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Abstract

This paper considers estimation of a linear regression model using data where some covariate
values are missing but imputations are available to fill-in the missing values. The availability of
imputations generates a trade-off between bias and precision in the estimators of the regression
parameters: the complete cases are often too few, so precision is lost, but filling-in the miss-
ing values with imputations may lead to bias. We provide the new Stata command gmi which
allows handling such bias-precision trade-off using either model reduction or model averaging
techniques in the context of the generalized missing-indicator approach recently proposed by
Dardanoni et al.(2011). If multiple imputations are available, our gmi command can be also
combined with the built-in Stata prefix mi estimate to account for the extra variability due to
the imputation process. The gmi command is illustrated with an empirical application which in-
vestigates the relationship between an objective health indicator and a set of socio-demographic
and economic covariates affected by substantial item nonresponse.

Keywords: Missing covariates; Imputation; Bias-precision trade-off; Model reduction; Model
averaging.
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1 Introduction

When trying to run a regression of interest, researchers often face the problem of missing values

on some of the variables. We focus on the case when only the covariates contain missing values

and the data are Missing-At-Random (MAR). As argued by Little(1992), the related problem of

missing values in the dependent variable is less interesting because if the covariates are complete

and the missing values on the dependent variable are MAR, then the incomplete cases contribute

no information about the regression parameters of interest.

One approach to this problem–complete-case analysis–is to drop all cases with missing values

and run the regression using only the complete cases. Another approach, when imputations are

available, is to fill-in the missing values with the imputations and run the regression using all the

data, whether observed or imputed. This second approach–which we call the ‘naive’ approach–is

actually becoming quite common, as public-use data files increasingly include imputations of key

variables affected by missing data problems. Specialized software for carrying out imputations is

also becoming increasingly available. One example is the mi suite of commands developed in Stata

11.

From the view point of inference about the regression parameter of interest, the availability

of imputations generates a trade-off between bias and precision: the complete cases are often too

few, so precision is lost, but filling-in the missing values with the imputations may lead to bias.

Dardanoni et al. (2011), henceforth DMP, show that this trade-off is in fact equivalent to that

arising in an extended or ‘grand’ regression model that includes two subsets of regressors: the focus

regressors corresponding to the observed or imputed covariates, and a set of auxiliary regressors

representing all possible interactions between the focus regressors and the missing-data indicators.

In the ‘grand’ model, the trade-off is between bias and precision in estimating the coefficients on

the focus regressors when we drop subsets of the auxiliary regressors. As discussed in DMP, this

second trade-off is easier to deal with than the first, because a variety of methods are available. This

paper presents the command gmi that implements several methods corresponding to two alternative

strategies for handling such trade-off: model reduction and model averaging.

The remainder of this paper is organized as follows. Section 2 reviews the theoretical background

in DMP. Section 3 describes the two alternative strategies for estimating the regression parameters

of interest. Section 4 provides a detailed description of our gmi command. Section 5 illustrates

the gmi command using data available on the Stata website. Finally, Section 6 use data from the

first wave of SHARE (Survey of Health, Ageing and Retirement in Europe) to provide an empirical
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application on the relationship between an objective health indicator and a set of socio-demographic

and economic covariates affected by substantial item nonresponse.

2 Background

Consider modeling the relationship between an outcome Y and a set of covariates X using data

where some covariate values are missing. We assume that, in the absence of missing values, the

data would satisfy the classical linear model

y = Xβ + u, (1)

where y is the N × 1 vector of observations on the outcome of interest, X is an N × K matrix

of observations on the covariates, β is the K × 1 vector of regression parameters, and u is an

N × 1 vector of regression errors that are homoskedastic, serially uncorrelated and have zero mean

conditional on X. This means that the full-information OLS estimator from a regression of y on

X would be unbiased for β and efficient in the Gauss-Markov sense.

We also assume that all missing covariate values can be replaced by imputations. These impu-

tations may be provided by the data-producing agency or may be constructed by the researcher,

for example by using the Stata command mi impute.

Because the first element of X is taken to be the constant term, which is always observed, the

number of possible missing-data patterns is equal to 2K−1 (no missing data, only the first covariate

missing, only the first and the second missing, etc.). A particular data set need not contain all the

possible patterns, so we simply index by j = 0, . . . , J the patterns that are present in the data, with

j = 0 corresponding to the subsample with complete data, which is assumed to be always available,

and J ≤ 2K−1 − 1. To keep track of exactly which covariate values are missing, we introduce the

N ×K missing-data indicator matrix M , whose (n, k) element is equal to one if the nth case has

a missing value on the kth covariate and is equal to zero otherwise.

We are concerned with the problem of how to combine the observed and the imputed values in

order to estimate the regression parameter β.

2.1 Complete-case analysis

This approach amounts to ignore the imputed values and use only the subsample with complete

data. Complete-case analysis is our benchmark because, under two key assumptions, it delivers an

unbiased estimator of the regression parameter β.
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Denoting the subsample with complete data by [X0, y0], where X0 is an N0×K matrix and y0

is an N0×1 vector, the two key assumptions are full rank of X0 and ignorability of the missing-data

process.

Assumption 1 (Complete-case full rank) X0 has full column rank.

Assumption 2 (Ignorability) M and y are conditionally independent given X.

For Assumption 1 to hold, there must be enough cases (at least K) with non-missing covariate

values. Assumption 2 is weaker than the standard MAR assumption because it only requires mean

independence and not independence. Thus, it admits patterns where cases with low or high levels

of some covariates systematically have a greater percentage of missing values. This assumption fails

if, for example, observations with missing covariate values have a different regression function than

observations with no missing values. In this case, an alternative is some type of sample selection

model (see for example the Stata command heckman). Under these two assumptions, we have the

following result, which represents the main justification for complete-case analysis:

Result 1 If Assumptions 1 and 2 hold, then the complete-case OLS estimator from a regression of

y0 on X0 is unbiased for β.

Although unbiased, the complete-case OLS estimator has the drawback of being much less

precise than the full-information OLS estimator, except when the fraction of complete cases is

large.

2.2 The ‘naive’ and the simple missing-indicator approaches

A common alternative to complete-case analysis is to use all cases and regress y on the completed

design matrix W , whose (n, k) element is equal to the corresponding element of X if a covariate

value is not missing and is equal to the imputed value otherwise. This ‘naive’ approach ignores the

fact that the imputations are not the same as the missing covariate values, so it gives an estimator

of β that is more precise than the complete-case OLS estimator but is also biased.

Another alternative, the so-called simple missing-indicator approach, consists of regressing y on

the completed design matrix W and a set of J dummies d1, . . . ,dJ , where the elements of dj are

equal to one for cases that belong to the jth missing-data pattern and are equal to zero otherwise

(the subsample with complete data represents the baseline). Adding dummies for the missing-data

patterns increases the flexibility of the model by allowing the intercepts to differ across patterns

but, again, unbiasedness is lost (Horton and Kleinman 2007, Jones 1996, Little 1992).
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2.3 The generalized missing-indicator approach

The bias arising from the use of imputations may be eliminated by fully interacting the columns of

the completed design matrix W with the dummies for the missing-data patterns. DMP call this a

generalized missing-indicator approach.

They show that, if yj and W j respectively denote the Nj × 1 subvector of y and the Nj ×K

submatrix of W corresponding to the jth missing-data pattern, then the generalized missing-

indicator approach corresponds to using the following ‘grand’ model
y0

y1

...
yJ

 =


X0

W 1

...

W J

β +


0 · · · 0

W 1

. . .

W J


δ

1

...

δJ

+


u0

v1

...
vJ

 ,

where β is the regression parameter of interest, the δj are K × 1 vectors of nuisance parameters

that may be interpreted as the asymptotic bias in the regression of yj on W j , and the vj are Nj×1

vectors of projection errors that have mean zero and are orthogonal to the columns of W j . A more

compact representation of the ‘grand’ model is

y = Wβ +Zδ + v, (2)

where

W =


X0

W 1

...

W J

 , Z =


0 · · · 0

W 1

. . .

W J

 , δ =

δ
1

...

δJ

 , v =


u0

v1

...
vJ

 ,

respectively an N ×K matrix of observed or imputed covariates, an N × JK matrix of auxiliary

variables, a JK × 1 vector of nuisance parameters, and an N × 1 error vector. The matrix of

auxiliary variables Z consists of JK interactions between the set of J dummies d1, . . . ,dJ for the

missing-data patterns and the K columns of the completed design matrix W . Notice that this

matrix is not required to have full column rank. This occurs when some of the W j does not have

full column rank, either because Nj < K or because Nj ≥ K but the columns of W j are linearly

dependent, as when mean imputation or deterministic regression imputation is used. Incidentally,

such imputation methods are known to produce data sets with undesirable properties, see e.g.

Lundstrom and Sarnndal (2002). When some of the W j does not have full column rank, only a

subset of the coefficients in δj is identifiable but this does not affect the estimates of β. Also notice

that the regression errors in model (2) need not have constant variance because the projections

errors v1, . . . ,vJ may be heteroskedastic.
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The main result in DMP is the following:

Result 2 If Assumption 1 holds then, for any choice of imputations, the OLS estimate of β in

model (2) is numerically the same as the complete-case OLS estimate of β.

Thus, if the ignorability assumption holds, regressing y on W and Z allows one to fully exploit

the available information and to obtain an unbiased estimator of the regression parameter β.

3 Alternative strategies for estimating β

Both the ‘naive’ and the simple missing-indicator approach correspond to using restricted versions

of model (2) obtained by placing restrictions on the vector δ. The ‘naive’ approach restricts δ to

be equal to zero, while the simple missing-indicator approach restricts all the δj to be equal to

zero except for their first element. When these restrictions are at odds with the data, imposing

them leads to an estimator of β that is biased but more precise (less variable) than the OLS

estimator of β in model (2) which, in turn, is numerically the same as the complete-case estimator

of β. This suggest that, by placing restrictions on δ, or equivalently by excluding some of the

auxiliary variables in Z, one may obtain an estimator of β that is better in the mean squared error

(MSE) sense than the complete-case estimator. The Stata command in this paper implements two

alternative strategies for obtaining such an estimator of β: model reduction and model averaging.

3.1 Model reduction

Model reduction involves selecting first an intermediate model between the ‘grand’ model (2) and the

‘naive’ model corresponding to δ = 0, and then estimating the parameter of interest β conditional

on the selected model. Because the variables in the completed design matrix W are treated as

focus regressors and are always included, an intermediate model corresponds to one of the 2JK

possible subsets of auxiliary regressors in Z.

Model reduction may be carried out through a number of variable selection methods, such as

those implemented by the built-in Stata command stepwise or by the vselect command discussed

in Lindsey and Sheather (2010). Dropping one of the variables in Z amounts to restricting one

element of δj to zero. This in turn corresponds to selecting one of the J missing-data patterns

and forcing the coefficient on a particular covariate for that data pattern to be the same as for the

subsample with complete data. The various methods differ depending on how one explores the set

of all the possible models (e.g. via a general-to-specific or via a specific-to-general approach) and
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the decision rule used to judge validity of each model considered (e.g. a fixed significance level or

an information criterion such as AIC or BIC).

One well known problem with this strategy is pretesting.1 Another is the fact that model

reduction and estimation are completely separated. As a result, the reported conditional estimates

tend to be interpreted as if they were unconditional. A third problem is that, since there are

J subsamples with incomplete data and K covariates (including the constant term), the model

space may contain up to 2JK models. Thus, the model space is huge, unless both J and K are

small. Simple model reduction techniques, such as backward and forward selection, analyze at

most JK(JK +1)/2 models. More complicated model reduction techniques, such as the leaps and

bounds technique implemented in vselect, usually analyze a larger number of models.

3.2 Model averaging

Model averaging takes a different route. Instead of selecting a model out of the available set of

models, one first estimates the parameter of interest β conditional on each model in the model

space, and then computes the estimate of β as a weighted average of these conditional estimates.

When the model space contains I models, a model averaging estimate of β is of the form

β̄ =

I∑
i=1

λiβ̂i, (3)

where the λi are non-negative random weights that add up to one and β̂i is the estimate of β

obtained by conditioning on the ith model. In Bayesian model averaging (BMA), each β̂i is weighted

by the posterior probability of the corresponding model. If equal prior probabilities are assigned

to each model, then λi is proportional to the marginal likelihood of y under model i. The BMA

literature is vast and we refer the reader to Raftery et al. (1997) for a starting point.

Our Stata implementation of standard BMA is based on the bma command provided by De

Luca and Magnus (2011). This approach assumes a classical Gaussian linear model for (2), non-

informative priors for β and the error variance, and a multivariate Gaussian prior for δ. Notice

that the computational burden required to obtain a standard BMA estimate is proportional to the

dimension I of the model space. In our case I = 2JK , so this computational burden is substantial

unless both J and K are small.

Another type of BMA is Weighted-Average Least Squares (WALS), introduced by Magnus et al.

(2010). WALS also assumes a classical Gaussian linear model for (2) and noninformative priors for β

1 See Magnus (1999) and the FAQ http://www.stata.com/support/faqs/stat/stepwise.html.
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and the error variance but, instead of a multivariate Gaussian prior for δ, it uses a distribution with

zero mean for the independently and identically distributed elements of the transformed parameter

vector η = η(δ), whose hth element ηh is the population t-statistic for testing the significance

of the hth element of δ. Magnus et al. (2010) use the Laplace distribution, while Einmahl et

al. (2011) use the Subbotin family which leads to estimators with better asymptotic properties.

The assumption that the regression errors in (2) are homoskedastic and serially uncorrelated is not

crucial for WALS, and the method can be generalized to non-spherical errors (Magnus et al. 2011).

WALS has three main advantages over standard BMA. First, its computational burden is only

proportional to JK. Second, its choice of priors corresponds to a more intuitive concept of uncer-

tainty about the role of the auxiliary variables. Third, WALS estimates have bounded risk and are

near-optimal in terms of a well-defined regret criterion (Magnus et al. 2010). Our Stata implemen-

tation of WALS, for both Laplace and Subbotin priors, is based on the wals command provided

by De Luca and Magnus (2011).

3.3 Standard errors of the estimators

Like standard Stata estimation commands, we provide estimated coefficients, standard errors and

t-ratios. We do not provide p-values and confidence intervals because our estimators are generally

biased and their distribution need not be Gaussian, not even asymptotically. On the other hand,

the hth regressor may be considered to be robustly correlated with the outcome if the t-ratio ηh

on its coefficient is greater than one in absolute value, in which case the MSE of the unrestricted

OLS estimator of the coefficient is lower than that of the restricted OLS estimator (see e.g. Magnus

2002). On the basis of this criterion, we also provide two-standard error bands for the estimated

coefficients.

Computation and interpretation of the standard errors differ depending on the estimation strat-

egy (model reduction vs. model averaging) and the general approach to estimation (frequentist vs.

Bayesian).

For model reduction, the default is ‘classical’ standard errors of the OLS estimator of the selected

model. These standard errors do not take into account heteroskedasticity or serial correlation in

the data and, most importantly, ignore the additional sampling variability induced by the model

selection step. The option bootstrap gives standard errors based on the wild bootstrap which are

valid under conditional heteroskedasticity and also take into account the additional variability due

to model selection.
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For BMA, the default standard errors have the usual Bayesian interpretation of measuring the

spread of the posterior distribution of the parameters of interest given the data and take model

uncertainty explicitly into account. In this case, the option bootstrap provides a frequentist

measure of the variability due to sampling, including the variability due to model selection.

Notice that neither model reduction nor model averaging take into account the additional

sampling variability due to imputation. This problem could be addressed by multiple imputation

methods (Rubin 1987). As illustrated in Sections 5 and 6, our gmi command can be combined with

the build-in Stata prefix mi estimate (see mi estimate).

4 Stata command

The new Stata command gmi allows handling the trade-off between bias and precision when esti-

mating a classical linear regression model with imputed covariates. The earliest version of Stata

required to run this command is version 11.1. The syntax is as follows:

gmi depvar
[
varlist

] [
if

] [
in

]
, imputed(varlist) missing(varlist)

[
summarize cc naive smi sw

vs bma wals stepwise options vselect options bma options wals options full vce(bootstrap

[,bootstrap options]) auxiliary(string) keep nowarn
]

where depvar is the dependent variable, varlist is an optional list of observed covariates (i.e. covari-

ates whose values are fully observed), imputed is the list of imputed covariates (i.e. covariates whose

missing values are replaced by imputed values) and missing is the relevant list of missing-data indi-

cators (i.e. the non-zero columns of the matrix M corresponding to the set of imputed covariates).

Missing-data indicators take value 0 for observed cases and value 1 for imputed cases. The number

of imputed covariates must coincide with the number of missing-data indicators. The first variable

in missing is paired with the first indicator in imputed, the second variable in missing is paired

with the second indicator in imputed, and so on. The constant term (which is always included)

plus the set of observed and imputed covariates correspond to the K columns of the completed

design matrix W . The auxiliary regressors in Z (i.e. the JK interactions between the J dummies

for the missing-data patterns and the K columns of W ) are instead automatically generated by

the command using the information from missing. The gmi command shares the same features

of all Stata estimation commands, including access to the estimation results. Factor variables,

time-series operators and weights are not allowed. A description of the options that are specific to

this command is provided in the following sections.
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4.1 Options of the gmi command

summarize, the default, provides a description of the ‘grand’ model (number of observations, num-

ber of observed and imputed covariates, number of focus and auxiliary regressors, number of

missing-data patterns, and dimension of the model space), plus summaries of the distribution of

depvar (number of observations, mean and standard deviation) for the complete-case and each

missing-data pattern.

cc provides the complete-case estimate of β, namely the OLS estimate from a regression of depvar

on the K focus regressors in W using only the complete cases. This is numerically the same as

the OLS estimate of β in the grand model (2).

naive provides the ‘naive’ estimate of β, namely the OLS estimate from a regression of depvar on

the K focus regressors in W using all cases.

smi provides the simple missing-indicator estimate of β, namely the OLS estimate of β from a

regression of depvar on the K focus regressors in W and the J dummies for the missing-data

patterns using all cases.

sw provides the OLS estimate of β from a regression of depvar on the K focus regressors in W and

the subset of auxiliary regressors in Z selected through the build-in Stata command stepwise.

This estimate of β is conditional on the selected model. A brief description of the options for

the stepwise command is given in Section 4.2.

vs provides the OLS estimate of β from a regression of depvar on the K focus regressors in W and

the subset of auxiliary regressors in Z selected through the vselect command by Lindsey and

Sheather (2010). As for the sw option, this estimate of β is conditional on the selected model.

A brief description of the options for the vselect command is given in Section 4.3.

bma provides the BMA estimate of β in the ‘grand’ model (2) using the bma command implemented

by De Luca and Magnus (2011). This option assumes a classical Gaussian linear model for (2),

noninformative priors for the regression parameter β and the error variance, and a multivariate

Gaussian prior for the auxiliary parameter δ. This estimate is obtained as a weighted average

of the estimates of β from each of the 2JK possible models in the model space with weights

proportional to the marginal likelihood of depvar in each model. A brief description of the

options for the bma command is given in Section 4.4.

wals provides the WALS estimate of β in the ‘grand’ model (2) using the wals command imple-

mented by De Luca and Magnus (2011). Like BMA, this option assumes a classical Gaussian

linear model for (2) and noninformative priors for the regression parameter β and the error
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variance. Unlike BMA, WALS uses orthogonal transformations of the auxiliary regressors and

their parameters, which reduces to JK the order of magnitude of the required calculations.

Further, the transformed auxiliary parameters are assumed to be identically and independently

distributed according to either a Laplace or a Subbotin prior. A brief description of the options

for the wals command is given in Section 4.5.

full requires to display the estimation results for all model parameters (i.e. focus and auxiliary

parameters) and to return the associated estimates and their variance-covariance matrix in the

vector e(b) and the matrix e(V) respectively. By default, display of the estimation results

is restricted to the focus parameters of interest, the associated estimates and their variance-

covariance matrix are returned in the vector e(b) and the matrix e(V) respectively, while

estimates of the auxiliary parameters and their variance-covariance matrix are returned in the

vector e(b aux) and the matrix e(V aux) respectively.

vce(bootstrap [,bootstrap options]) uses wild bootstrap to estimate the variance-covariance ma-

trix of the parameter estimates (see [R] bootstrap). By default, bootstrap estimates of the

variance-covariance matrix are computed only for the focus parameters. To obtain bootstrap

estimates of the variance-covariance matrix the focus and the auxiliary parameters, the op-

tion vce(bootstrap) must be combined with the option full. In any case, vce(bootstrap)

and full cannot be jointly specified when applying model reduction techniques (i.e. the op-

tions sw and vs) because the subset of selected auxiliary regressors can vary across bootstrap

replicates. Standard options for bootstrap estimation can be specified as sub-options within

vce(bootstrap) (see [R] vce option).

auxiliary(string) specifies the prefix for the name of the auxiliary regressors. The default is D.

Thus, auxiliary regressors are named as Dj and Dj varname where j = 1, . . . , J is an index

for the sub-samples of missing data and varname is the name of each variable listed in varlist

and imputed.

keep specifies whether auxiliary regressors have to be kept in the data after estimation. By default,

they are dropped.

nowarn suppresses the display of a warning message on dropped collinear regressors.

4.2 Options for stepwise

By specifying the sw option, gmi carries out model reduction through the build-in Stata command

stepwise (see [R] stepwise for details). The relevant options of the stepwise command are pr(#)
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(significance level for backward selection), pe(#) (significance level for forward selection), forward

(backward stepwise) and lr (likelihood-ratio test of term significance). Since the auxiliary regres-

sors in Z have no hierarchical ordering, backward hierarchical selection and forward hierarchical

selection are not allowed.

4.3 Options for vselect

By specifying the vs option, gmi carries out model reduction through the vselect command

implemented by Lindsey and Sheather (2010). This command offers three model reduction tech-

niques: backward selection (the default), forward selection (forward), and leaps-and-bounds se-

lection (best). An information criterion is used to judge the validity of each model through the

options r2adj (adjusted R2), aic (AIC), aicc (corrected AIC), bic (BIC), cp1 or cp2 (Mallow’s

Cp). Mallows’s Cp criterion can only be used with leaps-and-bounds selection and the decision rule

can be either a value of Cp close to zero (cp1) or a value close to the number of covariates (cp2).

For additional information see Lindsey and Sheather (2010).

4.4 Options for BMA

By specifying the bma option, gmi carries out BMA through the bma command implemented by De

Luca and Magnus (2011). In this case, one can use two additional options. The option scaling

provides an alternative way of scaling the model weights λi when the default scaling procedure

suffers from numerical problems. Although scaling of the model weights does not affect BMA

estimates, the computing time required by this alternative procedure is almost double. The option

nodots suppresses the display of the dots to track the progress of bma estimation. By default, dots

are displayed only if the model space consists of more than 128 models. One dot means that 1% of

the models in the model space have been estimated.

4.5 Options for WALS

By specifying the wals option, gmi carries out model averaging through the wals command imple-

mented by De Luca and Magnus (2011). As for the prior on the transformed auxiliary parameters,

one can choose between Laplace or Subbotin priors through the option q(#) which defines the free

parameter 0 < q ≤ 1 of a Subbotin density with the prior median of ηh equal to zero and the prior

median of η2h equal to one. The default is q = 1 corresponding to a Laplace prior. Values of q in

the interval (0, 1) give instead a class of Subbotin priors. Einmahl et al. (2011) argue that values

of q close to zero are unappealing from the point of view of ignorance. For empirical applications,
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they recommend q = 0.5. For a Subbotin prior with q ̸= 1 and q ̸= .5, one can also specify a set of

additional options (i.e. intpoints(#), eps(#) and iterate(#)) to control the accuracy of the

numerical process for approximating the constrained parameter of a Subbotin density. Additional

information can be found in De Luca and Magnus (2011).

5 Example

This section illustrates the gmi command using data available on the Stata website.

. quietly use "http://www.stata-press.com/data/r11/mhouses1993s30", clear

. describe

Contains data from http://www.stata-press.com/data/r11/mhouses1993s30.dta
obs: 1,647 Albuquerque Home Prices Feb15-Apr 30, 1993
vars: 13 19 Jun 2009 10:50
size: 54,351 (99.9% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

price int %8.0g Sale price (hundreds)
sqft int %8.0g Square footage of living space
age float %10.0g Home age (years)
nfeatures byte %8.0g Number of certain features
ne byte %8.0g Located in northeast (largest

residential) sector of the city
custom byte %8.0g Custom build
corner byte %8.0g Corner location
tax float %10.0g Tax amount (dollars)
lnage float %9.0g
lntax float %9.0g
_mi_miss byte %8.0g
_mi_m int %8.0g
_mi_id int %12.0g

Sorted by: _mi_m _mi_id

We want to estimate a classical linear regression model for the relationship between home sale price

(price) and home characteristics (sqft, nfeatures, ne, custom, corner, lnage and lntax). Since

there are cases with age and tax missing, lnage and lntax are affected by a missing-data problem

and their missing values have been imputed using a multivariate normal regression model (see mi

impute mvn).

. mi describe

Style: mlong
last mi update 19jun2009 10:50:22, 243 days ago

Obs.: complete 66
incomplete 51 (M = 30 imputations)

total 117

Vars.: imputed: 2; lnage(49) lntax(10)

passive: 2; age(49) tax(10)

regular: 6; price sqft nfeatures ne custom corner
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system: 3; _mi_m _mi_id _mi_miss

(there are no unregistered variables)

. mi misstable summarize lnage lntax
Obs<.

Unique
Variable Obs=. Obs>. Obs<. values Min Max

lnage 49 68 30 0 3.970292
lntax 10 107 95 5.407172 7.475906

Thus, the data contain 117 observations plus 30 multiple imputations stored in the mlong style (see

styles) for each of the 51 incomplete cases. Below, we generate the missing-data indicators for

lnage and lntax and the local first imp which is used to restrict the estimation sample to the

first imputation. Continuous covariates are centered to their median values to obtain meaningful

estimates of the constant term.

. generate mis_lnage=(lnage==.)

. generate mis_lntax=(lntax==.)

. bys _mi_id: egen M_lnage=max(mis_lnage)

. bys _mi_id: egen M_lntax=max(mis_lntax)

. local first_imp "(_mi_miss==0|_mi_m==1)"

. foreach x of varlist sqft nfeatures lnage lntax {
2. quietly summarize `x´ if `first_imp´, d
3. quietly replace `x´=`x´-r(p50)
4. }

The gmi command with its default option summarize produces the following output:

. gmi price sqft nfeatures ne custom corner if `first_imp´, ///
> imp(lnage lntax) mis(M_lnage M_lntax)

note: D1_nfeatures D1_ne D1_custom D1_corner D1_lnage D1_lntax D3_corner omitte
> d because of collinearity

Grand model

Number of obs : 117
Number of observed covariates : 6
Number of imputed covariates : 2
Number of focus covariates : 8
Number of missing data patterns : 3
Number of auxiliary covariates : 17
Dimension of model space : 131072

Summary of price by missing data pattern
Group Freq. Percent Cum. Mean Std.Dev. Missing data patterns

0 66 56.41 56.41 1168.61 404.38 1 1
1 2 1.71 58.12 1010.00 452.55 1 .
2 41 35.04 93.16 930.44 298.59 . 1
3 8 6.84 100.00 880.50 307.17 . .

Our model includes 8 focus regressors, of which 6 (including the constant term) are observed and

2 are imputed. Excluding the subset of complete cases (66 observations), there are 22 − 1 = 3
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missing-data patterns: (i) lnage observed and lntax missing (2 observations), (ii) lnage missing

and lntax observed (41 observations), and (iii) lnage and lntax both missing (8 observations).

The grand model therefore includes 3 · 8 = 24 auxiliary variables, but 7 of them are dropped

because of perfect collinearity. In particular, because the variable corner is constant for the third

missing-data pattern, the auxiliary variables D3 and D3 corner are perfectly collinear, so the latter

is dropped.

. tab corner if `first_imp´ & M_lnage==1 & M_lntax==1

Corner
location Freq. Percent Cum.

0 8 100.00 100.00

Total 8 100.00

Other 6 auxiliary variables are dropped because the first missing-data pattern includes only 2

observations, so we can identify at most 2 of the 8 associated auxiliary parameters. After dropping

from Z all collinear variables, the dimension of the model space reduces to 217 = 131072. The

summary statistics for the dependent variable across missing-data patterns reveal that both the

mean and the variance of price are considerably higher for the subsample with complete cases.

We obtain the complete-case OLS estimator of the focus parameters β by specifying the cc

option.

. gmi price sqft nfeatures ne custom corner if `first_imp´, ///
> imp(lnage lntax) mis(M_lnage M_lntax) cc nowarn

Complete-case OLS estimates Number of obs = 66
df_m = 7

price Coef. Std. Err. t [2 Std. Err. Bands]

_cons 1000.288 39.59419 25.26 960.6942 1039.883
sqft .4357152 .0983648 4.43 .3373504 .5340799

nfeatures .3227029 18.34047 0.02 -18.01776 18.66317
ne 7.398968 46.91899 0.16 -39.52002 54.31796

custom 181.0344 54.37951 3.33 126.6549 235.4139
corner -78.70756 49.85979 -1.58 -128.5673 -28.84777
lnage -39.2261 27.55061 -1.42 -66.77671 -11.67549
lntax 302.2674 145.0322 2.08 157.2353 447.2996

These estimates could also be obtained through the built-in Stata command regress after restrict-

ing the estimation sample to the subset of complete data. They are also numerically the same as

the OLS estimate of β in the grand model (2). Result 1 implies that, under the ignorability as-

sumption, the complete-case OLS estimator is unbiased for β. Our findings suggest that home sale

price is positively related to square footage of living space, log of taxes paid and whether the home

is located in a custom building. On the other side, there is negative association with log of home
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age and whether the home has a corner location. The effects of the other covariates are not robust

because the corresponding t-ratios are smaller than one in absolute value. It is also worth noticing

that the complete-case estimator is likely to be highly inefficient as it discards about 44 percent of

the sample observations.

To explore the trade-off between bias and precision, consider now the ‘naive’ and the simple

missing-indicator approaches. The former ignores the fact that missing values have been imputed

by restricting all auxiliary parameters to zero, while the latter restrict all auxiliary parameters to

zero except the coefficients on the dummies for the missing-data patterns.

. gmi price sqft nfeatures ne custom corner if `first_imp´, ///
> imp(lnage lntax) mis(M_lnage M_lntax) naive nowarn

Naive OLS estimates Number of obs = 117
df_m = 7

price Coef. Std. Err. t [2 Std. Err. Bands]

_cons 984.3707 35.50699 27.72 948.8638 1019.878
sqft .382786 .0729738 5.25 .3098122 .4557598

nfeatures 3.622533 13.89274 0.26 -10.27021 17.51527
ne 28.93578 37.16146 0.78 -8.225679 66.09725

custom 145.1389 46.45179 3.12 98.68716 191.5907
corner -85.8675 42.73586 -2.01 -128.6034 -43.13164
lnage -26.48807 21.62821 -1.22 -48.11628 -4.859864
lntax 262.9705 106.5927 2.47 156.3778 369.5632

. gmi price sqft nfeatures ne custom corner if `first_imp´, ///
> imp(lnage lntax) mis(M_lnage M_lntax) smi nowarn

SMI OLS estimates Number of obs = 117
df_m = 10

price Coef. Std. Err. t [2 Std. Err. Bands]

_cons 1007.357 35.88174 28.07 971.4752 1043.239
sqft .3993985 .0718978 5.56 .3275006 .4712963

nfeatures -5.977141 14.29397 -0.42 -20.27111 8.316833
ne 49.92553 37.20047 1.34 12.72506 87.12601

custom 157.4772 47.33692 3.33 110.1403 204.8141
corner -103.4662 42.61305 -2.43 -146.0793 -60.85319
lnage -30.55087 21.47985 -1.42 -52.03073 -9.071018
lntax 204.6133 108.1598 1.89 96.45353 312.7731

. matrix list e(b_aux)

e(b_aux)[1,3]
D1 D2 D3

y1 -119.71306 -82.584248 -164.8674

. matrix list e(V_aux)

symmetric e(V_aux)[3,3]
D1 D2 D3

D1 18343.655
D2 826.58661 1662.3468
D3 527.1418 680.08892 4520.6579

Both approaches impose arbitrary restrictions on the auxiliary parameter δ, so they are likely to

result in biased estimates of the focus parameter β. However, as suggested by their considerably
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lower standard errors, these estimators are more precise than the complete-case OLS estimator.

The most striking differences are in the estimated coefficients of corner and lntax. Notice that,

to force users to treat the auxiliary parameters as nuisance parameters, their estimates and the

associated variance-covariance matrix are returned in the vector e(b aux) and the matrix e(V aux)

respectively.

The gmi command provides two alternative strategies for finding a better estimator of β in

the MSE sense: model reduction and model averaging. Although the choice between these two

strategies is left to the users, we strongly encourage choosing model averaging in order to avoid the

problems caused by pretesting.

Model reduction can be carried out through the built-in Stata command stepwise or the

vselect command by Lindsey and Sheather (2010). There are reasons to prefer the latter, as

model reduction is based on an information criterion instead of an arbitrary significance level, and

the leaps-and-bounds algorithm is expected to select the best model. To save space, we only present

the OLS estimates of the model selected by vselect with the best and the bic options.

. gmi price sqft nfeatures ne custom corner if `first_imp´, ///
> imp(lnage lntax) mis(M_lnage M_lntax) vs best bic full nowarn

Model reduction: leaps and bounds with bic Number of obs = 117
df_m = 9

price Coef. Std. Err. t [2 Std. Err. Bands]

_cons 983.4677 32.52224 30.24 950.9454 1015.99
sqft .4911947 .0722097 6.80 .418985 .5634044

nfeatures 1.022459 12.73723 0.08 -11.71477 13.75968
ne 6.726864 34.54129 0.19 -27.81442 41.26815

custom 163.2298 43.00966 3.80 120.2202 206.2395
corner -80.96139 39.22133 -2.06 -120.1827 -41.74006
lnage -25.25726 19.84414 -1.27 -45.1014 -5.413129
lntax 257.7811 98.19124 2.63 159.5898 355.9723

D2_sqft -.2688726 .0622148 -4.32 -.3310874 -.2066578
D3_custom -400.7815 168.7942 -2.37 -569.5757 -231.9873

In this case, we specified the full option to display estimates of the focus and the auxiliary

parameters. The selected model includes two auxiliary variables: the interaction between sqft and

the dummy D2 for the second missing-data pattern, and the interaction between custom and the

dummy D3 for the third missing-data pattern. Notice that, the standard errors are conditional on

the model selected by vselect and therefore should be treated with caution.

Next, we focus on model averaging using BMA and WALS respectively.

. gmi price sqft nfeatures ne custom corner if `first_imp´, ///
> imp(lnage lntax) mis(M_lnage M_lntax) bma nowarn

Model space: 131072 models
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Estimation
10% 20% 30% 40% 50%

.................................................. 50%

.................................................. 100%

Model averaging: BMA Number of obs = 117
df_m = 24

price Coef. Std. Err. t [2 Std. Err. Bands]

_cons 981.8827 35.19818 27.90 946.6845 1017.081
sqft .4379617 .0994773 4.40 .3384844 .5374391

nfeatures 2.712441 13.75563 0.20 -11.04319 16.46807
ne 14.97688 38.36088 0.39 -23.384 53.33776

custom 157.6969 44.93556 3.51 112.7614 202.6325
corner -77.18778 41.95601 -1.84 -119.1438 -35.23177
lnage -31.51599 21.10457 -1.49 -52.62056 -10.41142
lntax 318.0173 138.4967 2.30 179.5206 456.514

. gmi price sqft nfeatures ne custom corner if `first_imp´, ///
> imp(lnage lntax) mis(M_lnage M_lntax) wals nowarn

WALS estimates - Laplace priors Number of obs = 117
df_m = 24

price Coef. Std. Err. t [2 Std. Err. Bands]

_cons 994.0145 37.68866 26.37 956.3258 1031.703
sqft .420371 .0885567 4.75 .3318143 .5089278

nfeatures .5016072 16.63116 0.03 -16.12955 17.13277
ne 18.17247 43.4971 0.42 -25.32463 61.66958

custom 175.4686 51.53303 3.40 123.9356 227.0016
corner -80.34054 46.61626 -1.72 -126.9568 -33.72429
lnage -35.90108 25.46287 -1.41 -61.36395 -10.4382
lntax 298.6159 130.3276 2.29 168.2883 428.9434

Magnus et al. (2010) argue that WALS is theoretically superior to BMA in the choice of priors for

the auxiliary parameters, and is practically superior because of the substantially lower computa-

tional burden. Although the Stata command bma is much faster than the Magnus’ original Matlab

routine, we recognize that BMA can be very time consuming when the covariates or missing-data

patterns is moderate or large. In such circumstances, users are encouraged to rely on WALS, at

least when performing preliminary model specification search. In this example, we find that most

of the estimated coefficients from BMA and WALS are similar, suggesting that differences in the

priors for the auxiliary parameters play a minor role. Similar findings are also supported by the

estimates from WALS with a Subbotin prior for the auxiliary parameters.

. gmi price sqft nfeatures ne custom corner if `first_imp´, ///
> imp(lnage lntax) mis(M_lnage M_lntax) wals q(.5) ///
> vce(bootstrap, rep(100)) nowarn
(running gmi on estimation sample)

Bootstrap replications (100)
1 2 3 4 5

.................................................. 50

.................................................. 100

WALS estimates - Subbotin(q=.5) priors Number of obs = 117
Replications = 100
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df_m = 24

Observed Bootstrap Bootstrap
price Coef. Std. Err. t [2 Std. Err. Bands]

_cons 992.4352 45.40523 21.86 947.03 1037.84
sqft .4183898 .0968779 4.32 .3215119 .5152676

nfeatures .1203615 17.2886 0.01 -17.16823 17.40896
ne 21.76857 56.17089 0.39 -34.40233 77.93946

custom 177.8062 71.95092 2.47 105.8553 249.7571
corner -80.24304 48.86178 -1.64 -129.1048 -31.38126
lnage -35.72275 38.17886 -0.94 -73.90161 2.456116
lntax 302.3153 166.3357 1.82 135.9796 468.651

In the above example, standard errors are estimated by the wild bootstrap with 100 replications.

Bootstrapped standard errors are usually larger than traditional ones because they account for

heteroskedasticity of unknown form. As argued in Section 3.3, the wild bootstrap also provides an

easy way to ensure comparability of the standard errors across the different estimation methods.

Finally, we can use the 30 multiple imputations on lnage and lntax to account for the sampling

variability induced by imputation of missing values. This can be done by combining our gmi

command with the built-in Stata prefix mi estimate.

. mi estimate: gmi price sqft nfeatures ne custom corner, ///
> imp(lnage lntax) mis(M_lnage M_lntax) wals q(.5) nowarn full

Multiple-imputation estimates Imputations = 30
WALS estimates - Subbotin(q=.5) priors Number of obs = 117

Average RVI = 0.1202
Complete DF = 92

DF adjustment: Small sample DF: min = 53.04
avg = 81.87
max = 89.46

Model F test: Equal FMI F( 24, 89.4) = 18.93
Prob > F = 0.0000

price Coef. Std. Err. t P>|t| [95% Conf. Interval]

_cons 991.3835 37.04141 26.76 0.000 917.7875 1064.979
sqft .4317465 .0867584 4.98 0.000 .2592937 .6041993

nfeatures -.2094938 16.38439 -0.01 0.990 -32.76653 32.34754
ne 21.21545 42.39104 0.50 0.618 -63.00865 105.4396

custom 169.9147 50.06324 3.39 0.001 70.44587 269.3836
corner -78.7322 46.13668 -1.71 0.091 -170.4003 12.93594
lnage -42.43074 26.08771 -1.63 0.108 -94.33088 9.469404
lntax 280.3926 127.9489 2.19 0.031 26.02861 534.7565

D1 -113.878 110.0119 -1.04 0.304 -332.663 104.9071
D1_sqft .3657415 .4004362 0.91 0.364 -.430267 1.16175

D2 -54.71213 69.21678 -0.79 0.431 -192.3361 82.91185
D2_sqft -.0689371 .1178286 -0.59 0.560 -.3035881 .1657139

D2_nfeatures -3.48209 25.28178 -0.14 0.891 -53.76192 46.79774
D2_ne 17.66156 65.09508 0.27 0.787 -111.7321 147.0552

D2_custom -33.78444 80.12972 -0.42 0.674 -193.1165 125.5476
D2_corner -42.7017 74.37813 -0.57 0.567 -190.6397 105.2363
D2_lnage -3.959991 41.30198 -0.10 0.924 -86.7998 78.87982
D2_lntax -151.7439 171.2648 -0.89 0.378 -492.8674 189.3797

D3 -167.1674 275.5164 -0.61 0.546 -716.1743 381.8394
D3_sqft .1767931 .8775505 0.20 0.841 -1.56922 1.922806

D3_nfeatures -25.63685 77.73594 -0.33 0.742 -180.3954 129.1217
D3_ne 145.6077 276.0254 0.53 0.599 -404.0849 695.3002
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D3_custom -310.4791 394.2583 -0.79 0.433 -1095.022 474.0637
D3_lnage 35.51389 252.4899 0.14 0.889 -467.0959 538.1236
D3_lntax -205.2547 1406.123 -0.15 0.884 -3003.184 2592.675

The prefix mi estimate runs the specified gmi command on each imputed dataset to obtain a set

of alternative estimates of the model parameters and their variance-covariance matrix. Multiple

imputation estimates are then obtained by applying the combination rules of Rubin (1987) on the

resulting set of alternative estimates (see mi estimate). Here, it is worth noticing that the prefix

mi estimate has its own reporting output and does not respect the reporting output of the gmi

command. As discussed in Section 3.3, p-values and confidence intervals must then be treated with

caution especially when the number multiple imputations is small. Also notice that the option

full of the gmi command is always needed to obtain valid information on the average relative

variance increase (RVI) due to nonresponse and the summaries about parameter-specific degrees

of freedom (DF). In any case, the prefix mi estimate and the option full of the gmi command

cannot be jointly combined when using model reduction techniques (i.e. options sw and vs) because

the subset of selected auxiliary regressors can vary across imputations.

6 Empirical application

This application investigates the relationship between hand grip strength (GS) and a set of socio-

demographic and economic covariates using data on the elderly European population. As argued

by Andersen et al. (2009), GS is an important measure of health because it is objectively measured,

it directly affects every day activity functions, it is known to decline linearly with age, and it is a

strong predictor of disability, morbidity, frailty and mortality. Furthermore, measuring GS is cheap

and can be carried out by trained survey interviewers in non-clinical studies.

Our data are from release 2.4.0 of the first wave of the Survey of Health, Ageing and Retirement

in Europe (SHARE), a multidisciplinary and cross-national household panel survey coordinated by

the Mannheim Research Institute for the Economics of Aging (MEA).2 SHARE collects data on self-

reported and objective measures of health, socio-economic status, and social and family networks

for nationally representative samples of elderly people in the participating countries. The first wave,

conducted in 2004, covers about 28,500 individuals in 11 European countries (Austria, Belgium,

Denmark, France, Germany, Greece, Italy, the Netherlands, Spain, Sweden and Switzerland). In

each country, the target population consists of people aged 50 and older, plus their possibly younger

2 Data can be downloaded free of charge from the SHARE Research Data Center: http://www.share-project.org.
To get access to the dataset, researchers have to complete a statement concerning the use of the microdata.
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partners. Although all national samples are selected through probability sampling, the sampling

procedures are not completely standardized across countries because of the lack of a common

sampling frame. The unweighted household nonresponse rate in the first wave ranges between a

maximum of 62 percent in Switzerland and a minimum of 26 percent in France, and is equal to

45 percent on average. The data collection mode is computer-assisted personal interview (CAPI),

supplemented by show-cards and a self-administered paper-and-pencil questionnaire.3

The GS test in SHARE involves two measurements on each hand (alternating between the two

hands) using a hand-grip dynamometer. Before the fieldwork period, interviewers participated

in centrally designed training sessions to learn a common protocol for measuring GS. They are

instructed to demonstrate the use of the hand-grip dynamometer, help the respondent to assume a

suitable position before performing the test, and verbally encourage the respondent to squeeze the

handles of the hand-grip dynamometer as hard as possible. Respondents are excluded from the GS

test only for swelling, inflammation, severe pain, recent injury or surgery to both hands in the last

6 months. For respondents with problems in one hand, the GS test is performed on the other hand

only. The measurement of GS on each hand is considered valid if the two assessments on the same

hand were greater than 0 Kg, lower than 100 Kg and they do not differ from each other by more

than 20 kg. The overall GS test is considered valid if there is at least one valid measurement on one

hand. Following Andersen et al. (2009), our dependent variable is the maximum GS (‘maxgrip’)

measurement resulting from valid test.

Our set of socio-demographic and economic covariates includes age, gender, macro-region of

residence (Northern, Central or Southern countries), self-reported weight and height, an indicator

for educational attainment, per-capita household income and household net worth. To ensure

cross-country comparability of the information on educational attainment, the original values have

been recoded using the 1997 International Standard Classification of Education (ISCED-97). For

similar reasons, per-capita household income and household net worth have been adjusted for the

differences in purchasing power across countries. Thus, nominal amounts have been divided by the

national purchasing power parity to obtain real amounts denominated in German prices for the

year 2005.4

Unlike Andersen et al. (2009), who use imputed values of household income and household

net worth by relying on the estimates from the ‘naive’ approach, we are interested in investigating

3 For additional information on survey design and response rates see Börsch-Supan et al. (2005).
4 Data for these calculations are obtained from the purchasing power parity survey carried out by OECD in 2005.

Further information can be found in the SHARE documentation of release 2.4.0.

20



the trade-off between bias and precision when replacing the missing values on these two variables

with imputations. This is an important issue to consider because these covariates are affected by

substantial item nonresponse. The item nonresponse rates for household income and household net

worth range, respectively, between a maximum of 76 and 77 percent in Belgium and a minimum

of 49 and 52 percent in Greece, and are equal to 62 and 64 percent on average. The substantial

amount of item nonresponse reflects three problems. First, these variables are not asked directly to

respondents but are obtained by aggregating a large number of income and wealth components (27

and 13 respectively), collected at both the individual and the household level. Second, information

about incomes, real and financial assets, mortgage and other debts are asked through open-ended

and retrospective questions that are sensitive and difficult to answer. Third, according to SHARE

fieldwork rules, a household with two spouses is considered as interviewed if at least one of them

agrees to participate. If the other does not, then household income and household net worth must

be imputed because the individual components are missing for the nonresponding spouse.

To deal with the potential selectivity effects generated by item nonresponse, the public-use

SHARE data include 5 multiple imputations of the key survey variables. As discussed at length

in Christelis (2011), these imputations are constructed by the multivariate iterative procedure of

Buuren et al (2006) which attempts to preserve the correlation structure of the imputed data. In

what follows, we account for the additional sampling variability induced by the imputation process

using the combination rules proposed by Rubin (1987) on the 5 multiple imputations of household

income and household net worth.

Another important difference with respect to Andersen et al. (2009) is that we focus on re-

spondents aged between 50 and 80 years who do not report serious health problems. This choice

is primarily motivated by the need of compensating for cross country differences in coverage of

the institutionalized target population. While the sampling frames of Denmark, Netherlands and

Sweden cover people living in institutions for the elderly, this segment of the 50+ population is

excluded by the national sampling frames of the other SHARE countries. Moreover, Southern Eu-

ropean countries are known to have fewer nursing home than Northern and Continental European

countries and a cultural tradition of old parents living with a child. To limit the impact of these

cross country differences, we select respondents who have at most one limitation with activities of

daily living, at most one chronic disease, and whose self-reported health status is at least fair. After

applying this sample selection criterion, dropping the invalid measurements of maxgrip (about 5

percent of the cases) and the few missing data on weight, height and education (about 1 percent of
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the cases), our working sample consists of 13,724 observations. Summary statistics for the outcome

and the covariates are presented in Table 1, separately by gender and macro-region.

Given the high level of comparability of the SHARE data, we pool data from countries in the

same macro-region, and estimate our linear regression model of interest separately by gender and

macro-region. For simplicity, we assume that the errors in the grand model are independent and

spherically distributed. The model specification in each subgroup includes 7 focus regressors, of

which 5 (age, weight, height, education and the constant term) are observed and 2 (per-capita

household income and household net worth) are imputed, 3 subsamples with incomplete data,

and 21 non-collinear auxiliary variables. The resulting dimension of the model space is 2,097,152.

After centering the focus covariates on the corresponding medians of each subgroup, we compare

the estimates from five alternative approaches: complete case, ‘naive’, model reduction, BMA

and WALS. Model reduction estimation is carried out using the vs estimation option of the gmi

command with leaps-and-bounds selection and AIC as model information criteria, while WALS

estimation is carried out using a Subbotin prior with parameter q = 0.5.5

The estimated coefficients and their standard errors are presented in Tables 2 and 3, separately

by gender and macro-region. Qualitatively, our results are consistent with the empirical findings

in Andersen et al. (2009). In all specifications, maxgrip is negatively related to age and positively

related to self-reported weight and height. Women have a lower level of maxgrip than men, but

they also present a considerably flatter decline with advancing age. The positive gradient between

Northern-Continental and Southern countries persists even after focusing on the healthier segment

of the elderly European population. For men, the age-related decline in maxgrip is steeper for those

living in Southern countries. For women, it is instead steeper for those living in Northern and Con-

tinental countries. Education, per-capita household income and household net worth do not seem

to be robustly correlated with maxgrip. The only exceptions are the positive correlations between

maxgrip and education for men and women living in Continental countries, between maxgrip and

per-capita household income for women living in Southern countries, and between maxgrip and

household net worth for men and women living in Southern countries.

Notice that, although there is broad agreement with previous studies on the sign of the estimated

associations, their magnitude and the size of the standard errors are subject to non-negligible

differences. For example, the point estimate of the coefficient on weight in the specification Male-

5 Estimates from the simple missing-data indicator approach are omitted because similar to those obtained from
the ‘naive’ approach. Estimates from WALS with a Laplace prior are instead omitted because very similar to those
obtained with a Subbotin prior.
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North ranges between a minimum 0.106 with a standard error of 0.022 using the ‘naive’ approach to

a maximum of 0.214 with a standard error of 0.057 using complete-case analysis. Similar differences

are observed for the estimated coefficients on education in the specifications Male-North and Male-

Center, household net worth in the specification Male-South, weight in the specification Female-

Center, and per-capita household income in the specification Female-South. The estimates from

model reduction and model averaging are somewhat in-between the estimates from the complete-

case and the ‘naive’ approach. In particular, the conditional estimates from model reduction are

quite close to the unconditional estimates from BMA. This suggests that, in this example, the

effects of pretesting are not very important. The differences in the unconditional estimates from

BMA and WALS suggest instead that alternative assumptions on the prior distributions for the

auxiliary parameters may matter. From this view point, WALS has the advantage of using priors

that ensure bounded risk and a coherent treatment of ignorance about the auxiliary parameters.
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Table 1: Descriptive statistics for the dependent and the independent variables (weight is in kilo-
grams, height is in centimeters, PPP-adjusted per-capita household income is in 10,000 Euro and
household net worth is 100,000 Euro).

Male Female
Region Variable P25 Med P75 P25 Med P75
North maxgrip 42.00 49.00 55.00 25.00 29.00 33.00

age 55.00 60.00 67.00 55.00 59.00 66.00
weight 74.00 81.00 90.00 60.00 66.00 74.00
height 174.00 178.00 183.00 161.00 165.00 169.00
education 0.00 1.00 1.00 0.00 1.00 1.00
income 1.56 2.33 3.32 1.52 2.25 3.15
net worth 0.54 1.42 2.77 0.42 1.25 2.56
complete obs. 204 238
imputed obs. 1123 1203

Center maxgrip 41.00 47.00 53.00 25.00 30.00 34.00
age 55.00 60.00 67.00 54.00 59.00 66.00
weight 73.00 80.00 88.00 60.00 67.00 75.00
height 171.00 176.00 180.00 160.00 164.00 168.00
education 0.00 1.00 1.00 0.00 1.00 1.00
income 1.12 1.84 3.08 1.11 1.80 3.07
net worth 0.84 2.20 4.08 0.61 2.01 3.88
complete obs. 730 799
imputed obs. 3798 4057

South maxgrip 35.00 43.00 50.00 22.00 26.00 30.00
age 55.00 60.00 68.00 53.00 58.00 65.00
weight 72.00 79.00 85.00 60.00 66.00 75.00
height 167.00 170.00 175.00 157.00 161.00 165.00
education 0.00 0.00 1.00 0.00 0.00 1.00
income 0.56 0.94 1.60 0.54 0.93 1.64
net worth 0.88 1.72 3.29 0.83 1.62 3.14
complete obs. 485 470
imputed obs. 1785 1758
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Table 2: Estimated coefficients and standard errors (in parentheses) for males by macro-region.
Estimation is based on M = 5 multiple imputations for income and net worth. Results for the
auxiliary regressors are omitted to save space.

Region Variable CC NAIVE VS BMA WALS
North constant 49.758 49.236 49.429 49.228 49.485

(1.015) (0.414) (0.437) (0.424) (0.830)
age -0.410 -0.446 -0.442 -0.444 -0.423

(0.067) (0.031) (0.031) (0.032) (0.059)
weight 0.214 0.106 0.111 0.108 0.166

(0.057) (0.022) (0.022) (0.022) (0.049)
height 0.265 0.265 0.256 0.266 0.267

(0.101) (0.040) (0.040) (0.043) (0.087)
education -2.595 -1.075 -1.158 -1.091 -1.893

(1.161) (0.496) (0.496) (0.503) (0.956)
income 0.290 0.021 0.201 0.072 0.179

(0.304) (0.126) (0.145) (0.158) (0.265)
net worth 0.138 0.033 -0.002 0.029 0.087

(0.174) (0.043) (0.045) (0.046) (0.135)
Center constant 46.670 47.013 47.005 47.019 46.841

(0.584) (0.247) (0.247) (0.252) (0.468)
age -0.382 -0.436 -0.437 -0.436 -0.407

(0.041) (0.017) (0.017) (0.018) (0.031)
weight 0.082 0.119 0.119 0.119 0.096

(0.028) (0.012) (0.012) (0.013) (0.025)
height 0.252 0.209 0.208 0.209 0.237

(0.053) (0.022) (0.022) (0.022) (0.048)
education 1.694 0.779 1.112 0.813 1.277

(0.686) (0.291) (0.334) (0.313) (0.550)
income 0.014 0.045 0.048 0.046 0.030

(0.132) (0.059) (0.059) (0.061) (0.100)
net worth 0.063 0.012 0.017 0.013 0.038

(0.061) (0.015) (0.016) (0.016) (0.045)
South constant 42.006 42.670 42.391 42.553 42.295

(0.583) (0.286) (0.352) (0.329) (0.474)
age -0.560 -0.536 -0.587 -0.539 -0.552

(0.055) (0.028) (0.036) (0.032) (0.045)
weight 0.105 0.113 0.114 0.113 0.105

(0.039) (0.021) (0.021) (0.021) (0.031)
height 0.245 0.226 0.226 0.225 0.236

(0.068) (0.034) (0.034) (0.035) (0.054)
education 0.646 0.193 0.395 0.184 0.409

(0.966) (0.466) (0.486) (0.489) (0.781)
income -0.266 0.270 -0.098 0.207 -0.053

(0.331) (0.159) (0.216) (0.210) (0.291)
net worth 0.248 0.022 0.216 0.049 0.175

(0.098) (0.025) (0.088) (0.082) (0.074)

26



Table 3: Estimated coefficients and standard errors (in parentheses) for females by macro-region.
Estimation is based on M = 5 multiple imputations for income and net worth. Results for the
auxiliary regressors are omitted to save space.

Region Variable CC NAIVE VS BMA WALS
North constant 28.805 29.170 29.141 29.161 28.986

(0.654) (0.288) (0.287) (0.291) (0.511)
age -0.284 -0.259 -0.255 -0.259 -0.271

(0.051) (0.022) (0.022) (0.023) (0.040)
weight 0.070 0.067 0.077 0.067 0.068

(0.033) (0.016) (0.017) (0.017) (0.026)
height 0.250 0.250 0.281 0.251 0.247

(0.067) (0.030) (0.033) (0.039) (0.052)
education 0.147 -0.028 -0.000 -0.023 0.055

(0.781) (0.353) (0.352) (0.358) (0.611)
income -0.130 0.117 0.129 0.116 -0.006

(0.371) (0.108) (0.108) (0.111) (0.284)
net worth 0.062 -0.003 0.005 -0.001 0.031

(0.109) (0.036) (0.043) (0.040) (0.083)
Center constant 29.449 29.429 29.291 29.338 29.446

(0.376) (0.156) (0.161) (0.186) (0.267)
age -0.303 -0.262 -0.259 -0.261 -0.284

(0.030) (0.012) (0.012) (0.013) (0.024)
weight 0.091 0.070 0.092 0.070 0.080

(0.020) (0.008) (0.013) (0.010) (0.016)
height 0.200 0.227 0.244 0.236 0.213

(0.037) (0.016) (0.017) (0.020) (0.029)
education 0.807 0.823 0.810 0.803 0.822

(0.476) (0.199) (0.198) (0.208) (0.340)
income 0.116 0.028 0.046 0.033 0.078

(0.124) (0.039) (0.055) (0.042) (0.094)
net worth 0.003 0.004 0.005 0.005 0.008

(0.040) (0.010) (0.010) (0.010) (0.028)
South constant 25.245 25.859 25.630 25.845 25.496

(0.407) (0.194) (0.234) (0.205) (0.355)
age -0.219 -0.237 -0.236 -0.237 -0.227

(0.039) (0.020) (0.020) (0.020) (0.031)
weight 0.046 0.036 0.036 0.036 0.042

(0.028) (0.014) (0.014) (0.014) (0.022)
height 0.142 0.181 0.180 0.180 0.160

(0.052) (0.025) (0.025) (0.027) (0.039)
education 1.264 0.401 0.399 0.406 0.909

(0.715) (0.342) (0.343) (0.348) (0.604)
income 0.249 0.235 0.223 0.234 0.227

(0.267) (0.102) (0.103) (0.105) (0.200)
net worth 0.069 0.047 0.031 0.047 0.064

(0.071) (0.024) (0.026) (0.025) (0.054)
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