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Abstract
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model, firms face idiosyncratic productivity shocks while at the same time are restricted by
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1 Introduction

How do firms adjust their balance sheets of productive assets and liabilities in response to recurrent

shocks to productivity or profitability? How does the existing capital stock reallocate across firms

and interact with new investment? Two empirical observations provide some guidance of the

balance sheet adjustment of U.S. corporate firms.

The first is aggregate capital stock reallocation. Figure 1 plots cyclical components of aggre-

gate capital reallocation (solid line) and GDP (dashed line), which suggests that reallocation of

existing productive capital is highly procyclical. Following Eisfeldt and Rampini (2006), capital

reallocation includes sales of property, plants, and equipment and acquisitions from the COMPU-

STAT database.1 This observation is in contrast with creative destruction theory in which more

capital stock should be liquidated in recessions. Moreover, existing literature shows that firm-level

total factor productivity (TFP) become more dispersed in recessions.2 Therefore, in recessions,

there are highest potential benefits3 to reallocate which should imply the most capital reallocation.

The second looks at firms that liquidate assets. Figure 2 plots debt-to-asset ratios of firms

over time during which they do not sell assets until time 0.4 We learn that most of the firms are

reluctant to sell assets quickly. In addition, they shrink their debt burdens before selling: their

liabilities are reduced relative to their assets.

Figure 1 is puzzling as Eisfeldt and Rampini (2006) point out: why is there less reallocation in

recessions (especially when there are larger potential benefits to reallocate)? This paper asks what

reason(s) can delay reallocation and generate larger TFP dispersion in recessions endogenously.

Figure 2 suggests that the outside financing condition should be important in firms’ liquidation.

The changes of the condition may affect the timing of reallocation and may explain why there is

less reallocation but larger TFP dispersion in recessions.

To examine outside financing’s impact on capital reallocation, I construct a tractable dynamic

general equilibrium model in which firms face idiosyncratic and aggregate shocks while being

restricted by two frictions: asset illiquidity and financing constraints. The two frictions interact

and generate capital reallocation delays from unproductive firms. In response to credit crunches,

the delays are prolonged and the TFP dispersion thus expands.

1Jovanovic and Rousseau (2002) also use this measure for studying the purchase of used assets. To give a sense
of reallocation market size, in 2011, the reallocation from COMPUSTAT is about $0.65 trillion whereas the total
U.S. fixed investment is about $1.6 trillion. Non-listed firms probably buy more used assets according to Eisfeldt
and Rampini (2007). In sum, capital reallocation is comparable to new investment.

2For example, Bloom, Floetotto, Jaimovich, Saporta-Eksten, and Terry (2012) shows that the dispersion of
plant level total factor productivity increases in recessions, replicated in Figure 10 in the Appendix. Since the
plant-level productivity dispersion measures potential gains from reallocation, the figure suggests that the gains
are countercyclical. Other measures of TFP dispersion are also larger in recessions as in Table 8 in the Appendix.

3Mergers and acquisitions (M&A) sometimes occur for market power motives; but in firm-level data, M&A
generally increase efficiency as shown in Maksimovic and Phillips (2001). (A transaction that does not increase
efficiency is “a minority of transactions”.)

4Except for firms with very high leverage ratios, see Figure 11 in the Appendix. Covered firms are with asset sells
in the years 2000-2012 in the SDC Platinum database and have corresponding information in the COMPUSTAT
database. Those who sell multiple times are excluded. See the data description in the Appendix.
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Figure 1: Capital reallocation over cycles
The series plotted are cyclical components of HP-filtered log data normalized by standard deviations. Solid line
represents seasonally adjusted reallocation, i.e., the sum of sales of property, plant, and equipment (SPPE) and
acquisition (AQC) in 2005 dollars. Dashed line represents real GDP in 2005 dollars. Shaded regions denote NBER
recessions. For the separate cyclical patterns of SPPE and AQC, see Figure 12 in the Appendix. See also Tabel 6
and Table 7 in the Appendix for summary statistics and more statistics of cyclical patterns.

Figure 2: Debt-to-asset ratio before liquidation
Debt-to-asset ratios before selling assets of all firms who sold at least 50% of the assets in 2000-2012 (2071 such firms in total). Time
0 denotes the time when firms sell assets and time t denotes t quarters before selling assets. By construction, there is no assets selling
at time t. For a more cross-sectional detail, see Figure 11 in the Appendix.
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To be more specific, the key features are: (1) collateralized borrowing constraints, (2) capital

resale discount5,6 (assets will be sold at discount in liquidation), and (3) fixed costs in running

firms. In this economy, idiosyncratic productivity shocks create the benefits to reallocate capital

stock. Productive firms expand by borrowing, but collateral constraints restrict the expansion so

that not every capital stock can be reallocated. For example, not every production line of electric

cars can be transferred to productive car companies.

In contrast, firms whose productivity falls are hesitant to sell assets because of the resale

discount, gambling on the hopes that they might regain productivity soon. Meanwhile, these

firms have accumulated a large amount of debt. The interest rate on the debt is higher than

the rate of return on capital stock. They let the capital depreciate while pay down existing

debt by shrinking dividends (modeled as consumption). If they persist in this unproductive way,

profitability stays low and they gradually shrink. But they will eventually give up their capital

when the option value of maintaining the depreciated capital is not enough to compensate for the

fixed costs of operation. Thus, the model is able to generate balance sheet dynamics as in Figure

2 (see Figure 5 later).

The main result is that aggregate adverse shocks to borrowing constraints prolong the selling

delay through the general equilibrium. Consider a credit crunch that further limits efficient firms

from expanding. These firms’ purchase of existing capital stock decreases. More importantly,

economy-wide hiring drops and wage rates decrease such that the labor costs to run firms de-

crease. In response to lower input costs, the more inefficient firms postpone liquidation and less

capital is sold. At the same time, these inefficient firms slowly pay down debt to reduce interest

payments and to increase future borrowing capacity. In summary, the interaction is a result of the

general equilibrium effect: when a financing problem restrict productive firms to expand, reduce

demand for labor, and therefore lowers input costs, keeping assets and slowly deleveraging are

more attractive to inefficient firms.

Because capital reallocation slows down during recessions, the idiosyncratic TFP dispersion

across firms expands and the aggregate TFP declines with the tightened financing constraints,

leading to a deepening recession. Thus, aggregate shocks to financing constraints interact with

asset illiquidity, which helps explain why capital reallocation slows down in spite of larger potential

benefits to reallocate during recessions. A major credit crunch after a banking crisis, such as the

one in the U.S. in 2008, exemplifies these interactions.7

5Shleifer and Vishny (1992) summarize two usual reasons for resale costs. First, when firms are liquidating, the
potential buyers with the highest valuation are often those in the same industry who generally also have financial
troubles. Assets may not go to the highest valuation users. Second, because of antitrust reasons, assets may need
to be sold to industry outsiders, causing lower values for assets.

6Ramey and Shapiro (2001) provide empirical evidence of investment specificity and selling costs. They estimate
the wedge between purchase price and resale price for different types of capital. Machine tools are sold at about a
69% discount off the purchase value, and structural equipment is sold at a 95% discount. These estimates suggest
a large degree of specificity. Other evidence includes Holland (1990), in which a 50% to 70% discount is associated
with the liquidation of the assets of a machine-tool manufacturer.

7U.S. economy after 2008 experiences similar massive deleveraging in Japan after 1990, summarized in Shirakawa
(2012). Koo (2011) calls this type of recessions “balance sheet recessions”. Meanwhile, Japanese corporate sector

3



Aggregate TFP shocks, however, generate different dynamics. When adverse aggregate TFP

shocks hit, the profit rate is lower because of a lower productivity. Keeping capital is less profitable

and inefficient firms have higher incentives to liquidate. Therefore, more reallocation and smaller

TFP dispersion should be seen during recessions.8 Meanwhile, deleveraging is much smaller and

more short-lived compared to responses after a credit crunch in which inefficient firms slowly pay

down debt.

Finally, I estimate the two aggregate shocks (aggregate shocks to financing constraints and

aggregate TFP shocks) using Bayesian estimation methods and simulate the economy with only

aggregate TFP shocks and only financial shocks. I confirm that aggregate TFP shocks alone

cannot generate both observed procyclical capital reallocation and countercyclical TFP dispersion.

Financial shocks are necessary to capture both dynamics. The joint dynamics thus offer some

natural identification of the source(s) of business cycles.

The contribution of this paper is to consider the interaction of the two frictions. Without asset

illiquidity, there will not be selling delay. Without financing constraints, productive firms can

borrow as much as they want, pushing up the wage rate and interest rate. Thus, unproductive

firms have small incentives of keeping assets, leaving a very short delays of selling assets.

The technical innovation of this paper is to propose a tractable method for firm dynamics with

asset illiquidity and for the distribution of firms. Solutions to such model are usually complex9

and sometimes infeasible with aggregate shocks (not to mention estimations of the shocks). To

maintain tractability10, I simplify the problem by solving portfolio choices between bonds and

capital stock with (real) “option values”, using finance portfolio choice theory, e.g., in Campbell

and Viceira (2002). Therefore, the option value of capital depends on the portfolio weight (or

leverage ratio) which is a new endogenous state variable, similar in Miao and Wang (2010).

Using the closed-form portfolio choice, individuals’ decision rules are easily aggregated. Note

that finite moments are not enough to characterize the firm distribution. But the tractability of

the distribution still leads to exact aggregation and avoids the approximation method as in Krusell

and Smith (1998). Therefore, system dynamics can be analyzed by solving simple simultaneous

non-linear difference equations.

Literature Review. Real option is the salient feature of this paper. Dixit and Pindyck (1994)

and Caballero and Engel (1999) focus on the timing of irreversible investment. This paper focuses

on asset selling. Since assets may turn to be productive, running unproductive firms has an option

value which may exceed the resale value. I show how to directly quantify the option value which is

history dependent and summarized in firms’ leverage ratios. The history dependent option value is

has substantial less restructuring found by Hoshi, Koibuchi, and Schaede (2011). Thus, linking deleveraging and
capital reallocation sheds some light on corporate balance sheet adjustments.

8Note that this is the standard creative destruction theory, but the opposite phenomena occur in data.
9See, for example, Bloom, Bond, and Reenen (2007), Bloom (2009), and Khan and Thomas (2011), who use

piece-wise functions to approximate individual value functions.
10I follow and extend previous works by Angeletos (2007), Kiyotaki and Moore (2011), and Buera and Moll

(2012). Under the class of CRRA preferences, if individual production functions feature constant returns to scale,
the wealth spent on capital and bonds is simplified to a portfolio choice between the two.
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similarly to that in Philippon and Sannikov (2007) where the value is from the history dependent

contract. Additionally, the option value of keeping illiquid assets partially explains why firms tend

to sell more liquid assets initially as in Duffie and Ziegler (2003).

The real option is linked to the delayed capital reallocation which generates larger dispersion

during recessions. Implication of shocks to the dispersion of firm-specific conditions can be found,

for example, in Bloom (2009), Arellano, Bai, and Kehoe (2012), Gilchrist, Sim, and Zakrajsek

(2010), Panousi and Papanikolaou (2012), and Vavra (2012). But Bachmann and Bayer (2012a,b)

show that large dispersion shocks are difficult to reconcile with other observations such as the

investment rate dispersion. This paper shows how standard credit crunches can increase the

dispersion endogenously through general equilibrium. Similarly, Bachmann and Moscarini (2011)

study endogenous dispersion through the risk-taking behaviors of firms during recessions.

Further literature of macroeconomic implications of asset illiquidity and implications of financ-

ing constraints can be found in surveys by Caballero (1999) for capital illiquidity,11 and Bernanke,

Gertler, and Gilchrist (1999) and more recently Brunnermeier, Eisenbach, and Yuliy (2012) for

financing constraints. Whether asset illiquidity or financing constraints can quantitatively amplify

TFP and output losses is a matter of some debate.12,13

Innovation of this paper is to consider the interactions between asset illiquidity and financing

constraints. The calibration shows that the aggregate TFP gap between the model economy and

an economy without illiquidty of capital or without financing constraints is significant in the steady

state and expands during recessions caused by credit crunches. In this sense, the closest papers are

perhaps Kurlat (2011) and Khan and Thomas (2011). Kurlat (2011) shows analytically why the

secondary market for existing capital may shut down and its macroeconomic implications through

adverse selection. He focuses on the resale prices by simplifying outside financing: entrepreneurs

are not allowed to borrow. Instead, I focus on different degrees of borrowing constraints and the

impact on the portfolio choices among capital and bonds. Khan and Thomas (2011) quantitatively

examine reallocation efficiency for given degrees of resale costs and financing frictions, focusing

mainly on numerical aspects. I extensively use analytical methods (by focusing on more specific

process of idiosyncratic shocks) to better explain the interaction of the two frictions on the capital

11Partial irreversibility is important for the interaction in the model. Previous work on investment irreversibility
focuses on zero resale value, or completely irreversible investment, such as in Abel and Eberly (1996, 1999) and
Thomas (2002). With zero resale value, firms only consider when to buy instead of when to sell.

12Thomas (2002) and Veracierto (2002) argue that irreversibility is not important in general equilibrium since
idiosyncratic adjustments will be smoothed out. However, Kashyap and Gourio (2007) show that whether lumpy
investment is important in aggregate depends on production function of firms and the distribution of fixed costs.
Recently, Kiyotaki and Moore (2011) study the illiquidity shocks and the amplification. Eisfeldt (2004) and Kurlat
(2011) model the illiquidity through asymmetric information.

13See financial constraints’ impact on long-run output and TFP losses in Buera, Kaboski, and Shin (2011), Moll
(2010), and Midrigan and Xu (2012). For example, Midrigan and Xu (2012) argue that financing frictions cannot
generate the misallocation observed in Hsieh and Klenow (2009). Moll (2010) suggests that as firms have persistent
idiosyncratic productivity shocks, they save enough to undo financial frictions. See also financing constraints’ effect
on short-run output and TFP fluctuations in Kocherlakota (2000), Cordoba and Ripoll (2004) and more recently
Chen and Song (2012).
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reallocation delays through general equilibrium,14 before calibration and estimation. More impor-

tantly, in contrast to both Kurlat (2011) and Khan and Thomas (2011), I look at the deleveraging

behaviors of firms before liquidations.15 The deleveraging occurs because of risk-averse agents who

try to smooth consumption. Thus, there are firms that borrow but are not constrained.

2 The Model

2.1 Preferences, Technology, and Information

Time is discrete and the horizon is infinite. There are two types of agents: households (with

measure L) and entrepreneurs (with measure 1). Households are hand-to-mouth and supply labor

inelastically. Entrepreneurs own production technology and some of them run firms.

Preferences. At time t, a typical entrepreneur j has preferences over the consumption stream

cjt, cjt+1, cjt+2..., and leisure stream (1− hjt), (1− hjt+1), (1− hjt+2)..., given by

Et

∞∑
s=t

βs−t[u(cjs) + η(1− hjs)] (1)

where β ∈ (0, 1) is the discount factor, Et is the conditional expectation operator, and u(c) =
c1−σ−1

1−σ . σ is the relative risk-aversion parameter. To simplify, I use σ = 1, i.e., u(c) = log(c),

leaving the general case in the Appendix. If j runs the firm, hjt = 1; if j does not run the firm,

hjt = 0, and there is η extra leisure utility. η represent the fixed costs in running the business and

will be important in the exit decisions later.16

Production. In the beginning of time t, j’s firm uses capital kjt (installed in t − 1) and hire

labor ljt at a competitive wage rate wt, to produce output:

yjt = Atz̃jtk
α
jtl

1−α
jt = At(zjtkjt)

αl1−αjt

where α ∈ (0, 1), zjt is the idiosyncratic productivity, and At is aggregate productivity. Aggregate

productivities At are realized at the beginning of t, while idiosyncratic productivities zjt are known

at time t − 1. Similarly, entrepreneur j learns zjt+1 at time t. Let at = (zjt, zjt+1) denote the

productivity pair at time t. Some entrepreneurs are productive at time t (zjt = zh) while others

14The interactions in the model occur through general equilibrium. Credit crunches reduce wage rates because
of a frictionless labor market. Empirically, despite wage rigidities, real wage rates decline during recessions, as
found by Solon, Barsky, and Parker (1994) and Haefke, Sonntag, and Van Rens (2012). The decline of real wages is
a consequence of lower wages of newly hired workers, in spite of moderate wage rigidity for longer term employees.
Caggese and Cunat (2008) show firms can substitute flexible employment contracts for permanent employment
contracts to reduce efficiency wages. Berger (2012) takes this a step further: firms hire more unproductive workers
in expansions, but quickly fire them during recessions to reduce costs.

15Recently, Guerrieri and Lorenzoni (2011) look at deleveraging after credit crunches in households who face
durable consumption goods illiquidity and financing constraints.

16Alternatively, an entrepreneur’s engagement in running the firm produce output that are the fixed costs
required for production. Modeling fixed costs as η utility will give rise to closed form solution later.
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are unproductive (zjt = zl), with zh > zl > 0. For convenience, z̃h = (zh)α and z̃h = (zh)α denote

the “measured” idiosyncratic productivity levels. The idiosyncratic productivity follows a two

state Markov process17 where the transition probabilities are

Prob(zjt+2 = zl | zjt+1 = zh) = phl

Prob(zjt+2 = zh | zjt+1 = zl) = plh

Capital Accumulation. Capital depreciates at a rate δ. Firms can invest in new capital stock,

buy existing assets from the secondary market, or sell existing assets to the market. Inactive

investment decisions are also allowed, i.e., j can choose to neither buy nor sell capital. One unit

of efficient used assets, after being installed, is the same as one unit of new assets. Thus, the

entrepreneur j’s capital stock evolves according to

kjt+1 = (1− δ)kjt + ijt

where ijt > 0, ijt < 0 and ijt = 0 denote buying, selling, and inaction in investment, respectively.

As in neo-classical growth model, a buyer pays one unit of consumption goods for investment

goods. Thus, amplification from asset price channel is switched off. For each unit of used assets

sold, only (1 − d) fraction is useful for other buyers which implies that sellers receive a payment

of (1− d) for each unit of asset sold from them.

In sum, it costs 1 to invest (new or old capital) and (1 − d) to retire a unit of old capital. If

the firm changes its quantity of capital from k to k′, the cost of doing so is

ψ(k′, k) =


k′ − (1− δ)k, if k′ > (1− δ)k

0, if k′ = (1− δ)k
−(1− d)[(1− δ)k − k′], if k′ < (1− δ)k

Budget and Collateral Constraints. Entrepreneur j has access to the credit market. Denote

the bond position as bjt at the beginning of t and the interest rate from t − 1 to t as Rt. The

budget constraint of j can be written as

cjt + bjt+1 + ψ(kjt+1, kjt) = yjt − wtljt +Rtbjt.

j earns profits and interests, which are spent on consumption, new bonds, and paying the capital

adjustment costs. Note that one can simplify profits further. Because firm j has a constant return

17Note that, 0 < phl < 1, 0 < plh < 1, and phl + plh < 1.

7



to scale (CRS) production technology, the instantaneous profits of j are linear in kjt
18,19

Π(zjt, kjt;wt) = max
ljt
{(Atzjtkjt)αl1−αjt − wtljt} = (zjtπt)kjt

where πt = αA
1
α
t (1−α

wt
)(1−α)/α. Thus, the budget constraint can be simplified to

cjt + bjt+1 + ψ(kjt+1, kjt) = zjtπtkjt +Rtbjt. (2)

Entrepreneur j can short bonds (borrow), but not capital stock. Borrowing is bounded because

j faces collateral constraints similar to those in Kiyotaki and Moore (1997) and Hart and Moore

(1994).20 The collateral constraint here includes the resale friction and an extra degree of financing

friction θt:

Rt+1bjt+1 ≥ −θt(1− d)(1− δ)kjt+1 (3)

where 1 − θt is the “haircut”. Collateral constraint (3) says that debt value cannot exceed θt

fraction of the resale value of the residual capital at t+ 1. Also, for one unit of capital stock, the

investing entrepreneur only needs to pay 1− θ(1− d)(1− δ)/Rt+1 as down payment. θt fluctuates

and measures the financial market development, reflecting the external financing difficulties. For

example, a permanently higher θt represents a better financial development, whereas a temporary

decline in θt represents a sudden banking problem.

θt of (3) constrains capital stock allocation efficiency. Without (3), zh owners can obtain any

funds needed to invest in capital stock. The economy would reach the efficient production frontier,

and as many entrepreneurs as possible can enjoy leisure.

A Summary. Each entrepreneur j maximizes (1) subject to (2) and (3), by choosing consump-

tion cjt, leisure hjt, labor input ljt, capital kjt+1, and bonds bjt+1, while taking the wage rate wt

and the interest rate Rt+1 as given.

18To see this, the first-order condition for labor is (A
1
α
t zjtkjt)

α(1−α)l−αjt = wt, so that the optimal labor demand

is l∗jt = A
1
α
t zjtkjt

[
1−α
wt

]1/α
, from which profits are

Π(zjt, kjt;wt) = At(zjtkjt)
αl1−αjt − wtljt = A

1
α
t zjtkjt

[(
1− α
wt

)(1−α)/α

− wt
(

1− α
wt

)1/α
]

= A
1
α
t zjtkjt

(
1− α
wt

)1/α

[
wt

1− α
− wt] = zjtπtkjt.

19After substitution, labor demand is l∗jt = ( πt
αAt

)1/(1−α)zjtkjt. Thus, total output produced by entrepreneur j

can be written as yjt =
zjtπtkjt

α . To interpret this result, α fraction of the output becomes j’s profits while the 1−α
fraction is paid through wages.

20This is a consequence of the fact that the human capital of the agent who is raising outside funds is inalienable.
To ensure no “run away” default, the lender should be able to seize the tangible assets.
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2.2 Recursive Equilibrium

I rewrite the entrepreneur’s problem recursively and then define recursive equilibrium. Denote

aggregate state as X = (Γ(k, b, a), θ, A) where Γ(k, b, a) is the distribution of individuals’ capital

stock, bonds, and productivity pair at the beginning of each period. To emphasize, θ and A are the

primitive shocks, i.e., financial disturbances and aggregate productivity fluctuations are exogenous

shocks. Let V be the optimal value of an entrepreneur with k, b, and a, given the aggregate state

variable X. The value function V (k, b, a;X) satisfies the Bellman equation:

V (k, b, a;X) = max{W 1(k, b, a;X),W 0(k, b, a;X)} (4)

W 1(k, b, a;X) = max
k′>0

R′b′≥−θ(1−d)(1−δ)k′
{u(zπk +Rb− ψ(k′, k)− b′) + βE[V (k′, b′, a′;X ′)|a,X]}

W 0(k, b, a;X) = max
b′
{u(zπk +Rb+ (1− δ)(1− d)k − b′) + η + βE[V (0, b′, a′;X ′)|a,X]}

The first step maximization is over the two actions: (1) to run the firm and get W 1 and (2) not

to run the firm and get W 0. The second step is to choose the optimal consumption and savings

(in capital stock and in bonds). Note that W 0 has the leisure utility η today, as an entrepreneur

who gets W 0 does not run the firm today and there is no output tomorrow. The existence and

uniqueness of the value function are standard by contraction mapping, as in Chapter 9 of Stokey,

Lucas, and Prescott (1989).

Finally, I define the recursive equilibrium to close the model:

Definition 1 (The First Recursive Equilibrium Definition):

The equilibrium is a law of motion H, policy functions l = gl(k, b, a;X), k′ = gk(k, b, a;X),

b′ = gb(k, b, a;X), and pricing functions π(X) and R′(X) such that:

(i) l, k′ and b′ solve the entrepreneur’s problem in (4) given the wage and the interest rate.

(ii) Markets for labor and bonds clear∫
ljtdj = L,

∫
bjt+1dj = 0.

(iii) The distribution evolution H is consistent with policy functions.

3 Decision Rules

The challenge of equilibrium characterization is to track the distribution of firms. Fortunately,

the economy turns out to be highly tractable. I begin by describing the general solution under

the economy with an active secondary market, leaving the mathematical details for later. Doing

so will give readers an idea of where the argument flow is and allow them to skip the details.
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In the details, I first show some general properties of entrepreneurs’ recursive problems, regard-

less of the parameters. Then I shift the focus to certain parameters under which the equilibrium

has both an active credit market and an active secondary asset market, since my focus is on the

imperfect secondary market and delayed capital reallocation. In the next section, I show how the

distribution can be easily handled.

3.1 A Quick Preview

It turns out that an individual entrepreneur’s policy depends only on the leverage ratio, i.e., capital

stock over equity k/(k+ b). Under certain parameters, zh owners buy capital while zl owners hold

on to it before liquidation, in the steady state and the neighborhood around the steady state. I

focus on equilibrium of such because it has imperfect capital reallocation and possible binding

financing constraints for productive firms. In numerical analysis, I confirm such equilibrium.

In steady state, the optimal policy functions can be shown in two ways. One is to examine

tomorrow’s leverage given the leverage today (Figure 3a). When drawing zh, entrepreneurs always

lever up to some leverage ratio λ̄, denoted as z′ = zh line. When drawing zl, entrepreneurs let the

capital depreciate and pay back existing debt by consuming less. To see this, leverage tomorrow

can be found through z′ = zl and 45-degree lines. Leverage today can be mapped into leverage

tomorrow by the following procedure. First, cut horizontally the zl line in which intersection point

G1 has k/(k + b) as today’s leverage. Then, cut vertically the zl line in which the intersection G2

has the same k/(k + b) as k′/(k′ + b′) of G1, which is tomorrow’s leverage. Tomorrow’s leverage

keeps decreasing if an entrepreneur keeps drawing zl until leverage reaches some threshold λ.

Then, the firm is liquidated since the capital stock will be very small and the fixed costs (the loss

of leisure utility) will force the entrepreneur to do so.

Alternatively, one can examine the dynamics of k and b (Figure 3b). zh owners always expand

through the z′ = zh line so that the leverage remains as λ̄ and k/b is kept as λ̄
1−λ̄ . For example,

when λ̄ is the leverage under the borrowing constraint, zh owners are constrained by the credit

limit. zl owners, on the other hand, shrink their debt while letting the capital depreciate until they

reach leverage λ (i.e., k/b ratio is λ
1−λ) when their firms are liquidated. The region characterized

by the two lines with slope λ̄
1−λ̄ and λ

1−λ denotes the inaction region. Inside the region, the reward

for changing capital stock is insufficient. From outside the region (to the right of the λ
1−λ slope

line), the optimal policies are such as to proceed instantly to the k = 0 line, that is, to liquidate.

Finally, λ̄ and λ will change in response to aggregate shocks.

3.2 General Properties

3.2.1 Properties of the Value Function

I establish some useful properties of the value function which will be used later. The value function

behaves normally and has the “scale-invariant” property:
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Figure 3: Policy function illustration
(a) Policy function mapping leverage today to leverage tomorrow. The z′ = zh line denotes the target leverage when entrepreneurs
draw zh. They target at λ̄ independent of their leverage today. The z′ = zl line (which is below the 45-degree line) denotes the target
leverage when drawing zl. The target leverage is lower than today’s leverage. When today’s leverage reaches λ and the entrepreneur
still draws zl, the entire firm will be liquidated and leverage will be 0. (b) Dynamics of k and b. When entrepreneurs draw zh, their
firms expand (increase k while decrease b) along the solid line. Whenever entrepreneurs draw zl, they step on the dashed line (one

specific path): let k depreciate while paying back existing debt (increase b) until k/b = λ
1−λ when they liquidate the firm.
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Lemma 1 (Properties of the Value Function):

The value function V has the following properties

i V (k, b, a;X) is increasing in k, b, and a, and concave in (k, b).

ii V satisfies

V (γk, γb, a;X) = V (k, b, a;X) +
logγ

1− β
. (5)

Proof. See the Appendix.

One can prove Lemma 1 by contraction mapping, which maps the space of functions with

properties (i) and (ii) to itself. Let leverage of a firm defined as k/(k + b). (ii) of Lemma 1 says

that value functions of entrepreneurs with the same leverage ratio and a are affine transformations

of each other. More importantly, target leverage of these entrepreneurs will be the same.21

Lemma 1 also suggests that fixed costs do not affect the difference of values of two entrepreneurs

with the same leverage and a. Later, this property is important in deriving the liquidation strategy

(i.e., when should an entrepreneur liquidates the firm). Intuitively from Lemma 1, the liquidation

strategy depends only on the leverage ratio k/(k+ b). In the appendix, I prove that this property

still holds under general CRRA utility.

21Their policies are (k′, b′) and (γk′, γb′) so the target leverages are k′/(k′ + b′) and γk′/(γk′ + γb′).
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To derive policy functions, one needs derivatives of the value function. A potential problem is

that ψ(k′, k) has no derivative when k′ = (1− δ)k. The left derivative is strictly smaller than the

right one. Such functions are called sub-differentiable (at k′ = (1− δ)k). If ψ has a kink, so will

V .22 Therefore, V is also sub-differentiable at k′ = (1− δ)k. Fortunately, the value function is an

upper envelope and it will thus be super-differentiable (the opposite of sub-differentiable). The

function that is both sub-differentiable and super-differentiable is differentiable.23

Lemma 2 (Differentiability):

V (k, b, a;X) is differentiable for k > 0 and satisfies the envelope condition.

Proof. See the Appendix.

3.2.2 Closed-form Policy Functions for k′ > 0

Let z(a) and z′(a) denote today’s and tomorrow’s productivity. Because of potential inaction

investment decisions, it is useful to work with “shadow value” of capital, i.e., q(k, b, a;X) that

satisfies the envelope condition:

Vk(k, b, a;X) = u′(c(k, b, a;X))[z(a)π + q(k, b, a;X)(1− δ)], (6)

for k > 0. q measures the value of capital in consumption goods unit. It shows how much

entrepreneurs value their capital internally, particularly when the investment decision is inaction.

Later, it turns out to be useful in solving policy functions.

q is equivalent to the marginal reward to adjust capital. When the marginal reward to increase

capital reaches 1, a firm buys capital. When the marginal reward to decrease capital reaches 1−d,

the firm sells it. When there are no active purchases or sales, the marginal reward to increase

capital is q, which should be less than 1; the marginal reward to decrease capital is q, which should

be greater than 1− d. Therefore, it is not optimal to adjust capital stock when

1− d < q(k, b, a;X) =
Vk/u

′(c)− zπ
1− δ

< 1.

Inside the inaction region, q is the option value of staying. Such characterization is similar to that

in Dixit (1997). Moreover, q depends only on leverage, keeping everything else fixed:

Lemma 3 (Scale Invariance and Shadow Prices):

The value function V and the shadow value q have the following properties

i Vk is homogeneous with degree −1.

ii For given a and X, Vk/u
′(c) depends only on k/(k + b), but not on k or b level.

22As shown in Mordukhovich, Nam, and Yen (2006).
23The proof closely follows recent work by Clausen and Strub (2012).
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iii q(k, b, a;X) can be simplified to q( k
k+b

, a;X).

Proof. See the Appendix.

One may also interpret q( k
k+b

, a;X) as the “stock price” of each share of a firm with leverage

k/(k + b) if the firm can be traded among entrepreneurs. When the firm is investing, each share

of the stock is priced at 1. When sold, each share of the stock is priced at 1 − d. When firms

are inactive in investment, each share of the stock is q ∈ (1 − d, 1). Having established the

“competitiveness” of the q, we can express the first-order conditions as:

Proposition 1 (First-order Conditions):

Define µ(k, b, a;X) as the Lagrangian multiplier to the borrowing constraint. The first-order

condition for k′ > 0 is

u′(c)q

(
k

k + b
, a;X

)
= βE[Vk(k

′, b′, a′;X ′)|a,X] + µ(k, b, z;X)θ(1− δ)(1− d),

where q( k
k+b

, a;X) is defined in equation (6). The first-order condition for b′ is

u′(c)R = βE[Vb(k
′, b′, a′;X ′)|a,X] + µ(k, b, a;X)R,

where Vb is Vb(k, b, a;X) = u′(c)R. Finally, µ(k, b, a;X) > 0 when the borrowing constraint

binds, and µ(k, b, a;X) = 0 otherwise.

Proof. See the Appendix.

When µ(k, b, z;X) = 0, the first-order condition and the envelop condition yield:

E

[
β
u′(c′)

u′(c)

z′(a)π′ + (1− δ)q( k′

k′+b′
, a′;X)

q( k
k+b

, a;X)

∣∣∣∣∣a,X
]

= 1

which exemplifies classic asset pricing formula “Et[Λt+1rt+1] = 1” or “Et[Λt+1(rt+1 −Rt+1)] = 0”,

where “Λ” is the stochastic discount factor and r is the return from an asset. Here, the return on

capital is
z′(a)π′+(1−δ)q( k′

k′+b′ ,a
′;X)

q( k
k+b

,a;X)
, where q( k

k+b
, a;X) takes different values depending on the decision

of buying, selling, or being inactive.

The asset pricing formula also sheds some light on solving portfolio choices between capital

stock and bonds. To see this, first define the rate of return of having capital (k′ > 0) as

r′(k′, b′, a′;X ′|k, b, a;X) =
z′(a)π′ + (1− δ)q( k′

k′+b′
, a′;X ′)

q( k
k+b

, a;X)
,
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define the net worth of an entrepreneur using the shadow value of capital as

n(k, b, a;X) = z(a)πk + q(
k

k + b
, a;X)(1− δ)k +Rb,

and let φ denote the fraction of net worth spent on capital. We have the closed-form solution as:

Proposition 2 (Closed-form Policy Functions):

The policy function on consumption c = c(k, b, a;X), capital k′ = k′(k, b, a;X) > 0, and bonds

b′ = b′(k, b, a;X) can be expressed as

c = (1− β)n(k, b, a;X), k′ =
φ

q( k
k+b

, a;X)
βn(k, b, a;X), b′ = (1− φ)βn(k, b, a;X).

where φ satisfies 
E
[

r′−R′
φr′+(1−φ)R′

∣∣∣a,X] = 0, if E
[

r′

φr′+(1−φ)R′

∣∣∣a,X] = 1

φ = 1
1−θ(1−δ)(1−d)/qR′

, if E
[

r′

φr′+(1−φ)R′

∣∣∣a,X] < 1

Finally, k′ is consistent with q( k
k+b

, a;X), so that k′ > (1− δ)k for q( k
k+b

, a;X) = 1 and

k′ < (1− δ)k for q( k
k+b

, a;X) = 1− d. Otherwise, φ should be such that k′ = (1− δ)k.

Proof. See the special case σ = 1 of the proof under general CRRA utility in the Appendix.

Notice that the stochastic discount factor here is Λ′ = 1
φr′+(1−φ)R′

such that asset pricing

formula E[Λ′(r′ − R′)] = 0 holds. A typical entrepreneur consumes (1 − β) fraction and saves

the other β fraction of the net worth. She uses the savings to invest in a portfolio. The portfolio

consists of risky assets (capital stock) and risk-free assets (bonds), allowing shorting on risk-free

assets but not on risky ones. If she invests φ fraction of a dollar in risky assets and the other 1−φ
fraction in risk-free assets, the next period’s rate of return is φr′+ (1−φ)R′. The goal of portfolio

choice is to maximize the expected log rate of return (i.e., the solution of φ).24

Even though the saving rate is a constant (β) under log utility, different entrepreneurs save

different fractions of the “accounting” net worth which is either zπk+ (1− δ)k+Rb or zπk+ (1−
δ)(1− d)k +Rb. Unlike the accounting net worth, the “economic” net worth evaluates capital at

shadow prices, which varies across entrepreneurs when the investment decisions opt for inaction.

24Policy functions have closed-form expressions for any σ (see the Appendix). But under general CRRA utility,
the saving rate (not necessarily β) and portfolio weight φ intertwine with each other. The reason is that with general
CRRA utility the income and substitution effect do not offset each other, for example illustrated in Campbell and
Viceira (2002). The combination of the two effects are so-called “hedging demand” in the asset pricing literature.
Depending on the investment opportunities in the long time frame, agents put different weights on capital and
consume differently.
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3.3 The Inaction Regions and Liquidation Choices

I confine my attention to the equilibrium with an active credit market and an active secondary

market. There may or may not be inaction in investment. When there is, there exists at least a

q that is between 1 − d and 1. To characterize the inaction region, one only needs to check how

the shadow price q(k/(k+ b), a;X) varies as k/(k+ b) and a change (for a given X). The inaction

region is the set of k/(k + b) and a such that the shadow price is between 1− d and 1.

In such equilibrium, zh owners should always invest and zl owners should not because:

zhπ′ + (1− δ) > R′ ≥ zlπ′ + (1− δ)

The first inequality should hold; otherwise no entrepreneurs will invest. The second inequality

should hold. If R′ < zlπ′ + (1− δ), zl owners always find a higher return from investing than the

return from holding bonds regardless of drawing zh or zl tomorrow. They strictly prefer to invest

and borrow to the credit limit. In that economy, everyone is a borrower, which is inconsistent

with equilibrium definition since the bond market cannot clear.

Therefore, some or all zh owners invest and borrow. Because of the linear rate of return

in individual level, they have the same target leverage k′/(k′ + b′) tomorrow regardless of their

leverage today (Proposition 3). k′/(k′+ b′) may or may not reach the leverage under credit limits.

For zl owners, profits from capital stock are low. Their investment decision is either to hold

or to sell. It turns out that an entrepreneur j who persistently draws zl hold capital for finite

periods. The shadow price during the process of holding capital is monotonically decreasing until

it reaches 1− d when j liquidates assets. Additionally, the leverage decreases before liquidation.

Proposition 3 (Leverage and Deleverage):

In equilibrium with an active secondary market

i zh owners borrow and invest. Moreover, they have the same target leverage k′

k′+b′
= λ̄.

ii Denote today’s shadow price as q and tomorrow’s shadow price as q′. Then,

q′

{
= 1 if z′ = zh

< q if z′ = zl
and

k′

k′ + b′

{
= λ̄ if z′ = zh

< k
k+b

if z′ = zl

Proof. See the Appendix.

The delveraging behavior during the inaction process are intuitive. For zl entrepreneurs, run-

ning business is not profitable compared to risk-free rate. Without resale costs, they will liquidate

and repay all the debt. But with resale costs, those who just turn from zh to zl hold capital ini-

tially. They can still shrink interest payment in order to smooth consumption. Not surprisingly,

capital is less and less valued.
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After some periods of inaction, capital stock gradually shrinks to a very small amount. The

fixed costs of running a business eventually force the zl owners to liquidate. To see this, zl owners

compare the value of liquidating and holding. Once the value after liquidation is the same as the

value of holding strategy, zl owners start to liquidate, that is, there exists a stopping time:

Proposition 4 (Optimal Stopping Time):

For zl owners, there exists an optimal capital liquidation rule (stopping-time rule or exit rule).

Let n = zlπ + (1− δ)(1− d) +R 1−λ
λ

and suppose a finite λ ∈ [0, λ̄] is a root of

η =
β

1− β
plhE

[
log

(
1 + (1− δ)z

lπ′ + (1− δ)− (1− d)R′

βnR′

)∣∣∣∣X]
+

β

1− β
pllE

[
log

(
1 + (1− δ)z

lπ′ + (1− δ)(1− d)− (1− d)R′

βnR′

)∣∣∣∣X] (7)

i When k
k+b

> λ, zl owners are inactive in adjusting capital. When k
k+b

< λ, they liquidate the

whole firm. When k
k+b

= λ, they are indifferent between holding or liquidating capital.

ii If no λ satisfies equation (7), then no zl entrepreneur sells capital.

Proof. See the Appendix.

The indifference condition (7) is intuitive. Entrepreneurs are indifferent between liquidation

and holding when the gains of liquidation (extra η utility) equals the expected discounted cost-

s of not doing so (the right hand side, extra value of holding capital stock one more period).

In calculating the costs of not liquidating, for each unit of net worth saved in capital stock

and bonds, the excess return is
(

1 + (1− δ) z
lπ′+(1−δ)−(1−d)R′

βnR′

)
when drawing zh tomorrow and(

1 + (1− δ) z
lπ′+(1−δ)(1−d)−(1−d)R′

βnR′

)
when drawing zl tomorrow.

So far, I have shown the steps to establish the decision rules in Figures 3a and 3b. Now, the

inaction region can be easily expressed by the set of leverage ratios and productivities

{( k

k + b
, a) : λ ≤ k

k + b
≤ λ̄ and z′(a) = zl}

where λ is the lower bound while λ̄ is the upper bound. To understand the changes of the inaction

region, I show what leads to (λ̄− λ) changes. If (λ̄− λ) is larger, the inaction region expands. I

focus on the borrowing constrained economy, i.e, λ̄ = 1/(1 − θ(1 − δ)(1 − d)/R′). Intuitively, zl

owners have more incentive to hold capital if (1) they are more patient (a larger β), (2) the fixed

costs are smaller (a smaller leisure utility η), and (3) the selling discount d is higher. All of these

increase the net benefits of holding capital and expand the inaction region.

Corollary 1 (Changes of Inaction Region: Partial Equilibrium Effect):

If borrowing is constrained, the inaction region expands when
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i β is higher, that is, ∂(λ̄− λ)/∂β > 0

ii η is smaller, that is, ∂(λ̄− λ)/∂η < 0

iii d is higher, that is, ∂(λ̄− λ)/∂d < 0

Proof. Define m to be the right hand side of equation (7). From the proof of Proposition 4,

∂m/∂λ < 0. Notice that ∂m/∂β < 0 and λ̄ does not depend on β. Then using the implicit

function theorem, we know that ∂(λ̄− λ)/∂β > 0 which proves (i). (ii) can be proved by similar

steps. (iii) can be proved by similar steps and by taking into account ∂λ̄
∂d

= −(λ̄)2θ(1− δ)/R′.

A larger degree of asset illiquidity directly expands the inaction region. In contrast, a larger

degree of financing frictions (a lower θ) does not have a direct effect, from equation (7). Moreover,

when θ goes down, the highest leverage become smaller (λ̄ is smaller) and (λ̄− λ) decreases. But

a lower θ has a general equilibrium effect. If financing frictions limit the expansion of productive

firms so that aggregate demand shrinks and labor input costs are lower, π′ will be higher and zl

owners will wait until a even lower leverage before liquidation (λ is much smaller). In that case,

(λ̄− λ) increases in response to a lower θ.

Corollary 2 (Changes of Inaction Region: General Equilibrium Effect):

In borrowing constrained equilibrium, π′(X ′) depends on θ. The inaction region expands when

i profits rate is higher, that is, ∂(λ̄− λ)/∂π′(X ′) > 0

ii financing constraints are tighter and ∂π′(X ′)/∂θ is negative and sufficiently small, that is,

∂(λ̄− λ)/∂θ < 0

Proof. By similar steps in Corollary 1.

The changes of profits rate and subsequent impacts on liquidation choices are essential for

understanding the system dynamics in response to aggregate shocks. The Corollary provides us

some intuition. For example, a credit crunch (a lower θ) will reduce investment and employment,

which leads to lower input costs and a higher profits rate. Therefore, after a credit crunch,

inefficient firms have higher incentives to hold assets. Later, the intuition from the Corollary will

be confirmed in the numerical analysis.

4 Recursive Equilibrium Revisit

So far, we know that entrepreneurs with the same leverage k/(k + b) and productivity put the

same portfolio weights on k and b. Thus, I can define aggregate capital stock and aggregate bonds
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for a specific k/(k + b) ratio, given a productivity pair a, i.e.,

K(x, a) =

∫
{(k,b): k

k+b
=x}

kΓ(dk, db, a), B(x, a) =

∫
{(k,b): k

k+b
=x}

bΓ(dk, db, a)

Equilibrium can be redefined as a mapping (K(x, a),B(x, a),θ,A) → (K ′(x, a),B′(x, a),θ′,A′). I

apply this idea to characterize the evolution of the firm distribution. Subsection 4.1 shows the

details and Subsection 4.2 redefines the equilibrium using the distribution in Subsection 4.1.

4.1 The Distribution of Firms

Since drawing zh always means investing, keeping track of the firm distribution is equivalent to

keeping track of firms with the time length of having been drawing zl. Thanks to Proposition 4,

there is a stopping rule for entrepreneurs who run the firms but always draw zl.

At the beginning of time t, let s = 1, 2, ... denote the vintage of entrepreneurs, who have been

drawing s times of zl. These firms did not invest in t − 1. Clearly, s = 0 denotes the state in

which the entrepreneur just finished investing (or drew zh as time t productivity in time t − 1).

Drawing zh means entrepreneurs will go to vintage s = 0, whereas drawing zl means going to the

next vintage, i.e., the vintage whose number equal current vintage number plus 1. Inside each

vintage, the k/(k+ b) ratio is the same, which allows me to replace q( k
k+b

, a;X) by vintage-specific

price. When entrepreneurs with k/(k + b) decide to go from vintage s to s′, the shadow price of

capital will be q(s′;X), which is vintage-specific and corresponds to a specific k′/(k′ + b′).

When the secondary market is active, there exists an integer Nt < +∞ at time t, such that

entrepreneurs who are from vintage Nt + 1, Nt + 2,... and draw zl hold no capital stock; while

those who are from vintage 0,1,...,Nt and draw zl will be inactive in capital.

For simplicity, I focus on small exogenous shocks around the steady state such that the equi-

librium vintages do not change, i.e., Nt = N where N is an endogenous constant integer. (Note

that N itself varies in different steady states). In numerical exercises, I verify that the shocks

do not change vintage numbers N . When N stays the same, entrepreneurs from vintage N who

draw zl again are indifferent between liquidating and keeping capital. They play a mixed strategy

between staying and liquidating.

Corollary 3:

In the equilibrium with capital reallocation, there exists an integer N such that:

i Entrepreneurs go to vintage 0 once they draw zh.

ii For those entrepreneurs who draw zl, they go to the next vintage.

- Those in vintage 0 to N − 1 hold on to capital.

- Those in vintage N are indifferent between being inactive in capital or liquidating.
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- Those in vintage N + 1 liquidate the firm. Those in N + 2, ... do not run the firm.

Now, I describe the features of the vintages. One can group vintages after N+2 together to be

one vintage, since entrepreneurs in vintages N + 2, N + 3,... only hold bonds, thanks to Corollary

3. To simplify, the probability of drawing zh and zl in each vintage is

P̃ =

[
phh plh ... plh

phl pll ... pll

]T
(N+2)×2

where P̃i1 and P̃i2 are the probability of drawing zh and zl in vintage i. The associated vintage

specific productivity vector is

Z =
[
zh zl zl ... zl zl

]′
(N+2)×1

With slight abuse of notation, let pih = P̃i1 and pil = P̃i2 be the probability of drawing zh and zl as

the new productivity respectively; let zi as the ith element of Z which is the current productivity

of an entrepreneur in vintage i.

A fraction of the entrepreneurs from vintage N who draw zl goes to vintage N + 1 and the

other fraction liquidates capital and goes to vintage N + 2. They are indifferent between holding

or selling capital. As in Proposition 4, the optimal indifference leverage λ solves25

η =
βp(N+1)h

1− β
E

[
log

(
1 + (1− δ) zN+1πt+1 + (1− δ)− (1− d)Rt+1

βRt+1(zNπt + (1− δ)(1− d) +Rt(1− λt)/λt)

)∣∣∣∣Xt

]
+

βp(N+1)l

1− β
E

[
log

(
1 + (1− δ) zN+1πt+1 + (1− δ)(1− d)− (1− d)Rt+1

βRt+1(zNπt + (1− δ)(1− d) +Rt(1− λt)/λt)

)∣∣∣∣Xt

]

Finally, let f it (i = 1, 2, ..., N +2) be the fraction of entrepreneurs who go to vintage i out of all

entrepreneurs who draw vintage i productivity zi, and 1−f it be the other fraction of entrepreneurs

who liquidate capital. Notice that f it = 1 for i = 0, 1, 2, ..., N : those who draw zh will always invest

and go to vintage 0, and those who draw zl in vintage i − 1 will be inactive in investment and

go to vintage i. Also, fN+2
t = 1 because entrepreneurs who are from vintage N + 1 or N + 2

and draw zl will always hold only bonds and go to vintage N + 2. Finally, fN+1
t ∈ [0, 1) because

entrepreneurs who are from vintage N and who draw zl play mixed strategy: fN+1
t fraction of

them go to vintage N + 1 and 1− fN+1
t fraction of them go to vintage N + 2.

Now, we can fully characterize the firm distribution evolution from t to t+ 1 in Figure 4.26

25In equilibrium, (1−λt)/λt is equal to the ratio of bNt /k
N
t in vintage N . Those from vintages N + 1 and N + 2

who also draw zl go to vintage N + 2 by holding only bonds.
26If we expand the state space of idiosyncratic producibility and reclassify each vintage as a state, the matrix
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Figure 4: Evolution of the distribution
Each box represents a vintage in which firms have the same λ = k

k+b
leverage ratio. The vintage number is identical to how many

periods an entrepreneur has been drawing zl. Entrepreneurs who draw zh invest and move to vintage 0. Entrepreneurs who are from
vintage 0 to N − 1 and draw zl are inactive. Entrepreneurs who are from vintage N and draw zl are indifferent between liquidating or
continuing production. Entrepreneurs in vintage N + 1 or the last vintage N + 2 hold only bonds if drawing zl (liquidate the firm or
continuing holding only bonds). f it denotes the fraction of entrepreneurs who go to vintage i out of all entrepreneurs who draw vintage
i productivity zi. 1− f it then denotes the other fraction of entrepreneurs who do not go to vintage i but liquidate their firms.
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P below is the transition probability matrix

P =


phh phl

plh pll

... ... ... ... ...

plh ... ... pllfN+1
t pll(1− fN+1

t )
plh ... ... 0 pll

plh ... ... 0 pll


(N+2)×(N+2)

where Pij denotes the probability from vintage i to vintage j. The right eigenvector of PT associated with eigenvalue
one is the population of entrepreneurs in each vintage in the steady state. See Chapter 2 of Ljungqvist and Sargent
(2004) for details. In calibration, I use this property to calculate the cross-section standard deviation of TFP of
the existing firms.
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4.2 Recursive Equilibrium Revisit

Thanks to the vintage distribution, I can leave aggregate state X out and denote variables with

vintage superscript and time subscript t, t+ 1,.... For example at time t, the capital shadow price

of entrepreneurs who are going to vintage i is qit. For consistency, let q0
t = 1 denote the buying

price.27 Define the (risky) rate of return on capital from time t to time t+ 1 of entrepreneurs who

are going to vintage i as rijt+1, where i = 0, 1, ..., N + 1 and j ∈ h, l indicates drawing (time t + 2

productivity) zh or zl at time t + 1.28 Specifically, the vintage i specific rate of return on capital

when zh or zl is realized can be written as

riht+1 =
ziπt+1 + (1− δ)q0

t+1

qit
, rilt+1 =

ziπt+1 + (1− δ)qi+1
t+1

qit
, for i = 1, 2, ..., N + 1.

For convenience, denote r̄it+1 as the average return, i.e., for i = 0, 1, 2, ..., N + 1,

r̄it+1 = pihE[riht+1|Xt] + pilE[rilt+1|Xt].

Then, according to Proposition 2, the portfolio weight φ on capital can be simplified as:

Corollary 4 (Vintage-specific Portfolio Choices):

The capital weight φit (i = 0, 1, 2..N) for entrepreneurs who are going to vintage i solves

min{ 1

1− θt(1− δ)(1− d)/Rt+1

, φit = −
Rt+1(r̄it+1 −Rt+1)

(riht+1 −Rt+1)(rilt+1 −Rt+1)
}

Now, we are ready to redefine the equilibrium. Denote Ki
t and Bi

t as the aggregate capital stock

and bonds in vintage i. Thanks to the closed-form decision rules in Proposition 2, the transition

dynamics is highly tractable as in the following non-linear equations. Capital transition can be

characterized by aggregate capital in vintage 0

q0
tK

0
t+1 = f 0

t φ
0
t

N+2∑
i=0

pihβ[ziπtK
i
t + (1− δ)q0

tK
i
t +RtB

i
t], (8)

by aggregate capital in vintage i = 1, 2, ..., N + 1

qitK
i
t+1 = f itφ

i
tp

(i−1)lβ[zi−1πtK
i−1
t + (1− δ)qitKi−1

t +RtB
i−1
t ], (9)

and by aggregate capital in vintage N + 2

KN+2
t+1 = 0. (10)

27“Shadow price” of capital of entrepreneurs who are going to invest and go to vintage 0.
28For example, at time t+ 1, an entrepreneur in vintage 3 draws (time t+ 2 productivity) zh, her rate of return

on capital from t to t+ 1 is r3ht+1.
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The transition of bonds can be characterized by aggregate bonds in vintage 0

B0
t+1 = f 0

t (1− φ0
t )

N+2∑
i=0

pihβ[ziπtK
i
t + (1− δ)q0

tK
i
t +RtB

i
t], (11)

by aggregate bonds in vintage i = 1, 2, ..., N + 1,

Bi
t+1 = f it (1− φit)p(i−1)lβ[zi−1πtK

i−1
t + (1− δ)qitKi−1

t +RtB
i−1
t ], (12)

and finally by aggregate bonds in vintage N + 2

BN+2
t+1 =

N∑
i=1

(1− f i+1
t )pilβ[ziπtK

i
t + (1− δ)qN+2

t Ki
t +RtB

i
t]

+
N+2∑
i=N+1

fN+2
t pilβ[ziπtK

i
t + (1− δ)qN+2

t Ki
t +RtB

i
t]. (13)

The aggregate capital in vintages i = 1, 2, ..., N + 1 satisfies

Ki
t+1 = p(i−1)lf it (1− δ)Ki−1

t , (14)

together with consistent f it

f it


= 1, if i = 0, 1, ..., N

∈ [0, 1), if i = N + 1

= 1, if i = N + 2.

(15)

The labor market and bond market clearing conditions are

(
πt
αAt

) 1
1−α
(
N+2∑
i=0

ziKi
t

)
= L,

N+2∑
i=0

Bi
t+1 = 0. (16)

Finally, the stopping condition of an entrepreneur from vintage N who draws zl again is

η =
βp(N+1)h

1− β
E

[
log

(
1 + (1− δ)

zN+1πt+1 + (1− δ)q0
t+1 − q0

t (1− d)Rt+1

βRt+1(zNπt + (1− δ)(1− d)q0
t +RtBN

t /K
N
t )

)∣∣∣∣Xt

]
+

βp(N+1)l

1− β
E

[
log

(
1 + (1− δ)

zN+1πt+1 + (1− δ)q0
t+1(1− d)− q0

t (1− d)Rt+1

βRt+1(zNπt + (1− δ)(1− d)q0
t +RtBN

t /K
N
t )

)∣∣∣∣Xt

]
.(17)

Definition 2 (The Second Recursive Equilibrium Definition):

The recursive competitive equilibrium is functions ({φit}N+2
i=0 , {f it}N+2

i=1 , {qit}N+2
i=0 , {Ki

t+1}N+2
i=0 ,

{Bi
t+1}N+2

i=0 , πt,Rt+1) of state variables ({Ki
t}N+2
i=0 , {Bi

t}N+2
i=0 , θt, At) and a given initial condition

({Ki
0}N+2
i=0 , {Bi

0}N+2
i=0 , θ0,A0), such that:

i equations (8) to (17) are satisfied
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ii {φit}Ni=0 solve the portfolio problems in Corollary 4

iii q0
t = 1 and qN+1

t = qN+2
t = 1− d

iv together with the law of motion of (θt, At)

The capital market clearing is embedded in the capital transition dynamics, and one can easily

verify that the goods market clearing condition is satisfied (i.e., Walras’ Law holds).

4.3 Efficiency and Delayed Reallocation in the Steady State

The longer the waiting periods, the more capital reallocation is delayed and the less efficient is

the economy (i.e., the lower is the aggregate TFP). In steady state, aggregate productivity At = 1

and the aggregate TFP is defined as

TFP =
Y

KαL1−α

where Y is the total output and K is the total capital stock. Note that α fraction of the output

is entrepreneurs’ profits. Output can be written as Y = π
α

(zhKh + zlK l), where Kh = K0 and

K l =
∑N+1

i=1 Ki denote the capital stock under zh and zl technology respectively. Together with

the labor market clearing condition (π
α

)
1

1−α (zhKh + zlK l) = L, TFP can be simplified to

TFP =
(zhKh + zlK l)α

(Kh +K l)α
=

(zhKh/K l + zl)α

(Kh/K l + 1)α
. (18)

When K l → 0, all capital is installed under zh technology, and the TFP reaches the upper bound

z̃h = (zh)α. When K l > 0, we know that the relative capital stock ratio Kh/K l determines the

economy efficiency. Intuitively, the longer the waiting period, the smaller Kh/K l ratio and thus

a lower TFP in the economy. The quantitative effects of delayed reallocation and aggregate TFP

losses are the main targets in the next section.

What determines the delayed reallocation and thus the aggregate TFP of the economy? In-

tuitively, the essential parameters that affect the trade-off between liquidation and continued

production are the relative productivity gap, the persistence of the transition matrix, the outside

option utility η, the resale costs d, and the degree of financing frictions θ. For example, if the

relative productivity gap is larger, holding capital has a higher benefit so waiting periods tend to

be longer. But also the interest rate in the steady state is higher because zh entrepreneurs can

accumulate more capital and collateralized borrowing is easier. In that case, liquidation is more

preferred. The net effects are unclear and further numerical examinations are needed.

However, the next proposition shows that labor supply and capital share do not have any

impact on the trade-offs in the steady state, so is the absolute levels of zh and zl (as long as the

relative gap remains the same, the vintage number does not change).
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Proposition 5 (Waiting Time):

Changing the following parameters does not change the steady state waiting periods N :

i Inelastic labor supply unit L

ii Capital share α in the production function

iii zh and zl as long as the ratio of zh

zl
stays the same.

Proof. (i) Suppose we have the solution for a given L. Consider changing L to (1 + ∆)L. The

steady state equations are still satisfied by varying only Ki and Bi to be (1+∆)Ki and (1+∆)Bi,

while keeping other variables the same. Similar results hold for (ii) and (iii).

From now on, I will turn to quantitative exercises of the model. The above proposition shows

that we should give more consideration to parameters other than labor supply, capital share, and

the level of zh or zl (but zh/zl is important).

5 Numerical Examples

5.1 Calibration and Estimation

While the model is stylized, I bring it to data as close as possible. I match the steady state result

to several U.S. long-run economy characteristics. Further, I estimate the shocks to financing

constraints and aggregate productivity for short-run analysis. Each period represents a quarter

and the full calibrated parameters are in Table 1.

Following Veracierto (2002), the capital abstracts from components such as land, residential

structure, and consumer durables. Thus, the capital corresponds to non-residential structures,

plant, and equipment while the investment corresponds to the non-residential investment in the

National Income and Product Accounts (NIPA). Meanwhile, the empirical counterpart for con-

sumption should be non-durable goods and services consumption. Output is then defined as the

sum of the consumption and the investment. The investment-to-output ratio is found to be 0.165,

which translates into the capital share in the production function as α = 0.258. The capital to

annual output ratio is 1.5 which translates into a depreciation rate δ = 2.58%. β = 0.9847 targets

at the risk-free interest rate. The interest rate is low in equity premium puzzle literature (e.g.

Mehra and Prescott (1985)) and is commonly chosen to be 3% to 4% annually. Here, I chose 3.5%.

The employment (labor measure) is set to be L = 4, so that roughly 80% of the working age

population is employed. I normalize the low productivity z̃l = 1. As shown by Proposition 5, L

and the level zl do not affect the waiting periods in the steady state.

For the productivity transition matrix, one only needs phl and plh. The primary targets are

(1) the fraction of firms that are constrained, and (2) the turn-over of capital reallocation over

empirical relevant capital stock. The target of (1) is from the studies of Almeida, Campello, and

24



Table 1: Calibrated Parameters
Parameters calibrated to the long-run U.S. economy. α is the capital share, β is the discount factor, δ is the capital
stock depreciation rate, z̃h and z̃l are the high and low idiosyncratic productivities, phl and plh are the transition
probabilities in the transition matrix, θ measures the tightness of financing constraints, d is the proportional resale
costs, and finally η is the leisure utility that captures the fixed costs in running firms.

Value Target Source/Note

α 0.2580 Investment/Output Ratio: 0.165 NIPA data
β 0.9847 Quarterly Discount Rate Common discount rate
δ 0.0258 Capital to Output Ratio:1.5 NIPA data
z̃h 1.1307 Standard Deviation of TFP: 5.7% Basu, Fernald, and Kimball (2006)
z̃l 1.0000 Normalization Does not change N
L 4.0000 80% of the working-age population is employed Does not change N
phl 0.0665 Constrained firms: 64% Almeida, Campello, and Weisbach (2004)
plh 0.0400 Reallocation/capital stock: 1.44% COMPUSTAT and SDC data
θ̄ 0.4000 Average debt/asset ratio: 0.325 Flow of funds data
d 0.1000 Reallocation/capital expenditure ratio: 0.40 COMPUSTAT data
η 0.3000 Annual real interest rate 3.5% Mehra and Prescott (1985)

Weisbach (2004), who identify the number of constrained firms to be 64% from COMPUSTAT

data (which I average across from all alternative ways of measurement in their studies). Also, the

turn-over of capital reallocation over total property, plant, and equipment is 5.7% annually and

1.4% quarterly in the COMPUSTAT data.

Once we have the transition matrix, we can determine z̃h. I follow the cross-sectional standard

deviation of productivity (5.7%) in Basu, Fernald, and Kimball (2006). Note that the measure is

the standard deviation of TFP of existing firms in the model, excluding the TFP of entrepreneurs

who exited before. Then, z̃h turns out to be 1.1307.

The parameters left are θ, d, and η. These three affect decisions on leverage, investment, and

liquidation. The haircut θ targets at leverage where empirically, the debt-to-asset ratio is averaged

to be 0.325 from flow of funds data. The degree of asset irreversibility d targets at reallocation.

The fraction of capital reallocation over total capital purchase (roughly 35% quarterly) is stable.

However, COMPUSTAT data only include publicly traded firms that are relatively large. Smaller

firms, according to Eisfeldt and Rampini (2007), use more used capital. Therefore, 35% is naturally

the lower bound and I chose 40% for benchmark calibration. Finally, the leisure utility η measures

“fixed costs” and controls how long a persistently unproductive firm will hold the assets and

deleveraging. I chose η = 0.30 such that there will be 12 quarters of waiting periods, roughly the

same as the number of quarters of deleveraging before selling found in the introduction.

The calibration is to capture the long-run steady state. For estimating the shocks and their

persistence, I use output and capital reallocation (both after HP-filtered) as the observations. The

unobservable shocks are financial shocks and aggregate productivity shocks. Therefore, the model

linked the observations to the shocks. I use Bayesian methods to back out the information of the

shocks, conditional on observations. Specifically, I assume θt = θeθ̂t and At = eÂt , where θt and
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Table 2: Steady State: Calibrated Benchmark
Each row represents a particular vintage. q: shadow prices. k

k+b
: leverage. K: total capital stock. B: total bond assets. f : the number

of entrepreneurs who go to vintage i over the total number of entrepreneurs who draw zi (vintage i productivity). “Binding” indicates
whether the borrowing constraint is binding for entrepreneurs who are going to a specific vintage.

Vintage q k
k+b

Binding? K B f

0 1.0000 1.5330 Yes 33.419 -11.620 100%

1 0.9228 1.4680 No 2.165 -0.690 100%

2 0.9211 1.4454 No 2.025 -0.624 100%

3 0.9194 1.4230 No 1.894 -0.563 100%

4 0.9175 1.4009 No 1.771 -0.507 100%

5 0.9155 1.3789 No 1.656 -0.455 100%

6 0.9133 1.3572 No 1.549 -0.408 100%

7 0.9110 1.3357 No 1.449 -0.364 100%

8 0.9085 1.3143 No 1.355 -0.324 100%

9 0.9059 1.2932 No 1.267 -0.287 100%

10 0.9030 1.2723 No 1.185 -0.254 100%

11 0.9000 1.2516 No 0.607 -0.122 54.79%

12 0.9000 0.0000 No 0.000 16.218 0%

At follow AR(1) processes:

θ̂t = ρθθ̂t−1 + εθt ,

Ât = ρAÂt−1 + εAt .

Innovation process εt = [εθt , ε
A
t ]T is Gaussian with E[εt] = 0, E[εtε

′
s] = 0, E[εtε

′
t] = Σε and

Σε =

[
σ2
θ 0

0 σ2
A

]
.

The estimation exercise is to back out σA, σθ, ρA and ρθ, using Bayesian methods. The detail on

estimation will become clear in the business cycle analysis.

5.2 Interactions in the Steady State

5.2.1 The Calibrated Steady State

Under the calibrated parameters, there are 10 to 11 inactive quarters in the steady state. That

is, entrepreneurs who turn from zh to zl and draw zl for 10 quarters in a row neither buy nor

sell capital during those 10 quarters (Table 2). When they unfortunately draws the 11th zl, one

fraction of them sells the firm and saves in bonds while the other fraction decides to be inactive

for another quarter. For those who still run firms but draw a 12th zl, they liquidate the entire

firm and save the revenue in bonds until they become productive again.
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Figure 5: Capital, bond and leverage dynamics of a firm
The firm’s physical capital is normalized to be 1. Solid line: productivity draws. Dash line: physical capital. Dash dotted line: bond.
Dotted line: leverage ratio defined as k/(k + b).
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As predicted, the real option value of capital decreases as the vintage number increases, which

shows directly the reduced incentives to maintain the capital as a firm keeps drawing zl and

waiting. Meanwhile, the borrowing constraint only binds when firms invest. Once a firm draws

zl, the financial constraint is slack since the firm pays down existing debt.

To illustrate, suppose entrepreneur j has one unit of capital and was investing and borrowing

before. Then her bond position is −θ(1− δ)(1− d)/R. Unfortunately, j draws 11 quarters of zl in

a row from time t = 1 on. In the 12th quarter (t = 12), j draws zl again and decides to liquidate

the entire firm. After that, j keeps drawing two zl for quarters 13 and 14 but draws zh afterwards.

j lets the capital depreciate in the first 11 quarters and liquidates it in the 12th quarter (firm

dynamics in Figure 5), i.e., capital at the beginning of the 13th quarter is 0. During the inactive

investment process, debt is being paid and leverage decreases. After liquidation, j saves only in

bonds and consume (1− β) of the bond value. Importantly, the leverage evolution before selling

is similar to Figure 2.

j continues to hold bonds until drawing zh again in the 15th quarter. Then, she uses her net

worth as a down payment to borrow and invest. Though she borrows to the limit, capital stock

after investing is less than one, the amount j started with. The firm size is not as large as before
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because j does not have enough resources to expand. Her business was not profitable under zl

technology and capital was sold at a discount before. If j keeps drawing zh, she can continue

investing and capital stock can gradually go back to one.

5.2.2 Delayed Reallocation and Aggregate TFP

To examine the interactions of asset illiquidity and financing frictions, I vary θ in the d > 0

economy to see the changes of aggregate total factor productivity (TFP). The exercises can be

thought of as comparing aggregate TFP across countries with different financing frictions but with

the same degree of asset illiquidity. Then, I redo the exercise for the d = 0 economy. After that, I

can compare how much the asset illiquidity can contribute to aggregate TFP losses. As θ becomes

smaller, one can see how a tightening funding liquidity (a smaller θ) has different impacts on the

two economies. Such a comparison reveals the interaction of the two frictions in the steady state.

The d > 0 Economy. Let θ decrease from +∞ to 0. The d economy features no borrowing

constraint when θ = θ > θd1 = 0.6540. zh firms have enough credit to reallocate all available

capital from zl firms. For the calibrated benchmark d, every zl owners liquidate their firms when

θ is above θd1. Capital stock is fully under zh technology and thus aggregate TFP equals z̃h. Notice

that if d is large enough, zl owners may not sell their capital, even if θ is very large.

When θ reaches θd2 = 0.6214, some previous zh entrepreneurs who just drew zl start to hold

capital for one period (Figure 6). When θd2 = 0.6214, the inaction region is the line that is

the same as the borrowing constraint line in the zl plain (recall Figure 3b). zh owners invest

and borrow to the limit; when turned into zl owners, their leverage ratio is the one under the

borrowing constraint. As θ becomes even smaller, the inaction region starts from a line to a fan as

Figure 6: Aggregate TFP Losses and Waiting Periods
Steady state TFP and waiting periods as only θ changes and when the steady state has capital reallocation. The red solid line denotes
the waiting periods N + 1. The blue dashed line denotes aggregate TFP. Aggregate TFP is the percentage of z̃h.
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in Figure 3b. Persistently unlucky zl owners wait longer and longer before selling capital. Capital

reallocation is thus less and aggregate TFP is smaller (Figure 6).

When θ = θd3 = 0.3689, the secondary market shuts down so that no single zl owner sells

capital (Figure 7). In addition, all entrepreneurs save through running firms regardless of their

productivity. The reason is that a larger degree of financial frictions further limit reallocation

and borrowing. Therefore, both wage rate and risk-free interest rate will be low, i.e., π will tend

to be large and R will tend to be small. When θ < θd3, the condition R′ ≥ zlπ′ + (1 − δ) under

which zl owners do not invest is no longer satisfied. Therefore, zl owners always find investing in

capital stock better than saving in bonds. The economy thus is characterized by autarky allocation

(Figure 7) and no productivity risk-sharing exists through the financial market.

θ ∈ [0, θd3] is an extreme interaction between asset illiquidity and financial constraints. Asset

illiquidity delays liquidation. Tighter borrowing constraints prolong the delay. Once the profit rate

is high enough and the interest rate is low enough due to large financial frictions, no liquidation

takes place and the credit market effectively shuts down. Therefore, the important message is that

both markets can shut down together if the two frictions interact. Then the economy is the same

as the d = 0 economy with θ = 0, even though d > 0 and θ > 0 (θd3 is still far from zero, which

exemplifies the interaction).

To summarize, when θ ∈ [θd2, θ
d
1), the economy is inefficient only because investment from zh

firms is constrained by financial frictions. When θ ∈ [θd3, θ
d
2), zl owners delay selling and the

economy is inefficient because of insufficient investment from zh firms and insufficient reallocation

from zl firms. Finally, when θ ∈ [0, θd1), both secondary market and credit market shut down.

Figure 7: Aggregate TFP Losses in d > 0 and d = 0 economy
Aggregate TFP as percentage of z̃h in the steady state, when only θ changes. The red solid line: d > 0 economy. The blue dashed line:
d = 0 economy.
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The d = 0 Economy. As a comparison, there is no inactive investment decisions in the d = 0

economy. The stationary economy can be characterized by two cut-offs, 0.5575 = θ0
2 < θ0

1 = 0.7121.

The financial constraint is slack when θ ≥ θ0
1. Because of constant return to scale technology, only

a zero measure of firms operate. The rest of entrepreneurs enjoy returns on bonds and leisure

utility. When θ decreases in the region [θ0
2, θ

0
1], more and more zh firms produce.

When θ ∈ [0, θ0
2], a fraction of zl owners produces and TFP is less than z̃h. TFP is lower

when θ decreases in this region because more and more zl firms produce. Notice that there is no

asset illiquidity (d = 0) so that the return on capital stock is risk-free. The return must be higher

than interest rate, otherwise zl owners will not operate and enjoy extra leisure. Therefore, these

existing zl firms will borrow to the credit limit.

To summarize, there is no delay of selling in d = 0 economy. When θ ∈ [θ0
2, θ

0
1), the economy

is inefficient only because investment from zh firms is constrained by financial frictions. When

θ ∈ [0, θ0
2), the economy is inefficient in two ways: not enough investment from zh firms and not

enough reallocation from zl firms.

How much are the TFP losses from steady state when d = 0 changes to d = 0.10? The answer

obviously depends on what θ the economy has (Figure 7). In the calibrated d = 0.1 economy, the

TFP losses increase by almost 25%. In percentage terms of z̃h, the largest TFP losses are the

following two cases. First, about 1.5% of z̃h more losses when θ = θ0
2. zl owners produce in the

d > 0 economy, but not in the d = 0 economy. Second, about 2.5% of z̃h more losses when θ = θd3.

The secondary market shuts down in the d > 0 economy but not in the d = 0 economy. TFP

losses in other regions are typically from 0.5% to 1.5% of z̃h.

Such TFP losses are large and significant compared to the literature on financial frictions’

impact on capital misallocation.29 Given a degree of financial frictions, asset illiquidity can add

losses of 0.5% to 1.5% of the efficient economy aggregate TFP (z̃h). In the extreme case, there is

about 2.5% more losses when borrowing is allowed but no lending is available (when both credit

market and secondary market are effectively shut down). The studies in the literature are thus

sensitive to the introduction of asset illiquidity, a common phenomenon in the secondary market.

5.3 Interactions During Business Cycles

Returning to the cycle properties of capital reallocation, I experiment with standard aggregate

TFP shocks and credit crunch shocks. With large aggregate shocks, the model becomes intractable

because the number of vintages changes after large shocks, leaving complex dynamics to solve.

Instead, I focus on small aggregate shocks such that the equilibrium vintages do not change. I

solve the dynamics around the steady state using first-order perturbation methods. Then I verify

that the shocks are small enough through the response of the fraction (fN+1
t ) of entrepreneurs

29For example, Midrigan and Xu (2012) found that misallocation results in TFP losses of only about 0.3% in
the benchmark calibrated economy and at most 5% when the credit market completely shuts down. Similarly, in
Moll (2010) the magnitude of TFP losses depends on the persistence of idiosyncratic productivity shocks.
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Table 3: Priors and Posteriors
“Prior s.d.” denotes the standard deviation of the prior. “Post mean” denotes the posterior mean. “5%” and “95%” denote the 5 and
95 percentile. Posteriors are drawn using Markov Chain Monte Carlo (MCMC) methods such as in An and Schorfheide (2007).

Prior Distribution Prior mean Prior s.d Post mean 5 % 95 %
σA Inverse Gamma 0.01 1 0.0045 0.0041 0.0049
σθ Inverse Gamma 0.01 1 0.0115 0.0103 0.0129
ρA Beta 0.9 0.05 0.8721 0.8297 0.9227
ρθ Beta 0.9 0.05 0.9701 0.9472 0.9873

that stay in vintage N = 10. If fN+1
t is still less than 1, the vintages do not change.

5.3.1 Estimation Results

I use the HP-filtered cyclical components of real reallocation and real GDP data from 1984Q1 to

2011Q4 to estimate the standard deviation and the persistence parameters ρθ and ρA. I apply

Bayesian methods to estimate the standard deviation and the persistence of the shocks, as standard

in the DSGE model estimation.30 Prior and posterior information is in Table 3 and Figure 13.

I use the mean estimator for cycle analysis. Using the mode estimator will not change the

result much since the mean and the mode are close to each other (Figure 13). There are several

features of the mean estimators. The standard deviation of aggregate TFP shocks (shocks to A)

is 0.45%, which is close to the estimation results found in the literature such as in Thomas (2002)

(with 0.53%). Second, the size of the credit shocks (about 1.15%) is even larger than aggregate

TFP shocks (0.45%). Finally, credit shocks (ρθ = 0.9701) are more persistent than TFP shocks

(ρA = 0.8721).

Even though I only use the two observed series (output and reallocation) for estimation (to

avoid stochastic singularity issues because I focus on two shocks), the estimated aggregate TFP

shocks and financing constraints shocks generate key business cycle statistics that are close to the

data (Table 9).

5.3.2 Financial Shocks and Aggregate Productivity Shocks

Figure 8 show the impulses to a one standard deviation (1.15%) credit shocks and a one standard

deviation (0.45%) aggregate productivity shocks.

In response to credit shocks, tightened financing constraints largely reduce the investment from

zh firms. Demand for labor shrinks and real wage rate decreases in equilibrium. Running firms

now has lower labor input costs (therefore π increases). In response to lower input costs, more

zl firms delay selling assets. More selling delays lead to less reallocation and thus a larger TFP

dispersion across firms. The direct consequence is that aggregate TFP is smaller and total output

30See, for example Smets and Wouters (2003) and An and Schorfheide (2007).
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Figure 8: Experiment: Responses to two types of shocks
Responses to one standard deviation of negative financial shocks (shocks to θ) and negative aggregate productivity shocks (shocks to
A). Reallocation: capital reallocation. TFP Std: standard deviation of firm-level TFP employed. Aggregate TFP: the Solow residuals
after adjusted by A changes. The solid line denotes the response to financial shocks while the dashed line denotes the response to
aggregate productivity shocks.
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drops. As for the debt, there is persistent and sizable deleveraging. Though zh firms can no longer

raise as much debt as before, inactive zl owners pay back more debt by shrinking consumption.

After financial shocks, the reduced reallocation and the increased dispersion of TFP across firms

are in line with the data.

Output and TFP responses are sizable given the small credit crunch that does not change the

number of equilibrium vintages. This result is under the assumption that vintage number N does

not change. Since the correlation between reallocation and output is lower in the model than in

the data (Table 9), if we can estimate under an endogenous N , the standard deviation of credit

shocks should be larger than the mean estimator because it will increase N (also because adverse

A shocks will reduce reallocation as will be clear soon). Therefore, the credit crunch in reality

should be larger. In a larger credit crunch, the number of vintages can suddenly increase (capital

reallocation suddenly disappears) and production efficiency is suddenly reduced.

In response to aggregate productivity shocks, debt level changes little (i.e., a magnitude of
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0.1%) compared to credit shocks. More importantly, responses have at least two aspects that are

not observed. First, capital reallocation is more initially. Since aggregate productivity drops, the

profit rate of investing in capital is down (πt responses). The zl owners thus have less incentive to

hold capital, and more capital is liquidated. Second, compared to the economy before the shocks,

fewer zl owners stay to operate firms such that the measured TFP dispersion is slightly smaller in

recessions.

I have shown responses to a one-time financial shock and aggregate TFP shock. Financial

shocks increases the return from running firms, which induces less capital reallocation from in-

efficient firms. However, aggregate TFP shocks generate the opposite dynamics. Though these

exercises are impulses, they shed light on why aggregate TFP shocks might not be able to cap-

ture capital reallocation dynamics. In what follows, I confirm the intuition learned from impulse

responses.

5.3.3 Simulations

The key for less reallocation in recessions is whether shocks can delay capital selling from zl firms.

To examine more thoroughly the reallocation-output co-movement and TFP dispersion-output co-

movement, I simulate the model (i.e., financial shocks or aggregate productivity shocks repeatedly

hit the economy), using parameters from the estimation. Table 4 shows the correlation of the key

variables and output, using one type of shocks each time.

First, reallocation is more volatile in the economy with only financial shocks. From the impulse

responses, aggregate TFP shocks have the opposite effects on reallocation. That is why we should

observe a more volatile reallocation in responses to only financial shocks.

Second, aggregate TFP shocks generate a positive correlation between reallocation and output.

After one-time aggregate TFP shock, eventually capital available for reallocation will be less, as

in the impulse responses in Figure 8. Nevertheless, TFP dispersion shrinks in recessions from

aggregate TFP shocks since more firms are liquidating, as in Figure 8.

Table 4: Only One Type of Shocks

Volatility Co-movement

Standard Standard deviation
deviation to that of output Correlation with output

Output Reallocation Reallocation TFP dispersion
Data: 1.42% 10.91 0.85 -0.44

Model:
Only financial shocks 1.38% 11.03 0.83 -0.67
Only aggregate TFP shocks 1.31% 9.11 0.18 0.53
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Table 5: Variance Decomposition

Output Reallocation Investment TFP dispersion
Financial shocks 23.88% 99.29% 74.38% 99.23%

Aggregate TFP shocks 76.12% 0.71% 25.62% 0.77%

To further decompose the effects from financial shocks and aggregate productivity shocks, I

decompose the variance of reallocation and output explained by each type of shocks, using the

mean estimators from the Bayesian exercise. As in Table 5, almost all the reallocation and TFP

dispersions fluctuations are caused by financial shocks. In addition, financial shocks can also

explain a large portion of the variation in investment and output. This result is because: (1)

financial shocks lead to changes of “measured” aggregate TFP; (2) aggregate TFP shocks, similar

as a neoclassical growth model, explain most of the output and a large portion of the investment.

Therefore, it is not surprising that financial shocks can also explain a large portion of the variation

in investment and output.

Finally, I apply Kalman smoother to reconstruct the implied financial shocks and aggregate

productivity shocks conditional on the whole sample (Figure 9). The adverse financial shocks

are particularly important during the 2008 recession. In addition, the shocks are relatively large

during the 1990 recessions but quite mild during the 2000 recessions. If we relate the financial

shocks to the capital reallocation time series in Figure 1, the drops of reallocation are large during

1990 and 2008 recessions but small during the 2000 one.

In summary, one needs both aggregate TFP shocks and credit crunch shocks to generate con-

sumption, investment, and output dynamics as in Table 9; however, to capture both procyclical

reallocation and countercyclical TFP dispersion, financial shocks are necessary. Therefore, dynam-

ics of capital reallocation and the TFP dispersion in the data provide us some useful identification

of the source(s) of business cycles.

6 Discussion

The interactions between asset illiquidity and financial frictions can be directly seen from the

waiting periods in the steady state. Without asset illiquidity, there is no inactive investment

decisions so that there is no waiting periods. Without borrowing constraints, zh firms can borrow

as much as possible to reallocate assets. The number of waiting periods is small and equal zero in

our calibrated d economy. Thus, in order to generate prolonged capital reallocation delay during

recessions, the interactions between the two frictions are the key ingredients.

In reality, recessions might originate from both aggregate TFP shocks and financial shocks.

The relative importance, however, changes from recession to recession. The recent credit crunch
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Figure 9: Shocks back out from data
Unobserved shocks computed from Kalman Smoother over the entire 1984Q1-2011Q4 sample using all the information in the sample.

since 2008 exemplifies a huge drop in θ. Less capital reallocation and slow deleveraging31 are more

significant than in past recessions. It is therefore reasonable to believe that financial shocks are

essential in 2008 recessions and also important in previous recessions. Policy targeted at secondary

market illiquidity should be able to help reverse the adverse shocks.

Importantly, the exercise does not imply that financial shocks are the only primitive shocks for

recessions. Both aggregate TFP shocks and financial shocks are needed to generate business cycle

statistics as in Table 9. Instead, this paper shows that if the economy features asset illiquidity,

financial shocks are necessary to generate less capital reallocation and larger TFP dispersion during

recessions.

Finally, this paper does not model changes of illiquidity. The first reason is that if illiquidity

comes from asymmetric information, some good quality assets might be forced to be liquidated in

recessions and mitigate the information problem as in Eisfeldt (2004). The second reason is that, if

the increases of illiquidity are all because of fire-sale of real assets as in Shleifer and Vishny (1992),

the larger TFP dispersion during recessions is hard to be justified. Fire-sale theories suggest the

most efficient firms of using the assets are also in financial troubles, which should lead to a smaller

TFP dispersion. The last and probably the most important one is that if the illiquidity can be

amplified, then this paper proposes one cause for the initial drop of asset liquidity: a credit crunch

can reduce the number of buyers and sellers simultaneously.

31See Shirakawa (2012) and Koo (2011) for the evidence.
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7 Final Remark

This paper begins with two empirical facts: (1) capital reallocation is procyclical, but the benefits

to reallocate are countercylical; (2) firms without surviving problems shrink liabilities relative to

assets before selling assets. These two observations can be generated in the model with asset

illiquidity and financing constraints in response to shocks to financing constraints, instead of

aggregate TFP shocks. When negative financial shocks hit, inefficient firms are more willing to

hold assets because of a lower input costs (a lower wage rate) and because of a lower interest

rate. Therefore, financial shocks are important not only during the 2008 recession but also during

previous ones.

The challenge to link individual firm’s asset liquidation and aggregate capital reallocation is

the complex distribution of firms. I model the selling decision as a stopping-time problem that

turns out to simplify the aggregate distribution dramatically. Meanwhile, the real option value of

capital stock before liquidation shed some light on how firms price their assets internally.

One future prospect is how the resale costs endogenously interact with the depth of asset

markets. The asset specificity costs, in that case, come from matching between buyers and sellers.

Sellers may find it costly to search potential buyers, especially during downturns. In contrast,

asset markets are generally deeper in economic booms. The resale discounts are smaller in boom

times and delayed selling by inefficient firms is reduced. A better allocation of assets will deepen

asset markets further, and labor market conditions will improve too. Therefore, policy targeted at

the resale market depth may have a large effect by improving the efficiency of asset allocation and

labor market. This channel may also shed light on unemployment issues and labor input costs for

firms.
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Appendices

A Data Description

For capital reallocation, the quarterly COMPUSTAT contains useful information for ownership changes
of productive assets from 1984Q1. Following Eisfeldt and Rampini (2006), who use annual COMPUSTAT
data from 1971, I measure capital reallocation by sales of property, plant and equipment (SPPE, data item
107 with combined data code entries excluded), plus acquisitions (AQC, data item 129 with combined
data code entries excluded). The measure captures transactions after which the capital is used by a
new firm and new productivity thus applied. The advantage of using quarterly data compared to annual
data is more observations. However, quarterly data is shown in the “cash flow statement” and there is a
substantial seasonal pattern. Therefore, I apply seasonal adjustment to the data.

For debt-to-asset ratio of companies before selling assets, I merge quarterly COMPUSTAT and SDC
file. SDC file contains merger and acquisition of all U.S. firms. I get information of all the companies who
sold at least 50 % of their assets in the SDC file after 2000 until the most recent available date (currently
April 2012), then keep firms with information in COMPUSTAT and delete those who sell multiple times
in the sample periods. The merging of COMPUSTAT and SDC allows me to trace back the leverage of
companies before they sell assets.

For aggregate consumption, investment, and GDP, I obtain the data from FRED, a macroeconomic
dataset managed by Federal Reserve Bank at St. Louis. Note that I exclude residential investment,
consumer durables, government expenditure, and net export because the model abstract from these
components.

B Proofs

B.1 Lemma 1

I prove a general result under general CRRA utility. First, define the Bellman operator T :

T V (k, b, a;X) = max
{
W 1(k, b, a;X),W 0(k, b, a;X)

}
W 1(k, b, a;X) = max

k′>0,R′b′≥−θ(1−d)(1−δ)k′
u(zπk +Rb− ψ(k′, k)− b′) + βE[V (k′, b′, a′;X ′)|a,X]

W 0 (k, b, a;X) = max
b′

{
u
(
zπk +Rb+ (1− δ) (1− d) k − b′

)
+ η + βE

[
V (0, b′, a′;X ′|a,X

]}
The value function is the fixed point of the contraction mapping in the space V1 of well defined functions
as in Stokey, Lucas, and Prescott (1989). Further, the Bellman operator T is closed on the class of
functions V1 satisfying the properties in the Lemma. I simplify notation by

w1(k, b, k′, b′, a;X) = u(k, b, k′, b′, a;X) + βE[V (k′, b′, a′;X ′)|a,X]

w0(k, b, k′, b′, a;X) = u(k, b, 0, b′, a;X) + η + βE[V (0, b′, a′;X ′)|a,X]

with slight abuse of notation of utility function u (.).
(i) Increasing in a, k and b and concavity
Standard as in Stokey, Lucas, and Prescott (1989).

(ii) V (γk, γb, a;X) = γ1−σV (k, b, a;X) +
γ1−σ−1

1−σ
1−β + (1− γ1−σ)η(1− h)

I will prove T V has the same property. Consider an agent with state (k, b, a) and (k′, b′) is the optimal
policy. For any γ > 0, when the state is (γk, γb, a), the policy (γk′, γb′) are feasible, i.e., it satisfies budget

41



and borrowing constraints. Therefore, given an consistent choice h ∈ {0, 1},

T V (γk, γb, a;X) ≥ wh(γk, γb, γk′, γb′, a;X)

=
(zπk +Rb− ψ(k′, k)− b′)1−σγ1−σ − 1

1− σ
+ η(1− h)

+ βγ1−σE[V (k′, b′, a′;X ′)|a,X] + β

γ1−σ−1
1−σ

1− β

= γ1−σ [u(k, b, k′, b′;X) + η (1− h)
]

+
γ1−σ − 1

1− σ
+
(
1− γ1−σ) η(1− h)

+ βγ1−σE[V (k′, b′, z′;X ′)|a,X] + β

γ1−σ−1
1−σ

1− β
,

and thus

T V (γk, γb, z;X) ≥ γ1−σT V (k, b, z;X) +

γ1−σ−1
1−σ

1− β
+
(
1− γ1−σ) η (1− h) .

Conversely, starting at (γk, γb, a), scaling by 1/γ, and following similar procedure above, one has

T V (k, b, a;X) ≥ (1/γ)1−σT V (γk, γb, a;X) +

(1/γ)1−σ−1
1−σ

1− β
+
(

1− (1/γ)1−σ
)
η (1− h) .

Combining the two gives

T V (γk, γb, a;X) = γ1−σT V (k, b, a;X) +

γ1−σ−1
1−σ

1− β
+
(
1− γ1−σ) η (1− h) .

Note that when σ = 1, T V (γk, γb, a;X) = T V (k, b, a;X) + logγ
1−β . Finally, the difference between

V (γk, γb, a;X) and V (k, b, a;X) does not depend on the fixed costs because

V (γk, γb, a;X)− V (k, b, a;X) = (γ1−σ − 1)(V − η(1− h)) +

γ1−σ−1
1−σ

1− β
.

(Noticing that V − η(1− h) does not depend on η.)

B.2 Lemma 2 and Proposition 1

The differentiability of V (k, b, a;X) when k′ ≷ (1 − δ)k is trivial, which relies on the differentiability
of standard dynamic programming problem as proved by Benveniste and Scheinkman (1979) or Stokey,
Lucas, and Prescott (1989). Next, I prove the differentiability of V (k, b, a;X) when k′ = (1− δ)k.

I follow methods from Clausen and Strub (2012) in Banach space (the space of k and b) and adjust
to the dynamic programming problem in this paper. The general idea is that the value function is the
upper envelop of value function of buying, inactive and selling. It is therefore super-differentiable. At the
same time, it has potential downward kink (sub-differentiable) because of ψ(k′, k) function. Therefore,
the value function will be both super-differentiable and sub-differentiable, and therefore differentiable.
First, we need the definition of Fréchet sub-differential of a function (since we have both k and b as state
variables, while the analogy for function of one variable is sub-derivative of a function).

Definition 3:
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The Fréchet sub-differential of f : X → R is a set

∂F f (x) =

{
m∗ ∈ X : lim

∆x→0
inf

f (x+ ∆x)− f(x)−m∗∆x
‖∆x‖

≥ 0

}
and the Fréchet super-differential of f is a set

∂F f (x) =

{
m∗ ∈ X : lim

∆x→0
inf

f (x+ ∆x)− f(x)−m∗∆x
‖∆x‖

≤ 0

}
Definition 4:
f is Fréchet sub-differentiable (or super-differentiable) if ∂F f (x) (or ∂F f (x)) is non-empty

Remark f is (Fréchet) differentiable at x, if and only if f is both sub-differntiable and super-differentiable
at x.

• Sub-differentiability of utility function

For notation convenience, I rewrite the utility function as

U
(
k, b, k′, b′, 1; a

)
= u(z(a)πk + (1− δ) k +Rb− (1− δ)k′ − b′)

for k′ > (1− δ) k,
U
(
k, b, k′, b′, 0; a

)
= u(z(a)πk +Rb− b′)

for k′ = (1− δ) k,

U
(
k, b, k′, b′,−1; a

)
= u(z(a)πk + (1− δ) (1− d)k +Rb− (1− d)k′ − b′)

for k′ < (1− δ) k. Suppose x = (k, b) denotes the state of capital and bond, the choice is x′ with the
optimal choice as x′∗, let the consistent capital buying, inactive or selling decision as e′ with the optimal
choice as e′∗. Then the utility can be written as U(x, x′, e′(x, x′); a) and the value function can be written
as V (x, a;X).

U(x, x′, e′; a) is sub-differentiable at x. To see this, the sub-differentiability is trivial when k′ 6=
(1− δ) k because U is differentiable. When k′ = (1− δ) k, one wants to check if there exist a m∗ such
that

lim
∆x→0

inf
U (x+ ∆x, x′; a)− U (x, x′; a)−m∗[∆k,∆b]T√

(∆k)2 + (∆b)2
≥ 0

Notice that when ∆k < 0

U (x+ ∆x, x′; a)− U (x, x′; a)√
(∆k)2 + (∆b)2

=
U (x+ ∆x, x′; a)− U(x+ [0,∆b]T , x′; a)√

(∆k)2 + (∆b)2

+
U(x+ [0,∆b]T , x′; a)− U (x, x′; a)√

(∆k)2 + (∆b)2

As ∆x = [∆k,∆b]T → 0, the second term goes to u′ (z(a)πk +Rb− b′)R and the first term goes to
u′ ((z(a)π + (1− δ)(1− d))k +Rb− b′)) (zπ + (1− δ) (1− d)) = o1−d > 0. When ∆k > 0

U (x+ ∆x, x′; a)− U (x, x′; a)√
(∆k)2 + (∆b)2

=
U (x+ ∆x, x′; a)− U(x+ [0,∆b]T , x′; a)√

(∆k)2 + (∆b)2

+
U(x+ [0,∆b]T , x′; a)− U (x, x′; a)√

(∆k)2 + (∆b)2
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As ∆x = [∆k,∆b]T → 0, the second term goes to u′ (z(a)πk +Rb− b′)R and the first term goes to
u′ ((z(a)π + (1− δ))k +Rb− b′)) (zπ + (1− δ)) = o1 > 0. Therefore, if o1−d < o1, one can let m∗ = [p, q]
where

p ∈ [o1−d, o1], q = u′
(
z(a)πk +Rb− b′

)
R

so that if ∆x→ 0−

lim
∆x→0

inf
U (x+ ∆x, x′; a)− U (x, x′; a)−m∗[∆k,∆b]T√

(∆k)2 + (∆b)2
= o1−d + q − (−p+ q) > 0,

and if ∆x→ 0+

lim
∆x→0

inf
U (x+ ∆x, x′; a)− U (x, x′; a)−m∗[∆k,∆b]T√

(∆k)2 + (∆b)2
= o1 + q − (p+ q) ≥ 0.

When o1−d ≥ o1, one can let m∗ =
[
o1, u′ (z(a)πk +Rb− b′)R

]
and have the same result. Thus,

U (x, x′; a) is sub-differentiable at x.

• Sub-differentiability of V (k, b, a;X)

Now we are ready to prove the sub-differentiability of V because U is sub-differentiable. For a more detail
chain rule of sub-derivative, see Mordukhovich, Nam, and Yen (2006).

Lemma B1:
If x′ is in the interior of the feasible set, then the value function V (x, a) is sub-differentiable at x with
ux (x, x′, e′; a) ∈ ∂FV (x, a;X)

Proof. Notice that in the interior of the feasible set

V (x+ ∆x, a;X)− V (x, a;X) ≥
[
U(x+ ∆x, x′∗, e

′
∗; a) + βE

[
V (x′∗, a

′, X ′)|a,X
]]

−
[
U(x, x′∗, e

′
∗; a) + βE

[
V (x′∗, a

′;X ′)|a,X
]]

= U
(
x+ ∆x, x′∗, e

′
∗; a
)
− U(x, x′∗, e

′
∗; a)

Notice that U(., x′∗, e
′
∗; a) is sub-differentiable at x, one can subtract m∆x, divide by ‖∆x‖, and take

limits on both sides:

lim
∆s→0

inf
V (x+ ∆x, a;X)− V (x, a;X)−m∆x

‖∆x‖
≥ 0

since the right hand side has Fréchet derivative as m = ux(x, x′, e′). Because this is true for any small
open ball around x, V (x, a;X) is thus sub-differentiable at x and ux (x, x′∗, e

′
∗) ∈ ∂FV (x, a;X).

• Super-differentiability

The bellman equation can be rewritten in two stages as

v(x, x′; a;X) = u(x, x′, e′(x′, x); a) + βE
[
V (x′, a′;X ′)|a,X

]
(19)

V (x, a,X) = sup
x′
v(x, x′; a,X).

I will prove that v(x, x′; a) is super-differntiable at x′∗. At the same time, 0 is one super-derivative of
v(x, x′; a) .
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Lemma B2:
If x′∗ is an interior point and maximizes v(x, x′∗; a,X), then v(x, x′; a,X) is super-differentiable at x′∗
with 0 ∈ ∂F v(x, x′∗; a,X).

Proof. Notice that v(x, x′∗ + ∆x′; a,X) ≤ v(x, x′∗; a,X), for small ∆x′. Dividing by ‖∆x′‖ and take the
limits gives

lim
∆x′→0

v(x, x′∗ + ∆x′; a,X)− v(x, x′∗; a,X)

‖∆x′‖
≤ 0

Therefore, v(x, x′; a,X) is super-differentiable and 0 must be an element of ∂F v(x, x′∗; a,X).

• Lemma 2 and Proposition 1

Lemma B2 shows v(x, x′; a,X) is super-differentiable at x′∗. Notice that v can be expressed by in-
stantaneous utility and expectation of discounted future value, both of which is sub-differentiable from
Lemma B1. Therefore v(x, x′; a,X) is both sub-differentiable and super-differentiable at interior point
x′∗. One can thus differentiate v(x, x′; a,X) at x′ = x′∗. Lemma B2 shows that 0 is an element of the
super-derivative and the derivative of v at x′∗ is 0. Namely, each term on the right hand side of (19) is
differentiable, and once we take differentiation:

ux′(x, x
′
∗; e
′
∗) + βE

[
Vs
(
x′∗, a

′;X ′
)
|a,X

]
= 0

Therefore, value function has derivative on x′∗. This result implies that V has partial derivative on the k
that is chosen as the optimal policy before and the envelop condition is satisfied. In equilibrium, V has
derivative w.r.t k when k > 0. I thus conclude that the (Fréchet) derivative of V (k, b, a;X) w.r.t k > 0
exists, and one can use Vk for k > 0.

B.3 Lemma 3

(i) To save notation, I abstract from aggregate state variable X. From the proof in Lemma 1,

V (γ(k + e), γb, a) = γ1−σV (k + e, b, a) +

γ1−σ−1
1−σ

1− β
+ (1− γ1−σ)η(1− h)

Take a derivative with respect to e and evaluate it at e = 0; one has γVk(γk, γb) = γ1−σVk(k, b). Divide γ
on both sides and one can prove that Vk is homogeneous with degree −σ. When σ = 1, V is homogenous
with degree -1 as in the main text.

(ii) Consider two entrepreneurs with (k0, b0, a) and (γk0, γb0, a). Using equation (5) of Lemma 1, the
targeted capital stock and bonds are scaled up by γ and thus the optimal consumption choices are c0 and
γc0 from the budget constraints. Therefore, using property (1) of this Lemma, Vk/u

′(c) is the same for
the two entrepreneurs. More generally, Vk/u

′(c) depends only on k/(k + b).
(iii) By definition, q(k, b, a;X) = (Vk/u

′(c)− zπ)(1− δ)−1. Using (2), we know that q(k, b, a;X) can
be written as q( k

k+b , a;X).

B.4 Proposition 2

I prove the policy functions for general CRRA utility. Using the net worth definition, I propose the
following solution:

V (k, b, a;X) = J (a;X) +

(g(a;X)n(k,b,a;X))1−σ−1
1−σ

1− β
, (20)
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and the associated policy functions

c(k, b, a;X) = (1− s(k, b, a;X))n(k, b, a;X)

qk′(k, b, a;X) = φ(k, b, a;X)s(k, b, a;X)n(k, b, a;X)

b′(k, b, a;X) = (1− φ(k, b, a;X))s(k, b, a;X)n(k, b, a;X) (21)

where J , g, φ and s are to be determined. Note that, s is the saving rate and φ is the portfolio weight
on capital. Notice that

Vk (k, b, a;X)

u′ (c)
= zπ + q (1− δ) , Vb (k, b, a;X)

u′(c)
= R.

The first-order conditions with respect to k′ and b′ give:

qc−σ = βE

[
(g′)1−σ(n′)−σ

1− β
(
z′π′ + (1− δ) q′

)
|a,X

]
+ µθ(1− δ)(1− d) (22)

c−σ = βE

[
(g′)1−σ(n′)−σ

1− β
R′|a,X

]
+ µR′ (23)

where µ is the Lagrangian multipliers attached to the borrowing constraint. When µ = 0, multiply (22)
by φ

q and (23) by (1− φ), and then sum them up, we have

c−σ = βE

[
(g′)1−σ(n′)−σ

1− β
(
φr′ + (1− φ)R′

)
|a,X

]
, (24)

where r′ = z′π′+(1−δ)q′
q . When µ > 0, we know that φ = 1

1−θ(1−d)(1−δ)/qR′ from the borrowing constraint

R′b′ = −θ(1− δ)(1− d)k′. Again multiply (22) by φ
q and (23) by (1− φ), and then sum them up, we still

have equation (24) because the part that has µ is cancelled out.
Next, notice that the envelope condition under the proposed value function is

Vk =
g1−σn−σ

1− β
(zπ + (1− δ)q),

from which one has g1−σn−σ

1−β = c−σ. Together with

n′ = z′π′k′ + q′ (1− δ) k′ +R′b′ =
[
φr′ + (1− φ)R′

]
sn ≡ ρ′sn, (25)

equation (24) can be rewritten as

(1− s)−σ = βE[(1− s′)−σs−σ(ρ′)1−σ|a,X], (26)

• σ = 1, i.e., log utility

Equation (26) is simplified to be
s

1− s
= E

[
β

1− s′
|a,X

]
.

For convenience, let me temporarily get the time subscript back. After recursive substitution:

st
1− st

= β + β2 + ...+ βjEt

[
st+j

1− st+j

]
Notice that s ∈ (0, 1), i.e., it is not optimal to save everything (s = 1) or consume everything (s =
0). Otherwise, the marginal utility of today or tomorrow will go to infinity because of CRRA utility
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assumptions. Then Et

[
st+j

1−st+j

]
is bounded by some positive numbers. Let j → ∞ and the solution is

st = β. Once the consumption choice is fixed, i.e., s = β, φ should be picked accordingly to solve equation
(22) and (23), i.e., {

E[ r′−R′
φr′+(1−φ)R′ |a,X] = 0, if E[ r′

φr′+(1−φ)R′ |a,X] = 1

φ = 1
1−θ(1−δ)(1−d)/qR′ , if E[ r

φr+(1−φ)R |a,X] < 1

• σ 6= 1

From equation (26), and the difference of equation (22) and equation (23), φ and s jointly solve the
recursive simultaneous equations:

E

[
β

(
1− s

(1− s′)sρ′

)σ
ρ′
∣∣∣∣ a,X] = 1

 E
[
β
(

1−s
(1−s′)sρ′

)σ
(r′ −R′)

∣∣∣ a,X] = 0, if E
[
β
(

1−s
(1−s′)sρ′

)σ
r|a,X

]
= 1

φ = 1
1−θ(1−δ)(1−d)/qR′ , if E

[
β
(

1−s
(1−s′)sρ′

)σ
r|a,X

]
< 1

Notice that, β
(

1−s
(1−s′)sρ′

)σ
is the stochastic discount factor.

• k′ = 0

When the optimal choice is k′ = 0, there is only one first order condition for b′,

c−σ = βE
[
(c′)−σR′

]
(27)

where I use the fact that the leisure utility is a constant term and will not be shown in the first order
condition for b′, once (20) is plugged into the Bellman equation. Notice that,

n′ = z′π′k′ + q′ (1− δ) k′ +R′b′ = R′sn

and consumption choice in (21), one has

(1− s)−σ = βE[(1− s′)−σs−σ(R′)1−σ],

which is the same as that in k′ = 0. Everything else goes through the same way by replacing ρ′ = R′.

• Verification

Finally, I verify the proposed value function (21) and policy functions (21) solve the Bellman equation.
When k′ 6= 0, substitute (20) back into the Bellman equation (4).

Jt +

(gtnt)1−σ−1
1−σ

1− β
=

((1− st)nt)1−σ − 1

1− σ
+ βEt[Jt+1 +

(gt+1nt+1)1−σ−1
1−σ

1− β
]

Plug in the envelop conditions (g′)1−σ

1−β = (1− s′)−σ, one have

Jt +
(1− st)−σn1−σ

t

1− σ
=

((1− st)nt)1−σ

1− σ
+ βEt[Jt+1 +

(1− st+1)−σn1−σ
t+1

1− σ
]

Using (25),

Jt +
(1− st)−σn1−σ

t

1− σ
=

((1− st)nt)1−σ

1− σ
+ βEt[Jt+1 +

(1− st+1)−σρ1−σ
t+1 s

1−σ
t n1−σ

t

1− σ
]
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Then use (26), one can simplify the above equation to be

Jt = βEt [Jt+1]

Therefore, Jt does not depend on the net-worth nt. When k′ = 0, substitute (20) back into the Bellman
equation (4) by noticing that an extra leisure utility

Jt +

(gtnt)1−σ−1
1−σ

1− β
=

((1− st)nt)1−σ − 1

1− σ
+ η + βEt[Jt+1 +

(gt+1nt+1)1−σ−1
1−σ

1− β
]

Then following the similar steps and one have

Jt = βEt [Jt+1] + η

Again, Jt does not depend on the net-worth nt. Then, I verify that the guessed value function is correct
and the policy functions proposed solve the Bellman equation.

B.5 Proposition 3 : Leverage and Deleverage

(i) I prove that in equilibrium, entrepreneurs who draw zt+1 = zh at time t invest and borrow to a common
target leverage λ̄t. First, because idiosyncratic productivity follows the two state Markov process, it is
straightforwad to show that these entrepreneurs will invest. Second, I show that entrepreneurs will borrow
to a common leverage if they invest. For notation simplicity, I use vintage specfic shadow prices and rate
of return. Moreover, instead of using leverage, I use the vintage specific portfolio weight on capital φ0

t .
Suppose an entrepreneur have net-worth nt = (ztπt + (1 − δ)q0

t )kt + Rtbt, where q0
t = 1 denotes the

buying price. When the entrepreneur decides to invest, the rate of return on capital is
zhπt+1+(1−δ)q0t+1

q0t

and
zhπt+1+(1−δ)q1t+1

q0t
. The value from investing is

V buy = log ((1− β)nt) + βphhEt

J0
t+1 +

log

(
zhπt+1+(1−δ)q0t+1

q0t
φ0
tβnt +Rt+1(1− φ0

t )βnt

)
1− β



+βphlEt

J1
t+1 +

log

(
zhπt+1+(1−δ)q1t+1

q0t
φ0
tβnt +Rt+1(1− φ0

t )βnt

)
1− β


Now consider one-shot deviation this period by taking a different portfolio weight on capital as φ0′

t . The
value of such one-shot deviation is

V in = log ((1− β)nt) + βphhEt

J0
t+1 +

log

(
zhπt+1+(1−δ)q0t+1

q0t
φ0′
t βnt +Rt+1(1− φ0′

t )βnt

)
1− β

∣∣∣∣∣∣∣∣Xt



+βphlEt

Jmt+1 +

log

(
zhπt+1+(1−δ)qmt+1

q0t
φ0′
t βnt +Rt+1(1− φ0′

t )βnt

)
1− β

∣∣∣∣∣∣∣∣Xt


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for some time-varying constant Jmt+1 and shadow value qmt+1. Therefore, the difference between these two
values is

V buy − V in =
β

1− β
phhE

log φ0
t (r

0h
t+1 −Rt+1) +Rt+1

φ0′
t (

zhπt+1+(1−δ)qmt+1

q0t
−Rt+1) +Rt+1

∣∣∣∣∣∣Xt


β

1− β
phlE

log φ0
t (r

0l
t+1 −Rt+1) +Rt+1

φ0′
t (

zhπt+1+(1−δ)qmt+1

q0t
−Rt+1) +Rt+1

∣∣∣∣∣∣Xt

+ βphlE
[
J1
t+1 − Jmt+1|Xt

]
which does not depend on nt. So if there exist one shot deviation for some entrepreneurs who draw zh,
then similar one-shot deviation always exist for any entrepreneurs who draw zh so that no one will invest.
Therefore, entrepreners who draw zh will borrow to the same target leverage.

(ii) First, the option value decreases when drawing zt+1 = zl. Suppose not, then the rate of return
on capital from t to t+ 1 are

zlπt+1 + (1− δ)
qt

,
zlπt+1 + (1− δ)qt+1

qt

with qt+1 > qt. Notice that, the rate of return for an investing entrepreneur is

zlπt+1 + (1− δ)
1

,
zlπt+1 + (1− δ)q1

t+1

1

where q1
t+1 < 1. Therefore, the rate of return of capital for entrepreneurs who draw zl is higher than

that of an investing entrepreneur, state by state because qt < qt+1 < 1. This result suggest that zl

entrepreneurs should invest rather than holding capital stock, a contradction.
Second, I prove that entrepreneurs who draw zl and who hold capital will deleverage. Without loss

of generality, consider an entrepreneur with (kt, bt) and kt = 1 who draws zt+1 = zl and lets the capital
depreciate to kt+1 = 1− δ. It is straightforward to show that borrowing to the credit constraint limit is
not optimal because productivity is low.

Suppose bt+1 ≤ (1− δ)bt. Then, the Euler equation (or the asset pricing formula) can be written as

βplhE

[
zlπt + (1− δ)qt +Rtbt

(zlπt+1 + (1− δ))(1− δ) +Rt+1bt+1

∣∣∣∣Xt

]
zlπt+1 + (1− δ)

qt

+βpllE

[
zlπt + (1− δ)qt +Rtbt

(zlπt+1 + (1− δ)qt+1)(1− δ) +Rt+1bt+1

∣∣∣∣Xt

]
zlπt+1 + (1− δ)qt+1

qt
= 1

Notice that bt+1 ≤ (1− δ)b < 0, the left hand side

LHS ≤ β(zlπt + (1− δ)qt +Rtbt)

(1− δ)qt

[
plhE

[
zlπt+1 + (1− δ)

zlπt+1 + (1− δ) +Rt+1bt

∣∣∣∣Xt

]
+ plhE

[
zlπt+1 + (1− δ)qt+1

zlπt+1 + (1− δ) +Rt+1bt

∣∣∣∣Xt

]]

=
β(zlπt + (1− δ)qt +Rtbt)

(1− δ)qt

plhE
 1

1 + Rt+1bt
zlπt+1+(1−δ)

∣∣∣∣∣∣Xt

+ plhE

 1

1 + Rt+1bt
zlπt+1+(1−δ)qt+1

∣∣∣∣∣∣Xt


<

β(zlπt + (1− δ)qt +Rtbt)

(1− δ)qt
1

1 + bt

where the last inequality uses the condition in equilibrium zlπt+1 + (1− δ) ≤ Rt+1, bt < 0, and qt+1 < 1.
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Further,

qt(1− δ)(1 + bt) = qt(1− δ) + qt(1− δ)bt
> qt(1− δ) + bt+1

= β(zlπt + (1− δ)qt +Rtbt)

so that LHS < 1, which contradict the Eular equation. Therefore, b′ > (1 − δ)b and because kt+1 =
(1− δ)kt, we know that

kt+1

kt+1 + bt+1
<

kt
kt + bt

B.6 Proposition 4: Existence of Stopping Time

Using Proposition 2, there is vintage specific (time varying) constant J in the value function of en-
trepreneurs in that specific vintage. Denote J i (i = 0, 1, ..., N + 2) as the constant in the value function.

(1) I prove that it is never optimal to sell part of the capital stock using principle of unimprovability
(to check one-shot deviation). Consider an agent with state (1, b̃, a), where z′(a) = zl, i.e., she draws zl.
The net worth is nt = ztπt + (1 − δ)(1 − d) + Rtb̃. Suppose the partial selling strategy is optimal, and
0 < k̃ < 1− δ is left and bonds are βnt − (1− d) k̃. Such partial selling strategy gives value

V part(k̃) = log((1− β)nt) + βplhE

J0
t+1 +

log
(

(zlπt+1 + (1− δ))k̃ +Rt+1

(
βnt − (1− d) k̃

))
1− β

|Xt


+βpllE

JKt+1 +
log
(

(zlπt+1 + (1− δ) qt+1)k̃ +Rt+1

(
βnt − (1− d) k̃

))
1− β

|Xt


where JKt+1 is some time varying constant and qt+1 is some consistent shadow price for the action tomorrow.
However, there always exists an one shot deviation by inaction today in which the shadow value of capital
is qt ≥ 1− d. To see this, the one shot deviation gives value

V in(1− δ) = log((1− β)ñt) + βplhE

[
J0
t+1 +

log
(
(zlπt+1 + (1− δ))(1− δ) +Rt+1 (βñt − (1− d) (1− δ))

)
1− β

|Xt

]

+βpllE

[
JKt+1 +

log
(
(zlπt+1 + (1− δ) qt+1)(1− δ) +Rt+1 (βñt − (1− d) (1− δ))

)
1− β

|Xt

]

where ñt = ztπt + (1− δ)qt +Rtb̃t ≥ nt. Notice that V part(k̃) ≤ V part(1− δ) ≤ V in(1− δ), where the first
inequality uses the monotonicity of V part and the second uses both monotonicity and ñt ≥ nt. Therefore,
partial selling strategy is never optimal.

(2) We are left to prove when inaction strategy dominates full liquidation strategy, and vice versa.
It is sufficient to look at the region where liquidation strategy dominates. Since I can always normalize
capital stock by 1, the region is the set of b/k (or leverage k/(k + b)) . Inside the region, I need to
prove no one-shot deviation exists. Again, consider the same agent with state (1, b̃, a), The net-worth is
nt = ztπt + (1− δ)(1− d) +Rtb̃. Liquidation strategy gives value

V out = log((1− β)nt) + η + βplhE

[
J0
t+1 +

log (βntRt+1)

1− β
|Xt

]
+ βpllE

[
JN+2
t+1 +

log (βntRt+1)

1− β
|Xt

]
.
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One shot inaction deviation strategy gives value

V in = log((1− β)nt) + βplhE

J0
t+1 +

log
(

(zlπt+1 + (1− δ))(1− δ) +Rt+1

(
βnt − (1− d) k̃

))
1− β

|Xt


+βpllE

[
JN+2
t+1 +

log
(
(zlπt+1 + (1− δ) (1− d))(1− δ) +Rt+1 (βnt − (1− d) (1− δ))

)
1− β

|Xt

]

where terms in the bracket are continuation values for drawing zh and zl tomorrow, respectively. The
value difference between the two strategies is

V in − V out =
β

1− β
plhE

[
log

(
1 + (1− δ)z

lπt+1 + (1− δ)− (1− d)Rt+1

βntRt+1

)
|Xt

]
+

β

1− β
plhE

[
log

(
1 + (1− δ)z

lπt+1 + (1− δ)(1− d)− (1− d)Rt+1

βntRt+1

)
|Xt

]
− η

Notice that ∂(V in−V out)
∂nt

is equal to

− β

1− β

plhE
 zlπt+1+(1−δ)−(1−d)Rt+1

βn2
tRt+1

1 + (1− δ) z
lπt+1+(1−δ)−(1−d)Rt+1

βntRt+1

|Xt

+ pllEt

 zlπt+1+(1−δ)(1−d)−(1−d)Rt+1

βn2
tRt+1

1 + (1− δ) z
lπt+1+(1−δ)(1−d)−(1−d)Rt+1

βntRt+1

|Xt


which must be less than 0 in equilibrium. To see this, I only need to prove that

plhE
[
zlπt+1 + (1− δ)− (1− d)Rt+1|Xt

]
+ pllE

[
zlπt+1 + (1− δ)(1− d)− (1− d)Rt+1|Xt

]
> 0

or

plhE

[
zlπt+1 + (1− δ)

1− d
|Xt

]
+ pllE

[
zlπt+1 + (1− δ)(1− d)

1− d
|Xt

]
> Rt+1

so that the expected rate of return of capital stock (with price as the liquidation price) must be greater
than the risk-free rate. Suppose not, then the rate of return of inactive entrepreneurs will be less than
interest rate because

plhEt
zlπt+1 + (1− δ)

qt
+pllEt

zlπt+1 + (1− δ)qt+1

qt
< plhEt

zlπt+1 + (1− δ)
1− d

+pllEt
zlπt+1 + (1− δ)(1− d)

1− d
≤ Rt+1

by noticing that 1 − d < qt < 1 and qt > qt+1 (shadow price of capital decreases as it is held longer).
This inequality says that inactive entrepreneurs’ strategy is not consistent. They earn a lower expected
rate of return on capital than risk-free rate which implies that they should liquidate.

Therefore, ∂(V in−V out)
∂nt

< 0 and ∂(V in−V out)
∂b̃

< 0. Notice that, V in − V out → −η as b̃→+∞ (so that

nt → +∞). If V in − V out will ever cross 0 at some b̃ =
1−λt
λt

, then V in − V out > 0 when b̃ <
1−λt
λt

, and

V in − V out ≤ 0 when b̃ ≥ 1−λt
λt

. Equivalently, entrepreneurs liquidate the capital stock when k
k+b < λt

and there is no one-shot deviation. In sum, if there is liquidation, the cut-off leverage λt solves

η =
β

1− β
plhE

[
log

(
1 + (1− δ)z

lπt+1 + (1− δ)− (1− d)Rt+1

βntRt+1

)
|Xt

]
+

β

1− β
plhE

[
log

(
1 + (1− δ)z

lπt+1 + (1− δ)(1− d)− (1− d)Rt+1

βntRt+1

)
|Xt

]
where nt = zlπt + (1− δ)(1− d) +Rt

1−λt
λt

.
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C Extra Tables

Table 6: Summary Statistics for COMPUSTAT Capital Reallocation
Level variables are in millions of 2005 dollars for a given calendar quarter. “PP&E” stands for property, plant and
equipment, “CapEx” for capital expenditures, ”Reallocation” is the sum of acquisitions plus sales of PP&E, and
“Investment” is defined as the capital expenditure plus acquisition. Total Reallocation/Total Previous PP&E ratio
is computed as the sample mean of the numerator over the sample mean of the denominator to avoid the problem
of firms with extremely large assets.

Variable Mean Median Std. Dev.
Assets 2435.11 129.94 15712.73
PP&E 602.24 17.16 3851.315
CapEx 20.12 1.23 101.23
Acquisitions 6.12 0.00 45.67
Sales of PP&E 3.51 0.00 18.50
Total Sales of PP&E/Total Reallocation 30.71%
Total Reallocation/Total Investment 32.1%
Total Reallocation/Total Previous PP&E 1.44%

Table 7: Capital reallocation
Correlation of real GDP and the various definitions of capital reallocation, after taking natural log and then HP
filtered. Numbers in the bracket are the standard deviation after correcting heteroscedasticity and autocorrelation.
Acquisition: COMPUSTAT data items 129. SPPE: sales of property, plant and equipment, COMPUSTAT data
item 107. AQC turnover: acquisition divided by total asset (item 6) last period. SPPE turnover: SPPE divided by
total property, plant and equipment (item 8) last period. Total Reallocation is the sum of acquisition and SPPE.
GDP is real GDP in 2005 dollars. All series are seasonal adjusted and “***” denotes 1% signifance level.

Corrrelation Acquisition SPPE Reallocation SPPE turnover AQC turnover
Corr with GDP 0.840∗∗∗ 0.430∗∗∗ 0.854∗∗∗ 0.411∗∗∗ 0.786∗∗∗

(0.064) (0.148) (0.057) (0.128) (0.071)
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Table 8: Benefits to reallocation
Correlation of standard deviation of various measure of productivity changes, reproduction from Eisfeldt and
Rampini (2006) Table 3. TFP growth: TFP growth rate of durable and non-durable manufacturing industries from
Bureau of Labor Statistics and NBER-CES Manufacturing Industry database. Productivity Changes: productivity
changes in 2 SIC digit manufacturing and 1 SIC digit outside manufacturing adjusted by variation in capacity
utilization and value of sectoral value-added from Basu, Fernald, and Kimball (2006)

Standard Deviation of TFP growth TFP growth Productivity Changes
(2 SIC digit) (4 SIC digit)

Corr with GDP −0.465∗∗∗ −0.384∗∗∗ −0.437∗∗∗

Table 9: Key statistics in the data and in the model
Data are cyclical components of HP filtered series from 1984Q1 to 2011Q4. Standard deviations denote the standard deviations of
percentage deviations from trends.

Volatility Co-movement

Standard Standard deviation
deviation to that of output Correlation with Output

Output Consumption Investment Reallocation Consumption Investment Reallocation TFP dispersion

Data: 1.42% 0.55 3.86 10.91 0.91 0.96 0.85 -0.42

Model: 1.35% 0.61 4.01 11.05 0.88 0.91 0.61 -0.37
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D Extra Graphs

Figure 10: The potential benefits to capital reallocation
Solid line (left scale) is the interquartile range (the gap between the 75% level and 25% level) of establishment
level idiosyncratic TFP shocks (annual frequency), constructed by Bloom, Floetotto, Jaimovich, Saporta-Eksten,
and Terry (2012) through Annual Manufacturing Survey and Census of Manufacturing. Dashed line (right scale)
is the cyclical component of HP-filtered log of real GDP (annual frequency) normalized by its standard deviation.
Shaded regions denote NBER recessions.

Figure 11: Debt-to-Asset Ratio before liquidation in different groups.
Plotted series are debt-to-asset ratios before selling assets in each quantile group. Time 0 denotes the time when firms sell assets. Each
firm is classified by their positions of debt-to-asset ratios quantile at time 0. Each plot traces back average debt-to-asset ratios in each
quarter before time 0, in each quantile group. For example, the debt/asset ratio at time -10 in “50% - 75% quantile” plot, means the
average debt/asset ratio of companies 10 quarters before selling assets in the 50% to 75% quantile group. This figure generally shows
that firms that sell assets deleverage before they sell, in addition to firms that probably have surviving problems (the 75-100% quantile
group).
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Figure 12: Capital reallocation over cycles
Cyclical components of HP filtered log data normalized by standard deviations. Solid lines: real GDP in 2005
dollars. Dashed lines: seasonally adjusted sales of property, plant and equipment in 2005 dollars. Dashed dotted
lines: seasonally adjusted acquisitions in 2005 dollars. Shaded regions denote NBER recessions.

Figure 13: Priors and Posteriors
Priors and posteriors in graphs. Blue dashed lines denote priors. Red solid lines denote posteriors.
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