0 and all Yj
such that j ∈ J, Y− is the subvector consisting of the remaining
rows of Y ,W+ is the submatrix of W obtained by stacking X0
and all Wj such that j ∈ J,W− is the submatrix consisting of
the remaining rows of W , and Z−

∗
is the submatrix obtained by

dropping from Z∗ the rows and columns containing the elements
ofW+.

Theorem 1 can now be restated as follows: If J is the empty set,
then the ML estimates of β in the GLM for [Y+,W+

] and in the
GLM for [Y ,W , Z−

] coincide. The next theorem shows that this
is actually true if J is any collection of subsamples with missing
covariates.

Theorem 2. For any collection J of subsamples with missing covari-
ates, the ML estimates of β in the GLM for [Y+,W+

] and in the GLM
for [Y ,W , Z−

] coincide.

Proof. Let U+(β) be the vector of dimension N0 +


j∈J Nj with
generic element of the form U+

n (β) = v(W+⊤
n β)[Y+

n −h(W+⊤
n β)].

Also let U−(β, δ−) be the vector of dimension N − (N0 +


j∈J Nj)

with generic element of the form v(W⊤
n β+Z−⊤

n δ−) [Yn−h(W⊤
n β+

Z−⊤
n δ−)], where δ− denotes the subvector of δ obtained by delet-

ing the coefficients associated with the Wj, j ∈ J. The proof
of the theorem follows immediately from the proof of Theo-
rem 1 after replacing X0,U0(β),W∗, U∗(β, δ), and Z∗ with W+,
U+(β),W−,U−(β, δ−), and Z−

∗
respectively. �

Thus, constraining δj to zero in the grand model gives the same
estimate of β that would be obtained from the model without
auxiliary regressors when using only the complete data and the
jth subsample with missing covariates. So each δj controls for a
particular subsample with missing covariates, a feature that we
exploit in our model averaging procedure in Section 5.4.

5. Estimation under model uncertainty

Model uncertainty can be handled by either model selection or
model averaging. Inmodel selection one first selects the bestmodel
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in the available model space and then estimates β conditional on
the selected model. A problem with this approach is pre-testing.
As shown by Magnus and Durbin (1999), Burnham and Anderson
(2002) and Danilov and Magnus (2004), the initial model selection
step matters and is likely to have non negligible effects on the
statistical properties of the resulting estimates.

Model averaging provides a more satisfactory approach to in-
ference because it takes explicitly into account uncertainty due to
both the estimation and the model selection steps. In this case,
one first estimates the parameters of interest conditional on each
model in the model space, then computes an unconditional esti-
mate using a weighted average of these conditional estimates.

Suppose that themodel spaceM includes R possible GLMs, that
is, M = {M1, . . . ,MR}. The rth model Mr is obtained by including
in the linear predictor theK focus regressors inW and only a subset
of 0 ≤ Pr ≤ JK auxiliary regressors in Z . Thus, the linear predictor
for the rthmodel is equal toηr = Wβ+Zrδr , whereZr is thematrix
containing theN observations on the included subset of Pr auxiliary
regressors and δr is the corresponding vector of coefficients. Our
model averaging estimates of β and δ are of the form

β =

R
r=1

λrβr ,

δ =

R
r=1

λrSrδr , (3)

where the λr are non-negative weights that add up to one, theβr
andδr are the ML estimates of β and δr under the rth model, and
the Sr are JK × Pr selection matrices that transform the Pr -vectors
of conditional estimate δr into JK -vectors by setting to zero the
elements of δ which are excluded from the rth model.

5.1. Bayesian averaging of ML estimators

As pointed out by Magnus and De Luca (2014), the parame-
ters of each model can be estimated from either a frequentist or
a Bayesian perspective. Also, one can choose the weights from a
frequentist or a Bayesian perspective. This gives rise to four types
of model averaging. In the spirit of the BACE (Bayesian Averaging
of Classical Estimates) approach of Sala-i-Martin et al. (2004) and
the WALS (Weighted-Average Least Squares) approach of Magnus
et al. (2010), our model averaging approach is based on Bayesian
averaging of classical ML estimators (BAML). The parameters of
each model are estimated by ML, hence under a classical frequen-
tist perspective, while the weighting scheme is developed under
a Bayesian perspective using posterior model probabilities πr(Y )
that reflect our confidence in the ML estimates based on prior be-
liefs and the observed data. Thus, the weights used in our model
averaging estimates of β and δ are

λr = πr(Y ) =
p(Y | Mr) πr
R

r=1
p(Y | Mr) πr

, r = 1, . . . , R, (4)

where πr is the prior probability of the rth model,

p(Y | Mr) =


p(Y | θr ,Mr) π(θr | Mr) dθr (5)

is its marginal likelihood, θr = (β, δr) is the vector of its param-
eters, p(Y | θr ,Mr) is its sample likelihood, and π(θr | Mr) is the
prior density of θr under the rth model. Notice that the conditional
ML estimates βr andδr are approximately equal to the posterior
means of β and δ under the rth model when the sample likelihood
is unimodal, approximately symmetric anddominates the prior, ei-
ther because the sample size is large or because the prior is uninfor-
mative. Under these assumptions, the model averaging estimates
in (3) can be interpreted as the posterior means of β and δ given
the data and all the models in themodel space, and therefore coin-
cide with those obtained under a Bayesian model averaging (BMA)
approach.

The posterior variance–covariance matrix of β and δ consists of
the following blocks (Raftery, 1993; Draper, 1995)

V(β | Y ) =

R
r=1

λr

V(βr | Y ,Mr) + βrβ⊤

r


− ββ⊤,

V(δ | Y ) =

R
r=1

λrSr

V(δr | Y ,Mr) +δrδ⊤

r


S⊤

r −δδ⊤,

C(β, δ | Y ) =

R
r=1

λr

C(βr , δr | Y ,Mr) + βrδ⊤

r


S⊤

r − βδ⊤.

The posterior variances of β and δ involve two components: the
weighted average of the conditional variances in each model and
the weighted variance of the conditional estimates across models.
Thus, unlike pretest estimators, the posterior variance of ourmodel
averaging estimator incorporates the uncertainty due to both
parameter estimation and model selection.

The choice between alternative BAML estimates depends on the
strategies used to handle a number of methodological and com-
putational problems arising in the development of its Bayesian
weighting scheme. The main problems are: (i) how to specify the
prior probabilities πr of the various models, (ii) how to specify the
prior distribution π(θr | Mr) for the parameters of each model,
(iii) how to evaluate the integrals in (5), which in the context of
GLMs do not usually have closed form solutions, and (iv) how to
compute the model averaging estimates in (3) when exploring all
models is infeasible due to the large dimension of themodel space.

5.2. Choice of priors

As for problem (i), the assumption that all models are equally
likely a priori is a reasonable neutral choice when there is little
prior information about the relative plausibility of themodels con-
sidered (Hoeting et al., 1999). This choice, which corresponds to
assuming a uniform prior distribution on the model space, implies
that the posteriormodel probabilities depend only on themarginal
likelihood for the various models, not on the prior weight assigned
to each of them.

As for problem (ii), we consider two families of prior distribu-
tions over the parameters in the rthmodel. The first is the family of
calibrated information criteria (CIC) prior distributions introduced
by Clyde (2000), which are uninformative priors derived from the
following modification of Jeffrey’s prior (Jeffreys, 1961)

π(θr | Mr) = (2π)−dr /2
1c I(θr)1/2 ,

where dr = K + Pr is the number of parameters in the rth model,
I(θr) is the observed Fisher information for the rth model evalu-
ated at theML estimateθr , and c is a hyperparameter which allows
calibrating the posterior model probabilities to classical model se-
lection criteria like the Akaike Information Criterion (AIC; Akaike,
1978), the Bayesian Information Criterion (BIC; Schwarz, 1978),
or the Risk Inflation Criterion (RIC; Foster and George, 1994). The
use of model averaging estimators with a weighting scheme based
on BIC was originally suggested by Raftery (1996), who showed
that BIC is an approximation to twice the logarithm of the Bayes
factor for model Mr against the restricted model with δ = 0.
Clyde’s formulation of the CIC prior is attractive because it provides
a general Bayesian justification for the entire family of model se-
lection criteria.

The second is the family of conjugate priors for GLMs pro-
posed by Chen and Ibrahim (2003). The conjugate prior for the
parameters of the rth model is proportional to
L(θr | Mr) = exp


ā(Ȳ⊤γ (θr) − ι⊤N b(γ (θr)))


,
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where Ȳ is an N-dimensional vector of prior parameters which
can be viewed as the prior predictions for the marginal means of
Y at W and Z, ā > 0 is a scalar prior parameter which can be
interpreted as a precision parameter that quantifies the strength of
our prior belief in Ȳ , γ (θr) is theN-dimensional vector of canonical
parameters in model Mr , and ιN is the N-dimensional vector
of ones. This family of priors is attractive because the resulting
posterior distribution is proportional to

L(θr | Y ,Mr) = exp

(Y + āȲ )⊤γ (θr) − (1 + ā)ι⊤N b(γ (θr))


.

When ā → 0, this posterior reduces to the sample likelihood for
the rth model.

5.3. Marginal likelihood

For CIC priors, we use approximations obtained by the Laplace
method for integrals (Tierney and Kadane, 1986). As suggested by
Kass and Raftery (1995), this method is reasonably accurate when
the sample size is greater than 20 times the number of covariates.
On the basis of this approximation, Clyde (2000) shows that the
posterior probability of modelMr is approximately

πr(Y ) ≃
exp [1/2 (Dr − dr log c)]

R
h=1

exp [1/2 (Dh − dh log c)]
,

where Dr is the deviance of model Mr (namely -2 times the log-
likelihood ratio between model Mr and the restricted model with
δ = 0). Hence, under CIC priors, the logarithm of the posterior
probability of each model is approximately proportional to its
deviance minus a penalty for complexity, which depends on the
hyperparameter c . Posterior model probabilities can be calibrated
to classical model selection criteria by setting log c = 2 for AIC,
log c = log n for BIC, and log c = 2 log JK for RIC. Although
debate over the choice of an optimal model-selection criterion is
still open, AIC and BIC are known to be two extreme strategies
which tend to favor, respectively,more and less complicatedmodel
structures. From this view point, CIC priors are attractive for
sensitivity analysis in BAML estimation.

For conjugate priors, the marginal likelihood for model Mr sat-
isfies

p(Y | Mr) =


p(Y | θr ,Mr) π(θr | Mr) dθr ∝

Cr(Y )

C̄r
,

where Cr(Y ) =


L(θr | Y ,Mr) dθr and C̄r =


L(θr | Mr) dθr are
the posterior and the prior normalization constants respectively.
Because these normalization constants cannot be evaluated analyt-
ically, we consider theMarkov ChainMonte Carlo (MCMC)method
developed by Chen et al. (2008). This method is computationally
convenient as it requires drawing only two MCMC samples: one
from the posterior distribution and one from the prior distribution
of θR under the unrestricted modelMR. By the results in Chen et al.
(2008), the ratio of the posterior normalization constants in mod-
elsMr and MR can be written

Cr,R(Y ) =
Cr(Y )

CR(Y )
= E


L(θr | Y ,Mr) w(θ−r | θr ,MR)

L(θR | Y ,MR)

Y
,

where the expectation is taken with respect to the posterior distri-
bution of θR under modelMR, θ−r is a (JK −Pr)-dimensional vector
of parameters obtained by deleting θr from θR, and w(θ−r | θr ,MR)
is the conditional posterior density of θ−r given θr undermodelMR.
Given a MCMC sample {θ s

R =

θ s
r , θ

s
−r


, s = 1, . . . , S} from the

posterior π(θR | Y ,MR), under appropriate regularity conditions
(e.g. ergodicity), Cr,R(Y ) can be consistently estimated by

Cr,R =
1
S

S
s=1

L(θ s
r | Y ,Mr) w(θ s

−r | θ s
r ,MR)

L(θ s
R | Y ,MR)

.

Although the conditional density w(θ−r | θr ,MR) is generally
not available in closed form, it can be approximated using the
asymptotically normal approximation to the joint posterior of θR =

(θr , θ−r) givenbyChen (1985). The ratio C̄r,R of the prior normaliza-
tion constants can be estimated in a similar fashion using a MCMC
sample from the prior π(θR | MR). Given an estimate Cr,R of C̄r,R,
posterior model probabilities can be estimated by

πr =

Cr,R/Cr,R
R

r=1

Cr,R/Cr,R

,

where Cr,R/Cr,R is an estimate of the Bayes factor for model Mr
against modelMR.

5.4. Block-BAML

Our last issue is how to handle the case when the number of
candidate models in themodel space M is large. With K covariates
(including the constant term) and J subsamples with missing
covariates, the number ofmodels obtained by dropping alternative
subsets of auxiliary regressors is R = 2JK . Even for moderate
values of J andK , exploring all thesemodels is unfeasible. However,
Theorem 2 justifies confining attention to the J blocks of auxiliary
variables associatedwith the variousmissing-data patterns, where
the K auxiliary variables in each block capture the asymptotic bias
of the fill-in estimator of β due to the imputation of the missing
covariate values.

From the computation viewpoint, this block-BAML procedure
has the important advantage of reducing the dimension of the
model space from 2KJ to 2J . In applications where J does not
exceed 20, one may then proceed by directly exploring all models.
When J is large, our block-BAML procedure may be combined with
some deterministic or stochastic search method over the space
of 2J models. For example, deterministic search strategies such as
Occam’s window of Madigan and Raftery (1994) and the leaps and
bounds algorithm of Furnival and Wilson (1974) may be used for
moderately sized problems where J does not exceed 30. For larger
problems, these methods can be too expensive computationally or
may not explore a large enough region of the model space leading
to poor predictive performances (Hoeting et al., 1999). More
accurate results can be achieved by stochastic search strategies
based on MCMC methods, which allow exploring a considerably
larger subset of models and provide direct estimates of the
posterior model probabilities using the proportion of times the
Markov chain visits each model. We refer to Han and Carlin (2001)
and Clyde and George (2004) for a review of the methodological
and computational issues arisingwith the variousMCMCmethods.

6. The multivariate case

The results of Sections 4 and 5 extend to settings where there is
more than one outcome of interest and the nth component Yn of Y
is a Q -dimensional vector whose distribution is assumed to belong
to the multivariate exponential family. This setup covers ordered,
multinomial or conditional logit and probit models where the out-
come can take Q +1 possible values corresponding to Q +1mutu-
ally exclusive categories. The expression for the density ofYn is now

f (y; γn) = exp

γ ⊤

n y − b(γn) + c(y)

, (6)

where γn is a Q -dimensional vector of canonical parameters, and
b(·) and c(·) are known functions which satisfy the regularity con-
ditions in Fahrmeir and Kaufmann (1985). The mean and variance
of Yn are equal toµn = b′(γn) andΣn = b′′(γn) respectively,where
b′(·) is the Q -dimensional gradient vector and b′′(·) is the Q × Q
Hessian matrix of b(·).

Given a K -dimensional vector of covariates Xn, the linear pre-
dictor associated with the qth component of Yn is X⊤

n βq, with
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βq ∈ RK . Stacking all the βq into the QK -dimensional vector β =

(β⊤

1 , . . . , β⊤

Q )⊤, the linear predictor associated with Yn is the Q -
dimensional vector ηn = (IQ ⊗X⊤

n )β , where IQ is theQ×Q identity
matrix and ⊗ is Kronecker’s product. The dependence of Yn on the
covariates is again modeled by assuming that there exists an in-
verse link function h:RQ

→ RQ such that the mean of Yn is equal
to µn = h((IQ ⊗ X⊤

n )β) for a unique value of β .
The sample log-likelihood for the missing-free data is now

L(β) = c +

N
n=1


γn(β)⊤ Yn − b (γn(β))


,

where the vector γn(β) solves b′(γ ) = h((IQ ⊗ X⊤
n )β), and the

missing-free data ML estimator β of β is obtained by solving the
QK likelihood equations

0 = L′(β) =

N
n=1

(IQ ⊗ Xn) Vn(β)

Yn − h


(IQ ⊗ X⊤

n )β


,

where Vn(β) is the transpose of the Q ×Q matrix

b′′(γn(β))

−1 h′

((IQ ⊗ X⊤
n )β). The conditions for uniqueness, consistency and

asymptotic normality ofβ are as before (Fahrmeir and Kaufmann,
1985).

With missing covariates, we consider a grand model that now
includes, in addition to the filled-in design matrix, a set of JK aux-
iliary regressors for each of the Q equations corresponding to the
individual components of Yn. The property that the vector β of pa-
rameters enters the likelihood equations only through the linear
predictor ηn = (IQ ⊗ X⊤

n )β is all we need in order to adapt the
proofs of the theorems in Section 4 to this case. To see this, it is
enough to write the grand model as a GLM with linear predictor
equal to NQ -dimensional vector η = Wβ + Zδ, where

W =

IQ ⊗ W⊤

1
...

IQ ⊗ W⊤

N

 , Z =

IQ ⊗ Z⊤

1
...

IQ ⊗ Z⊤

N

 ,

and δ = (δ⊤

1 , . . . , δ⊤
q )⊤ is a QJK -dimensional vector of auxiliary

parameters. As before, our block-BAML procedure considers all in-
termediate models obtained from the grand model by simultane-
ously restricting arbitrary blocks of K elements in δq to be equal to
zero for all q. The dimension of the model space is again R = 2J .

7. Empirical application

In this section we use data on the elderly European popula-
tion to investigate how cognitive functioning varies with physical
health and socio-economic status. Our data are from release 1.1.1
of the fourth wave of the Survey of Health, Ageing and Retirement
in Europe (SHARE), a multidisciplinary and cross-national house-
hold panel surveywhich covers about 58,500 individuals aged 50+,
plus their spouses irrespective of age, in 16 European countries. To
reduce the impact of cross-country differences in the fraction of
the population living in institutions as opposed to households, we
confine attention to people between 50 and 80 years of age.

To measure of cognitive ability we focus on the test of verbal
fluency that consists of counting how many distinct members of
the animal kingdom the respondent can name in one minute. The
test outcome is an integer variable ranging from 0 to 100, which
we model through a Poisson process estimated separately for
four broad European regions: North (Denmark, the Netherlands,
Sweden), West (Austria, Belgium, France, Germany, Switzerland),
East (Czech Republic, Estonia, Hungary, Poland, Slovenia) and
South (Italy, Portugal, Spain). Our covariates include self-reported
measures of physical health (number of limitations in the activities
Table 1
Descriptive statistics for the outcome and the covariates by region.

Region Variable Median Mean St.dev. Min Max

North Fluency 22.0 22.6 6.8 0.0 58.0
ADL 0.0 0.1 0.5 0.0 6.0
Chronic 1.0 1.3 1.3 0.0 8.0
Grip strength 35.0 36.9 12.0 4.0 80.0
Age 64.0 64.5 7.8 50.0 80.0
Male 0.0 0.5 0.5 0.0 1.0
Education 1.0 0.7 0.5 0.0 1.0
Income 1.6 1.9 1.3 0.0 13.9
Net worth 1.7 2.7 4.3 −2.3 91.7
Complete obs. 1 278
Imputed obs. 5 841

West Fluency 20.0 21.1 7.4 0.0 100.0
ADL 0.0 0.1 0.6 0.0 6.0
Chronic 1.0 1.5 1.5 0.0 11.0
Grip strength 33.0 35.2 11.7 2.0 99.0
Age 63.0 63.7 8.2 50.0 80.0
Male 0.0 0.5 0.5 0.0 1.0
Education 1.0 0.7 0.5 0.0 1.0
Income 1.6 2.3 2.8 0.0 98.1
Net worth 1.9 3.1 5.5 −5.0 197.2
Complete obs. 4 697
Imputed obs. 17 966

East Fluency 21.0 21.1 7.5 0.0 93.0
ADL 0.0 0.2 0.7 0.0 6.0
Chronic 2.0 1.9 1.6 0.0 10.0
Grip strength 33.0 34.5 12.0 2.0 99.0
Age 64.0 64.2 8.1 50.0 80.0
Male 0.0 0.4 0.5 0.0 1.0
Education 1.0 0.7 0.5 0.0 1.0
Income 0.8 3.1 6.2 0.0 216.6
Net worth 1.0 6.4 20.9 −16.0 483.0
Complete obs. 3 525
Imputed obs. 17 443

South Fluency 14.0 15.0 6.3 0.0 99.0
ADL 0.0 0.2 0.8 0.0 6.0
Chronic 1.0 1.7 1.5 0.0 10.0
Grip strength 30.0 31.7 11.3 1.0 92.0
Age 64.0 64.7 8.2 50.0 80.0
Male 0.0 0.5 0.5 0.0 1.0
Education 0.0 0.3 0.5 0.0 1.0
Income 0.7 1.0 2.4 0.0 161.7
Net worth 1.6 2.4 3.9 −3.6 152.1
Complete obs. 2 074
Imputed obs. 7 634

Notes: Fluency is the score in the verbal fluency test; ADL is the number of
limitations in the activities of daily living; chronic is the number of chronic
conditions; grip strength is the score in the grip strength test; age is the
respondents’ age in years;male is an indicator equal to one formales and to zero for
females; education is an indicator equal to one for higher educational attainments
and to zero otherwise; income is PPP-adjustedper-capita household income inunits
of 10,000 Euro; net worth is PPP-adjusted per-capita household net worth in units
of 100,000 Euro.

of daily living and number of chronic diseases), an objective
measure of physical health (hand grip strength), and a number of
socio-economic variables (age, gender, an indicator for educational
attainments, per-capita household income and household net
worth). To ensure cross-country comparability, the information
on educational attainments has been recoded using the 1997
International Standard Classification of Education (ISCED-97),
while per-capita household income and household net worth
have been adjusted for differences in purchasing power across
countries. Summary statistics for the outcome and the covariates
are presented in Table 1, separately by region.

Hand-grip strength, per-capita household income and house-
hold net worth are affected by substantial item nonresponse. The
item nonresponse rates on these three covariates are respectively
equal to 5%, 37% and 68%. In total, complete-case analysis would
drop 76% of the sample. The number of subsamples with miss-
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Table 2
Estimated coefficients and standard errors (in parentheses) of Poisson regression models for fluency by region.

Region Variable CC FI Block-BAML
CIC priors CNJ priors
AIC BIC ᾱ = 0.1 ᾱ = 0.01 ᾱ = 0.001

North ADL −0.0634 −0.0476 −0.0648 −0.0475 −0.0663 −0.0677 −0.0712
(0.0149) (0.0064) (0.0137) (0.0065) (0.0122) (0.0111) (0.0172)

Chronic −0.0046 −0.0084 −0.0022 −0.0084 0.0001 −0.0019 −0.0016
(0.0047) (0.0022) (0.0053) (0.0022) (0.0045) (0.0040) (0.0054)

Grip strength 0.0028 0.0038 0.0027 0.0038 0.0026 0.0027 0.0031
(0.0008) (0.0004) (0.0008) (0.0004) (0.0007) (0.0007) (0.0008)

Age −0.0073 −0.0063 −0.0077 −0.0063 −0.0081 −0.0081 −0.0079
(0.0008) (0.0004) (0.0009) (0.0004) (0.0008) (0.0007) (0.0010)

Male −0.0762 −0.0883 −0.0689 −0.0883 −0.0615 −0.0622 −0.0700
(0.0197) (0.0095) (0.0203) (0.0095) (0.0179) (0.0171) (0.0186)

Education 0.0925 0.1263 0.0945 0.1263 0.0967 0.0984 0.1109
(0.0142) (0.0063) (0.0135) (0.0063) (0.0124) (0.0119) (0.0178)

Income 0.0155 0.0086 0.0135 0.0086 0.0103 0.0054 0.0072
(0.0073) (0.0030) (0.0069) (0.0030) (0.0066) (0.0053) (0.0061)

Net worth 0.0053 0.0049 0.0061 0.0049 0.0072 0.0080 0.0074
(0.0022) (0.0014) (0.0022) (0.0014) (0.0019) (0.0018) (0.0027)

Constant 3.1213 3.0673 3.1169 3.0674 3.1121 3.1081 3.0907
(0.0143) (0.0062) (0.0142) (0.0062) (0.0127) (0.0120) (0.0197)

West ADL −0.0530 −0.0530 −0.0461 −0.0420 −0.0437 −0.0428 −0.0424
(0.0069) (0.0033) (0.0076) (0.0037) (0.0060) (0.0041) (0.0038)

Chronic 0.0090 0.0078 0.0076 0.0074 0.0071 0.0067 0.0071
(0.0023) (0.0012) (0.0021) (0.0013) (0.0017) (0.0014) (0.0013)

Grip strength 0.0065 0.0059 0.0065 0.0062 0.0065 0.0063 0.0062
(0.0004) (0.0002) (0.0004) (0.0002) (0.0004) (0.0003) (0.0002)

Age −0.0045 −0.0051 −0.0046 −0.0049 −0.0047 −0.0048 −0.0049
(0.0004) (0.0002) (0.0004) (0.0002) (0.0003) (0.0003) (0.0002)

Male −0.1482 −0.1308 −0.1453 −0.1362 −0.1434 −0.1385 −0.1366
(0.0099) (0.0054) (0.0087) (0.0053) (0.0082) (0.0070) (0.0055)

Education 0.1993 0.1907 0.1966 0.1860 0.1947 0.1899 0.1871
(0.0074) (0.0039) (0.0069) (0.0040) (0.0069) (0.0056) (0.0042)

Income 0.0034 0.0042 0.0046 0.0038 0.0049 0.0042 0.0038
(0.0014) (0.0007) (0.0016) (0.0008) (0.0014) (0.0012) (0.0009)

Net worth 0.0037 0.0019 0.0030 0.0019 0.0026 0.0023 0.0019
(0.0010) (0.0005) (0.0010) (0.0005) (0.0009) (0.0008) (0.0006)

Constant 2.9668 2.9539 2.9641 2.9638 2.9635 2.9654 2.9650
(0.0072) (0.0038) (0.0066) (0.0039) (0.0062) (0.0047) (0.0041)

East ADL −0.0423 −0.0498 −0.0423 −0.0463 −0.0423 −0.0423 −0.0433
(0.0070) (0.0027) (0.0070) (0.0091) (0.0070) (0.0070) (0.0063)

Chronic −0.0083 −0.0043 −0.0083 −0.0114 −0.0083 −0.0084 −0.0114
(0.0027) (0.0012) (0.0027) (0.0024) (0.0027) (0.0027) (0.0024)

Grip strength 0.0074 0.0063 0.0074 0.0074 0.0074 0.0074 0.0074
(0.0005) (0.0003) (0.0005) (0.0004) (0.0005) (0.0005) (0.0004)

Age −0.0084 −0.0074 −0.0084 −0.0075 −0.0084 −0.0084 −0.0075
(0.0005) (0.0002) (0.0005) (0.0005) (0.0005) (0.0006) (0.0005)

Male −0.1318 −0.1280 −0.1318 −0.1326 −0.1318 −0.1318 −0.1324
(0.0111) (0.0055) (0.0111) (0.0099) (0.0111) (0.0110) (0.0099)

Education 0.1478 0.1382 0.1478 0.1453 0.1478 0.1477 0.1451
(0.0081) (0.0037) (0.0081) (0.0072) (0.0081) (0.0081) (0.0072)

Income 0.0089 0.0040 0.0089 0.0089 0.0089 0.0089 0.0092
(0.0011) (0.0006) (0.0011) (0.0017) (0.0011) (0.0011) (0.0012)

Net worth −0.0003 0.0004 −0.0003 −0.0003 −0.0003 −0.0003 −0.0003
(0.0003) (0.0001) (0.0003) (0.0003) (0.0003) (0.0003) (0.0003)

Constant 2.9553 2.9918 2.9553 2.9633 2.9553 2.9555 2.9642
(0.0076) (0.0038) (0.0076) (0.0071) (0.0076) (0.0077) (0.0068)

(continued on next page)
ing covariates is J = 23
− 1 = 7, so our model space consists

of R = 27
= 128 models for each region. The public-use SHARE

data includemultiple imputations of income and net worth, which
are constructed using five independent replicates of the fully con-
ditional specification method of van Buuren et al. (2006). In our
analysis, validity of these imputations may be questioned because
verbal fluency and hand grip strength are not among the explana-
tory variables used by the SHARE imputation model. Thus, even
when correctly specified, the imputation model is likely to be un-
congenialwith themodels of interest, as they are basedondifferent
sets of explanatory variables. We produce our ownmultiple impu-
tations for the missing values on hand grip strength using a simple
hot-deck procedure.
The estimates of the focus parameters in the Poisson models
for verbal fluency are presented in Table 2.3 For each European
region, we compare estimated coefficients and standard errors
for the complete-case ML estimator (CC), the fill-in ML estimator
(FI), and the block-BAML estimators based on CIC and conjugate
priors. In the fill-in and the generalized missing-data approaches,
estimated coefficients and standard errors resulting from the five
multiple imputed datasets are combined using the formulas in
Rubin (1987). For block-BAML estimates with CIC priors, we only

3 Results for the auxiliary regressors are omitted to save space but are available
upon request.
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Table 2 (continued)

Region Variable CC FI Block-BAML
CIC priors CNJ priors
AIC BIC ᾱ = 0.1 ᾱ = 0.01 ᾱ = 0.001

South ADL −0.0482 −0.0656 −0.0482 −0.0580 −0.0482 −0.0540 −0.0560
(0.0095) (0.0045) (0.0095) (0.0066) (0.0095) (0.0073) (0.0064)

Chronic 0.0118 0.0058 0.0118 0.0080 0.0118 0.0084 0.0079
(0.0040) (0.0022) (0.0040) (0.0027) (0.0040) (0.0033) (0.0027)

Grip strength 0.0027 0.0052 0.0027 0.0039 0.0027 0.0038 0.0040
(0.0007) (0.0004) (0.0007) (0.0005) (0.0007) (0.0007) (0.0005)

Age −0.0082 −0.0078 −0.0082 −0.0080 −0.0082 −0.0079 −0.0079
(0.0008) (0.0004) (0.0008) (0.0005) (0.0008) (0.0006) (0.0005)

Male 0.0292 −0.0230 0.0291 −0.0054 0.0290 −0.0000 −0.0054
(0.0164) (0.0088) (0.0164) (0.0110) (0.0165) (0.0178) (0.0110)

Education 0.0839 0.1302 0.0839 0.0941 0.0839 0.0918 0.0935
(0.0140) (0.0071) (0.0140) (0.0090) (0.0140) (0.0105) (0.0090)

Income 0.1045 0.0087 0.1045 0.0850 0.1044 0.0885 0.0855
(0.0080) (0.0037) (0.0080) (0.0050) (0.0081) (0.0091) (0.0049)

Net worth 0.0023 0.0061 0.0023 0.0046 0.0024 0.0042 0.0045
(0.0012) (0.0007) (0.0012) (0.0009) (0.0012) (0.0013) (0.0010)

Constant 2.6589 2.6669 2.6589 2.6674 2.6589 2.6668 2.6680
(0.0098) (0.0052) (0.0098) (0.0066) (0.0098) (0.0080) (0.0066)

Notes: The ML estimates from complete-case analysis are denoted by CC, from the fill-in approach by FI. The block-BAML estimates are based on the family of calibrated
information criteria (CIC) priors and the family of conjugate (CNJ) priors. The standard errors of the fill-in ML estimates and the posterior standard deviations of the block-
BAML estimates are computed by multiple imputation methods to account for the additional sampling variability due to imputation of missing covariate values. Results for
the auxiliary regressors are omitted to save space.
report the results obtained using AIC and BIC because RIC leads to a
penalty for complexity which is very similar to that used in BIC. For
block-BAML estimateswith conjugate priors, we set all elements of
the vector Ȳ of prior parameters equal to the samplemean of verbal
fluency in the second wave of SHARE and consider three different
choices of the prior parameter ā, namely 0.10, 0.01, and 0.001.
These prior specifications imply that all regression coefficients
have a zero priormode except the constant term, the priormode of
which is instead equal to the logarithm of themarginalmean of the
outcome in the second wave. This choice is attractive because the
prior prediction for verbal fluency does not depend on the value of
the covariates for a given individual. Further, as ā decreases, we
can assess how our block-BAML estimates changes as the prior
become less informative. For conjugate priors, posterior model
probabilities are always estimated through the MCMC algorithm
discussed in Section 5.3 using a sample of S = 20,000 draws, after a
‘‘burn-in sample’’ of 10,000 draws, from the prior and the posterior
under the unrestricted model.

Interpretation of the standard errors differs depending on the
estimation strategy. For the complete-case approach, they can be
interpreted as classical standard errors that ignore the additional
sampling variability induced by both the imputation process and
the model selection step. For the fill-in approach, the standard er-
rors take into account the sampling variability induced by the im-
putation process but not the sampling variability induced by the
model selection step. Finally, for the generalized missing-data ap-
proach, the standard errors have the usual Bayesian interpretation
of measuring the spread of the posterior distribution of the param-
eters given the multiple imputed data. By construction, they take
explicitly into account the sampling variability due to both the im-
putation process and the model selection step.

Our results show little differences in the sign of the estimated
associations across regions and estimation methods. Verbal flu-
ency is typically higher for women than for men, is negatively
related to age, and is positively related to self-reported and objec-
tive physical health measures and to variables typically associated
with higher socio-economic status. In some regions, the size of the
coefficients and the standard errors are however subject to non-
negligible differences across estimation methods. Complete-case
and fill-in ML estimates tend to be different and one can notice the
substantial loss of precision resulting from complete-case analysis.
For example, these two approaches lead to sign changes for the es-
timated coefficients on net worth in the Eastern region and for the
male dummy in the Southern region. For the coefficient on income
in the Southern region, we obtain a complete-case ML estimate of
0.105 with a standard error of 0.008 and a fill-in ML estimate of
0.009 with a standard error of 0.004. As shown in Table 3, the re-
sulting marginal effect of income on the expected value of the ver-
bal fluency score (evaluated at the means of all covariates in the
complete-case sample) is equal to 1.504 with a standard error of
0.116 for complete-case analysis and 0.125with a standard error of
0.053 for the fill-in approach. For the fill-inML estimates, the aver-
age percentage increase of standard errors caused by imputations
is found to be large for the coefficients on income (98%) and net
worth (65%). Despite this additional source of sampling variabil-
ity, standard errors for the complete-case ML estimates are always
much larger than those obtained for the fill-in ML estimates.

To facilitate the interpretation of our block-BAML estimates,
we report in Table 4 the posterior probabilities of the top two
models under the various prior specifications. AIC priors assign
large posterior inclusion probabilities to almost all blocks of aux-
iliary covariates and thus leads to block-BAML estimates that are
very close to the complete-case ML estimates. BIC priors support
instead more parsimonious models by assigning large posterior
model probabilities to either the restricted fill-in model or some
intermediate model between the complete-case and fill-in model
specifications. Block-BAML estimates with conjugate priors are
somewhat in between the estimates resulting from AIC and BIC
priors. Consistently with previous findings by Chen et al. (2008),
conjugate priors with larger values of ā tend to favor less parsi-
monious models but, as ā decreases and priors become less infor-
mative, more parsimonious models receive higher posterior prob-
abilities. For both families of priors, posterior model probabilities
are typically concentrated at a few models. This suggests that un-
certainty due to the model selection step is limited. Posterior stan-
dard deviations of block-BAML estimates are therefore similar to
classical standard errors of ML estimates in the models with the
highest posterior probabilities.

Our results cast some doubts about the validity of the SHARE
imputations when studying cognitive functioning. This issue ap-
pears to be particularly important for countries belonging to the
Eastern and the Southern regions, where discrepancies between
complete-case and fill-in ML estimates are substantial and the
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Table 3
Estimated marginal effects on the expected value of fluency and standard errors (in parentheses) by region and estimation method.

Region Variable CC FI Block-BAML
CIC priors CNJ priors
AIC BIC ᾱ = 0.1 ᾱ = 0.01 ᾱ = 0.001

North ADL −1.4319 −1.0215 −1.4584 −1.0196 −1.4869 −1.5121 −1.5674
(0.3355) (0.1376) (0.3076) (0.1382) (0.2722) (0.2467) (0.3968)

Chronic −0.1037 −0.1807 −0.0490 −0.1811 0.0014 −0.0418 −0.0336
(0.1058) (0.0480) (0.1186) (0.0481) (0.1011) (0.0891) (0.1176)

Grip strength 0.0631 0.0814 0.0600 0.0814 0.0573 0.0613 0.0682
(0.0193) (0.0091) (0.0185) (0.0091) (0.0171) (0.0167) (0.0184)

Age −0.1653 −0.1355 −0.1733 −0.1354 −0.1816 −0.1818 −0.1731
(0.0184) (0.0087) (0.0195) (0.0088) (0.0169) (0.0157) (0.0243)

Male −1.6577 −1.8134 −1.4991 −1.8131 −1.3363 −1.3460 −1.4828
(0.4269) (0.1948) (0.4405) (0.1949) (0.3878) (0.3690) (0.3840)

Education 2.1892 2.8902 2.2306 2.8900 2.2760 2.3088 2.5716
(0.3286) (0.1415) (0.3114) (0.1415) (0.2861) (0.2733) (0.3876)

Income 0.3503 0.1854 0.3045 0.1854 0.2300 0.1204 0.1564
(0.1648) (0.0635) (0.1568) (0.0635) (0.1474) (0.1174) (0.1317)

Net worth 0.1197 0.1055 0.1381 0.1055 0.1605 0.1780 0.1626
(0.0494) (0.0297) (0.0499) (0.0297) (0.0434) (0.0400) (0.0608)

West ADL −1.0384 −1.0219 −0.9017 −0.8194 −0.8536 −0.8358 −0.8288
(0.1345) (0.0644) (0.1508) (0.0719) (0.1176) (0.0807) (0.0746)

Chronic 0.1768 0.1511 0.1486 0.1441 0.1377 0.1310 0.1378
(0.0448) (0.0237) (0.0417) (0.0246) (0.0339) (0.0269) (0.0258)

Grip strength 0.1274 0.1138 0.1277 0.1208 0.1271 0.1231 0.1213
(0.0090) (0.0049) (0.0078) (0.0048) (0.0078) (0.0063) (0.0049)

Age −0.0885 −0.0992 −0.0905 −0.0955 −0.0917 −0.0943 −0.0952
(0.0086) (0.0043) (0.0071) (0.0045) (0.0062) (0.0052) (0.0046)

Male −2.6973 −2.3645 −2.6423 −2.4833 −2.6078 −2.5269 −2.4933
(0.1793) (0.0963) (0.1549) (0.0969) (0.1438) (0.1224) (0.0994)

Education 4.3197 4.0500 4.2449 3.9885 4.1978 4.0867 4.0174
(0.1573) (0.0806) (0.1496) (0.0835) (0.1486) (0.1217) (0.0907)

Income 0.0658 0.0817 0.0896 0.0736 0.0964 0.0811 0.0744
(0.0283) (0.0143) (0.0309) (0.0155) (0.0277) (0.0228) (0.0173)

Net worth 0.0729 0.0360 0.0589 0.0371 0.0515 0.0452 0.0378
(0.0187) (0.0099) (0.0194) (0.0105) (0.0178) (0.0151) (0.0114)

East ADL −0.8088 −0.9853 −0.8088 −0.8925 −0.8088 −0.8096 −0.8368
(0.1344) (0.0531) (0.1344) (0.1728) (0.1344) (0.1342) (0.1215)

Chronic −0.1583 −0.0851 −0.1583 −0.2193 −0.1583 −0.1600 −0.2195
(0.0514) (0.0230) (0.0514) (0.0459) (0.0514) (0.0523) (0.0465)

Age −0.1612 −0.1456 −0.1612 −0.1447 −0.1612 −0.1608 −0.1448
(0.0103) (0.0046) (0.0103) (0.0091) (0.0103) (0.0106) (0.0093)

Male −2.3623 −2.3751 −2.3623 −2.3969 −2.3623 −2.3632 −2.3965
(0.1964) (0.1014) (0.1964) (0.1768) (0.1964) (0.1961) (0.1779)

Education 3.0457 2.9304 3.0457 3.0172 3.0457 3.0450 3.0170
(0.1649) (0.0782) (0.1649) (0.1480) (0.1649) (0.1646) (0.1481)

Grip strength 0.1414 0.1244 0.1414 0.1429 0.1414 0.1415 0.1439
(0.0099) (0.0052) (0.0099) (0.0091) (0.0099) (0.0099) (0.0089)

Income 0.1711 0.0796 0.1711 0.1724 0.1711 0.1711 0.1786
(0.0219) (0.0116) (0.0219) (0.0332) (0.0219) (0.0218) (0.0234)

Net worth −0.0049 0.0085 −0.0049 −0.0051 −0.0049 −0.0049 −0.0056
(0.0059) (0.0022) (0.0059) (0.0061) (0.0059) (0.0059) (0.0059)

South ADL −0.6940 −0.9419 −0.6940 −0.8393 −0.6945 −0.7820 −0.8112
(0.1368) (0.0649) (0.1368) (0.0945) (0.1368) (0.1053) (0.0924)

Chronic 0.1701 0.0836 0.1701 0.1152 0.1698 0.1218 0.1138
(0.0578) (0.0313) (0.0578) (0.0387) (0.0578) (0.0477) (0.0389)

Age −0.1176 −0.1115 −0.1176 −0.1157 −0.1176 −0.1148 −0.1147
(0.0116) (0.0059) (0.0116) (0.0077) (0.0116) (0.0085) (0.0077)

Male 0.4258 −0.3262 0.4257 −0.0785 0.4234 0.0006 −0.0779
(0.2394) (0.1249) (0.2395) (0.1582) (0.2416) (0.2593) (0.1594)

Education 1.2595 1.9974 1.2595 1.4274 1.2602 1.3918 1.4194
(0.2146) (0.1134) (0.2146) (0.1395) (0.2145) (0.1648) (0.1399)

Grip strength 0.0391 0.0754 0.0391 0.0569 0.0392 0.0549 0.0575
(0.0108) (0.0061) (0.0108) (0.0076) (0.0108) (0.0108) (0.0076)

Income 1.5037 0.1247 1.5037 1.2296 1.5025 1.2812 1.2385
(0.1164) (0.0531) (0.1165) (0.0724) (0.1176) (0.1289) (0.0721)

Net worth 0.0337 0.0883 0.0337 0.0671 0.0338 0.0602 0.0656
(0.0174) (0.0096) (0.0174) (0.0136) (0.0175) (0.0190) (0.0139)

Notes: Themarginal effects are evaluated at themean value of all the covariates in the complete-case sample. The block-BAML estimates of themarginal effects are computed
as weighted averages of the conditional marginal effects under each model with weights equal to the posterior model probabilities. The standard errors of the conditional
marginal effects are computed by the delta-method. The standard errors of the fill-in ML estimates and the posterior standard deviations of the block-BAML estimates are
computed by multiple imputation methods to account for the additional sampling variability due to imputation of the missing covariate values. Results for the auxiliary
regressors are omitted to save space.
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Table 4
Posterior probabilities for the top two models by region and block-BAML approach.

Region Block Top Blocks of auxiliary covariates πr (Y )

BAML Models M1 M2 M3 M4 M5 M6 M7

North AIC 1 1 0 1 1 1 1 1 0.5409
2 1 1 1 1 1 1 1 0.4364

BIC 1 0 0 0 0 0 0 0 0.9989
2 0 0 0 0 0 0 1 0.0011

CNJ(ā = 0.1) 1 1 0 1 1 1 1 1 0.7963
2 1 0 1 1 0 1 1 0.0929

CNJ(ā = 0.01) 1 1 0 1 1 0 0 1 0.9961
2 1 0 1 0 0 0 1 0.0025

CNJ(ā = 0.001) 1 0 0 1 0 0 0 0 0.9023
2 1 0 1 0 0 0 0 0.0756

West AIC 1 0 1 1 1 1 1 1 0.5644
2 1 1 1 1 1 1 1 0.3506

BIC 1 0 0 0 1 1 0 1 1.0000
2 0 0 0 1 1 1 1 0.0000

CNJ(ā = 0.1) 1 0 1 1 1 1 1 1 0.7590
2 1 1 0 1 1 1 1 0.1218

CNJ(ā = 0.01) 1 0 1 0 1 1 1 1 0.9960
2 0 1 1 1 1 1 1 0.0033

CNJ(ā = 0.001) 1 0 0 0 1 1 0 1 0.6612
2 0 1 0 1 1 0 1 0.2673

East AIC 1 1 1 1 1 1 1 1 1.0000
2 1 0 1 1 1 1 1 0.0000

BIC 1 1 0 1 1 1 1 1 0.9942
2 1 0 1 0 1 1 1 0.0055

CNJ(ā = 0.1) 1 1 1 1 1 1 1 1 1.0000
2 1 0 1 1 1 1 1 0.0000

CNJ(ā = 0.01) 1 1 1 1 1 1 1 1 0.9496
2 1 0 1 1 1 1 1 0.0504

CNJ(ā = 0.001) 1 1 0 1 1 1 1 1 0.9996
2 1 1 1 1 1 1 1 0.0004

South AIC 1 1 1 1 1 1 1 1 0.9993
2 0 1 1 1 1 1 1 0.0007

BIC 1 0 1 1 1 1 0 1 0.9960
2 0 1 1 1 1 1 1 0.0040

CNJ(ā = 0.1) 1 1 1 1 1 1 1 1 0.9967
2 0 1 1 1 1 1 1 0.0033

CNJ(ā = 0.01) 1 0 1 1 1 1 1 1 0.8668
2 1 1 1 1 1 1 1 0.1332

CNJ(ā = 0.001) 1 0 1 1 1 1 1 1 0.6307
2 0 1 1 1 1 0 1 0.3693

Notes: The Mj, j = 1, . . . , 7, are indicators for the missing-data patterns in grip strength, income and net worth. If ‘‘1’’ denotes missing and ‘‘0’’ denotes observed, then
M1 = (0, 0, 1),M2 = (0, 1, 0),M3 = (0, 1, 1),M4 = (1, 0, 0),M5 = (1, 0, 1),M6 = (1, 1, 0), andM7 = (1, 1, 1).
fill-in approach unambiguously receives little support from our set
of block-BAML estimates, whatever the chosen prior distribution.

The main lessons we draw from this exercise are the follow-
ing. First, the loss of precision from using only the complete cases
is substantial. Hence the need to somehow exploit the incom-
plete observations. On the other hand, taking straight the fill-in
approach can be quite misleading. Hence routes such as our BAML
procedure are highly desirable. Finally, it is noteworthy that al-
though allmodels are equally likely a priori, our block-BAMLproce-
dure leads to a posterior distribution concentrated at a fewmodels.

8. Conclusions

This paper considers the problem of estimating GLMs when the
values of some covariates are missing for some observations but
imputations are available to fill-in the missing values. Although
using imputed covariates is quite common, researchers should
not take their validity for granted and should explicitly consider
the trade-off between bias and precision involved in their use.
Our approach reformulates this trade-off as a problem of model
uncertainty,which can be handled very naturally through Bayesian
averaging of classicalML estimators. Theparticular structure of this
problem allows us to adopt a block model averaging strategy that
is straightforward and makes it possible to explore all the relevant
submodels.

Our empirical application shows that inference based on stan-
dard approaches to missing covariates and on our generalized
missing-data approach may be substantially different.

In future work we plan to use our approach to formally test the
validity of imputations given the specific GLM of interest.
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Appendix. Asymptotic properties of complete-case and fill-in
ML estimators

From Section 4.1, the complete-case ML estimatorβ0 coincides
with theML estimator ofβ in the grandmodelwith linear predictor
η = Wβ+Zδ. ThisML estimator, denotedbyθ = (β,δ), converges
in probability to the true population value θ0

= (β0, δ0) which
solves the equation system

Esβ(β, δ;Wn, Zn) = 0,
Esδ(β, δ;Wn, Zn) = 0,

where sβ and sδ denote the elements of the score vector cor-
responding to β and δ respectively. Further,

√
N(θ − θ0) ⇒

N (0, I0−1), where

I0
=


I0

ββ I0
βδ

I0
δβ I0

δδ


is the Fisher information matrix evaluated at θ0. Because the
asymptotic variance of β is the top-left block of the inverse of I0,
it follows that
√
N(β − β0) ⇒ N (0, [I0

ββ − I0
βδI

0−1
δδ I0

δβ ]
−1).

On the other hand, the fill-in ML estimatorβF solves the equa-
tion system

1
N

N
n=1

sβ(β, 0;Wn, Zn) = 0. (7)

Because the restriction that δ = 0 may be invalid,βF converges in
probability to the pseudo-true value β∗, defined as the root of the
equation system

Esβ(β, 0;Wn, Zn) = 0,

which does not generally coincide with the true population value
β0. A first-order Taylor expansion of (7) around the pseudo-true
value β∗ gives

√
N(βF − β∗) =


−

1
N

N
n=1

Sββ(β∗, 0;Wn, Zn)

−1

×
1

√
N

N
n=1

sβ(β∗, 0;Wn, Zn) + op(1),

where Sββ denotes the Hessian of the log-likelihood with respect
to β . Under the regularity conditions in Fahrmeir and Kaufmann
(1985), as N → ∞, the Central Limit Theorem implies that

1
√
N

N
n=1

sβ(β∗, 0;Wn, Zn) ⇒ N (0, V ∗

ββ),

where V ∗

ββ = Vsβ(β∗, 0;Wn, Zn), and the Law of Large Numbers
implies that

plim
1
N

N
n=1

Sββ(β∗, 0;Wn, Zn) = H∗

ββ ,

a positive definite matrix. Therefore,
√
N(βF − β0) ⇒ N (β∗

− β0, [H∗

ββ ]
−1V ∗

ββ [H∗

ββ ]
−1).

When the imputations are valid, the restriction that δ = 0 is
valid. So, the fill-in ML estimator βF is consistent and asymptoti-
cally more precise than the complete-case ML estimatorβ0, that is

AV (βF )
−1

− AV (β0)
−1

≥ 0.

In this case, the asymptotic variance of the fill-in ML estimator is
equal to the inverse of the Fisher information. Thus,

AV (βF )
−1

− AV (β0)
−1

= I0
βδI

0−1
δδ I0

δβ ,

which is a nonnegative definite matrix.
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