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We study the profitability of traders in two fully electronic and highly liquid markets: the
Dow and Standard & Poor's 500 e-mini futures markets. Using unique information that
identify counterparties to a transaction, we show and seek to explain the fact that the
network pattern of trades captures the relations between behavior in the market and
returns. Our approach includes a simple representation of how much a shock is amplified
by the network and how widely it is transmitted. This representation provides a possible
shorthand for understanding the consequences of a fat-finger trade, a withdrawing of
liquidity, or other market shock.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we analyze a unique data set of transactions
from two financial futures contracts traded on the Chicago
Mercantile Exchange (CME). The dataset contains informa-
tion about transactions from the month of August for the
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September 2008 e-mini Standard & Poor's (S&P) 500 and
Dow contracts. The data set has time-stamped transaction-
level quantities, prices and counterparty identifiers for all
transactions during August 2008. This includes more than
seven million trades across more than 30 thousand accounts
for the S&P 500 and more than one million trades across
more than seven thousand accounts for the Dow.

The unique feature of the data is the availability of
precise counterparty information. We are able to identify
who traded, when, and with whom. We exploit this feature
of the data to discuss the relation between the counterparty
connections and a variety of market features of interest to
financial economists. We characterize the topology of a
trading network to help understand how traders' positions
in the network influence their profitability and how shocks
are transmitted across the market.

In spite of a growing literature on financial interconnec-
tions and a widespread belief in the importance of financial
linkages, no consensus has been reached on how network
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structure is related to liquidity or risk. A growing under-
standing exists of extreme cases such as repo runs
(Brunnermeier and Pederson, 2009; Brunnermeier, 2009)
or sequential default (Allen and Gale, 2000) or linkages in
outcome across types of firms (Billio, Getmansky, Lo, and
Pellizon, 2012), but these successes remain relatively rare in
the literature.

We estimate the importance of market topology on
trader-level returns using an approach that captures the
correlation in returns between counterparties, the actual
network topology of the entire market, and the impor-
tance of each transaction. Central to this approach is the
introduction of the Bonacich centrality measure (Bonacich,
1987, 2007) to the financial economics literature. We
believe that this network centrality measure is particularly
salient in financial markets as it provides a way to under-
stand the relative importance of direct and indirect links
and thus helps explain the propagation of shocks in the
system. As shown in Liu and Lee (2010), a close link exists
between a spatial autoregressive model with network data
and Bonacich centrality. This type of regression model
captures recursively the network effects at any degree of
separation (see also Lee, Liu, and Lin, 2010). In our
application, a network regression model can explain more
than 70% of the cross section of trader-level returns.

Why do networks emerge in this context? And why do
they explain returns and shock amplification? We show
that the (observed) network of trades is a characterization
of the (unobserved) strategic interactions at work in the
market. Traders with similar strategies trade amongst
themselves as well as with others. As they do so, and form
links with one another, correlation in trading strategies
leads to a connection between strategies and network
position. That is, certain types of traders are more fre-
quently central in the network and other types are more
frequently peripheral. A trader's network position thus
A B C D
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Fig. 1. Each node in the section labeled “order strategies” represents a single tr
“order submissions,” represent actual placed orders. Below this, we denote with
the orders submitted by traders. This order book is passed through the box benea
orders based on price and time priority. Finally, beneath the matching engine,
emerge from a set of six completed transactions.
predicts profitability and the network topology drives the
transmission of shocks.

In Section 2, we present data and institutional features
of the markets that we study. Section 3 contains the
empirics of trader-level returns and highlights the role of
network position for a better understanding of markets
and trader profitability. Section 4 is devoted to describing
our estimation results, and Section 5 discusses the causal
nature of our empirical work. Section 6 extends the work
to implement a policy experiment on the impact of trading
limits. We discuss our contribution to the existing litera-
ture in Section 7 and conclude in Section 8.

2. Data and institutional features

Our data of interest are the actual trades completed on
the CME for two contracts, the S&P 500 and Dow futures.
The trades we observe are the result of orders placed by
traders that have been matched by a trading algorithm
implemented by the CME. Using the audit trail from the two
markets, we uniquely identify two trading accounts for each
transaction: one for the trader who booked a buy and the
opposite for the trader who booked a sale. For these two
markets, First In, First Out (FIFO) is used. FIFO uses price and
time as the only criteria for filling an order: all orders at the
same price level are filled according to time priority.

Each financial transaction has two parties, a direction
(buy or sell), a transaction identification number, a time
stamp, a quantity, and a price. We have transaction-level
data for all regular transactions that took place in August
2008 for the September 2008 e-mini S&P 500 futures and
the Dow futures contracts. The transactions take place
during August 2008, when the markets for stocks under-
lying the indices are open. Both markets are highly liquid,
are fully electronic, and have cash-settled contracts traded
on the CME GLOBEX trading platform.
E F Order strategies

Order submissions

Order book
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ader's plans for trading. The ovals beneath each trader, next to the label
a box the complete order book. This is the aggregation at each time of all
th it, which we have labeled a “matching engine.” This computer matches
we provide a sample representation of the network patterns that could



E. Cohen-Cole et al. / Journal of Financial Economics 113 (2014) 235–251 237
Because these two markets are characterized by the use
of price and time priority alone in determining trading
partners, the only phenomenon that generates networks is
the pattern of trading strategies that links traders with each
other. Particular patterns of trading lead to different prob-
abilities of being at the center or periphery of the network,
as well as to distinct chances of trading with different types
of counterparties. While, for each period, we do not observe
the limit order book itself, we know that transactions
occurred because market orders or limit orders were
matched with existing orders in the limit order book. We
can then trace the pattern of order execution – a trading
network. Fig. 1 illustrates this pattern.

We empirically define a trading network as a set of
traders engaged in conducting financial transactions within
a period of time. The presence of a link is simply a reflection
of the ex post realization of a cleared trade.

The choice of the period of time within which a network
is defined is important, as it contains valuable information
on the resulting network structure. With more time, more
transactions are formed and more participants can form
accurate beliefs about the valuation of a given asset.

Our approach is to define the network as a given number
of transactions among traders that are either directly or
indirectly linked. Then, throughout the remainder of the
paper, we use a range of network densities to ensure that our
results are robust to this choice. More specifically, we
designate a network as a sequence of consecutive transac-
tions. What we call sparse networks are defined as contain-
ing 250 transactions, moderately dense networks contain
five hundred transactions, and dense networks contain one
thousand transactions. Parsing trading activity in this way
allows for avoiding variations in returns that could occur
solely due to the ebbs and flows of trading.

While one could imagine alternate approaches, our
evidence supports the above choice, i.e., defining networks
as a given number of transactions.1 Our results on the
existence of network effects are strongly robust when we
vary the number of transactions. As well, the fact that we
find our chosen network definition has enormous empiri-
cal salience suggests that we have chosen a reasonable
concept for the network. In addition, there is no reason to
believe that an incorrect choice of network timing would
lead to the spurious finding of a strong relation between
networks and returns. The opposite is true: a randomly
defined network shows no evidence of network effects by
construction.

The networks that we define are distinct from one
another over time. This occurs both because agents can be
inactive in each time period and because their transactions
are matched by the trading algorithm in each time period.
2.1. Returns and descriptive statistics

Each trader in the market that we study earns a return.
For example, buying a contract for a price of $1.00 and
1 For example, an alternative would be to define the network based
on some period of time or number of transactions beginning at a market
shock, such as a significant price change.
selling it for $1.10 yields a profit of $0.10 and a return of
10%. Because some positions are left open at the end of a
given network time period, we report realized returns
when positions clear during a network time period. When
they do not clear, we report the mark-to-market returns
for the trader in question.

Our S&P 500 futures data set consists of over 7,224,824
transactions that took place among more than 31,585
trading accounts. The DOW futures dataset consists of
1,163,274 transactions between approximately 7,335 trad-
ing accounts. We show in Table 1 some simple statistics of
the data for each of the two markets that we analyze.

For each definition of networks, we compute returns for
each trader, volumes for each trader, and the variance of
returns across traders over the course of a trading day.
Returns are shown as absolute levels of holding at the end
of the time period, based on an initial investment of $1.00.
Thus, a return of one indicates that the trader broke even
during the time period. Average returns vary from a loss of 4
basis points to a gain of 11 basis points. Individual-level
results vary more widely. We report the returns unweighted
by volume. The weighted average return across traders is, by
construction in futures markets, equal to one. The average
return across trading accounts is below one, suggesting that
traders with high volume, on average, earn higher returns. To
be more specific, we measure volume as the total number of
contracts traded over the time period. In our data, these high
volume traders are those that transact repeatedly, with
regularly low order sizes. This would suggest that market
makers and traders with regular interactions with the
market are those that profit the most.
3. Empirics of trader-level returns

Before proceeding with the formal analysis, we provide a
heuristic description of the market to illustrate the relation
between trading behavior and the network topology. Table 2
reports information on transactions by type of trader. Three
categories of traders are classified by frequency of trading.
A high-frequency trading (HFT) group is composed of very
active traders.2 A group of irregular traders is referred to as
hedge traders. Finally, a residual group with intermediate
trading frequency is denoted as mid-size. These types also
are mapped by type of activity. We have traders that only sell
or only buy, which include most of those in the hedge group,
as well as traders that both buy and sell. The HFT type are
universally part of the buy and sell group. The table shows
that the high-frequency group has very active, high-volume,
high-profit traders; the hedge group collects irregular traders
with larger individual transaction sizes that are not particu-
larly profitable; and the mid-size group is composed of
profitable traders that are regular participants in the mar-
kets. Based on trading frequency, these appear more likely to
be broker-dealers than the HFT group. It confirms that more
active traders tend to be more profitable in aggregate and
transact in smaller sizes for each transaction.
2 While we do not have a way to precisely identify traders as high
frequency, we assume that any trader with more than five thousand
transactions in a day is using some type of high-frequency trading.



Table 1
Summary statistics.

Sparse networks are defined as containing 250 transactions each, moderately dense networks as containing five hundred transactions each, and dense
networks as containing one thousand transactions each. The table reports statistics from the Standard & Poor's (S&P) 500 e-mini futures market and from
the Dow futures market. The columns report the mean, standard deviation, minimum, and maximum of each variable. Returns are defined as the gross
return on an investment. Thus, a value of one indicates no change in value. Values greater than one are net gains and those less than one are net losses. For
each density of network in each market, we report the average daily return as well as the total daily volume at the trader level. Thus, we report the mean
return across individual-level traders, where for each trader we have calculated their own average return over the course of the trading day. These trader-
level returns are unweighted by volume. Because the futures markets are zero-sum, volume-weighted returns are zero by construction. Volumes statistics
are average daily volumes at the level of the trader. Standard deviations are measured as the variance over the returns at the trader level, again unweighted.
Minimums and maximums are the smallest and largest for a trader on any day.

Mean Standard deviation Minimum Maximum

S&P 500 e-mini futures

Sparse networks
Average returns 0.98 0.01 0.97 1.05
Volume 5.94 4.98 1.00 1215

Moderately dense networks
Average returns 0.96 0.02 0.96 1.09
Volume 5.73 7.90 1.00 1,518

Dense networks
Average returns 0.92 0.02 0.96 1.106
Volume 5.32 12.68 1.00 2,060

Total number of trading accounts 31,585

DOW futures

Sparse networks
Average returns 0.99 0.03 0.99 1.02
Volume 6.39 1.42 1.00 150

Moderately dense networks
Average returns 0.98 0.05 0.98 1.03
Volume 6.33 2.60 1.00 190

Dense networks
Average returns 0.95 0.07 0.98 1.04
Volume 5.91 4.86 1.00 341

Total number of trading accounts 7,335

Table 2
Summary statistics by type of trader.

This table shows an example of trading patterns over a period of ten minutes. Each sample period has about 11 thousand transactions. Reported on are
three types of traders: those with fewer than five trades per day, those with 50 to five thousand per day, and those with more than five thousand per day.
The sample is divided into three types as well. Sell only is defined as traders that have no buy transactions during the ten minute period. Buy only is
similarly defined. Buy and sell is defined as traders that conduct both a buy and a sell during the time period. Correlation for both panels is calculated as a
simple correlation between the average returns for traders in the group and average returns for market markers. For example, the correlations in Panel B
show that the market maker returns are positively correlated within its group and negatively correlated with sell only and buy only.

Average correlation
between group and

Average Average number of Average profit per most common
transaction size transactions per period transaction counterparty

(1) (2) (3) (4)
Sample statistics by frequency of trade
S&P 500 e-mini market

Hedge 4.60 1.01 0.9448 �0.20
Mid-size 1.83 1,967.58 0.9999 0.29
High frequency 1.40 13,230.54 1.0001 0.40

Sample statistics by market role
S&P 500 e-mini market

Sell only 5.19 24.95 0.9999 �0.20
Buy and sell 1.69 59.80 1.0005 0.30
Buy only 3.79 11.37 0.9999 �0.20

E. Cohen-Cole et al. / Journal of Financial Economics 113 (2014) 235–251238
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Fig. 2. Panel A and Panel B. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

3 Of particular emphasis, note that they do not trade with each other
directly. If buy-only and sell-only traders did trade with each other
directly, smaller networks of traders would be observed. The diagram
shown is a fully connected, single networks. We do observe some small,
isolated network, in our data, but they are very rare, a phenomenon that
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These different trader types (or behaviors) are reflected
in the network topology of the transactions. Panel A of Fig. 2
shows a representative network. Each node represents a
trader and each arrow represents a trade, with the arrow
pointing toward the buyer of a contract. We denote differ-
ent trader types A and B. Traders A only sell or buy. These
traders are examples of those with fundamental liquidity
needs. We mark these traders with triangles. Each of these
participate in the futures market by placing one-sided
orders to either buy or sell contracts.3 A separate set of
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traders, denoted B, implements rapid offers to buy and sell.
These traders are indicated with circles in the diagram.
These market makers typically trade with the objective to
provide the liquidity needed by the traders A that have
fundamentals demands. Because the buy-only and sell-only
traders might not appear on the market at the same time,
the liquidity providers can earn returns from them by being
willing to transact when needed. The combination of the
liquidity traders' actions can generate a diamond-shaped
network pattern, illustrated in this figure. On one side, the
buy-only traders buy when needed and, on the other, sell-
only traders sell as needed. By being willing to buy and sell,
the agents in the center can generate profits. The actions of
B are known by market participants to be a profitable
strategy. For this reason, more than a single agent conducts
business in this fashion. As a result, the demands of A are
not always intermediated by a single market maker. Often,
there will be many before the contract reaches its end
holder. That is, there are a large number of B traders.
Effectively, the B traders hope to intermediate between
the two traders with fundamental demand. In the process,
they often end up trading with other agents of type B.
In Panel B we color traders differently accordingly to the
frequency of trades. White shows hedge (infrequent) tra-
ders, blue depicts mid-size traders and red denotes very
active (HFT) traders. As can be seen from the picture, the
group of very active traders (in red) includes a significant
overlap with type B traders (circles in Panel A). It also
appears that the group of irregular traders (white) is largely
type A (triangles in Panel A).

Now, the relevant questions here are: How do these
different types interact in the market? And what are the
implications for returns?

The last column of Table 2 reports, for each type of trader,
the average correlation in returns with the most common
counterparty. In a single transaction, buyers and sellers have
negatively correlated returns. When the market moves, one
profits and the other loses. As a result, these buy-only and
sell-only traders have negatively correlated outcomes. As it
appears from Panel B, the transactions between the market
makers and these buy-only and sell-only traders also are
negatively correlated. Critically, within the buy-and-sell
group, the returns are positively correlated. An explanation
consistent with these features of the market is that the
positive correlation emerges from the similarity in strategy
between the market makers themselves. The intuition is
simple. Traders enter the market each day with a set of
trading strategies. These strategies can be either formal or
informal, automated or manual. The market contains some of
each. Among the formal strategies, for example, are high-
frequency traders. These computerized high-frequency tra-
ders compose approximately one-third of volume (Kirilenko,
Kyle, Samadi, and Tuzun, 2011) on any given day. The strategy
of any given trader depends on the anticipated strategies of
other traders as well as the observed actions during the day.
As successful strategies become known, followers emerge
(footnote continued)
points to the fact that market makers are prevalent in the data and
intermediate most transactions.
and copy these strategies. As long as traders either use
strategies that are broadly similar to each others' or condition
their strategies on like information, their behaviors could be
correlated in equilibrium and thus, too, in the observed data.
These correlated bidding patterns lead to similarity in returns.
Table 2 and Fig. 2 show that a substantial fraction of trades
are intermediation ones.

To better understand the role of network structure in
shaping returns and in propagating shocks, we introduce
some network analysis tools.
3.1. A network regression model

Consider a model to explain the return, ri;κ , of a trader, i,
in network, k. We define returns as the log change in price
over the time period defined as a network.

Assume that N traders are divided into k¼1,…,K networks,
each with nk members, i¼ 1;…;nk, ∑K

k ¼ 1nk ¼N.
Consider the influence on i of only a single other agent

j. A basic specification would read

ri;κ ¼ α0þ ∑
M

m ¼ 1
βmxmi;κþγrj;kþυi;κ ; ð1Þ

where xm denotes a set of explanatory variables and rj
denotes the returns of the trading partner. So, an esti-
mated coefficient γ greater than zero indicates that returns
for trader j are positively correlated with returns for trader
i. Extended to a simple network of three agents (i; j; s),

the equation becomes

ri;κ ¼ α0þ ∑
M

m ¼ 1
βmxmi;κþγ1rj;k;dþγ2rs;k;2dþυi;κ ; ð2Þ

where the subscripts d and 2d indicate agents j and s at one
node and two nodes distant from i, respectively. The coeffi-
cient γ1 captures correlation in returns between directly
connected traders, and γ2 captures the correlation between
agents further away in the network structure. These multiple
steps are important. They are similar in spirit to multiple lags
in a time series regression. The set xm now also includes
additional regressors for the characteristics of every other
agent. Thus, as the number of agents increases and the
network expands, we can continue to add regressors to the
right-hand side of this specification for each agent and each
degree of separation from agent i. Eventually, we add n�1
regressors for each degree of separation, leading to a complex
specification that takes into account each type of influence of
every agent on every other.

To include every other agent and every degree of
separation, and to simplify notation, we can introduce a
matrix that keeps track of the links between agents. This is
an N-square adjacency matrix G¼ fgijg whose generic
element gij would be one if i is connected to j (i.e., interacts
with jÞ and zero otherwise. Here gij ¼ 1 if trader i and j
have concluded a transaction during a period of time and
gij ¼ 0 otherwise. This matrix represents the interaction
scheme of the traders in the market. The G matrix
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associated with the simple network in the picture above is

G¼

i j s

i 0 1 0
j 1 0 1
s 0 1 0

ð3Þ

indicating that i trades with j; s with j; and j with i and s.
We use an undirected network for this analysis.4

Then, we can collapse the above specification with all
traders at every level of interaction into the following
specification:

ri;κ ¼ α0þ ∑
M

m ¼ 1
βmxmi;κþθ

1
gi:;k

∑
nκ

j ¼ 1
gij;κrj;κþυi;κ

for i¼ 1;…;nκ ; κ¼ 1;…;K ð4Þ
4 Our methodology can also be applied to directed networks. The fact
that, using a directed network definition, the matrix G is no longer
symmetric has no technical consequences (see, e.g., Lee, Liu, and Lin,
2010; Liu and Lee, 2010). However, our analysis remains roughly
unchanged whether we use an undirected or directed network definition.
We separately estimate the buy and sell networks to evaluate differences
and find that the results are nearly identical. The results are available
upon request. On further reflection, this similarity is reasonable. The
driver of the network effects is the fact that market makers (who
constitute most of the trading) tend to make similar returns as their
neighbors by pursuing similar strategies. The agnosticism about buying
and selling leads them to pursue a nearly identical amount of both. This
agnosticism also means that there are no pressures on one side of the
transaction from these central actors that would lead to differences in
estimation results.
where ri;κ is the idiosyncratic return of trader i in the
network k;

gi:;k ¼ ∑
nκ

j ¼ 1
gij;κ ð5Þ

is the number of direct links of i;

1
gi:;k

∑
nκ

j ¼ 1
gij;κrj;κ ð6Þ

is the average returns of trading partners; υi;k is a random
error term; and xmi;κ is a set of M control variables at the
individual or network level, or both. This model is the so-
called spatial lag model or spatial autoregressive model in
the spatial econometrics literature (see, e.g., Anselin, 1988)
and can be estimated using standard software via max-
imum likelihood.

As shown in Lee, Liu, and Lin (2010), Eq. (4) captures
recursively the network effects at any degree of separation
and it is closely linked with a particular network centrality
measure: Bonacich centrality (Bonacich, 1987, 2007).
3.2. Bonacich centrality

Bonacich centrality is a count of the number of all
direct and indirect paths starting at node i and ending at
node j, where paths of length p are weighted by θp. More
paths from i to j imply a more central trader. A full
description of Bonacich measure, including the connection
with our Eq. (4), is contained in the Appendix.
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5 In recent years, social network studies have proposed different
centrality measures to account for the variability in network location
across agents. There is no criterion to pick up the right centrality
measure. It depends on each particular situation (Borgatti, 2003;
Wasserman and Faust, 1994).
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To illustrate its relevance to a trading network, we
proceed as follows. First, we explain the importance of
understanding the role of indirect connections (Fig. 3). Next,
we discuss why it can be helpful to describe how shocks are
propagated through a financial network (Fig. 4). Finally, we
highlight the difference between Bonacich centrality and
the more traditional eigenvector centrality (Fig. 5).

Let us begin by considering the following simple network
in Fig. 3. In this network, trader A has one direct transaction
with another trader. That trader, marked B, has a record
of transactions with A in the audit trail data that we use.
In addition, B has transactions with traders C, D, and E. While
C, D, and E did not trade with A, because of the linkage
through B it is easy to see that A could be influenced in her
decisions and, as a result, her profitability, by the actions of C,
D, and E. As C, D and E trade with others, a complex and long
chain of connections emerges. One particular challenge in
understanding this type of system is capturing the impor-
tance of indirect links. It should be apparent that changes in
A's action flow through to B as well as C, D, and E. Bonacich
centrality measure allows one both to capture the salience of
the direct and indirect links and to characterize the relative
importance of counterparties versus the counterparties of
counterparties.

To illustrate the relevance of this measure to the analysis of
shock propagation, consider the original Bonacich (1987)
example. Bonacich uses a network of individuals who com-
municate with each other. Using the notation of Section 3.2,
the parameter θ measures the probability that a communica-
tion is transmitted by any individual to any of his contacts. θG
is the expected number of these communications that are
passed on to direct contacts, θ2G2 are the ones passed on to
contacts two links away, and θpWp is the expected number of
messages that reach agents at path-length p. In the context of
a trading network of mutual exposures, the magnitude of θ
thus reflects the degree to which a shock is transmitted locally
or to the structure as a whole. Small values of θ heavily weight
the local structure, while large values take into account the
position of agents in the structure as a whole.

Our final task is to highlight the differences of Bonacich
centrality with respect to the more standard eigenvector
centrality measure.5 In our context, the eigenvector centrality
would assume that θ¼1 and, thus, would equally weight the
entire network. All actions at distant points of the network
impact a trader and with the same importance of actions close
by. The bottom panel of Fig. 3 depicts these differences. By
allowing θ to be different from one, the degree to which a
shock is transmitted locally or to the structure as a whole can
be understood. Using our data, we simulate the impact of a
shock to a trader for different values of θ. Fig. 4 plots the
results. One can see that as θ becomes larger, the shock
transmits more widely across the network; i.e., it impacts
traders much further away in the network.

Changes in the parameter θ can lead to changes in the
agents' role in a network. A network can reveal distinct
centrality scores depending on the centrality measure chosen.
For illustration, we compare Bonacich and eigenvector cen-
trality measures in the network (see Fig. 5). One can calculate
the measures for each agent A, B, and C in the figure. If
θ40:2, A is more central than B, and eigenvector and
Bonacich centrality return the same ranking. However, if
θo0:2, B is more central than A. Why does this occur? The
intuition is that when θ is small, contacts further away are
highly discounted and, as a result, the Bonacich measure
counts only individuals who are close by. When θ is larger,
agents that are far away begin to be counted as they would be
in eigenvector centrality. In the eigenvector measure, there is
no discounting for distance, so agent A here is as close to
agents C as to agents B. Eigenvector centrality treats every
connection as having the same weight; that is, two traders
that are 20 links apart are similarly important in the measure
as ones that are directly connected. The Bonacich measure
weighs these links in an exponential fashion instead. Directly
connected traders receive weight θ, second degree connected
traders, θ2, etc. This has a number of implications. One, it
produces Bonacich centrality scores that are relatively higher
than the eigenvector equivalent for traders that have many
direct connections. Two, it permits analysis of distinct net-
works through an additional degree of freedom, the θ para-
meter, which can be derived from the estimation of Eq. (4).
Broadly speaking, Bonacich centrality can be considered as a
generalization of eigenvector centrality that permits additional
understanding of the role of indirect connections.

3.3. Weighted networks

Eq. (4) is based on an unweighted network definition.
This implies that the size of the single transaction when
establishing a network link is not taken into account.
However, trading with large counterparties would be
different than trading with smaller ones. One can thus
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Bonacich and eigenvector centrality scores for various θ
Θ CBA

Bonacich Eigenvector Bonacich Eigenvector Bonacich Eigenvector

0 1.33 0.50 1.78 0.41 .44 0.17

.1 1.52 0.50 1.67 0.41 .51 0.17

.2 1.65 0.50 1.59 0.41 .55 0.17

.3 1.74 0.50 1.53 0.41 .58 0.17

4.4 1.8 0.50 1.48 0.41 .60 0.17

Fig. 5. We compute the Bonacich and eigenvector centralities for the three types of agents in the network above as a function of θ. When using Bonacich
centrality, the most central agent changes from B to A as one weighs the distant connections more heavily. Eigenvector centrality is not able to appreciate
such a difference as it weighs all connections, near and far, equally. This example follows Bonacich (2007, p. 12) closely.

Fig. 6. Panel A shows a set of transaction between four traders. Each arrow is a single transaction, with the arrow pointing toward the buyer of a contract.
Each value along an arrow shows the number of contracts traded. The accompanying matrix is an unweighted network representation of the transactions.
Each cell contains a “1” where two brokers have transacted. Panel B shows the same set of transactions. Along each arrow is a calculation equal to (total
trades of buyerþtotal trades of seller)/2. These values are then used as weights in the accompanying matrix.
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extend the simple network model to use the network
equivalent of importance weights in an ordinary least
squares regression. We measure the importance of traders
by total trading value and replace the binary matrix G with
a new matrix capturing both the number of links and the
importance of each link. Let the matrix W¼GD, where G is
as defined above and D¼ fdijg is a matrix that weighs the
links within the network. The scalar dij is a scaling factor,
calculated as the total trading volume in the same trading
period (the network) of each i and j. Total trading volume



Table 3
Estimation with network effects.

This table estimates the network equation (3). Shown are results from the Standard and Poor's (S&P) 500 futures market and the Dow futures market.
The columns distinguish between different levels of network structure complexity. For each type network density and each market, we report the range of
maximum likelihood estimation results across 21 trading days. The first row shows the estimates of the parameter θ, the network effect coefficient. t-
Statistics are reported below coefficient estimates. We include the adjusted R-squared value from each specification. We denote significance of coefficients
at the 10%, 5%, and 1% levels with nnn, nn, and n, respectively.

Sparse networks Moderately dense networks Dense networks
250 trades per time period Five hundred trades per time period One thousand trades per time period

Low High Low High Low High

S&P 500 e-mini futures

Network effect coefficient (θ) 0.02nnn 004nnn 0.05nnn 0.08nnn 0.10nnn 017nnn

t-Statistic 38.01 38.02 37.13 42.66 38.18 44.59

Constant Yes Yes Yes Yes Yes Yes

R-squared 0.05 0.09 0.09 0.17 0.19 0.37

DOW futures

Network effect coefficient (θ) 0.02nnn 0.04nnn 0.04nnn 0.05nnn 0.08nnn 0.10nnn

t-Statistic 7.77 49.47 8.19 44.81 9.07 50.68

Constant Yes Yes Yes Yes Yes Yes

R- squared 0.04 0.08 0.07 0.09 0.14 0.18
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is defined as the sum of all trades, both buys and sells,
made by trader i with all other traders. As a result,
W ¼ fwijg is now a weighted network w. Fig. 6 provides
an illustration of the calculation of these weights. It shows
a set of four transactions among four traders, A, B, C, and D.
Each arrow is a single transaction, with the arrow pointing
toward the buyer of a contract. In panel A, each value along
an arrow shows the number of contracts traded. The
accompanying matrix is an unweighted network repre-
sentation of the transactions; i.e. the G from above. Each
cell contains a “1” where two traders have transacted and
“0” otherwise. Panel B shows the same set of transactions,
but having along each arrow a calculation equal to our
measure of importance: (total number of contracts bought
or sold by buyerþtotal number of contracts bought or sold
by seller)/2. These values are the ones used for the weights
D¼ fdijg to get a weighted accompanying matrix W.

In the original Bonacich (1987) paper, the centrality
measure is presented for unweighted networks. However,
the discussions throughout the paper (and the techniques
in the Appendix) apply to the weighted network case; i.e.,
G¼W (Newman, 2004).6

4. Estimation results

The estimation results of Eq. (4) are collected in Table 3
for different levels of network structure complexity (see
Section 2). Shown in the table are the results from the S&P
500 futures market and from the Dow futures market. For
each type of network in each market, we separately
estimate our model for each trading day and report the
range of estimation results and t-statistics across the
observed 21 days. The estimated θ coefficients for the
S&P are between 0.02 and 0.17 depending on the day and
6 We are grateful to Jose Scheinkman for calling our attention to this.
the network type. Similarly, they are between 0.02 and 0.1
for the Dow. Most of these are estimated with a very high
degree of precision. At the highest level, this suggests that
correlations exist in the network between agents' returns.
The magnitudes are economically important, suggesting that
increases in trading partner returns could be an important
determinant of one's own outcomes. The R-squared coeffi-
cients range from 0.05 to 0.37 for the S&P and 0.04 to 0.18 for
the Dow. In one case, these regressions explain more than
one-third of the variation in trader returns.

4.1. Results for weighted networks

The estimation results for the model with weighted
networks are contained in Table 4. We replace G with W in
Eq. (4) and run the same regression again. We again follow
the format of displaying results by the density of the
network.

The qualitative evidence remains unchanged, but the
results are stronger. First, the estimated correlation between
trader returns is now greater than 0.9 in the S&P and greater
than 0.8 in the Dow. That is, the returns a trader earns are
very similar to those of her trading partners. Second, across
densities of network structure, we find estimates of θ that are
large and always statistically significant. Across each specifica-
tion, the observed t-statistics increase. The estimation is now
much more precise than without the weights. Third, these
new specifications are able to explain a much larger fraction
of the variation in the trader-level returns. The adjusted
R-squared values are now uniformly above 70% in both
markets. Both the structure of the connections and their
importance are important in understanding returns.

The last row of Table 4 reports values for the average
multiplier, ϕ. The estimate θ is the average correlation
between traders' profits and those of their counterparties.
The value θ2 describes the correlation between traders and
their counterparties' counterparties, etc. As a result, we



Table 4
Estimation with weighted network effects.

This table extends the network model (3) to include weighted networks to reflect the relative importance of traders in the system. We use a weighted
matrix W defined as the element-by-element product of the adjacency matrix of realized trades and the sum of trading volume. Reported are results from
the Standard and Poor's (S&P) 500 futures market and the Dow futures market. The columns distinguish between different levels of network structure
complexity. For each type network density and each market, we report the range of maximum likelihood estimation results across 21 trading days. The first
row shows the estimates of the parameter θ, the network effect coefficient. t-Statistics are reported below coefficient estimates. We include the adjusted R-
squared value from each specification and the average multiplier. This multiplier is total network impact of a one-unit shock to a trader. Averaging across
the impact for all traders in the network produces this estimated effect, which is equal to ϕ¼ 1=ð1�θÞ. We denote significance of coefficients at the 10%, 5%,
and 1% levels with nnn, nn, and n, respectively.

Sparse networks Moderately dense networks Dense networks
250 trades per time period Five hundred trades per time period One thousand trades per time period

Low High Low High Low High

S&P 500 e-mini futures

Network effect coefficient (θ) 0 94nnn 0.96nnn 0.96nnn 0.98nnn 0.97nnn 0.98nnn

t-Statistic 1488.42 2594.92 619.46 619.46 516.89 669.17

Constant Yes Yes Yes Yes Yes Yes

R-squared 0.74 0.77 0.73 0.77 0.73 0.77

Average multiplier (ϕ) 16.12 26.99 25.61 45.45 37.01 66.46

DOW futures

Network effect coefficient (θ) 0.82nnn 0.89nnn 0.85nnn 0.92nnn 0.90nnn 0.95nnn

t-Statistic 355.26 475.98 316.51 415.36 233.36 309.37

Constant Yes Yes Yes Yes Yes Yes

R-squared 0.71 0.80 0.71 0.79 0.71 0.78

Average multiplier (ϕ) 5.52 9.43 6.71 13.15 9.80 21.26
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can look at a given trader and evaluate based on the
network structure how a counterfactual change in her
profits would be reflected in the profits of those near to
her. Thus, if a trader gained $1.00, the multiplier measures
how much traders in the network win or lose. Because the
coefficient θ measures the average correlation in returns
across traders linked by a single node in the network, θ2

measures the average correlation across two links; θ3, the
average across three, etc. Thus, a simple calculation allows
us to measure the impact of a shock to any given trader.
Consider a shock of $1.00. On average, this leads to a
change in earnings of directly connected agents of θn1,
agents two links away of θ2n1, etc. One can see, then, that
for each dollar won or lost by a trader, ϕ¼ 1=ð1�θÞ is the
aggregate amount won or lost by agents connected at any
level to the trader. For example, an estimate of θ equal to
0.5 produces a multiplier of two, suggesting that for each
dollar lost by a trader hit by an exogenous shock, the
individuals connected to the trader lose an aggregate of
$2.00. Because the market is zero-sum, if all agents are
marked-to-market at the time of the idiosyncratic loss, the
trading partners' $2.00 of losses is offset by $2.00 of gains
elsewhere in the network. Our measure is thus a calcula-
tion of the degree of reallocation of profits.

Notice that ϕ is an average. If one evaluates the
counterfactual for a highly central trader, the propagation
is much different (and greater) than if the shock hits a
relatively isolated trader.

We report the value of ϕ below each specification.
The multiplier is between 16 and 66 for the S&P and five
and 21 for the Dow. These large numbers imply that these
trading networks have very high sensitivity to shocks.
Small changes to individuals rapidly spread and magnify.
These effects depend on both the structure of the connections
and on the strength of the interaction, as captured by θ. As a
result, the average multiplier can be helpful to characterizing
the transmission of shocks in a trading system. The calculation
of an average spillover following a shock defines the degree to
which idiosyncratic losses become widespread ones.

4.2. Interpretation of results

Tables 3 and 4 show that traders that transact with
each other in this market have highly correlated returns.
The correlation emerges in the absence of specific infor-
mation being shared between agents and of the agents
having specific knowledge of the identity of their counter-
parties. So, the questions arise: Why would individual
returns be correlated? How does this relation emerge?

To explain, we return to our evidence in Section 3
(Table 2 and Fig. 2). A consistent explanation is that the
(observed) network of realized trades is a tool to describe
the (unobserved) strategic interactions at work in the
market. Because the matching algorithm used by the CME
is blind to identities of the traders, traders with correlated
strategies trade amongst themselves as well as with others.
As they do so, and form links with one another, correlation
in trading strategies leads to a connection between strate-
gies and network position. Traders confirm that sitting
between two traders with fundamental liquidity needs
can be profitable. The very active, high-profit traders (type
B) enter the market with the express purpose of exploiting
profitable opportunities. They thus behave similarly at each
point. These correlated bidding patterns lead to similarity in



Table 5
Network topology and profitability.

The table shows results from the Standard & Poor's (S&P) 500 futures market and the Dow futures market. The columns distinguish between different
levels of network structure complexity. The exercise in this table is to report individual-level variation in centrality and evaluate the difference in returns
for traders with different centrality. For each type of network density and each market, we report the range of results across 21 trading days. Individual-
level Bonacich centralities are calculated using the formula: bðw; θÞ ¼ ½I�θW ��1T , where the “1” signifies a vector of ones. We report the standard deviation
of centrality as well as the change in returns for a trader that changes his centrality by one unit.

Sparse networks Moderately dense networks Dense networks

Low High Low High Low High

S&P 500 e-mini futures

Impact of one-unit change in Bonacich centrality 0.06 0.70 0.07 0.78 0.10 0.76
Standard deviation-weighted Bonacich centrality 3.41 4.30 3.42 4.32 3.40 4.33

DOW futures

Impact of one-unit change in Bonacich centrality 0.39 0.60 0.37 0.57 0.38 0.57
Standard deviation-weighted Bonacich centrality 3.68 4.11 3.68 4.11 3.68 4.11
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returns. As noted in Section 3, intermediation transactions
are a substantial fraction of trades.

The explanation of returns correlation helps in under-
standing shock propagation. A change in fundamental
demands, for example, by traders A leads to a change in
the profit opportunity of traders B. The profitability of the
group of traders B changes in a linked fashion as they
transact both with the traders of type A and with each
other. The raw correlation of 0.3 (last column in Table 2)
reflects the degree to which losses would be propagated in
the absence of any network structure, while our estimated
figures of 0.8 and higher (Table 4) suggest that the linkages
in the network cause propagation that is much larger than
would occur in the absence of such connections.

The emergence of network patterns from correlated trad-
ing strategies provides additional rationale for using the
Bonacich centrality measure. As agents' strategies become
more correlated, traders becomemore likely to tradewith one
another directly or within a small diameter (small number of
intermediating traders). The Bonacich centrality measure
weighs these closer traders more heavily than those that are
very far away in the network. Those that are far away are
those that have strategies dissimilar from one another.
Measures that weigh all traders similarly regardless of dis-
tance, such as eigenvector centrality, would not capture this
difference in strategies unless the difference had no impact on
the likelihood of trading with any given trader.

4.3. Network centrality and profitability

Taken as a whole, the evidence in Section 4.2 indicates
that the number of direct and indirection connections in
the network, as weighted by θ, is a relevant factor that
plays a role in explaining the cross-sectional variation of
returns. To better understand the link between network
topology and returns, we can use our estimated θ to
calculate Bonacich centrality for each trader in our net-
works [Eq. (10) in Appendix A}.7 With this distribution of
7 This calculation generates a distribution of individual centralities
depending on the strength of network interactions and on the hetero-
geneity of network links [as captured by the estimate of θ and the matrix
G, in Eq. (10)].
positions in the network, we can look at the outcome
differences across traders of different centrality levels. We
do so by looking at the impact of a one-unit change in
centrality on returns. Table 5 reports both the impact and
the standard deviation of the centrality measure for
sparse, moderately dense, and dense networks.8 We report
absolute changes in returns. Because the benchmark
return is one, the numbers can also be interpreted as
percentage changes. They are changes in returns over one-
day time periods. We do not normalize to an annual basis.
It appears that high returns are associated with high
degrees of centrality irrespective of network complexity.

We note two patterns. One, the standard deviation of
the centrality measure is nearly identical across the three
network types. It is relatively similar across markets. Two,
the impact of a one-unit change (approximately one-third
of a standard deviation) is also relatively constant across
network densities.

We highlight this finding as it suggests, in part, that our
network definition is effective. Even though we construct
our networks based on an ad hoc choice of transactions, the
impact of the networks that we define remains consistently
important throughout the measured time period. While one
could improve upon the definition, the strength and con-
sistency over time of these findings suggest that we capture
a large portion of the network effect.
4.4. Network structure and distributional effects

Our analysis so far shows to what extent network
position (network centrality) of an individual trader is
important in explaining the level of individual returns. The
more central a trader emerges from the exogenous match-
ing process, the higher his returns.

In the remainder of this subsection, we highlight the
implication of differences in network structures in terms
of the distribution of outcomes in financial networks. That
8 We do not put centrality on the right-hand side of our regressions.
The impacts are derived from a simple transformation of the estimated θ

from Eq. (1).
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Fig. 7. Panel A shows the relation between a one-unit change in
centrality and the mean of returns in the network. To calculate this, we
take the average impact of a one-unit change across all traders in a given
network and plot it against the mean of returns across traders in the
same network. Panel B shows the relation between a one-unit change in
centrality and the variance of returns in the network. To calculate this, we
take the average impact of a one-unit change across all traders in a given
network and plot it against the variance of returns across traders in the
same network.
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is, does a difference exist in the variance of returns for
traders operating in different types of networks?

Recall first a few empirical patterns. One, we find that
network structure explains individual-level returns well.
Two, we find that the average multiplier, as measured by
the ratio of an aggregate impact to the level of an
individual shock, is very high in the networks that we
analyze. Three, we find that an improvement in terms of
centrality for an individual trader is associated with a
positive change in returns.

Given these three findings and the fact that futures
markets are zero-sum, we can make two claims. First, at
the level of a network (250 to one thousand transactions),
we should see that a change in the distribution of the
centrality measure has no change on the mean return in a
network. That is, an arbitrary reallocation of individuals
around the network should change the distribution of
outcomes, but not the mean.9 Second, it thus follows that
one should find differences in the variance of returns. We
find evidence of these two phenomena in our data.
9 We discuss above that the unweighted mean of returns at the
network level might not always be one, given that some traders earn
large profits. The reallocation can impact to a small degree this
unweighted return but cannot impact the weighted network returns,
which must always be equal to one.
Fig. 7 displays the results. It relates the impact of
network centrality to the variance of returns in the net-
work and finds a positive relation. It also shows that the
aggregate mean of returns remains roughly unchanged. As
centrality becomes more important, the distribution of
returns widens. This is a logical implication. If being
central leads to greater returns, in a zero-sum market this
necessarily means that someone at the periphery must
lose out, and the variance of returns widens.

Technically, the relation shows that the distribution of
returns of the network with greater sensitivity to central-
ity stochastically dominates (in a second-order sense only)
the distribution of returns for a network with lower
sensitivity to centrality.

5. Discussion and robustness checks

The validity of our analysis and its relevance for policy
purposes hinges upon the correct identification of the
network effect, θ.

The core problem that emerges in estimating linear-in-
means models of interactions is the Manski (1993) reflec-
tion problem. This arises from the fact that if agents
interact in groups, the expected mean outcome is perfectly
collinear with the mean background of the group. How can
we distinguish between trader i's impact on j and j's
impact on i? Effectively, we need to find an instrument:
a variable that is correlated with the behavior of i but not
of j. Cohen-Cole (2006) notes that complex network
structures can be exploited for identification. Bramoullé,
Djebbari, and Fortin (2009) highlight the same phenom-
enon and show that, in network contexts, one observes
intransitivities. These are connections that lead from i to j
then to s, but not from s to j (see picture). Thus, we can use
the partial correlation in behavior between i and j as an
instrument for the influence of j on s.

That is, network effects are identified if we can find two
agents in the economy that differ in the average connec-
tivity of their direct contacts. A formal proof is in
Bramoullé, Djebbari, and Fortin (2009). As a result, the
architecture of networks allows us to get an estimate of θ,
while eluding the reflection problem. A complex trading
network such as the one we are concerned with has a very
rich structure of connections, and identification essentially
never fails.

Another traditional concern in the assessment of net-
work effects in the social sciences is that network struc-
ture can be endogenous for both network self-selection
and unobserved common (group) correlated effects. The
first problem might originate from the possible sorting of
agents. However, given our definition of networks based
on high-frequency data and a random matching algorithm,
we have no reason to believe that any selection effects
exist in this context. Agents are assigned to trading
partners as we described above, based on time and price
priority alone. Even if two traders were to attempt to time
a transaction as to ensure a match, the high volume of
transactions on these markets makes this nearly impos-
sible to complete. As such, we have a strong claim that
individuals cannot choose their network partners and,
thus, no selection effects should be present. In other



Table 6
Estimation with weighted network effects and network fixed effects.

This table extends the weighted network model to include network fixed effects to control for group-specific unobserved factors. It shows results from
the Standard and Poor's (S&P) 500 futures market and the Dow futures market. The difference between this table and Table 4 lies in the construction of
returns. The results in Table 4 used the individual-level gross returns. Here we use the deviation in returns from the average return at the network level in
each time period. For each type of network density and each market, we report the range of maximum likelihood estimation results across 21 trading days.
The first row shows the estimates of the parameter θ, the network effect coefficient. t-Statistics are reported below coefficient estimates. We include the
adjusted R-squared value from each specification and the average multiplier. We denote significance of coefficients at the 10%, 5%, and 1% levels with nnn, nn,
and n, respectively.

Sparse networks Moderately dense networks Dense networks
250 trades per time period Five hundred trades per time period One thousand trades per time period

Low High Low High Low High

S&P 500 e-mini futures

Network effect coefficient (θ) 0 94nnn 0.96nnn 0.95nnn 0.98nnn 0.97nnn 0.99nnn

t-Statistic 964.33 2917.94 544.24 718.19 438.62 666.50

Constant Yes Yes Yes Yes Yes Yes
Fixed effects Yes Yes Yes Yes Yes Yes

R-squared 0.74 0.77 0.73 0.77 0.73 0.77

Average multiplier (ϕ) 15.61 28.57 19.61 41.62 29.41 71.36

DOW futures

Networkeffect coefficient (θ) 0.82nnn 0.88nnn 0.84nnn 0.92nnn 0.90nnn 0.95nnn

t-Statistic 385.74 448.79 307.21 411.65 237.46 310.21

Constant Yes Yes Yes Yes Yes Yes
Fixed effects Yes Yes Yes Yes Yes Yes

R-squared 0.71 0.78 0.70 0.79 0.71 0.78

Average multiplier (ϕ) 5.56 8.33 6.25 12.98 10.20 19.59

10 An industry lawsuit in US District Court protesting the implemen-
tation of the Commodity Futures Trading Commission (CFTC) was
decided in favor of industry in September 2012. The court sent the
proposed regulations back to the CFTC for reworking.

E. Cohen-Cole et al. / Journal of Financial Economics 113 (2014) 235–251248
words, network topology is exogenous here. The possible
presence of unobserved correlated effects instead arises
from the fact that agents in the same group tend to behave
similarly because they face a common environment or
common shocks. These are typically unobserved factors.
For example, traders with similar training, who sit in
similar rooms or use trading screens that show similar
types of data, could be influenced in their trading patterns
in ways that generate correlations in returns. While we
believe this to be very unlikely, we can control for these
unobserved effects by reestimating our model after taking
deviations in returns with respect to the group-specific
means, i.e., from the average returns of (direct) trading
partners. That is, if agents in a given empirically observed
network have some similarity that leads them to earn
higher returns as a group, we average out this group-level
effect and look only for the presence of spillovers. Our
primary specification already largely nets out market-level
returns by virtue of the fact that aggregate market-level
returns are one. In this case, we also control for group-
level unobserved heterogeneity. In sum, there is little
reason to believe that in an electronically matched market
one would observe any effect of this sort.

Results are in Table 6 and illustrate very small differ-
ences from those in Table 4.

These results are useful, also, for another reason. The
market that we are discussing is zero-sum. Benefits to a
given individual are necessarily reflected in losses to
another. As a result, complementarities in returns must
necessarily be reflected in losses elsewhere in the net-
work. We handle this issue by estimating our results in
deviations from average-level returns for an individual's
own network. In deviations, complementarities no longer
are reflected elsewhere in the network structure and we
can consequently use our results to evaluate the impact of
a shock to the system. The particular context of analysis
and our approach thus enable us to uncover a causal
relation between network structure and profitability.

6. A policy experiment

One of the advantages of this approach is that it
provides a mechanism via which policy makers and
regulators can understand the impacts of their choices
on the risk in the system. As a leading example, the August
2010 passage of the Dodd–Frank Wall Street Reform and
Consumer Protection Act included a call for the evaluation
of position limits in futures markets. The impact of such
limits has been fiercely debated.10

In this section, we construct a counterfactual study that
explores the consequences of this policy using our frame-
work. Our exercise runs as follows. We set an arbitrary
transaction limit for a given period of time. Given the
restriction, we re-estimate our Eq. (4) assuming that any
traders who, in the data, transact a greater number than
this amount, transacted only the fixed maximum. Specifi-
cally, we restrict to C the number of contracts that can be
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Fig. 8. This figure shows the results of a simulation in which traders face
trading limits. Each simulation result is an estimate of the average
multiplier. The vertical axis shows this average shock amplification
estimate. The horizontal axis shows the maximum trading limit in the
simulation. Limits on the horizontal axis indicate maximum trading
volume during a pre-specified time period. (For interpretation of the
references to color in this figure caption, the reader is referred to the web
version of this paper.)

11 In studies that include portfolio management concerns, the het-
erogeneity in returns has been attributed to costs differences (Anand,
Irvine, Puckett, and Venkataraman, 2010; Perold, 1988). Often the
differences are explained by managerial ability to maintain the persis-
tence in returns over time. For mutual funds, Kacperczyk and Seru
(2007), Bollen and Busse (2005), and Busse and Irvine (2006) show that
mutual funds maintain relative performance beyond expenses or
momentum over multiple time periods.

12 Reiss and Werner (1998) suggest that interdealer trade occurs
between the dealers with the most extreme inventory imbalances.
Sofianos (1995) disaggregates gross trading revenues into spread and
positioning revenues and argues that, on average, about one-third of
spread revenues go to offset positioning losses. Hasbrouck and Sofianos
(1993) find that specialists are capable of rapidly adjusting their positions
toward time-varying targets, and the decomposition of specialist trading
profits by trading horizon shows that the principal source of these profits
is over the short term.
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purchased in one-tenth of a trading day, thus setting
artificial bounds on the weights of our matrix W. This does
not change the network structure other than the weights of
the links. We consider C ¼ f2;3;7;10;20;30;100g for the
Dow futures market and investigate the consequences of
such limits given that high returns are associated with high
degrees of centrality irrespective of network complexity.
Fig. 8 shows the estimated shock amplification (ϕ¼ 1=ð1�θÞ)
for each of the values of C.

The simulation has two policy interpretations. First, the
figure shows that tighter trading limits lead to higher
values of ϕ (marked with red squares). These values can be
interpreted as a measure of the transmission of shocks in a
trading system. However, some additional detail is war-
ranted. In our context, we measure the size of the pass-
through to the system as a whole following an idiosyn-
cratic shock. This is conceptually distinct from increases in
the frequency of shocks (which we do not address). What
we observe from this exercise is that the size of shock
propagation increases as trading limits become tighter. In
the case explored here, a move from no position limits to a
strict one would increase the multiplier in the system, ϕ,
from approximately 13 to 16.

Second, we can also infer from the exercise that tighter
limits distribute the impact of the shock across a wider
range of market participants. That is, while a shock in the
constrained world could be widely distributed, an equiva-
lent shock in the unconstrained world to a large trader
could pass to only a small number of counterparties. This
phenomenon arises because in our experiment we do not
simulate new links between traders. The mechanism by
which the transmission of shocks increases is to decrease
the centrality of the network; that is, the limits downplay
the importance of the traders who had previously
exceeded the limit and been central.

Effectively, this highlights that the policy comes with a
distinct trade-off. On the one hand, in our simulation, it has
the potential benefit of dispersing adverse shocks to a wider
range of market participants. On the other hand, the limits
also appear to generate larger aggregate consequences from
each shock. The $5.00 loss could now be magnified to $6.00
or $7.00. The trade-off between the two determines the
aggregate impact of the policy, and its final impact
undoubtedly is market-specific.

7. Literature review

With the financial crisis, and increasing concerns about
financial integration and stability as a leading example, a
large number of theoretical papers have begun to exploit
the network of mutual exposures among institutions to
explain financial contagion and spillovers. Allen and Babus
(2009) survey the growing literature and Allen, Babus, and
Carletti (2012) provide an example of how interconnec-
tions lead to shock propagation. From an empirical point of
view, however, little agreement exists in the literature on
how to estimate the propagation of financial distress.

We contribute to this strand of the financial connections
literature by providing an empirical approach able to capture
the pathways of spillovers in a market with a single asset. By
providing details on the spread of risk and the sources of
profitability at this level of disaggregation, this paper increases
understanding of the transmission of shocks in a trading
system and in the development of policy.

As well, because we measure trader-level returns, we
point to the literature that discusses the investment
performance of individuals across portfolios, the price of
individual or groups of assets, etc.11 Another literature
exists on the profitability of financial intermediaries,
including specialists and trading desks.12 By studying an
individual asset across all traders, we can isolate the
importance of financial interconnections. We contribute
by suggesting that the profitability of trading is influenced
by the particular market role, as described by the position
in the network.

The closest paper to this one, to our knowledge, is
Billio, Getmansky, Lo, and Pellizon (2012). It is one of the
first using network measures to discuss the importance of
financial interconnections. The authors creatively exploit
aggregate data to infer links, but they do not have
information on direct links between financial agents. They
derive the connections from the Granger-caused correla-
tions between returns in different financial sectors. Using
this information, they measure network centrality using
eigenvector centrality. Eigenvector centrality is a measure
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that has many of the benefits of Bonacich centrality in that
it calculates the connections to each node and weighs
nodes with more connections more heavily in the calcula-
tion. The key distinction between this measure and the
Bonacich one is that eigenvector centrality considers all
connections in the network equally. That is, a counter-
party's connection five, ten, or 15 links distant is as
important under this measure as the connection to the
counterparty itself. Bonacich centrality allows for different
weights, which we estimate. In the application presented
by Billio, Getmansky, Lo, and Pellizon (2012), the differ-
ence is immaterial as they do not study second- or higher-
degree connections. The context we discuss here requires a
varying treatment of connections based on their distance
and, as a result, suggests an alternative approach.

8. Concluding remarks

Our analysis explains a conjectured, but to date unpro-
ven, feature of financial markets: returns from trading are
correlated with the position agents occupy in a trading
network. Using our network-based empirical strategy on
two highly liquid financial markets, we are able to explain
a large portion of the individual-level variation in returns.
This finding has potentially large salience.

Most important, one of our results is that individual-
level shocks are greatly amplified and spread in these
markets. A one-unit change in individual-level returns can
be amplified even 50 times. This implies very rapid
propagation of shocks and little ability to avoid contagion.
The estimate of network effects with financial data has a
nice interpretation as a measure of risk magnification and
spread. In fact, network effects can capture the propaga-
tion and amplification of financial shocks.

Because these results are a function of the network
structure, they point policy makers in the direction of
potential interventions. The rapid spread and amplification
derive from the network structure. Adjusting the structure
can impact the speed of spillovers. This points toward
interventions in the matching algorithm, potentially dur-
ing times of anticipated crisis. The most direct antecedent
of high spillovers is the presence of market makers, both
HFT and broker-dealers. The trading strategies of agents
whose principal function is market intermediation have
the impact of creating a market structure that is highly
sensitive to shocks. Altering the matching algorithm to
reduce the incentive of market makers to race to the
center of the network would minimize the impact of
shocks.

At one extreme, one could eliminate the impact of the
race to the center by concentrating trading into hourly or
twice-hourly auctions instead of continuous trading. By
clustering trading into periodic auctions, the market itself
would take on the matching and liquidity functions of
market makers. Periodic auctions are already used in some
markets as a way to ensure efficient price discovery in the
absence of market makers. Whether the loss of liquidity in
the 30–60 min between auctions has tangible costs to
market participants is a topic for further research.

An alternate policy intervention that could minimize
the scale of shock amplification would be to maintain
continuous auctions but limit transaction speed of market
participants. Speed limitations would alter the network
structure by preventing the aggregation of high-speed
traders at the center of the network. This aggregation
occurs because many of these traders have similar strate-
gies, and the speed of their transactions results in many of
their trades being with each other. Instead, traders with
fundamental liquidity needs would end up trading with
each other more frequently, reducing the centralization of
the network and with it the size of shock amplification.

Our policy simulation experiment also discusses the
potential impact of trading limits on shock amplification
and the trade-offs that emerge as a result.

While each of these policy interventions could have
trade-offs, this paper emphasizes that the network struc-
ture itself can have a tangible impact on profits of
participants and the amplification of shocks. Each of these
can be influenced by the regulatory and operational
structure of the market and, as a result, is an area for
policy makers to consider going forward.

A long literature in sociology and economics would
suggest that network patterns are important in non-
market interactions, based on a variety of plausible
mechanisms. These include social stigma, information
sharing, peer pressure, and more. The difficulty in trans-
lating the methodologies developed in the social science to
financial markets, particularly electronic ones, is that there
is little basis to believe that any of the mechanisms are at
work. Orders are matched at random by a computer based
on time and price priority, leaving little room for consider-
ing social impact even if traders had a motivation to do so.
Thus, our conclusions are statements about the empirical
importance of the networks that emerge as a result of
equilibrium order strategies.

Appendix A. The spatial autoregressive model and
network centrality

For ease of interpretation, let us write Eq. (4) in matrix
notation and derive the reduced form. The following
derivations are helpful in understanding why Eq. (4)
captures recursively the network effects at any degree of
separation and the link with a particular network central-
ity measure, Bonacich centrality (Bonacich, 1987).

Eq. (4) can be written as

r¼ θGrþβxþϵ; ð7Þ
where r is an N � 1 vector of outcomes of N agents, x is an
N�M matrix of M variables that could influence agent
behavior but are not related to networks, G is the N-square
matrix that keeps track of the direct links between agents,
and ϵ is an N � 1 vector of error terms, which are
uncorrelated with the regressors.

Given a small-enough value of θZ0, one can define the
matrix

½I�θG��1 ¼ ∑
þ1

p ¼ 0
θpGp ð8Þ

The p-th power of the matrix G collects the total number of
paths, both direct and indirect, in the network starting at
node i and ending at node j. The parameter θ is a decay
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factor that scales down the relative weight of longer paths;
i.e., paths of length p are weighted by θp. It turns out that
an exact strict upper bound for the scalar θ is given by the
inverse of the largest eigenvalue of G (Debreu and
Herstein, 1953).

In a row-normalized matrix, such as the one used in Eq.
(4) to represent average returns, the largest eigenvalue is
one. If jθjo1, Eq. (8) is well defined, that is, the infinite
sum converges. The condition jθjo1 captures the idea that
connections further away are less influential than direct
contacts and guarantees that the matrix ½I�θG��1 is able
to capture all the effects that stem from a given network
topology; that is, the cascades of effects stemming from
direct and indirect connections.

If jθj41, the process is explosive. In a financial network
context, it is equivalent to a complete financial collapse.
While interesting in its own right, we do not analyze this
case here. We focus on how, even in the absence of a
complete financial collapse, a small shock can cascade
causing large, measurable and quantifiable damage. There-
fore we consider jθjo1.

If one solves for r in Eq. (7), the result is a reduced form
equation:

r¼ ½I�θG��1βxþ½I�θG��1ϵ ð9Þ

Definition 1 (Bonacich, 1987). Consider a network g with
adjacency N-square matrix G and a scalar θ such that
Mðg; θÞ ¼ ½I�θG��1 is well defined and non-negative. Let 1
denotes the N-dimensional vector of ones. The vector of
centralities of parameter θ in g is

bðg; θÞ ¼ ½I�θG��1 � 1: ð10Þ

The centrality of node i is thus biðg; θÞ ¼∑n
j ¼ 1mijðg; θÞ

and counts the total number of paths in g starting from i. It
is the sum of all loopsmiiðg; θÞ starting from i and ending at
i and all outer paths ∑ja imijðg; θÞ that connect i to every
other player ja i; that is

biðg; θÞ ¼miiðg; θÞþ ∑
ja i

mijðg; θÞ: ð11Þ

By definition, miiðg; θÞZ1 and, thus, biðg; θÞZ1, with
equality when θ¼ 0.

Therefore, once one has on hand an estimate of θ, the
distribution of Bonacich centralities can be derived for all
the agents in the network.
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