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1 Introduction

Starting with the pioneering work of Engel (1857), the link between household food expenditure

and household income, or food Engel curve, has been one of the most investigated economic rela-

tionships. The study of Engel curves, however, is subject to a number of problems that are still

unsettled.

First, there are theoretical and empirical reasons for avoiding the assumption that observed

household income is exogenous. According to economic theory, household income is an outcome of

the utility maximization problem faced by the household because it reflects choices, such as labor

and saving decisions by its members, that are jointly made with consumption expenditure decisions

(see e.g. Blundell et al. 2007). Problems of endogeneity also arise because measuring household

income is not easy and may be subject to error (Hausman et al. 1991, Newey 2001). In either

case, estimation of the parameters of an Engel curve requires the availability of a suitable set of

instruments to control for endogeneity bias.

Second, recent developments in the nonparametric literature have emphasized the importance

of relaxing strong parametric assumptions about the shape of Engel curves. Popular models of

consumer demand, such as the Almost Ideal Demand System (AIDS) of Deaton and Muellbauer

(1980) and the Translog of Jorgenson et al. (1982), force budget shares to be linear in the logarithm

of household income. The Quadratic AIDS (QUAIDS) of Banks et al. (1997) generalizes the above

systems by allowing the effect of household income to be nonmonotonic but still parametric. More

recent studies by Blundell et al. (2003, 2007) and Imbens and Newey (2009) focus on nonpara-

metric methods to capture the observed patterns of consumer behavior for certain categories of

consumption expenditure.

A third problem that plagues empirical studies based on survey data is nonresponse. It is

important to distinguish between two types of nonresponse. The first–unit nonresponse–occurs

when eligible sample units fail to participate to a survey because of noncontact or explicit refusal

to cooperate. The second–item nonresponse–occurs when responding units do not provide useful

answers to particular items of the survey instrument. This is often the case with household income

and expenditure, as both variables are typically collected through a number of open-ended and

retrospective questions that are sensitive and difficult to answer precisely.

The distinction between unit and item nonresponse is important for data users because they may

improve model specification by exploiting the different information available, at least in principle,

for the two types of nonresponse. For unit nonresponse this information is necessarily confined to
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that obtained from the sampling frame or the data collection process, whereas for item nonresponse

one can use the additional information collected during the interview.

The distinction is also important at the survey design stage, where resources have to be allocated

efficiently to reduce the various sources of nonsampling error. Well-designed surveys aim to reduce

unit nonresponse by appropriately choosing fieldwork procedures, interview modes, interviewer

training and incentive schemes. Several studies (see e.g. Groves and Couper 1998, Groves et al.

2002, and Riphahn and Serfling 2005) show that these characteristics help predict the response

rates attained in a survey. For item nonresponse, aspects of questionnaire design (e.g. length of the

interview, wording and reference period for the questions, etc.) may also be important.

This paper is mainly concerned with problems of nonresponse in the first wave of a panel survey,

where nonresponse rates are typically much higher than in subsequent waves. Despite its relevance,

nonresponse in the first wave of a panel has received little attention in the literature relative to panel

attrition, largely because of the lack of information on unit nonrespondents and on the interview

process. The data analyzed in this paper, namely the first wave of the Survey on Health, Aging

and Retirement in Europe (SHARE), represent an important exception because of the richness of

the information provided on both unit nonrespondents and the interview process.

Unfortunately, despite the preventive measures adopted in many sample surveys, response rates

are rarely close to 100 percent. This may explain why most of the survey nonresponse literature

focuses on statistical methods for ex-post adjustments (see Lessler and Kalsbeek 1992, and Little

and Rubin 2002). These adjustments typically require assumptions about the nature of the missing

data mechanism. Following Rubin (1976), we say that data on an outcome of interest are missing

completely at random (MCAR) if missingness depends on neither the observed outcome nor the

observed covariates, are missing at random (MAR) if after conditioning on the observed covariates

there is no relation between missingness and the observed outcome, and are not missing at ran-

dom (NMAR) if missingness and the observed outcome are related even after conditioning on the

observed covariates.

The MAR assumption is the basis of most common ways of handling unit and item nonresponse.

Weighting procedures, which involve assigning weights to sample respondents to compensate for

systematic differences relative to nonrespondents, have typically been used to deal with unit non-

response. Imputation procedures, which fill in missing values to produce a completed dataset, have

typically been used to deal with item nonresponse. Although weighting and imputation procedures

represent the standard practice, they are not immune from criticism. First, relying on the MAR
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assumption when the underlying missing data mechanism is NMAR may lead to invalid inference

about the population parameters of interest. The MAR assumption may be particularly restrictive

in the case of unit nonresponse because of the limited information available to construct sample

weights. Second, as pointed out by Heckman and Navarro (2004), the available procedures offer

little guidance on how to pick the covariates that should account for sample selection and are not

robust to the choice of the conditioning set.

Our paper differs from previous studies in several respects. First, we consider problems of selec-

tivity due to both unit and item nonresponse, and we analyze these problems jointly. Second, we

allow the missing data mechanism underlying the two types of nonresponse to be NMAR. Third,

we simultaneously address issues of flexible specification of the regression function of interest and

problems of nonresponse and endogeneity by using an extended sample selection model where a

partially linear specification of the food Engel curve is subject to selectivity due to unit and item

nonresponse and endogeneity of household income. Our model is closely related to the sample

selection model analyzed by Das et al. (2003) (henceforth DNV). The main difference with respect

to DNV is partial observability of one of the selection indicators, as item response behavior cannot

be observed for those who are unit nonrespondents. We focus attention on two alternative specifi-

cations of the model, one parametric and the other semiparametric. The parametric specification

is easy to estimate but relies on the strong assumption that the unobservables in the model fol-

low a multivariate Gaussian distribution with zero mean and nondiagonal covariance matrix. The

semiparametric specification is more appealing, for it avoids distributional assumptions.

The remainder of this paper is organized as follows. Section 2 describes our data. Section 3

presents the statistical model that we use to estimate the food Engel curve under endogeneity

of household income and selectivity due to unit and item nonresponse. Section 4 describes our

empirical results. Finally, Section 5 offers some conclusions.

2 Data

Our data are from Release 2.1 of the first wave of the Survey of Health, Aging and Retirement in

Europe (SHARE), a multidisciplinary and cross-national bi-annual household panel survey coordi-

nated by the Mannheim Research Institute for the Economics of Aging (MEA). The survey collects

data on health, socio-economic status, and social and family networks for nationally representative

samples of elderly people in the participating countries.

The first wave, conducted in 2004, covers about 19,500 households and about 28,500 individuals
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in eleven European countries (Austria, Belgium, Denmark, France, Germany, Greece, Italy, the

Netherlands, Spain, Sweden and Switzerland). The target population consists of people aged 50

and older living in residential households, plus their (possibly younger) spouse/partner. National

samples are selected through probability sampling, but sampling procedures are not completely

standardized across countries. We only consider the countries (Denmark, Italy, the Netherlands,

Spain, and Sweden) for which the sampling frame contains basic information on the individuals

selected for interview, namely their gender and year of birth. The interview mode adopted by

SHARE is Computer Assisted Personal Interviewing (CAPI), supplemented by show-cards and a

self-administered paper-and-pencil questionnaire. Except for Denmark, all national samples consist

of a main sample (on average about 80% of the total sample) and a vignette sample (the remaining

20%).1 For the vignette sample, which was interviewed later than the main sample, a section of

the self-administered questionnaire was replaced by one with anchoring vignette questions.2

Like most other sample surveys, the first wave of SHARE is affected by substantial unit non-

response. Table 1 presents summary statistics on survey participation. Of the 15,895 households

selected for interview, only 8,750 agreed to participate, corresponding to an unweighted household

response rate of 55 percent. Household response rates vary considerably by country and sam-

ple type, ranging from a minimum of 47 percent for the Swedish main sample to a maximum of

67 percent for the Danish main sample. As for the reasons for household nonresponse, refusal to

participate represents about three fourths of the cases, noncontact about one fourth.

For the households which agreed to participate to the survey, the SHARE interview collects

data on household consumption expenditure through retrospective open-ended questions on three

consumption categories (food at home, food outside home, and phone) and on total nondurable

consumption. These questions are asked to a single “household respondent”, namely the eligible

person who is most knowledgeable about housing matters. We focus on the food share, namely

the ratio of household food expenditure to total household income.3 Both the numerator and

the denominator of the ratio are generated variable, that is, they are not asked directly but are

obtained by aggregating a number of separate components. Food expenditure in the numerator is

1 In Sweden, the main sample also include a supplementary sample which was fielded to increase the number of
completed interviews.

2 Additional methodological details about survey organization, sampling design, response rates, weighting and
imputation strategies can be found in Börsch-Supan and Jürges (2005).

3 We do not divide food expenditure by total nondurable consumption expenditure because this variable is likely
to be severely understated (Browning and Madsen 2005). Browning et al. (2003) and Winter (2004) argue that
“one-shot” retrospective questions do not provide reliable measures of consumption expenditure aggregates. This
may explain why total nondurable consumption expenditure has been excluded from the set of imputed variables
provided by SHARE.
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obtained by adding-up household expenditure on food at home and outside home, whereas total

household income in the denominator is obtained by aggregating 19 income components collected at

the individual level and 6 income components collected at the household level. Table 2 summarizes

the complex process underlying item nonresponse by providing the unweighted item response rates

on food expenditure, total household income, and food share by country and sample type. These

generated variables are regarded as missing if any of their components is missing. Based on this

definition, the cross-country average of item nonresponse rates is 18 percent for food expenditure,

64 percent for household income, and 68 percent for the food share, with considerable variation

across countries. In particular, the item nonresponse rate on food share ranges from a minimum of

57 percent in Denmark to a maximum of 77 percent in Spain. Overall, the complete-case subsample

consists of 2,805 households.

The most important reason for missing data on food share is item nonresponse to questions

about income components. This reflects two problems. The first is simply the large number of

income components considered in SHARE. The second arises because, according to the SHARE

fieldwork rules, a household with two spouses is considered as interviewed if at least one of them

agrees to participate. If the other does not, then household income must be imputed because the

incomes of the nonresponding spouse are missing. This “missing spouse problem”, which affects

26 percent of the households in the survey, induces a negative correlation between the indicators

of unit and item nonresponse.

The public-use SHARE data include a set of weights to account for unit nonresponse and

a set of imputations to account for item nonresponse. The weights are constructed using the

calibration methodology of Deville and Särndal (1992), while the imputations are constructed

using the multivariate iterative procedure of Buuren et al. (2006) which attempts to preserve the

correlation structure of the imputed data. The validity of these ex-post statistical adjustments relies

crucially on the assumption that the missing data mechanism underlying unit and item nonresponse

are MAR after conditioning on a suitable set of auxiliary variables. The set of auxiliary variables

used to calibrate the weights consists of gender and age class of the sampled household member.4

For imputations, a much larger set of auxiliary variables is used, as one can exploit the additional

information collected in other parts of the interview.

4 In Denmark and Italy, auxiliary variables also include a set of indicators for geographical area.
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3 Statistical model

Our statistical model is closely related to the extended sample selection model presented in Sec-

tion 2.4 of DNV and further extended in Klein et al. (2010). Both models involve multiple selection

mechanisms and allow for endogeneity, with the relationship between the endogenous variables

specified as a triangular simultaneous equation system. The main difference between our model

and the one in DNV is the nature of the sample selection mechanism. In DNV, all selection indica-

tors are observed. In our case, individuals selected for interview first decide whether to participate

to the survey and then, given participation, they decide whether to answer the questions on in-

come and food expenditure. Thus, item nonresponse can only be observed for those who are unit

respondents. Another difference is that, to avoid curse of dimensionality problems, we restrict the

way endogenous variables enter the model by making index function assumptions and by imposing

a partially linear structure on the food Engel curve.

3.1 Model specification

We assume that our data are a random sample from a model with four latent endogenous variables

representing, respectively, the willingness to participate to the survey (Y ∗
1 ), the willingness to

answer the questions on income and food expenditure (Y ∗
2 ), the logarithm of household income

(Y ∗
3 ), and the food share (Y ∗

4 ). The first three latent variables obey linear models of the form

Y ∗
j = β⊤j Xj + Uj , j = 1, 2, 3,

where βj is a vector of kj unknown parameters, Xj is a vector of exogenous variables and Uj is a

random error. The fourth latent variable obeys instead the partially linear model

Y ∗
4 = β⊤4 X4 + g(Y ∗

3 ) + U4, (1)

where β4 is a vector of k4 unknown parameters, X4 is a vector of exogenous variables, g is an

unknown smooth function and U4 is a random error.

Equation (1) allows for flexible income effects and includes as special cases well-known para-

metric specifications of the Engel curve. For example, when the function g is linear we obtain the

specification adopted in the AIDS, when g is quadratic the specification adopted in the QUAIDS.

Equation (1) could be further generalized to allow for more flexible household composition effects

while retaining consistency with the integrability conditions of consumer theory. An example is

the extended partially linear model of Blundell et al. (2003, 2007), where an index of the socio-

demographic variables in X4 enters the unknown function g.
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The observed endogenous variables are related to the latent endogenous variables through dif-

ferent observational rules. The observed indicator of unit response, Y1, is equal to one for those

with a positive willingness to participate to the survey, and is equal to zero otherwise. Similarly,

the observed indicator of item response on food share, Y2, is equal to one for those with a positive

willingness to answer the questions on income and food expenditure, and is equal to zero otherwise,

but is only available for those with a positive willingness to participate to the survey, namely those

with Y1 = 1. Finally, one observes household income Y3 and food share Y4 only for those who are

willing to participate to the survey and to answer the questions on income and food expenditure,

that is, Y3 = Y ∗
3 and Y4 = Y ∗

4 whenever Y1Y2 = 1. Selectivity and endogeneity operate through the

correlations between the unobservable errors. In particular, for the Engel curve (1), selectivity due

to unit and item nonresponse is captured by the correlation of U4 with U1 or U2, while endogeneity

is captured by the correlation of U4 with U3.

Our aim is to obtain consistent estimates of the parameters in the Engel curve (1) from the

subsample of complete cases, namely those for which Y1Y2 = 1. Because of the potential correlation

between the unobservables in the model, we have5

E(Y3 |Y1 Y2 = 1) = µ3 + h(µ1, µ2), (2)

E(Y4 |Y1 Y2 = 1, Y3) = µ4 + g(Y3) + l(µ1, µ2, U3), (3)

where µj = β⊤j Xj , j = 1, 2, 3, 4, and

h(µ1, µ2) = E(U3 |U1 > −µ1, U2 > −µ2),

l(µ1, µ2, U3) = E(U4 |U1 > −µ1, U2 > −µ2, U3).

The functions h and l are bias-correction terms that account, respectively, for sample selection

in the equation for household income, and sample selection and endogeneity in the Engel curve

relationship. Ignoring these terms would lead to inconsistent estimates of the parameters of interest.

Our approach to estimation is a simple generalization of the classical Heckman’s two-step procedure

(Heckman 1979) and uses estimates of h and l as control functions to correct for both sample

selection and endogeneity.

Although assumptions on the distribution of the error terms are not the main concern when

estimating ordinary regression models, they play a crucial role when estimating models with sam-

ple selection. Semiparametric approaches avoid imposing distributional assumptions by leaving the

5 Throughout this section, conditioning on the set of exogenous covariates is kept implicit to simply notation.
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functions h and l unspecified. The two functions are treated as infinite dimensional nuisance pa-

rameters and are estimated together with the other parameters of interest. Parametric approaches

instead assume that h and l are known up to a finite-dimensional parameter vector. Although

analytically tedious to derive, the parametric approach provides a useful benchmark for our semi-

parametric estimators. It also helps in the development of semiparametric specifications which nest

the parametric ones and allow easy ways of testing the underlying distributional assumptions.

Our parametric specification assumes that the error vector U = (U1, U2, U3, U4) follows a mul-

tivariate Gaussian distribution with zero mean and nondiagonal covariance matrix. Under this

assumption, Poirier (1980) showed that

h(µ1, µ2) = σ3 ρ13 h1(µ1, µ2) + σ3 ρ23 h2(µ1, µ2), (4)

where σ3 is the standard deviation of U3, ρjk is the correlation coefficient between Uj and Uk, and

hj(µ1, µ2) =

[
ϕ(µj)

Φ2(µ1, µ2; ρ12)

]
Φ

(
µk − ρ12 µj√

1− ρ212

)
, j = 1, 2, k ̸= j,

with ϕ(·) and Φ(·) denoting the density and the distribution function of the N (0, 1) distribution,

and Φ2(·, ·; ρ) denoting the distribution function of the bivariate Gaussian distribution with zero

mean, unit variances and correlation coefficient ρ. Notice that hj(µ1, µ2) reduces to the usual

inverse Mill’s ratio when ρ12 = 0. The form of the function l is slightly more complicated because

of the correlation ρ34 between U3 and U4. One can show that6

l(µ1, µ2, U3) = σ4 | 3 ρ14 | 3 l1(µ1, µ2, U3) + σ4 | 3 ρ24 | 3 l2(µ1, µ2, U3) +
σ4
σ3
ρ34 U3, (5)

where σj | k is the standard deviation of the conditional distribution of Uj given Uk, ρjk | s is the

conditional correlation of Uj and Uk given Us, and lj has the same form as hj with ρ12 replaced by

ρ12 | 3 and µj by µ∗j = (µj + ρj3 U3/σ3)/σ3|j .

3.2 Identification

The sequential structure of the model facilitates its identification. It is sufficient that, at each stage,

there exists at least one variable that does not affect the outcomes at later stages.

The index µ1 is always identified up to location and scale, provided the conditions in Manski

(1988) are satisfied. Identification of µ2 in the item response equation requires that X1 contains at

least one variable that is not contained in X2 (Lee 1995). The same set of exclusion restrictions is

6 The proof is available from the authors on request.
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needed for parametric identification of the model (Meng and Schmidt 1985). As long as µ1 and µ2

are identified from the two selection equations, they can be used to identify µ3 in the equation for

household income. The unrestricted form of the bias-correction term h requires that X1 and X2

each contains at least one variable then is not contained in X3. As shown by DNV, this condition

is sufficient to identify µ3 up to an additive constant. This set of exclusion restrictions is not

necessary for parametric identification of the model, as µ3 could in principle be identified through

the nonlinearity of h1 and h2 in (4). Because these terms may be linear over a wide range of their

arguments, this way of achieving identification is not very appealing. So, exclusion restrictions are

also crucial in the parametric case. Finally, given µ1, µ2 and µ3, we can identify µ4 and the function

g in the Engel curve up to an additive constant. The unrestricted form of the bias-correction term

l further requires that X1, X2 and X3 each contains at least one variable that is excluded from X4.

Our set of exclusion restrictions guarantees identification of all the model parameters except

the intercepts. Those in the two selection equations can be absorbed into the unknown distribution

functions of the error terms and are not separately identified. This means that some location

restriction is needed on either the distributions of U1 and U2, or on the systematic part of the two

selection equations. The first alternative is complicated when the errors are correlated, so we follow

Melenberg and van Soest (1996) and set the intercepts in β1 and β2 to their parametric estimates.

Under certain conditions, the intercepts in β3 and β4 can be identified through the concept of

identification at infinity (Heckman 1990) and estimated through generalizations of the approach

developed by Andrews and Schafgans (1998). In our empirical application, we avoid the problem

by focusing on the weighted average derivative of the function g. This is an important parameter

to consider because it provides a measure of the average slope of the Engel curve.

3.3 Predictors and exclusion restrictions

A unique feature of SHARE is the detailed information it offers on the sampling frame, the survey

agencies, and the fieldwork. By matching these three sources, the variables available to predict

unit nonresponse include background characteristics of the household members selected for inter-

view (years of age and gender), interviewers’ characteristics (years of age, gender and years of

education), and characteristics of the fieldwork. For households approached by more than one

interviewer, we always use the information on the first interviewer. This helps avoid problems of

endogeneity of interviewer-level variables that may arise because of the widespread fieldwork strat-

egy of switching to more experienced interviewers when there are difficulties in reaching contact
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and gaining respondents’ cooperation.

For responding households, we can relate item nonresponse to socio-demographic characteris-

tics and measures of cognitive ability of the respondents, features of the data collection process

and characteristics of the interviewers. Our set of socio-demographic characteristics includes age,

gender, years of education and marital status of the household respondent, age of the partner,

household size, number of children aged less than 18 years, and an indicator for living in small

cities. Cognitive abilities of the household respondent are measured by the scores obtained in

the mathematical, orientation in time, recall, and fluency tests carried out during the SHARE

interview. We also include measures of the burden of the interview, namely indicators for proxy

interviews, interviews conducted outside home, and cases where the household respondent often

asked for clarifications. Identifiability of the parameters in the equation for item nonresponse is

achieved by assuming that the fieldwork variables (the dummies for the vignette sample and the

Swedish supplementary sample, the measure of delay in the contact process, and the dummy for

the presence of an answering machine) help explain household survey participation but not item

nonresponse on food share.

The right-hand side variables in the reduced form equation for household income consist only of

socio-demographic characteristics and measures of cognitive ability of the respondents. As suggested

by Fitzgerald et al. (1998) and Nicoletti and Peracchi (2005), interviewers’ characteristics and

features of the fieldwork and the interview process provide the required set of exclusion restrictions.

Since these variables are external to the individuals under investigation and are not under their

control, one may expect them to be irrelevant for household income and food share. On the other

hand, results from several validation studies suggest that these variables are important predictors

of both unit and item nonresponse.

Finally, the right-hand side variables in the Engel curve equation consist only of log household

income and socio-demographic characteristics. In this case, identification is attained by excluding

the measures of cognitive ability of the household respondent. This corresponds to the reasonable

assumption that, after controlling for education of the household respondent, his/her cognitive

abilities help predict household income but do not help predict the food share.

Given the high level of comparability of the SHARE data, we pool data from the various

countries but include country dummies interacted with NUTS1 regional indicators to capture un-

observed heterogeneity at the country and regional level. Pooling the data allows us to increase

efficiency of estimation and helps reduce problems of collinearity due to the limited within-country
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variability of variables such as the characteristics of the fieldwork and the interviewers. Definitions

and summary statistics of all relevant variables are presented in Table 3. After dropping a few

cases with missing data on the covariates, our estimation sample consists of 15,643 households, of

which 8,565 (55 percent) agreed to participate to the survey and 2,777 (18 percent) provided the

information needed to compute the food share.

3.4 Estimation

Estimation is carried out in three steps. In the first step, we estimate the parameters of the

unit and the item nonresponse equations using the semi-nonparametric (SNP) approach proposed

by Gallant and Nychka (1987).7 The resulting estimator generalizes the conventional maximum

likelihood (ML) estimator for the bivariate probit model with sample selection by relaxing the

assumption that U1 and U2 are jointly Gaussian.

In the second step, we estimate equation (2) for household income accounting for sample selec-

tion due to unit and item nonresponse. In the Gaussian case, this step coincides with the second

step of the procedure developed by Poirier (1980) and Ham (1982), with the bias-correction term h

specified as in (4). In the semiparametric case, h is instead approximated by a power series estima-

tor. Following DNV, we use series estimators because of their relative simplicity and computational

advantage, although kernel regression methods could alternatively be used (Robinson 1988).

Finally, in the third step, we estimate the conditional mean (3) accounting for both sample

selection due to nonresponse and endogeneity of household income. In this case, the parametric

approach leads to a simple OLS regression based on a known functional form for g and the spec-

ification (5) for l. Our semiparametric approach instead uses series estimators for both g and l.

In addition to the fully parametric and semiparametric approaches, we also consider intermediate

approaches in which only one of the two functions is estimated nonparametrically. More details on

our three-step procedure are provided in Appendix A.

4 Empirical results

We present the results separately for each of the three steps of our estimation procedure.

7 An alternative approach is the semiparametric maximum likelihood (SML) estimator of Lee (1995). This
estimator is more computational demanding than the SNP estimator since kernel regression must be conducted at
each step of the likelihood maximization process. Furthermore, the Monte Carlo evidence in De Luca (2008) suggests
that the SNP estimator has better finite sample performance.
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4.1 First step

Tables 4 and 5 show the estimates of the parameters in the unit and item nonresponse equations.

The two equations are estimated jointly by ML probit and by our SNP estimator. For the latter, we

considered four alternative specifications obtained by varying the degree K of the Hermite polyno-

mial expansion (7) in the Appendix. For brevity, we present the results for the most parsimonious

specification with K = (3, 3), which is the one selected by BIC. Later in Section 4.4 we discuss the

sensitivity of our three-step estimator to the choice of K.

The estimated coefficients from the probit and the SNP estimators are not directly comparable,

because in the former the variances of U1 and U2 are normalized to one, while in the latter they

are unconstrained functions of the Hermite polynomial parameters in γ. So we compare ratios

of the estimated coefficients, dividing the coefficients in the equation for unit nonresponse by the

coefficient on the variable that measures delay in the contact process, and the coefficients in the

equation for item nonresponse by the coefficient on the dummy for being single. The standard

errors of these ratios are computed through the delta method.

Other things being equal, we find that the probability of survey participation falls with the age

of the sampled household member and is significantly lower for households without an answering

machine and for those belonging to the Swedish supplementary sample. Interviewers’ character-

istics are important predictors of survey participation. Being approached by a female interviewer

significantly increases the probability of participation. We also find that participation is associated

positively with the interviewer’s age and negatively with the interviewer’s years of education. The

estimated coefficients on the country dummies and their interactions with the regional indicators

further suggest an important role for unobservable regional differences in sample composition and

fieldwork strategy. The assumption that the error in the unit nonresponse equation is Gaussian

is rejected at the 1 percent level by a likelihood ratio test which compares univariate versions of

the SNP and probit models, as in Gabler et al. (1993). According to our preferred SNP specifi-

cation, the estimated error density exhibits significantly lower kurtosis than the standard normal

distribution.

For item nonresponse on food share, we find significantly lower response probabilities for house-

holds living in small cities or with a female household respondent. Response probabilities are also

negatively associated with the age of the household respondent and with the household size, and

positively associated with the scores on the cognitive ability tests and the age of the partner. As for

the characteristics of the interviewer and the interview process, we find that response probabilities
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are positively associated with the age of the interviewer and are higher for interviews with a proxy

respondent. After controlling for our large set of covariates, we still find that unobserved hetero-

geneity at the regional level plays an important role. The assumption that the error in the item

nonresponse equation is Gaussian is rejected at the 5 percent level for the specification with K2 = 4,

but not for the more parsimonious specification with K2 = 3. In our preferred SNP specification,

the estimated error density is characterized by significantly positive skewness.

The estimate of the correlation coefficient ρ12 between U1 and U2 is always negative and signifi-

cantly different from zero. This is likely to reflect the effect of the missing spouse problem discussed

in Section 2. However, point estimates are subject to sizable differences across specifications, rang-

ing between -0.86 in the probit specification and -0.36 in our preferred SNP specification. These

differences suggest that departures from Gaussianity push the estimated correlation coefficient to-

ward the lower bound of its parameter space. This feature of the ML probit estimator becomes

a real problem when estimating the model separately by country. On the other hand, the SNP

estimates of ρ12 are always reasonably far from their lower bound.

4.2 Second step

Table 6 compares four alternative approaches to estimating the reduced-form equation for house-

hold income. The first two approaches correspond to the widespread practice of treating the missing

data mechanism as MCAR or MAR. The column labeled Model 1 presents the results for a linear

model estimated by OLS using only the complete cases. This model simply ignores unit and item

nonresponse by implicitly assuming that the underlying missing data mechanism is MCAR. The

column labeled Model 2 presents weighted OLS estimates of a linear regression model estimated

on the completed data (complete cases plus imputations). In this case, the underlying missing

data mechanism is assumed to be MAR after conditioning on the auxiliary variables employed in

constructing the weights and the imputations. The columns labeled Model 3 and 4 present the

estimates for two alternative specifications where the missing data mechanism is allowed to be

NMAR. The two specifications differ in the assumptions about the distribution of the unobserv-

ables. Model 3 corresponds to the parametric specification that uses the first-step estimates of

the bivariate probit model with sample selection and the Gaussian bias-correction terms in (4).

Model 4 corresponds instead to the semiparametric specification that uses the first-step estimates

of the SNP model with K = (3, 3) and the power series expansion (8) in the Appendix (with

R = 1) to approximate the unknown function h. We explored all the semiparametric specifications
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that can be obtained by combining powers and interactions of the leading terms h1 and h2 up to

third-order. Using leave-one-out cross-validation as model selection criterion, our preferred specifi-

cation includes only the leading terms h1 and h2. Accordingly, we cannot reject Gaussianity of the

conditional distribution of U3 given U1 and U2.

Other things being equal, we find that household income falls with the age of the household

respondents and his/her spouse, and is significantly lower if the household respondent is single. We

also find that household income is positively associated with the size of the household and with

the education and the cognitive abilities of the household respondent. As for country and regional

differences, we find significantly lower income levels for Spain and the southern Italian regions.

In the Gaussian specification of our sample selection model, the selectivity effects of unit and

item nonresponse are both significantly different from zero and have opposite sign (positive for

unit nonresponse and negative for item nonresponse). A Wald test on the joint significance of the

two bias-correction terms rejects the null at the 5 percent level. In our preferred semiparametric

specification, the selectivity effects of unit and item nonresponse are somewhat weaker, and only

the term corresponding to item nonresponse is statistically significant.

4.3 Third step

Table 7 compares four alternative approaches to estimating the relationship of primary interest,

namely the food Engel curve (3). The first two approaches correspond to the widespread practice

of ignoring endogeneity of household income and treating the missing data mechanism as MCAR

or MAR. The column labeled Model 1 presents the results for a partially linear model estimated

using only the complete cases under the assumption that the missing data mechanism is MCAR.

The column labeled Model 2 presents the results for a partially linear model estimated using the

completed data and the survey weights under the assumption that the missing data mechanism

is MAR. In both cases, the unknown function g is estimated by a power series estimator with

leave-one-out cross-validation as model selection criterion.

The columns labeled Model 3 and 4 account for endogeneity of household income and allow the

missing data mechanism to be NMAR, but differ in the assumptions about the distribution of the

unobservables. Model 3 assumes a multivariate Gaussian distribution for the latent errors and uses

a power series estimator for g. Model 4 uses instead the first-step estimates of the SNP model with

K = (3, 3), the semiparametric second-step estimates of the reduced form residuals, and power

series estimates for both g and l. All power series estimators employ polynomial expansions up
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to fourth-order and leave-one-out cross-validation as model selection procedure. In Model 4, the

additivity restriction on g and l is imposed by excluding interaction terms between log household

income Y3 and each of the leading terms l1, l2 and U3.

Several features of the estimated models are worth noticing. First, for all of them, leave-one-

out cross-validation leads to the choice of a cubic approximation to the function g, thus rejecting

traditional specifications of the food Engel curve, such as the linear and the quadratic adopted by

AIDS and QUAIDS. Second, our parametric estimates show little evidence of selectivity or endo-

geneity, as none of the coefficients on the Gaussian bias-correction terms is statistically significant.

Third, our semiparametric estimates show instead evidence of selectivity and endogeneity, as the

higher-order terms are statistically significant. Thus, we also reject Gaussianity of the conditional

distribution of U4 given U1, U2 and U3.

Since interpretation of the polynomial coefficients is difficult, we investigate the implications of

the various models for the shape and the average slope of the food Engel curve. Figure 1 plots the

estimates of the Engel curve derivatives together with the 95 percent symmetric confidence bands

for each model. Although the estimated derivatives are always negative, as predicted by Engel Law,

their level and profile differ across models. In Model 1, the estimated Engel curve derivatives have

a concave profile and the estimated weighted average derivative (WAD) is −0.16 with a bootstrap

standard error of 0.005. Using instead the household weights and the imputations provided by

SHARE (Model 2), the profile of the estimated Engel curve derivatives is now steeper and convex,

and the estimated WAD is lower (−0.20 with a bootstrap standard error of 0.003). The estimated

WAD of a similar model which uses the completed data but not the survey weights is −0.18 with

a bootstrap standard error of 0.002. This suggests that imputations and survey weights both play

some role for the nonresponse adjustments from Model 2. The fact that the standard errors for the

estimates from Model 2 are low is due partly to the much larger sample size, as missing values are

replaced by imputations, and partly to the fact that we ignore the additional uncertainty caused by

imputation. The parametric estimates from Model 3 lead to a profile of the Engel curve derivatives

which is not statistically different from that obtained from Model 1. In this case, the estimated

WAD is -0.14 with a bootstrap standard error of 0.044. After relaxing the Gaussianity assumption,

we find instead a much flatter profile of the Engel curve derivatives. Notice that the estimates from

Model 1 and 2 are downward biased because of endogeneity of household income. A semiparametric

instrumenatl variable (IV) correction of Model 1 gives indeed an estimated WAD of -0.09 with a

bootstrap standard error of 0.034. After correcting for both endogeneity of household income
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and selectivity of unit and item nonresponse, the estimated WAD from Model 4 is instead −0.11

with a bootstrap standard error of 0.036. Thus, our semiparametric corrections for endogeneity

and nonresponse have opposite sign and they partly offset each other. The estimates our sample

selection models are then closer to the estimates of Model 1 which completely ignores endogeneity

and nonresponse than to the estimates of Model 2 which ignores endogeneity and uses survey

weights and imputations to correct for nonresponse.

4.4 Sensitivity analysis

We now investigate the sensitivity of our estimates to three issues: the choice of the order of the

polynomial expansions in the various steps of the estimation procedure, the implications of using

a less conservative definition of item nonresponse on income, and the importance of accounting for

unobserved country heterogeneity.

As for the first issue, Donald and Newey (1994) suggest that some undersmoothing may help

reduce the bias of power series estimators. Thus, Figure 2 looks at the effects of undersmoothing

by comparing the Engel curve derivatives from the specifications selected by leave-one-out cross-

validation with those from less parsimonious specifications based on a fourth-order polynomial

expansion of g. For Model 4 only, we also use K = (4, 4) for the SNP estimator of the two selection

equations, R = 2 for the power series estimator of h, and S = 3 for the power series estimator of

l. Overall, undersmoothing produces profiles of the Engel curve derivatives that are very similar

to those from the specifications selected by leave-one-out cross-validation. The main differences

occur for Model 4 where, at high level of income, undersmoothing leads to a steeper profile, thus

providing stronger support for the selectivity and endogeneity effects discussed above. However,

undersmoothing also lead to larger standard errors. Thus, at these income levels, Engel curve

derivatives are not accurately estimated.

As for the second issue, household income is a generated variable obtained by aggregating var-

ious income components collected at the individual and the household level. So far, this variable

has been regarded as missing if any of its components was missing. This is a very conservative

definition of item nonresponse. Income from capital assets is heavily affected by item nonresponse

(with item nonresponse rates ranging from 46 percent for dividend from stocks or shares, to 60 per-

cent for interests from bank accounts) but, after imputation, income from capital assets represents

a relatively unimportant fraction of household income (only 2 percent). Adopting a less conserva-

tive definition, which ignores missing values on this income source, the item nonresponse rate on
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income decreases from 64 to 45 percent and the number of complete cases increases from 2,805 to

4,180. The right hand-side panel of Figure 3 shows that, with this less conservative definition, our

semiparametric estimator leads to a linear profile of the Engel curve derivatives or, equivalently, to

a quadratic specification of the food Engel curve. As before, evidence of selectivity and endogeneity

effects is only found with the semiparametric specification of the model.

As for the third issue, Figure 4 provides some evidence on the importance of accounting for

unobserved country heterogeneity by comparing pooled and country-specific estimates of the Engel

curve derivatives. The latter have been obtained by estimating each model separately by country.

We omit the fully parametric model (Model 3) because of convergence problems with the ML

estimator employed in the first-step. The profiles of the food Engel curves derivatives differ both

across countries and estimation methods. In particular, our semiparametric approach produces

more evidence of linearity than the standard approach (Models 1 and 2). Table 8 presents the

estimated WAD and their bootstrap standard errors by model and country. Estimates are always

negative but not very precise at the country level because of sample size problems. Interestingly,

for all estimated models, the average slope of the Engel curve is steepest in Mediterranean countries

(Italy and Spain).

5 Conclusions

In this paper we consider estimating Engel curves with data from the first wave of a panel survey

affected by problems of unit and item nonresponse. Because the first wave of a panel is essentially

a pure cross-section, the results that we obtain are valid more generally for cross-sectional data.

Our approach differs from traditional adjustment methods in many respects. First, we simulta-

neously address issues of selectivity due to nonresponse and issues of endogeneity in the structural

relationship of interest, namely the Engel curve for food. Second, we treat the underlying missing

data mechanism as NMAR. Third, we jointly model the two types of nonresponse. Fourth, we allow

unit and item nonresponse to be correlated. Since assumptions about the distribution of the un-

observables play a key rule when estimating sample selection models, we consider both parametric

and semiparametric specifications of our model.

Our empirical results reject the assumption that nonresponse is MAR and therefore question

the validity of traditional adjustment methods that rely on that assumption. We provide strong

evidence of endogeneity of household income and of country heterogeneity in the shape of the food

Engel curve. Our results also confirm the importance of avoiding strong parametric assumptions
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when estimating models with sample selection. Last, but not least, we illustrate the usefulness

of supplementing survey data with information about fieldwork operations and interviewer char-

acteristics. In our approach, this information provides the exclusion restrictions through which

we identify a sample selection model with NMAR missing data mechanisms for unit and item

nonresponse.

This information could also be useful in other contexts. An example is identification and esti-

mation of treatment effects in observational or experimental studies with nonignorable nonresponse

among the treatment and the control units. In this case, nonresponse may be viewed as a post-

treatment complication that requires the availability of some instruments which, by definition, must

be related to the missing data process but unrelated to the outcome of interest. If the instruments

are interpreted as additional treatment variables, then they are also required to be randomized

conditional on a vector of exogenous variables (Mealli and Pacini 2008). This assumption is not

easily satisfied if the candidate instruments consist of characteristics of the units that may be cor-

related with either the outcome of interest or the missingness indicator. Unlike other instruments,

fieldwork operations and interviewer characteristics have the advantage that they can be controlled

by the survey designer and so can easily be randomized. Another argument in favor of these instru-

ments is the possibility of imposing credible monotonicity restrictions on the missing data process

to achieve either partial or point identification of the causal effect of interest.
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H, Mackenbach J, Siegrist J, Weber G (eds). MEA: Mannheim.

Buuren VS, Brand JPL, Groothuis-Oudshoorn CGM, Rubin DB. 2006. Fully conditional specification in
multivariate imputation. Journal of statistical Computation and Simulation 76: 1049–1064. DOI:
10.1080/10629360600810434.

Coppejans M, Gallant AR. 2002. Cross-validated SNP density estimates. Journal of Econometrics 110:
27–65. DOI: 10.1016/S0304-4076(02)00121-5.

Das M, Newey WK, Vella F. 2003. Nonparametric estimation of sample selection models. Review of
Economic Studies 70: 33–58.

De Luca G. 2008. SNP and SML estimation of univariate and bivariate binary choice models. Stata Journal
8: 190–220.

Deaton AS, Muellbauer J. 1980. An almost ideal demand system. American Economic Review 70: 312–336.

Deville JC, Särndal CE. 1992. Calibration estimators in survey sampling. Journal of the American Statis-
tical Association 87: 376–382.

Donald SG, Newey WK. 1994. Series estimation of semilinear models. Journal of Multivariate Analysis
50: 30–40. DOI: 10.1006/jmva.1994.1032.

Engel E. 1857. Die produktions und konsumptionsverhältnisse des Königreichs Sachsen. Zeitschrift des
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Table 1: Summary statistics on household survey participation by country and sample type.

Sample Response Noncontact Refusal
Country type Eligible Interviewed rate rate rate
DK Main 1748 1174 .67 .05 .28
ES Main 2620 1339 .51 .19 .30

Vignette 683 414 .61 .13 .26
IT Main 2502 1376 .55 .10 .35

Vignette 677 374 .55 .12 .33
NL Main 2517 1563 .62 .09 .29

Vignette 657 391 .60 .10 .31
SE Main 3951 1850 .47 .14 .39

Vignette 540 269 .50 .11 .40
All Main 13338 7302 .55 .12 .33

Vignette 2557 1448 .57 .11 .32
Total 15895 8750 .55 .12 .33

Table 2: Unweighted item response rates by country and sample type.

Sample Respondents Item response rate
Country type Eligible Food Income Share Food Income Share
DK Main 1174 934 565 506 .80 .48 .43
ES Main 1339 927 382 309 .69 .29 .23

Vignette 414 290 121 95 .70 .29 .23
IT Main 1376 1107 526 449 .80 .38 .33

Vignette 374 298 139 119 .80 .37 .32
NL Main 1563 1318 512 467 .84 .33 .30

Vignette 391 329 115 106 .84 .29 .27
SE Main 1850 1694 690 652 .92 .37 .35

Vignette 269 261 102 102 .97 .38 .38
All Main 7302 5980 2675 2383 .82 .37 .33

Vignette 1448 1178 477 422 .81 .33 .29
Total 8750 7158 3152 2805 .82 .36 .32
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Table 3: Definitions and summary statistics for the main variables (SHM is the abbreviation for
sampled household member, HR for household respondent, IV for interviewer).

Variable Description Symbol Obs. Mean Std.
particip Dummy for household survey participation Y1 15895 .55 .50
item resp Dummy for item response on food share Y2 8750 .32 .47
ln income PPP-adj. household income Y3 3152 10.08 .78
food share Food share Y4 2805 .23 .20
age SHM Age of SHM X1 15895 65.18 10.73
female SHM Dummy for female SHM X1 15895 .55 .50
vignette Dummy for vignette sample X1 15895 .16 .37
supplement Dummy for Swedish supplementary sample X1 15895 .06 .23
ans. machine Dummy for presence of answering machine X1 15895 .02 .15
delay Measure of delay in the contact process X1 15895 .46 .32
female IV Dummy for female IV X1, X2 15894 .74 .44
age IV Age of IV X1, X2 15894 49.26 11.81
educ IV IV years of education X1, X2 15828 13.45 2.86
DK Dummy for Denmark X1, X2, X3, X4 15895 .11 .31
ES Dummy for Spain X1, X2, X3, X4 15895 .21 .41
ES nuts1 Dummy for Spain-Region 1 X1, X2, X3, X4 15895 .02 .13
ES nuts2 Dummy for Spain-Region 2 X1, X2, X3, X4 15895 .02 .14
ES nuts3 Dummy for Spain-Region 3 X1, X2, X3, X4 15895 .03 .17
ES nuts4 Dummy for Spain-Region 4 X1, X2, X3, X4 15895 .03 .16
ES nuts6 Dummy for Spain-Region 6 X1, X2, X3, X4 15895 .05 .21
ES nuts7 Dummy for Spain-Region 7 X1, X2, X3, X4 15895 .01 .11
IT Dummy for Italy X1, X2, X3, X4 15895 .20 .40
IT nuts2 Dummy for Italy-Region 2 X1, X2, X3, X4 15895 .04 .20
IT nuts3 Dummy for Italy-Region 3 X1, X2, X3, X4 15895 .04 .20
IT nuts4 Dummy for Italy-Region 4 X1, X2, X3, X4 15895 .04 .20
IT nuts5 Dummy for Italy-Region 5 X1, X2, X3, X4 15895 .02 .14
NL Dummy for Netherlands X1, X2, X3, X4 15895 .20 .40
NL nuts1 Dummy for Netherlands-Region 1 X1, X2, X3, X4 15895 .03 .17
NL nuts2 Dummy for Netherlands-Region 2 X1, X2, X3, X4 15895 .03 .17
NL nuts4 Dummy for Netherlands-Region 4 X1, X2, X3, X4 15895 .04 .20
proxy Dummy for proxy interview X2 8750 .11 .31
clarif Dummy for often asked clarifications X2 8750 .08 .28
outside Dummy for interview outside home X2 8750 .04 .20
orient HR score on orientation in time (1-5) X2, X3 8703 3.76 .67
math HR score on math (1-5) X2, X3 8690 3.21 1.18
recall HR score on delayed recall (0-10) X2, X3 8642 3.23 2.04
fluency HR score on fluency (0-88) X2, X3 8604 18.40 7.42
age Age of HR X2, X3, X4 8750 64.90 10.49
female Dummy for female HR X2, X3, X4 8750 .55 .50
education HR years of education X2, X3, X4 8728 9.14 4.53
single Dummy for HR living as single X2, X3, X4 8740 .32 .47
age spouse Age of spouse/partner X2, X3, X4 8740 63.17 8.26
hsize Household size X2, X3, X4 8750 2.16 1.05
children Number of children X2, X3, X4 8743 .09 .37
small city Dummy for household living in small city X2, X3, X4 8750 .21 .41
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Table 4: First-step estimates of the unit response equation. The models are estimated jointly with
those presented in Tables 5 (* denotes a p-value 5% and 1%, ** denotes a p-value below 1%).
Results are based on the normalization |βdelay | = 1. Standard errors of normalized coefficient are
computed through the delta method. T1 is the likelihood ratio statistic for testing Gaussianity and
has 1 df. Sample size n1 = 15, 643.

Bivariate Bivariate
Variable Probit SNP
female SHM -.001 .011
age SHM -.009 ** -.009 **
female IV .085 .300 **
age IV .013 ** .010 **
educ IV -.044 ** -.041 **
vignette .090 .038
supplement -.374 ** -.320 **
ans. machine .227 .226 *
DK 1.129 ** 1.247 **
ES -.020 .003
ES nuts1 .578 * .450 *
ES nuts2 1.080 ** 1.073 **
ES nuts3 -.460 * -.711 *
ES nuts4 1.039 ** 1.164 **
ES nuts6 .984 ** 1.123 **
ES nuts7 .043 .011
IT -.064 .018
IT nuts2 .387 * .400 **
IT nuts3 .723 ** .575 **
IT nuts4 .928 ** .947 **
IT nuts5 .473 * .447 *
NL .372 ** .473 **
NL nuts1 .333 * .455
NL nuts2 .555 ** .643 **
NL nuts4 .590 ** .845 **
T1 18.08 **
Skewness 0.16
Kurtosis 1.78 **
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Table 5: First-step estimates of the equation for item response to food share. The models
are estimated jointly with those presented in Table 4. Results are based on the normalization
|βsingle | = 1. Standard errors of normalized coefficient are computed through the delta method.
T2 is the likelihood ratio statistics for testing Gaussianity and has 1 df. Sample size n2 = 8, 565.

Bivariate Bivariate
Variable Probit SNP
female -.524 ** -.490 **
age -.012 -.014 **
age spouse .030 ** .027 **
hsize -.149 ** -.149 *
children .050 .057
small city -.584 ** -.648 **
education -.022 * -.024 *
orient .207 ** .238 **
math .007 .008
recall .057 * .036
fluency .005 .007
female IV -.002 .009
age IV .002 .009 *
educ IV .016 .003
proxy .259 * .305 *
clarif -.181 -.173
outside -.430 * -.340
DK -.561 .064
ES .194 .375
ES nuts1 -.810 -.494
ES nuts2 -3.133 ** -2.717 **
ES nuts3 -1.117 * -.427
ES nuts4 -2.693 ** -2.276 **
ES nuts6 -1.832 ** -1.481 **
ES nuts7 -.333 -.485
IT -.821 ** -.956 **
IT nuts2 .568 1.045 **
IT nuts3 .048 .712 *
IT nuts4 1.160 * 1.776 **
IT nuts5 1.063 * 1.522 **
NL -1.042 ** -.758 **
NL nuts1 .350 .577 *
NL nuts2 -.214 .085
NL nuts4 -.072 .085
T2 3.38
Skewness 0.68 **
Kurtosis 2.44
ρ12 -0.86 ** -0.36 *
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Table 6: Estimates of the reduced form equation for log household income. Standard errors are
computed by 1,000 nonparametric bootstrap replications.

Variable Model 1 Model 2 Model 3 Model 4
female -.019 .052 * .128 * .084
age -.008 ** -.005 ** -.005 ** -.006 **
single -.473 ** -.521 ** -.698 ** -.626 **
age spouse -.007 ** .009 ** -.014 ** -.012 **
hsize .073 ** .148 ** .120 ** .108 **
children -.027 -.072 * -.056 -.054
small city -.064 * -.011 .128 * .095
education .039 ** .044 ** .044 ** .042 **
orient -.023 -.021 -.072 * -.062 *
math .059 ** .040 ** .056 ** .056 **
recall .005 -.004 -.006 .002
fluency .007 ** .005 ** .005 * .005 *
DK -.132 ** -.087 ** .002 -.099
ES -.365 ** -.264 ** -.406 ** -.421 **
ES nuts1 -.029 -.113 .176 .086
ES nuts2 .115 .055 .922 ** .674 *
ES nuts3 -.052 .119 .567 .293
ES nuts4 -.125 -.156 * .654 * .438
ES nuts6 -.104 -.015 .400 * .258
ES nuts7 -.116 -.220 * .036 .042
IT -.161 * -.153 ** .106 .063
IT nuts2 -.072 -.119 * -.282 * -.295 *
IT nuts3 .021 .059 -.068 -.147
IT nuts4 -.228 ** -.252 ** -.616 ** -.591 **
IT nuts5 -.174 -.208 ** -.568 ** -.537 **
NL -.059 .055 .211 * .100
NL nuts1 -.019 -.117 * -.120 -.113
NL nuts2 .002 -.122 * .006 -.036
NL nuts4 .036 -.025 .024 .035
h1 .766 * .194
h2 -1.099 ** -.494 *
constant .359 ** .420 ** .351 ** .520 **
n3 2,777 8,565 2,618 2,618
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Table 7: Estimates of the Engel curve for food share. WAD is the estimated weighted average
derivative. Standard errors are computed by 1,000 nonparametric bootstrap replications.

Variable Model 1 Model 2 Model 3 Model 4
ln income -.123 ** -.208 ** -.106 ** -.081 *
(ln income)2 .040 ** .046 ** .042 ** .044 **
(ln income)3 -.015 ** .004 -.018 ** -.013 *
female -.009 * -.011 * .001 -.004
age -.001 ** -.001 ** -.001 -.000
single -.031 ** -.048 ** -.050 * -.021
age spouse -.000 .000 -.000 .000
hsize .038 ** .042 ** .038 ** .033 **
children -.012 -.009 -.010 -.008
small city -.019 ** -.018 ** -.003 -.012
education .002 ** .004 ** .002 .000
DK -.021 ** -.023 ** .005 -.029
ES .212 ** .166 ** .218 ** .233 **
IT .172 ** .126 ** .194 ** .186 **
NL .031 ** .050 ** .061 ** .035 *
ES nuts1 .007 -.001 .033 .010
ES nuts2 .003 .003 .083 .004
ES nuts3 .022 .015 .057 .006
ES nuts4 -.095 ** -.053 ** -.082 -.148 **
ES nuts6 .042 .015 .101 ** .048
ES nuts7 .000 .023 .009 .008
IT nuts2 -.029 .011 -.036 -.032
IT nuts3 -.043 -.002 -.037 -.056 *
IT nuts4 .013 .005 .001 .003
IT nuts5 -.056 -.009 -.100 ** -.077
NL nuts1 -.005 -.011 -.012 -.022
NL nuts2 .008 -.007 .021 -.003
NL nuts4 -.005 -.005 -.004 -.026
l1 .060 .071
l2 -.089 -.022
u3 .093 .043
l21 .097 *
l1 ∗ l2 -.076
l1 ∗ u3 .040
l22 .006
l2 ∗ u3 -.097 *
u23 .082 **
l21 ∗ l2 -.089
l1 ∗ l2 ∗ u3 -.056
u33 -.032 *
constant .137 ** .155 ** .139 ** .132 **
n4 2,724 8,396 2,591 2,591
WAD -.16 ** -.20 ** -.14 ** -.11 **
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Table 8: Estimated weighted average derivatives (WAD) and their bootstrap standard errors (sd)
by model and country.

Model 1 Model 2 Model 4
Country WAD sd WAD sd WAD sd
All -0.16 0.005 -0.20 0.003 -0.11 0.036
DK -0.11 0.014 -0.12 0.009 -0.07 0.059
ES -0.24 0.016 -0.27 0.007 -0.33 0.146
IT -0.22 0.014 -0.22 0.008 -0.20 0.137
NL -0.13 0.009 -0.13 0.004 -0.09 0.068
SE -0.09 0.007 -0.09 0.004 -0.05 0.026
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Figure 1: Estimated food share derivatives with 95 percent symmetric confidence bands. In each
panel, the dash-dot line is from Model 1, the short-dash line from Model 2, the long-dash line from
Model 3, the solid line from Model 4.
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Figure 2: Estimated food share derivatives with 95 percent symmetric confidence bands under
alternative degrees of the polynomial expansions. In each panel, the dash-dot line is from Model 1,
the short-dash line from Model 2, the long-dash line from Model 3, the solid line from Model 4..
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Figure 3: Estimated food share derivatives with 95 percent symmetric confidence bands under
alternative definitions of item nonresponse to household income. In each panel, the dash-dot line
is from Model 1, the short-dash line from Model 2, the long-dash line from Model 3, the solid line
from Model 4.
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Figure 4: Estimated food share derivatives by country. In each panel, the dash-dot line is from
Model 1, the short dash line from Model 2, the solid line from Model 4.
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A Details on the three-step estimation procedure

A.1 First step

The log-likelihood function for a random sample of n observations is

L(β1, β2) =

n∑
i=1

[(1− Yi1) lnπi0(β1) + Yi1(1− Yi2) lnπi10(β1, β2) + Yi1Yi2 lnπi11(β1, β2)] , (6)

where, dropping for simplicity the suffix i,

π0(β1) = Pr{Y1 = 0} = F1(−µ1),

π10(β1, β2) = Pr{Y1 = 1, Y2 = 0} = F2(−µ2)− F (−µ1,−µ2),

π11(β1, β2) = Pr{Y1 = 1, Y2 = 1} = 1− F1(−µ1)− F2(−µ2) + F (−µ1,−µ2),

with F1, F2 and F denoting, respectively, the unknown marginal distribution functions of U1 and

U2 and their joint distribution function.

Following Gallant and Nychka (1987), we approximate the joint density f of the latent errors

by an Hermite polynomial expansion of the form

f∗(u1, u2; γ) =
1

ψK(γ)
τK(u1, u2; γ)

2 ϕ(u1)ϕ(u2), (7)

where τK(u1, u2; γ) is a polynomial of order K = (K1,K2) in u1 and u2, γ is a vector of K1K2

unknown parameters, and ψK(γ) is a normalization factor which ensures that f∗ is a proper density.

This polynomial expansion can approximate densities with arbitrary skewness and kurtosis, but

not violently oscillatory densities or densities with tails that are either too fat or too thin (Gallant

and Nychka 1987). De Luca (2008) shows that, after imposing some identifiability restrictions,

integrating the joint density (7) gives the following approximation to the joint distribution function

of U1 and U2

F ∗(u1, u2; γ) = Φ(u1)Φ(u2) +
1

ψK(γ)
A∗

12(u1, u2; γ)ϕ(u1)ϕ(u2)

− 1

ψK(γ)
A∗

1(u1; γ)Φ(u2)ϕ(u1)−
1

ψK(γ)
A∗

2(u2; γ)Φ(u1)ϕ(u2),

where A∗
12(u1, u2; γ), A

∗
1(u1; γ) and A

∗
2(u2; γ) are polynomials in u1 and u2. Integrating F

∗(u1, u2; γ)

one obtains the following approximations to the marginal distribution functions of U1 and U2

F ∗
1 (u1; γ) = Φ(u1)−

1

ψK(γ)
A∗

1(u1; γ)ϕ(u1),

F ∗
2 (u2; γ) = Φ(u2)−

1

ψK(γ)
A∗

2(u2; γ)ϕ(u2).
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The SNP estimator of (β1, β2, γ) is obtained by maximizing the pseudo log-likelihood function (6),

with the unknown distribution functions replaced by their approximations F ∗, F ∗
1 and F ∗

2 . Gallant

and Nychka (1987) show that the resulting estimator is
√
n-consistent provided that the degree

K of the polynomial increases with the sample size, but do not provide distributional results.

However, if K is treated as known, inference can be conducted as though the model was estimated

parametrically. Thus, the SNP model is better viewed as a flexible parametric specification for a

fixed value of K, with the choice of K as part of the model selection procedure. For a given sample

size, the value of K may be selected either through a sequence of likelihood ratio tests, or by model

selection criteria such as AIC, BIC, or the cross-validation strategies proposed by Coppejans and

Gallant (2002).

A.2 Second step

In the second step we estimate (2) using the subsample of complete cases, with the unknown

function h approximated by a power series expansion. As argued by DNV, series estimators have

lower bias when their leading terms provide a good approximation. Thus, instead of expanding in

power series of µ1 and µ2, we expand in power series of functions of µ1 and µ2 with the Gaussian

bias-correction (4) as leading term. The proposed approximation to h(µ1, µ2) is of the form

h∗(µ1, µ2) =

R∑
r=0

R−r∑
s=0

θrs h1(µ1, µ2)
r h2(µ1, µ2)

s, (8)

where R is the degree of the power expansion, θ00 is normalized to zero, and the leading terms

h1 and h2 are exactly equal to the elements of the Gaussian bias-correction term (4), while the

higher-order terms capture departures from normality. A test of the Gaussian assumption can then

be obtained by testing whether these higher-order terms are significantly different from zero.

After replacing µ1 and µ2 by their SNP estimates µ̂1 and µ̂2, the second step corresponds to

a simple OLS regression of Y3 on X3 and powers of ĥ1 = h1(µ̂1, µ̂2) and ĥ2 = h2(µ̂1, µ̂2) plus

their interactions.8 Under regularity conditions, the resulting estimator of β3 is consistent and

asymptotically normal provided that the degree R of the power series expansion increases with the

sample size (DNV). For a given sample size, R can be selected by leave-one-out cross-validation.

Notice that the regularity conditions for our series estimator require some trimming of the data to

guarantee that the estimated indexes from the first step are finite. Accordingly, we symmetrically

trim 1 percent of the complete cases based on the values of µ̂1 and µ̂2.

8 In constructing the ĥj , the correlation coefficient ρ12 is estimated by combining the SNP estimates of the first
and the second order moments of U1 and U2 (De Luca 2008).
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A.3 Third step

In the third step we estimate (3) from the subsample of complete cases, with the unknown functions

g approximated by a power series in the logarithm of household income and the function l by a

power series in functions of µ1, µ2 and U3 = Y ∗
3 − µ3. In the latter case, the leading terms of

the power series correspond to the correction for endogeneity and sample selection in the Gaussian

case. Thus

l∗(µ1, µ2, U3) =

S∑
r=0

S−r∑
s=0

S−r−s∑
t=0

δrst l1(µ1, µ2, U3)
r l2(µ1, µ2, U3)

s U t
3, (9)

where S is the degree of the power expansion and δ000 is normalized to zero. The leading terms l1,

l2 and U3 in (9) are exactly equal to the elements of the Gaussian bias-correction term (5), while

the higher-order terms capture departures from normality. A test of the Gaussian assumption can

then be obtained by testing whether these higher-order terms are significantly different from zero.

After replacing µ1 and µ2 by their SNP estimates µ̂1 and µ̂2 and U3 by Û3 = Y3 − µ̂3, the third

step corresponds to a simple OLS regression of Y4 on X4, powers of log household income, and

powers of l̂1 = l1(µ̂1, µ̂2, Û3), l̂2 = l2(µ̂1, µ̂2, Û3) and Û3 plus their interactions.9 The higher-order

terms included in the power series approximations for g and l are again selected by cross-validation.

Again, some trimming of the data is needed to limit the impact of outliers. Thus, we symmetrically

trim another 1 percent of the observations on the basis of the values of Y3 and Û3. The standard

errors of our three-step estimator are computed by the nonparametric bootstrap based on 1,000

replications.10

9 In constructing the l̂j , the standard deviation σ3 is estimated using the procedure proposed by Ham (1982),
while the correlation coefficient ρ12 | 3 is estimated by combining the estimates of ρ12, ρ13 and ρ23 obtained from the
first and the second step.

10 For each replication, we sample with replacement from the original data and re-estimate the overall process
(first, second and third step). This approach is time consuming, especially because of the SNP estimator used in the
first step. To speed-up the process, we use a MATA version of the bivariate SNP routine written in STATA by De
Luca (2008).
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