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We study the price-setting problem of a firm in the presence of both ob-
servation and menu costs. The firm optimally decides when to “review” costly
information on the adequacy of its price. Upon each review, the firm chooses
whether to adjust its price, one or more times, before the next price review. Each
price adjustment entails paying a menu cost. The firm’s choices map into several
statistics: the frequency of price reviews, the frequency of price adjustments, the
size distribution of price changes, and the hazard rate of price adjustments. The
simultaneous presenceof observationandmenucosts produces complementarities
that changethepredictions ofsimplermodels featuringonecost only. Forinstance,
infrequent observations mayreflect a highmenucost ratherthanhighobservation
costs: in spite of these complementarities, we showthat the ratioof the twocosts is
identifiedby several statistics on price observations andadjustments. JEL Codes:
E31, E50.

I. INTRODUCTION

A large literature modeling infrequent adjustment has fo-
cused on either of two costs: one is a standard fixed cost of
adjusting the state, the other is a fixed cost of observing the
state. The effects of these adjustment costs have been thoroughly
analyzed in a variety of contexts. An example of the fixed ad-
justment cost is the canonical sS problem. The analysis of the
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implications of costly observation of the relevant state is more
recent, yet examples abound.1 This article solves a price setting
problem in the presence of both costs. This delivers three main
novel results. First, we develop an analytical characterization
of the optimal information-gathering and adjustment policies,
as well as of their implications for several observable statistics
on the times of information gathering and adjustments, and on
the size distribution of adjustments. Second, the complementary
nature of both costly activities (i.e., reviews and adjustments)
yields newimplications that areinneitherof themodels featuring
only one cost. Third, the sharp analytical characterization of the
implications of the model with both costs provides a mapping that
can be used to measure the relative size of these costs.

We develop this model with several applications in mind,
ranging from the households’ portfolio decision, to the firm’s
investment choice, or the price-setting problem of a monopolist.
For concreteness, because of its inherent simplicity, and because
of its importance in macroeconomics, we focus on the price-setting
problem.2 In this problem the firm optimally decides when to
collect costly information on the adequacy of its price, an activity
we refer to as a price “review.” In several papers Reis provides
a broader interpretation of this activity and discusses its rela-
tionshipwith the rational inattention literature; see, for example,
section 2.1 of Reis (2006a). In our setup, upon a costly review
at time t the firm decides the time of the next review t + T, as
well as when and how many times to adjust its price, subject to a
menu cost, within the interval [t, t + T). We follow the literature
andrefer tomultiple adjustments between observations as a price
plan. We analyze when price plans are optimal. Furthermore, for
the case where price plans are not optimal, we study the mapping
betweenthetwoadjustment frictions (observationandmenucost)
and the frequency of reviews, the frequency of price adjustments,
the size distribution of the adjustments, and the hazard rate of
price adjustments.

1. For examples with a fixedobservation cost see Caballero(1989), Duffie and
Sun (1990), Reis (2006a, 2006b), Abel, Eberly, and Panageas (2007, 2009), and
more generally the related“rational inattention”literature as in Moscarini (2004),
Sims (2003).

2. See Duffie (2010) for applications of rational inattention to asset pricing.
Alvarez, Guiso, and Lippi (2011) analyze a version of the consumption-savings
and portfoliochoice model studied by Duffie and Sun (1990) and Abel, Eberly, and
Panageas (2007). That paper uses a novel data set to measure the frequency of
observation and adjustment of portfolios for Italian investors.
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Our model embeds the two “polar” cases of menu cost (e.g.,
Barro 1972; Dixit 1991) and observation cost only (e.g., Caballero
1989; Reis 2006b). These models produce different policy rules:
the menu cost yields “state-dependent” rules, as in, for example,
Golosov andLucas (2007), while the observation cost yields “time-
dependent” rules, as in Mankiw and Reis (2002, 2006, 2007).
Because these rules have different implications for the response
of the economy to aggregate shocks, identifying the nature of the
frictions underlying sticky prices is important. However, there
is no agreed-on method to discriminate between these competing
hypothesis. Some researchers have conducted on field analyses
aimed at uncovering the nature of the frictions underlying
price setting, for example, Levy et al. (1997) and Zbaracki et al.
(2004). Our analysis provides a theoretical framework toquantify
these frictions: with suitable data, our theory can be used to
estimate the magnitude of the menu and the observation cost. An
application of these ideas can be found in the work in progress by
Cavallo (2010) and Cavalloand Rigobon (2010), whostudy a huge
novel data set of prices using, among other things, the theory
developed in this article. Finally, the distinction between the
two activities allows us to consider the economics behind “price
plans” or “sticky plans,” an assumption that has been shown to
have implications for monetary policy, for example, by Mankiw
and Reis (2002) and Burstein (2006).

I.A. A Preview of the Price-Setting Problem

The firm minimizes the expected discounted value of a per-
period loss function plus the expected discounted sum of the fixed
costs incurred. Thefirm’s instantaneous loss functionis B(p−p∗)2,
where p is the current (log) price, p∗ the “target” (log) price that
maximizes current profits, and the parameter B depends on the
curvature of the profit function. The target p∗ follows a random
walk with drift, arising from innovations in the firm’s marginal
costs: the drift, μ, is the inflation rate and the innovations are
idiosyncratic shocks with variance σ2. We refer to the difference
between p and p∗ as the price gap, denotedby p̃ ≡ p−p∗. The firm
faces two fixed costs. The first is a standard menu cost, ψ, that
applies to any change in price. The second is an observation cost,
θ, that the firm bears todiscover p∗ and hence p̃. The firm chooses
stopping times at which to observe the value of p∗ and stopping
times at which to adjust its price p.
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The combination of a Brownian motion for the target price,
a quadratic objective, and no general equilibrium feedbacks are
important toobtainsharpanalytical results. While theseassump-
tions are common in the literature, and they are used in the
polar cases where analytical results are obtained, they are not
without cost: for instance, they imply that there is no invariant
distribution of relative prices.3

Next, we describe the main analytical results concerning the
policy rules andthe implications for the observable statistics. Our
analytical results are based on approximations that are valid for
small values of the discount rate ρ and of the fixed cost ψ

B , as done
in the analytical literature covering the polar cases.

I.B. Summary of Results

In Section III we showthat if the inflation rateμ is small, due
to the fixed cost of changing prices, it is optimal to have at most
one price adjustment between reviews, which occurs immediately
afterthereview. Thus price plans arenot optimal forlowinflation.
Moreover, in Section IV we use the symmetry between the effects
of inflation and deflation to show that the frequency of price
reviews and adjustments, as well as its hazard rate, are insensi-
tive to inflation around μ = 0. This prediction is consistent with
the evidence in Gagnon (2009) and Alvarez, Gonzalez-Rozada,
Neumeyer, and Beraja (2011). We also show that inflation has
only a second-order effect on the unconditional expectation of the
net profits, as well as on the variance of price changes and on the
distribution forthe absolute value of price changes. Instead, it has
a first-order effect on the expected value of price changes.

Based on these findings, in Section V we focus on the ana-
lytical characterization of the decision rules for the case of zero
inflation. The optimal policy with observation and menu costs
combines both time-dependent and state-dependent features:
uponobserving p̃ thefirmoptimallychooses not toadjust theprice
if p̃ falls in the inaction region ( − p̄, p̄). In this case it chooses
the optimal time for the next observation, given by the function
T(p̃) = τ − ( p̃

σ
)
2. When p̃ falls outside the inaction region the firm

sets thepricegapto0 andthenext observationoccurs in τ periods.

3. Danziger (1999) general equilibrium monetary economy shares several
features with ours: the fixed menu cost is proportional to current profits, and in
equilibrium the firm’s current payoff is a quadratic function of the ratio between
target and current price, where the target price is the ratio between the money
supply and the idiosyncratic productivity, both random walks with drift in logs.
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Hence the firm’s policy is described by two parameters: p̄, τ . We
characterize the mapping between these policy parameters and
the structural parameters, σ, B,ψ, θ, including elasticities. The
decision rule has in common with the menu cost model that
there is an inaction range with a minimum size of the price
change, namely p̄, andincommonwiththeobservationcost model,
that information gathering is infrequent, with a maximum time
elapsedbetween reviews of τ . The combination of the twofrictions
implies a novel feature of the decision rule: namely, that the
optimal review times, T(p̃), are a function of the state, with an
inverted U-shape in the inaction region. The reason for this is
clear: as |p̃| gets close to p̄, it is more likely to subsequently fall
outside the inaction region, and hence it is optimal for the next
observation to occur sooner than if p̃ = 0.

Theeconomicimplications of theseresults differsharplyfrom
the workings of models with one cost only. The key novelty is that
through p̄ and τ , the times of review and the times of adjustment
depend on both the observation costs and the menu cost. This
has several novel implications, for instance, the fact that reviews
are more frequent than adjustments does not imply, as one might
guess from a model with only one cost, that adjusting prices is
costlierthanobserving, that is, that menucosts arelargerthanob-
servation costs. We show that more frequent reviews may be con-
sistent with observations costs much bigger than the menu costs.

In Section VI we use the firm’s optimal policy to analytically
derive the implications for the average frequency of price reviews,
nr, the average frequency of price adjustments, na, the size dis-
tribution of price changes, w(Δp), and the hazard rate of price
adjustments, h(t). Each of these four statistics depends only on
twoparameters. Thefirst oneisα ≡ ψ

θ
, theratioof themenutothe

observation cost. The second parameter measures, fixing α, the
cost/benefit ratio of observing and/or adjusting. This parameter
is θσ2

B for w(Δp), and it is θ
(Bσ2) for na, nr and h(t). The economics

behind this result is simple: the twoactivities—price reviews and
price adjustments—have different costs but are complementary,
sincefirms onlygatherinformationtoknowwhethertoadjust and
ifso, byhowmuch. Becauseofthis complementarity, αdetermines
how many observations per adjustment are made. We comment
on four novel implications of the model with two costs, that is,
0 < α <∞.

First, the distribution of price changes w(Δp) is normal in
the model with observation cost (α = 0), and it is degenerate
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bimodal in the menu cost model (α → ∞), with all its mass
concentrated on the thresholds ± p̄. In the model with 2 costs
(0 < α < ∞) the distribution of price changes resembles
a normal whose mass is chopped over the inaction interval,
and with long decreasing tails outside the inaction boundaries.
Such a bimodal distribution is interesting because it allows the
model to reproduce several facts about the distribution of price
changes: a large mass of small adjustments, two modes, and a
large standard deviation, see Midrigan (2007); Cavallo (2010);
Cavallo and Rigobon (2010).

Second, although in each of the models with only one cost
the hazard rate is monotone increasing, in our model it is not
monotone. In particular, the instantaneous hazard rate h(t) is
continuous, strictly increasing, and it has an asymptote in the
menu cost model, whereas it is degenerate in the model with
observation cost only. For 0 < α < ∞, the hazard rate shares
some properties with the observation cost model, like an initial
value of 0 for t ∈ [0, τ), and a spike at t = τ . But unlike
that model, it has a finite continuos nonzero hazard rate for
higher values of t. Loosely speaking, the shape of the hazard
rate function has some periodicity, in that it looks like a series
of nonmonotone functions around durations that are multiple of
τ . The reason for this nonmonotonicity comes from the fact that
reviews happen at unequal length of time—given by the function
T(∙)—and adjustment occurs depending on whether the price gap
is larger than the threshold p̄ at the time of observation. We find
the nonmonotonicity appealing because most empirical studies
fail to find evidence for increasing hazard rates, which is the
implication stemming from the polar cases with only one cost.4

Also, periodical spikes in the hazard rate have been estimated
in several datasets by researchers, for example, Nakamura and
Steinsson (2008), whointerpret it as evidence of time dependence
in firms’ pricing decisions or alternatively seasonality in costs
or demand. In Section VI.C. we use our model to discuss the
aggregation biases that this nonmonotonicity can originate, even
after controlling for the average size and for the average duration
of price changes.

4. Klenow and Kryvtsov (2008) estimate a flat hazard rate on U.S. CPI data.
A downward sloping hazard is estimated by Nakamura and Steinsson (2008) on a
similar U.S. data set using a different methodology, and by Alvarez, Burriel, and
Hernando (2005) for the Euro area. In contrast, Cavallo (2010) estimates hump-
shaped hazard functions for four Latin American countries.
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Third, another unique prediction of the model with two costs
(0 < α < ∞) is that the frequency of price reviews is higher
than the frequency of price adjustment, that is that the ratio
nr
na

> 1. This happens because the reviews where the price gap
is in the inaction region do not produce a price adjustment. We
find this prediction interesting because it seems to be typical in
the data, see Fabiani et al. (2007) for statistics on price reviews
andadjustments for firms across several European countries, and
Alvarez, Guiso, and Lippi (2011) for statistics on portfolioreviews
and adjustments for Italian households.

Fourth, ourtheoryidentifies several observablestatistics that
can be used to measure the relative size of the menu cost versus
the observation cost: α ≡ ψ

θ
. For instance, the ratio between the

frequency of price reviews and price adjustment nr
na

is a function
only of α, and so are the following moments from the distribu-
tion of price changes: std |Δp|

E|Δp| , mode |Δp|
E|Δp| . We characterize these

mappings analytically. Matched with suitable data, for example,
after accounting for structural heterogeneity across firms size
and industries, these formulas can be used to estimate α. Thus,
the model provides a theory that can be used to quantify the
observation and menu costs.

I.C. Related Literature

A good summary of the literature on price setting with im-
perfect information is in Section 7.1 of Mankiwand Reis (2010). A
strand of this literature studies price-setting decisions in models
where both the size of the price change and its timing are en-
dogenous in the presence of costly observation. In Bonomo and
Carvalho (2004) and Woodford (2009) the firm optimally chooses
the times of observation and adjustment, under the assumption
that the information and the menu cost are lumped together. As
in our setup, these models predict infrequent information review
and price adjustment. But since the observation and menu cost
are lumped, every price review triggers a price adjustment: this
differs from our model and, as a consequence, yields different
predictions concerning pricing behavior as observed in the mi-
cro data. In Bonomo and Carvalho observations/adjustments are
equally spaced in time, the distribution of price changes is uni-
modal, and the hazard rate of price changes is constant at 0 with
a spike at the time of the observation. In Woodford’s model it is
assumed that the firm cannot keep track of the time elapsed since
the last observation/adjustment but that it receives noisy signals
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onthepricegap. This implies that priceadjustments aretriggered
by the signals (by construction they are independent of the time
elapsed since the last price change). The distribution of price
changes has either one or twomodes, depending on the size of the
observation/adjustment cost. For small levels of the cost, which
are needed to reproduce a large mass of small price adjustments,
the distribution of price changes has a single mode. By contrast,
our model with separate observation and menu costs produces
a distribution of price changes that is bimodal and features a
large mass of small adjustments and large standard deviation of
price changes. Finally, Gorodnichenko (2008) presents numerical
solutions of a model where the firm faces a fixed cost to acquire
information and a fixed cost to change the price. Differently from
our article, he focuses on aggregate uncertainty and alsoassumes
that after one period the firm learns the true value of the state
for free. We remark that although these papers are related to our
work, their aim is different. Their main question is to analyze
the macro-economic effect of monetary shocks. The aim here is
more modest: toderive a mapping between the model parameters
and several statistics, to gauge the magnitude of menu costs and
observation costs from the micro data.

II. THE PRICE-SETTING PROBLEM

Weanalyzethequadratictrackingproblemof a firmfacingan
instantaneous loss function given by B (p (t)− p∗ (t))2 where p(t)
is a decision for the firm and p∗(t) is the log of the random target,
that is, the optimal value that she would set with full knowledge
of the state of the problem and without any adjustment friction.
The target changes stochastically, and we assume that the firm
must pay a fixed cost θ to observe the state p∗(t), and that she
minimizes expected discounted losses. We refer to the argument
of the loss function as the price gap: p̃(t) ≡ p(t) − p∗(t). The
constant B measures the cost elasticity to price deviations from
the target. Moreover, it is assumed that the firm faces a physical
cost ψ associated with resetting the price (a “menu cost”).5 The
simplification of using a quadratic approximation to the profit

5. The Online Appendix discusses one case that is useful to interpret the
units of B, θ,ψ,σ. The instantaneous loss can be derived as the second-order
approximation of the profit function relative to the static optimal profits, where
p(t) is the log-price of a monopolisticfirm and p∗(t) its corresponding staticoptimal
level. With a constant demand elasticity η > 1 and constant returns to scale,
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function has been used in the seminal work on price-setting
problem with menu cost by Caplin and Leahy (1997) and others
as discussed by Stokey (2008) for menu cost models, and also
by Caballero (1989) and Moscarini (2004) for costly observation
models.

The log of the target price p∗(t) follows a random walk with
drift μ, with normal innovations with variance σ2 per unit of time,
so starting from a price gap p̃(t0) at time t0, the uncontrolled
evolution of the price gap is

(1) p̃(t0 + t) = p̃(t0) − μ t − s σ
√

t,

where s is a standard normal.6 Hence Et0 [p̃(t0 + t)] = p̃(t0) − μt,
Vart0 [p̃(t0 + t)] = σ2t, and Et0 (p̃(t0 + t))2 = (p̃ (t0)− μt)2 + σ2t. We
assume the firm controls the price gap by setting the price p(t0)
in nominal terms, so that the drift μ can be interpreted as the
inflation rate.

The problem faced by the firm with observation (θ > 0) and
menu cost (ψ > 0) can be stated as follows. Upon paying the cost
θ, and finding the value of the price gap p̃(t), the firm decides
the time until the next observation: T. Between observations, the
information of the firm is summarized by p̃. During this time the
firm faces several choices, including not changing prices at all,
changing prices multiple times, changing prices only once at the
time of the observation, or delaying the first price change with
respect to the observation. Next we develop the notation required
to discuss these choices. We denote the number of times that the
firm adjusts its price between observations by J ∈ N. If J =0 there
is no adjustment and a period of length T > 0 elapses until the
next observation. If J ≥ 1 then one or more price adjustments
take place between observations, each occurring ti periods after
the observation (with i = 1, . . . , J). Upon each adjustment the firm
pays the cost ψ and chooses a price level such that the expected
value of the price gap on adjustment is p̂i.7

B = 1
2 η (η− 1). In this case θ andψ are measured as a proportion of static optimal

profits per unit of time.
6. In the interpretation derived before, p∗(t) is equal to the log of a constant

markup over nominal marginal cost, where shocks to the nominal marginal cost
are due to shocks to firm-specific productivity. Bils and Klenow (2004) estimate
very persistent specific productivity process using U.S. data, they cannot reject
the hypothesis of log-productivity follows a random walk with drift.

7. Sections B 2.1, B 2.2, and B 2.3 in the Online Appendix present detailed
analyses of some special cases of this model featuring one cost only: the menu cost
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Without loss of generality, we define the value function V(p̃)
of the firm at the time of an observation of the price gap: p̃.
Let VJ(p̃) denote a conditional value function, namely, the best
value that the firm can achieve by making J price adjustments
between observations. The unconditional value function for the
firm problem is:

(2) V(p̃) =min
J≥0

VJ(p̃) so that J∗(p̃) = argmin
J≥0

VJ(p̃),

which states that the firm will choose the optimal number of price
adjustments andwhere we denote the minimizing choice as J∗(p̃).

We next describe the Bellman equations for the conditional
value functions VJ(p̃). For J = 0, that is, conditional on no price
adjustment between observations, we have

V0(p̃) = θ +min
T

∫ T

0
e−ρtB

[
(p̃− μt)2 + σ2t

]
dt + e−ρT

×
∫ ∞

−∞
V
(

p̃− μT − sσ
√

T
)

dN(s) ,(3)

inthis casetheonlychoiceforthefirmis thetimeelapseduntil the
next review: T. The first integral on the right side gives the cost
arising from the expected second moment of the price gap, while
the secondintegral term denotes the expectedcontinuation value.
This continuation value uses that the price gap T periods aheadis
normallydistributedwithexpectedvalue p̃−μT andvarianceσ2T.

If J ≥ 1, the function VJ(p̃) gives the optimal value condi-
tional on making J = 1, 2, 3, . . . price adjustments. In this case the
firm chooses the time until the next review, T, the times ti of each
price adjustment andthe (expected) value of the price gapon each
adjustment p̂i (where i = 1, 2, . . . , J). The Bellman equation is

VJ(p̃) = θ + min
T,{p̂i,ti}J

i=1

∫ t1

0
e−ρtB (p̃− μt)2 dt +

∫ T

0
e−ρtBσ2t dt

+
J−1∑

i=1

e−ρti

[

ψ +
∫ ti+1−ti

0
e−ρt B (p̂i − μt)2 dt

]

+ e−ρtJ

[

ψ +
∫ T−tJ

0
e−ρtB (p̂J − μt)2 dt

]

model (ψ = 0), the costly observation model (θ = 0), and the Sheshinski and Weiss
(1977) model (σ = 0).
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+ e−ρT
∫ ∞

−∞
V
(

p̂J − μ(T − tJ)− sσ
√

T
)

dN(s)

for J = 1, 2, 3, . . .(4)

where 0 ≤ t1 < . . . < ti < ti+1 < . . . < tJ < T. Note that if t1 > 0
then the price gap p̃ is not adjusted immediately, that is, the first
price adjustment takes place some time after the observation. In
this case the first integral on the right side of the equality gives
the losses due to the continuation of p̃ into the period, which is
the only reason p̃ is an argument of VJ( ∙ ). Instead, if the firm
chooses t1 = 0, the price gap is adjusted immediately on review
(and the value of this integral is 0). The last term in the first line
measures the costs due to the expected variance term σ2 t, just
like in Equation (3).

The second and third lines contain the losses corresponding
to the J price adjustments, all of which are done using the
same information: p̃. Each adjustment occurs ti periods after the
observation, involves a (discounted) menu cost ψ, and a reset of
the (expected) price gap at the new value p̂i (where i = 1, . . . , J).
After the adjustment, the expected value of the price gap p̂i will
depreciate with the inflation rate μ during the time interval until
the next adjustment: ti+1− ti. The integral in the fourth line gives
the expected continuation value. This continuation value uses
that the price gap T periods ahead is normally distributed with
expected value p̂J − μ (T − tJ) and variance σ2T.

We briefly comment on the nature of the trade-offs faced by
the firm. If the price gap has a trend (μ =/ 0), then by making
several price adjustments between reviews (i.e., a large value
of J) the firm is tracking the expected value of the price target
more closely. Given J, the expected discounted value of the terms
B(p̂i − μt)2, measuring the average value recorded by the price
gap between reviews, can be made smaller by an appropriate
choice of p̂i and ti. On the other hand, a large number of price
adjustments comes at the expense of paying ψ, the fixed menu
cost, J times. The other firm decision concerns the time elapsed
until the next observation T. The shorter this time, the more
often the observation cost θ is paid. On the other hand, the
shorter this time, the smaller the variance of the deviation from
the price target that accumulates until the next observation is
gathered, which corresponds to smaller values of the integral of
the discounted value of the terms Bσ2t. Essentially, the choice
of J can be used to control the expected value of the price gap
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between observations, while the choice of T can be used tocontrol
the mean variance of the price gap. A numerical illustration of the
value functions VJ is provided in the next section. Our analysis of
this problem is divided in three sections. First, we study when
multiple adjustments between observations are optimal. Second,
we study the sensitivity of the problem to inflation around zero
inflation. Third, we conduct an in-depth analysis of the case of
zero inflation.

III. ON THE OPTIMALITY OF PRICE PLANS

We first argue that multiple price adjustments between price
observations are a form of indexation to inflation. Let J∗ defined
in Equation (4) be J∗ ≥ 3, and fix i in 1 < i < J∗. Consider the
first-order condition for p̂i, p̂i−1, and ti. The restriction on i means
that there is at least one price adjustment before and one after
time ti. Simple algebra (letting ρ ↓ 0 for simplicity), gives:

p̂i−1 = μ
ti − ti−1

2
, p̂i = μ

ti+1 − ti

2
, and ti =

ti+1 + ti−1

2
.

This shows the sense in which the optimal policy is an instance
of indexation: adjustments are equally spaced in time, and prices
increase with accumulated inflation, so that the expected price
gap front loads 1

2 of the inflation expected over the period until
the next price adjustment.

Next, we turn to the discussion of when price plans are opti-
mal. There are two extreme cases nested in our parametrization
that imply infinitely many adjustments between observations.
First, let the adjustment cost ψ ↓ 0. In this case the firm will be
adjusting infinitely often between observations (J∗ →∞, ti+1− ti ↓
0, and T > 0), so that the price gap is expected to be 0 between
observations. The value function converges to the one for the
problem with observation cost only and no drift, which is akin to
Reis (2006b). The second case is one where σ

μ
↓ 0. As σ ↓ 0 the

benefit of observing is tiny relative to its cost θ > 0, and hence
observations will be very infrequent. Yet with μ bounded away
from 0, the benefits of adjustment are important, so there will be
multiple adjustments between observations. This case is akin to
the classic Sheshinski and Weiss (1977) model.

Next we characterize when multiple adjustments between
reviews are optimal.
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PROPOSITION 1. Let θ > 0, ψ > 0, and σ > 0. There exists a
threshold μ̄ > 0 such that for all inflation rates |μ| < μ̄: (i)
J∗(p̃)≤ 1 for all p̃ ∈ R. (ii) if p̃ is such that J∗(p̃)=1 then t1 =0.

(iii) as ρ ↓ 0 the threshold satisfies μ̄
σ2 = m

(
θσ2

B , ψ
θ

)
, where the

function m
(
θσ2

B , ∙
)

is strictly increasing in the neighborhood

of ψ
θ

= 0.

Part (i) shows that it is optimal to adjust prices at most
once between successive reviews, and part (ii) shows that price
adjustments occur immediately after the price reviewfor inflation
rates below the threshold μ̄. Parts (i) and (ii) say that price plans
are not optimal for inflation rates below the threshold μ̄. Part
(iii) shows that the threshold is strictly increasing in the size of
the menu cost ψ. In short, the proposition establishes a condition
under which price plans are optimal. This is important because
Mankiw and Reis (2002) and Burstein (2006) find that nominal
aggregate shocks have larger and more persistent real effects
when the firm adjustment rule is a price plan.

We computed μ̄ for three values of the ratio of the menu to
the observation cost: α ≡ ψ

θ
. This ratio will turn out to be useful

in characterizing the optimal policy rules in later sections. We
assume a markup over costs of about 15%, so that B ∼= 20, and
a volatility σ = 0.15, which are similar to the values chosen by
Golosov and Lucas (2007).8 We fix the observation cost at θ=0.03,
sothat the model-impliedcost of a reviewamounts approximately
to 0.4% of revenues. This magnitude is comparable to estimates
by Zbaracki et al. (2004) for the managerial cost of changing
prices associated togathering information. For these parameters,
the threshold value for μ is: μ̄ = 0.06 for ψ = 0.005, μ̄ = 0.10 for
ψ = 0.015, and μ̄= 0.13 forψ = 0.030. 9 Although Proposition 1 only
establishes that μ̄ is increasing in ψ in a neighborhood of 0, in

8. Golosov and Lucas (2007) set the standard deviation of idiosyncratic
productivity shocks to be 0.11 per year; Burstein and Hellwig (2006) set the
standarddeviation between 0.06 and0.25 at the monthly frequency, depending on
thespecificationof themodel; Eichenbaum, Jaimovich, andRebelo(2008) estimate
the median standard deviation in cost to be 0.11 per week on micro data from a
large U.S. retailer.

9. These three values of ψ correspond to α = 0.17, α = 0.50, and α = 1.0,
respectively. The case of ψ = 0.015 corresponds to an average of about 1.6 price
adjustments per year for relatively low values of the drift μ, which is consistent
with estimates by Nakamura and Steinsson (2008).
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these examples—as well as in all the ones we have computed—it
is increasing also away from 0.

Next we describe how the patterns for the frequency of price
adjustments and reviews change for values of inflation above
the threshold μ̄. Table I reports statistics for the frequencies of
price adjustments and reviews as a function of μ > μ̄. These
statistics are obtained by solving the model numerically at the
parameter values already discussed for the case of ψ = 0.015.10

We want to emphasize two results. First, the level of the drift μ
has to be substantially larger than the threshold μ̄ = 0.10 before
it is optimal to plan more than one adjustment between two
consecutive reviews, that is, J∗(p̃) ≥ 2 for some p̃. In fact, for
intermediate values of the drift μ it is optimal todelay some of the
price adjustments, that is, t1 > 0 for some p̃, but it is not optimal
toadjust prices more than once between consecutive reviews, that
is, J∗(p̃) ≤ 1 for all p̃. For instance, at the parametrization of
Table I, we find that the size of the drift has tobe larger than 50%
before it is optimal to plan more than one adjustment between
two consecutive reviews, J∗(p̃) ≥ 2 for some p̃. In fact, for values
of the drift above μ̄ but smaller than 50%, the fraction of price
adjustments occurring at a different time from the observation
date increases in the size of the drift, but it is never optimal to
adjust prices more than once between consecutive observation
dates. Second, the ratio of the frequency of price reviews to the

TABLE I

STATISTICS ON THE TIME OF ADJUSTMENTS AS A FUNCTION OF INFLATION (μ)

μ = 0.1 μ = 0.2 μ = 0.3 μ = 0.4 μ = 0.5 μ = 0.6

na 1.65 1.88 2.21 2.60 2.96 4.07
na|t1>0 0.00 0.33 0.73 1.16 1.58 1.21
na|J≥2 0.00 0.00 0.00 0.00 0.00 2.98
nr
na

1.52 1.43 1.28 1.15 1.06 0.66

Note. Parameters values are B = 20, σ = 0.15, θ = 0.03, andψ = α θ; na denotes the average number of
adjustments per year; na|t1>0 denotes the average number of delayed adjustments per year; na|J≥2 denotes
the average number of price adjustments conditional on at least two adjustments between consecutive
reviews; nr denotes the average number of reviews per year.

10. The Online Appendix reports the statistics from a parametrization that
uses a smaller value of σ. Bonomo, Carvalho, and Garcia (2010) provide yet
another solution to the problem presented in Equations (2)–(4) under a different
parametrization.
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frequency price adjustments, nr
na

, is decreasing in the size of the
drift |μ|, but nr

na
is larger than 1 as long as the drift is small enough

that multiple price adjustments between consecutive observation
dates are not optimal. As a consequence, the size of the drift
needed to make price adjustments more frequent than price
reviews can be substantially larger than μ̄.

Finally, we discuss how the choice of price plans depends on
the level of the price gap upon observation. To this aim, we plot
in Figure I the value functions VJ(p̃) for J = 0, 1, 2, evaluated
at the optimal policy, for the same parametrization of Table I
in the case of μ = 0.6. We find the discussion of the optimal
policy at this high parametrization of μ useful to understand how
the drift affects the decision problem. Figure I shows that for
relatively high or relatively low values of the price gap p̃, it is
optimal to plan two price adjustments before observing the state
again, that is, J∗ = 2. In this case, the first adjustment occurs
immediately on observation to reduce the size of the price gap,

FIGURE I

Value Function VJ(p̃) in the Case of High Inflation: μ = 0.6

Parameters values are B = 20, σ = 0.15, θ = 0.03, andψ = 0.015.
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while the second adjustment occurs before the next observation
date to reduce losses from the expected decrease in the price
gap due to the positive drift. For intermediate values of p̃, two
different cases arise. If the price gap is small enough, the firm
plans to have one delayed price adjustment, that is, J∗ = 1 and
t1 > 0, because the positive drift reduces the expected price
gap, eventually increasing expected losses to the point that an
adjustment is optimal before the next planned observation date.
In the other case, instead, the price gap is large enough that it is
optimal not toadjust thepricebeforethenext observation, that is,
J∗ = 0. In this case, despite inflation, the expected price gap does
not decrease enough to justify a price adjustment before the next
observation date.

IV. THE CASE OF LOW INFLATION

In this section we analyze the effect of inflation on the
frequency of price adjustments and the size distribution of price
changes under the assumption that the inflation rate μ is positive
but small. We restrict attention to σ > 0, ψ > 0, and |μ| < μ̄,
so that following Proposition 1 there is at most one price adjust-
ment between observations, which occurs immediately after the
observation.

In the case of |μ| < μ̄, the general problem set up in Section II
is given by Equations (2) and (3) and by the conditional value
function for J = 1 which becomes:

V1 = θ + ψ +min
T,p̂1

∫ T

0
e−ρtB

[
(p̂1 − μt)2 + σ2t

]
dt + e−ρT

×
∫ ∞

−∞
V
(

p̂1 − μT − sσ
√

T
)

dN(s),(5)

where p̃ is not an argument of V1 since t1=0. The decision rules for
this case are as follows. Since ψ > 0, there are thresholds p < p̄
defining the range of inaction where V1 > V0(p̃) for p̃ ∈ (p, p̄),
and satisfying V0(p) = V0(p̄) = V1. Thus, prices are not adjusted if,
immediately after an observation, p̃ ∈ (p, p̄). Otherwise, if upon
an observation the price gap is outside the range of inaction (p, p̄),
the cost ψ will be paid and prices will be adjusted to set the price
gap to p̂1. Because in this case there is at most one adjustment,
we refer to the optimal return point simply as p̂. Finally, we use
T(p̃) to denote the optimal time until the next review decided on
observing a price gap p̃.
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We use the optimal decision rule summarized by p, p̄, p̂,
and T(p̃) to define a first-order Markov process for the price gap,
p̃, whose transition function is as follows. If p̃ ∈ (p, p̄), there is
no price adjustment, and the value of the price gap T(p̃) periods
ahead is normally distributed with variance σ2T(p̃) and expected
value p̃−μT(p̃). Otherwise, when p̃ /∈ (p, p̄), there is a price change
of sizeΔp= p̂− p̃, the next observation is in T(p̃) periods from now,
and the price gap is normally distributed with variance σ2T(p̃)
and expected value p̂ − μT(p̃). This process for the price gap can
be used to define several statistics of interest: the expected time
between observations of the price gap, and its reciprocal, that is,
the average frequency of price reviews which we denote by nr;
the expected time between price adjustments; and the associated
average frequency of adjustment denoted by na. Likewise, we can
define the hazard rate of price changes, as a function of the time
elapsed since the last price adjustment, denoted by h(t). Finally,
we can define the distribution of (nonzero) price changes Δp,
with density w(Δp), and the density of the absolute value of price
changes v(|Δp|).

For the next proposition we explicitly write μ as an argument
of the value function V(p̃,μ), and of the statistics such as na(μ),
E[Δp,μ]. We also define E[V](μ) to be the expected value of the
value function under the invariant distribution of the price gaps
g(∙) as E[V](μ)≡

∫∞
−∞ V(p̃,μ)g(p̃,μ)dp̃. We have the following.

PROPOSITION 2. Assume that σ > 0 and that all the functions
below are differentiable:

(a)
∂

∂μ
na (μ)|μ=0 =

∂

∂μ
nr (μ)|μ=0 = 0,

and
∂

∂μ
h (t,μ)|μ=0 = 0 for all t ≥ 0,

(b)
∂

∂μ
E [Δp,μ]|μ=0 =

1
na(0)

> 0 and
∂2

∂μ2
E [Δp,μ]|μ=0 = 0,

(c)
∂

∂μ
E
[
(Δp− E[Δp])2k ,μ

]∣∣
∣
μ=0

= 0, for k = 1, 2, ...,

(d)
∂

∂μ
v (|Δp|,μ)|μ=0 = 0 for all |Δp| > p̄(0), and

(e)
∂

∂μ
E[V](μ)|μ=0 = 0.

Part (a) shows that the average number of adjustments
per unit of time, na(μ), is insensitive to inflation at μ = 0. The
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average frequency of price reviews, nr(μ), and the whole hazard
rate function of price adjustment, h(t,μ), are also insensitive to
inflation at μ = 0. Part (b) states that the expected value of price
changes increases linearly with μ with slope 1

na(0), at least for
small values of μ = 0. This follows from (a) and from the identity:
μ = na(μ) E [Δp,μ], that is, that the product of the average price
changetimes thenumberof adjustments equals theinflationrate.

The result that the “intensive” margin of price adjustment
is insensitive to inflation at μ = 0 applies to the special case of
models with menu cost only (θ=0), as illustrated in the numerical
results reported in Figure 3 of Golosov and Lucas (2007), when
σ > 0. The proof of each of these results, as well as of the other
parts of this proposition, is basedon the symmetry of the problem,
statedpreciselyinLemma 1 intheAppendix. Giventhesymmetry
of the loss function and the distribution of shocks, is it easy tosee
that na(μ)=na(−μ). Thus, if na is differentiableat 0, thenit must be
flat. Indeedfor the case of θ=σ=0, which corresponds tothe model
in Sheshinski andWeiss (1977), the “insensitivity result”does not
hold, because although the function na is symmetric, it has a kink
at μ = 0. We conjecture, but have not proven, that as long as σ >
0, all these functions are differentiable at μ = 0. The economics
are clear: the effect of small inflation is swamped by idiosyncratic
shocks whenσ > 0. This is consistent with(unreported)numerical
results showingthat fora higherσ, thefunction na(μ) remains flat
for a bigger interval of inflation rates μ.

Proposition 2 studies the sensitivity of several statistics to
inflation in the vicinity of μ = 0. Figure II complements this
proposition by computing several of these statistics for values of μ
between 0 and 5% annual inflation for the parameters described
at the end of Section III. For instance, the insensitivity of na with
respect to inflation is illustrated in the top left panel of Figure II,
where it is clearly seen that na(μ) is constant for a range up to5%
annual inflation and three values of α = ψ

θ
.

The theoretical result about the insensitivity of na—and the
associated linearity of E[Δp]—is supported by the evidence in
Gagnon (2009) who, among others, finds that when inflation is
low (say below 10–15%), the frequency of price changes is almost
unrelated to inflation, and that the average magnitude of price
changes has a tight linear relationship with inflation.

To understand (c) and (d) it is useful to realize that for
μ = 0 the distribution of price changes is symmetric around
0, a consequence of the symmetry of the loss function and of
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FIGURE II

Statistics from the Distribution and Frequency of Price Changes

Parameters values are B = 20, σ = 0.15, θ = 0.03, andψ = α θ.

the distribution of the shocks. Part (c) shows that all the even
centered moments are approximately the same for 0 and low
inflation. This is illustrated in the top right panel of Figure II
where we plot the standard deviation of price changes for annual
inflation rates below 5% and three values of α. Yet inflation has
a first-order effect on other aspects of the distribution of price
changes, which is illustrated in the bottom right panel where we
plot its skewness, which starts at 0 when there is noinflation and
decreases withμ. Part (d) shows that the whole distribution of the
absolute value of price changes is approximately the same for low
and zero inflation, which is illustrated in the numerical example
in the bottom left panel of Figure II for the expected value of this
distribution. Finally, part (e) shows that while inflation has a
first-order effect on some features of the decision rules, such as
(p, p̄, p̂), it has only a second-order effect on the expected value
function. Equivalently, inflation causes a second-order increase
in the unconditional expectation of losses for the firm.
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These results show that the expected losses of the firm as
well as thefrequencyandseveral moments of thesizedistribution
of price changes are insensitive to inflation at μ = 0. Thus, the
analysis of the problem in a low-inflation environment is well
approximated by studying the case of zero inflation, to which we
turn next.

V. OPTIMAL DECISION RULES FOR THE CASE OF ZERO INFLATION

Proposition 1 and the assumption of zero inflation imply that
it is optimal to have at most one adjustment, J∗(p̃) ∈ {0, 1}, and
that conditional on adjustment there is no delay, t1 = 0. We write
the special case of Equations (2)–(3) and Equation (5) for μ = 0 as:

V0(p̃) = θ +min
T

B
∫ T

0
e−ρt [p̃2 + σ2t]dt + e−ρT

×
∫ ∞

−∞
V
(

p̃− sσ
√

T
)

dN(s),(6)

V1 = ψ + θ +min
T,p̂

B
∫ T

0
e−ρt [p̂2 + σ2t]dt + e−ρT

×
∫ ∞

−∞
V
(

p̂− sσ
√

T
)

dN(s),(7)

V(p̃) =min {V0(p̃) , V1},(8)

for p̃ ∈ (−∞,∞), where T in Equations (6) and (7) is the optimal
decision rule for the time between observations, a policy function
that will bedescribedbythefunction T(p̃). It is immediatethat the
value function V is symmetricaround p̃=0 andincreasing around
it, hence if a price adjustment takes place the optimal reset price
is p̂ = 0. Hence the optimal time between reviews conditional on
adjustment is τ ≡ T(0), the optimal choice in Equation (7). We
show that T(p̃) has a maximum at p̃ = 0, attaining the value τ ,
and that it is symmetric around 0 with an inverted U-shape. The
symmetry established in Lemma 1 for μ = 0 implies that p = −p̄.
We summarize these results in the next proposition.

PROPOSITION 3. Let μ = 0. The value function V is symmetric
around p̃ = 0, and V is strictly increasing in p̃ for 0 < p̃ < p̄.
The optimal policy conditional on adjustment is p̂ = 0. The
derivative of V0(p̃) for 0 ≤ p̃ satisfies 0 ≤ V ′0(p̃) with strict
inequality if T(p̃) > 0. Thus V ′(0) = V ′0(0) = 0, V ′′(0) > 0, and
V ′(p̃) = 0, for p̃ > p̄ and hence V is not differentiable at p̃ = p̄.



OPTIMAL PRICE SETTING 1929

The proposition also shows that at the boundary of the range
of inaction, p̄, the value function has a kink, that is, there is no
smooth pasting. This differs from the model with menu cost which
only features the smooth pasting property, typical of continuous-
time fixed-cost models, see for example Dixit (1993) and Stokey
(2008).

Thenext propositioncharacterizes thefunction T(∙). Theproof
is based on a second-order expansion of the first-order condition
with respect to T, and expansions of T(∙) and V(∙) around p̃ = 0, as
well as their symmetry.

PROPOSITION 4. As ρ ↓ 0 the optimal rule for the time to the next
revision T(p̃) is:

T(p̃) = τ −

(
p̃
σ

)2

+ o(|p̃3|) for p̃ ∈ (− p̄, p̄),

and T(p̃) = τ otherwise.(9)

Figure III displays T(∙) for the numerical example discussed
at the end of Section III. We found the approximation for T (∙) in
Proposition 4 tobe precise for a large range of economically inter-
esting parameters, as the comparison in Figure III shows (see the
OnlineAppendixformoredocumentation). A fewcomments arein
order. First, the shape of the optimal decision rule depends only
on σ, and not on the other parameters: B, θ, andψ. Second, if the
agent finds herselfafterareviewwithapricegap p̃ = 0, shewill set
T(0) = τ , since the optimal adjustment would have implied a post
adjustment price gap of 0. Third, the function T(p̃) is decreasing
in (the absolute value of) p̃. If on a review the agent finds the
price gap close to the boundary of the range of inaction, she plans
for a relatively early review, since the target is likely to cross the
threshold p̄. Fourth, thepricegapis normalizedbyσ, thestandard
deviation of the changes in (the log of) the target price. This is
also natural, because the interest of the decision maker is on the
likelihoodthat thepricetarget will deviateandhit thebarriers, so
that for a lower σ she is prepared to wait more for the same price
gap p̃.

Next, we compute an analytical approximation to the value
functionandoptimal policies. Theapproximationrelies onthefact
that V( ∙ ) is symmetric around p̃ = 0, that is, V(p̃) = V(− p̃), and
hence all the derivatives of odd order are 0. The approximation
uses a quadratic expansion of V0(p̃) around p̃ = 0, because the
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FIGURE III

Optimal Decision Rule T(p̃)

Parameter values: B = 20, σ = 0.15, θ = 0.03, ψ = 0.015. Vertical dashed-dotted
lines: thresholds and optimal return point. Solid line: function in Equation (9);
dashed line: numerical solution to optimal policy.

conditional value function V1 is constant:

V0(p̃) = V0(0) +
1
2

V ′′0 (0) (p̃)2 + o(|p̃|3)≈ V0(0) +
1
2

V ′′0 (0) (p̃)2,

since V ′0(0) = V ′′′0 (0) = 0 and V ′′0 (0) > 0. We refer to the left-
hand side of this expression as the quadratic approximation even
though, since V ′′′0 (0) = 0, the remainder is of order smaller than
|p̃3|. The other source of approximation, to simplify the analytical
expressions, is that we let ρ converge to 0.11 The quadratic
approximation for the value function is globally accurate if the
range of inaction, [−p̄, p̄], is small. Since p̄ converges to 0 as the
menu cost ψ goes to 0, the approximation will be accurate for
small values of ψ relatively to θ. We discuss the accuracy of these

11. This second approximation has negligible effects on the accuracy of the
solution given the small discount rates that are appropriate for this problem.
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approximations shortly. Proposition 5 uses these approximations
to characterize the values of p̄ and τ . To this end, it is convenient
to define the variable φ ≡ p̄

(σ
√
τ ), which measures the minimum

size of the innovation of a standard normal required to get out of
the inaction region, [−p̄, p̄], after resetting the price to p̂ = 0. We
refertothevariableφ as thedeterminant of the“normalizedrange
of inaction,” [−φ,φ].

PROPOSITION 5. Defineα ≡ ψ
θ

andφ ≡ p̄
(σ
√
τ ), and assume that θ >

0 andψ > 0 andα <
(

1
2 − 2(1−N(1))

)−1
≈ 5.5. As ρ ↓ 0, there

exists a unique solution for p̄ and τ , in that solution φ is a

functionof2 arguments: thenormalizedcosts
(
σ2 θ

B ,σ2ψ
B

)
. For

small values ofσ2 ψ
B , thesolutionφ(σ2 θ

B ,σ2ψ
B ) is approximated

by ϕ(α) which solves

1 = ϕ(α)2
(2
α

+ 4 [1−N (ϕ(α))]
)

, with elasticity(10)

(11)
∂ logϕ(α)
∂ logα

=
1
2

at α = 0 and
∂ logϕ(α)
∂ logα

<
1
2

for α > 0 ,

such that ϕ(α)− φ(σ2 θ
B ,σ2ψ

B )= o
([
σ2ψ

B

])
. The optimal values

forthetimeuntil thenext revisionafteranadjustment, τ , and
the width of the range of inaction, p̄, are given by

τ =

√
θ

σ2 B

√
α

ϕ(α)
> τ |ψ=0 =

√
θ

σ2 B
2(12)

p̄ =

[

σ2ψ

B

] 1
4 √

ϕ(α) < p̄ |θ=0 =

[

σ2ψ

B
6

] 1
4

.(13)

While the proof of the proposition involves some algebra, the
logic follows three simple steps. First, we develop a system of
two equations in two unknowns, the equations are the first-order
condition for τ and the value matching condition at p̄, that is,
V0(p̄) = V1. These equations are simplified by using the quadratic
approximation for V0 andby letting ρ ↓ 0. Second, a bit of analysis
of these equations shows that under the conditions stated in the
proposition, the solution is unique andwell defined(i.e., it implies
T(p̄)> 0). Third, we obtain an approximation for φ, namely, ϕ.

Proposition 5 shows that the expressions in Equations (12)
and (13) are the generalizations of the corresponding formulas for
the case in which there is only an observation or a menu cost,
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respectively: for a given ratio of the cost α, they have the same
functional form. The equations show that the length of time until
the next revision, τ , is higher in the model with both costs than in
themodel withobservationcost only, andthewidthof theinaction
band, p̄, is smaller than in the menu cost model.12 Notice that τ
is higher because the introduction of the menu cost increases the
cost of one price adjustment (from θ toθ+ψ) but not the benefit. As
a consequence firms optimally economize on the number of times
they pay the cost. The reason p̄ is smaller than in the menu cost
case is more subtle. In the pure menu cost model observations
are free, that is, the firm can monitor when the state crosses the
threshold at nocost. But with an observation cost this is not true,
andwhenthefirmdiscovers tobe“sufficientlyclose”tothebarrier
it prefers to adjust rather than having to pay again for observing
when exactly the barrier is crossed. In other words, both barriers
shift inwards. Morespecifically, usingEquations (11) into(12)and
(13) we obtain the following elasticities with respect to the two
costs:

0 ≤
∂ log τ

∂ logψ
=

1
2
−
∂ logϕ(α)
∂ logα

≤
1
2

and 0 <
∂ log τ

∂ log θ
=
∂ logϕ(α)
∂ logα

≤
1
2

,(14)

0 ≤
∂ log p̄
∂ logψ

=
1
2

(
1
2

+
∂ logϕ(α)
∂ logα

)

≤
1
2

and 0 >
∂ log p̄
∂ log θ

=−
1
2
∂ logϕ(α)
∂ logα

≥ −
1
2

.(15)

Equations (14) and (15) show that the time to the next
review after a price adjustment, τ , is increasing in θ; similarly,
the width of the inaction band is increasing in ψ. In fact, as
the direct cost associated to a review (adjustment) increases, the
frequency with which the firm reviews the state (adjust the price)
decreases. This is a result inheritedfrom models with observation
cost or menu cost only. However, our model with both costs has
additional implications for the interaction between the optimal
values of τ and p̄ and the costs θ and ψ. Equation (14) shows
that τ is increasing in ψ, because at the time of deciding the next

12. Also note that, from Equations (11) and (12) it follows that τ is weakly
increasing in the ratio of the cost α, with elasticity less than 1

2 .
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observation after a price adjustment, an agent facing a higher
adjustment cost maximizes the chances of adjusting the price on
observationbydelayingthenext observation. Equation(15)shows
that the width of the inaction band is decreasing in θ, since at
thetimeof anobservationanagent facinga highercost minimizes
the chances of paying further observation cost by narrowing the
range of inaction. Moreover, the elasticity of the width of the
inaction region, p̄, with respect to ψ is smaller than in the menu
cost model. In particular, the larger the ratioof θ toψ, the smaller
the elasticity of p̄, with respect toψ. Similarly, the elasticity of the
time to the next review after a price adjustment, τ , with respect
to θ is smaller than in the model with observation cost only, and
it is decreasing in the ratio of ψ to θ. We note that the width of
the inaction band has elasticity 1

4 with respect to σ2

B , as in the
menu cost model, and that the time to the next review after a
price adjustment has elasticity equal to − 1

2 with respect to Bσ2,
as in the model with observation cost only.

To summarize, we conclude this section with a discussion of
the nature of our approximations derived in Propositions 4 and 5
and their accuracy. As asserted in the propositions, as well as in
thecomments that followthem, ouranalytical approximations are
valid for small values of the discount rate ρ and of the fixed cost
ψ
B , and for values of θ

B andσ that are bounded away from 0. These
approximations are common in the literature.13

Now we discuss the accuracy of our analytical approximate
solution by comparing it with a numerical solution of the original
problem obtained on a very tight grid. To understand the type of
error produced by the value function approximation, recall that
we are using that ρ ↓ 0 and V0 is quadratic in p̃. The effect of
the discount rate is almost negligible for any reasonable value
of ρ, a result found in many similar problems. We focus on the
other assumption, which is more specific to our problem. Since
the function V0 is symmetric and has a minimum at p̃ = 0, a
quadratic approximation is accurate around p̃ = 0. Also, recall
that Proposition 3 shows that the function is increasing for all
p̃ < p̄. Thus, because p̄ tends to 0 as ψ goes to 0, the relevant
rangeofV0, givenby [−p̄, p̄], is small, andhencetheapproximation
is accurate if ψ is small. We find the approximation for p̄ to be

13. For instance, the small ρ and small ψB are already used in the analytical
results for the case of menu cost only in Dixit (1991). Analogously, Reis (2006b)
consider a “perturbation,” which is equivalent to our assumptions.
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accurate for values of α = ψ
θ
< 2.14 On the other hand, when ψ is

large relative to θ, the quality of the approximation deteriorates.
In particular, as θ goes to 0, the problem converges to the menu
cost model studied by Dixit (1991). The value function V0 in this
model is convex close to p̃ = 0, and concave around p̄, to satisfy
smooth pasting. It is easy to see that this implies that V ′′′′0 (0) <
0. Thus, as θ becomes small relative to ψ, the value function
V0 becomes closer to the one of the menu cost, and hence our
quadraticapproximation becomes worse, especially for values of p̃
awayfrom0. Inparticular, sincethequadraticapproximationhas
V ′′′′0 (0) = 0, it produces higher values of V0(p̃) for p̃ away from 0,
andconsequently the value of p̄ that we obtain tends tobe smaller
than the true one when ψ

θ
is large.

VI. STATISTICS FOR THE CASE OF ZERO INFLATION

In this section we maintain the assumption of zero inflation
and characterize the implications of the optimal policy rule for
thefollowingstatistics of interest: thefrequencyof pricerevisions,
the frequency of price adjustment, the distribution of price adjust-
ment, and the hazard rate for price changes. The decision rules
described by the threshold p̄ and function T(∙) imply a stationary
Markov process for the price gap on review (and before adjust-
ment). Assume the price gap immediately after an observation at
time t0 is p̃ ∈ R. Define the price adjustment ruleΔ(p̃) as 0 in the
inaction region, and−p̃ otherwise. The next observation will take
place in T′ = T (p̃) periods. Let s be a standard normal random
variable and let p̃′ be the price gap upon the next review (and
before adjustment) at time t0 + T (p̃). Then:

(16) p′ , T′ =






p̃− s σ

√

τ −
(

p̃
σ

)2
, τ −

(
p̃
σ

)2
if p̃ ∈ (− p̄, p̄).

−s σ
√
τ , τ if p̃ /∈ (− p̄, p̄).

We denote the density of the invariant distribution for the price
gap on review (and before adjustment) as g( ∙ ). We define the
expected time between reviews, denoted by Tr, as the expected
valueof T under g(∙). Thus theaveragenumberof reviews perunit
of time is nr = 1

Tr
. Tracking the process starting right after a price

change, one can compute the probability distribution of the times

14. See the Online Appendix for more documentation.
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t elapsed between consecutive price changes. This distribution
implies the expected time between price changes, denoted by Ta,
and thus the expected number of adjustments per unit of time
na = 1

Ta
and more generally the hazard rate of price changes h(t).

Finally, this process implies a distributionof pricechanges, whose
density we denote by w(Δp). As mentioned, price changes occur
whenthepricegapfalls intheactionregion, inwhichcaseΔp=−p̃,
andthus thedensity w(∙) canbeeasilycomputedusingthedensity
g(∙) and the price adjustment rule.

We define the normalized price gap as y ≡ p̃
σ
√
τ
. Using the

approximation for T( ∙ ) given in Equation (9) and the evolution
of the price gap in Equation (16), the law of motion for the
normalized price gap {y} is

(17) y′ , T′ =






y− s
√

1− y2 , τ(1− y2) if y ∈ (− φ,φ)

−s σ
√
τ , τ if y /∈ (− φ,φ).

whereweusethenotationφ ≡ p̄

(σ
√
τ)

forthebarriers introducedin

Proposition 5, which showed that in the approximate solution the
normalized barrier depends only on the ratioof the costs, φ=ϕ(α),
and that τ depends on α = ψ

θ
as well as on θ

(σ2B). Equation (17)
reveals an interesting property of the model: only the parameter
φ, and the time interval τ appear in the law of motion of the
normalized price gap. We now use this result and the law of
motion for the price gaps derived above to state a useful result.

PROPOSITION 6. Fixα = ψ
θ

. Use the decision rules in Proposition 5

to define the parameters P ≡
(
θσ2

B

) 1
4
( √

α
ϕ(α)

) 1
2

and T ≡
(
θ

Bσ2

) 1
2

( √
α

ϕ(α)

)
. The density function of the price gaps upon

review g(p̃), the density function of the price changes w(Δp),
and the hazard rate of price changes h(t), are functions only
of two parameters and are homogeneous of degree −1 with
respect to their argument and one parameter, as follows:

g (p̃ ; P,α) =
1
P

g

(
p̃
P

; 1, α

)

for all p̃ ∈ R ,

w (Δp ; P,α) =
1
P

w

(
Δp
P

; 1,α

)

for all Δp ∈ R ,

h (t ; T,α) =
1
T

h

(
t
T

; 1,α

)

for all t ≥ 0 .



1936 QUARTERLY JOURNAL OF ECONOMICS

As shown in the proof, the new parameters are related to the
optimal policy rules determined in Proposition 5, in particular
P = σ

√
τ and T = τ . The economics of this proposition is that the

“shape” of the statistics that we are studying depends only on α,
eventhoughthe“level”of thosestatistics alsodepends onascaling
factor.

VI.A. Average Frequency of Price Changes and Reviews

Let us consider the expected time between price changes
Ta and the expected time between reviews Tr. The proposition
implies that these are functions only of α and T, and that they
are homogeneous of degree 1 with respect to T, as follows:

Ta (α, T) = T Ta (α, 1) , Tr (α, T) = T Tr (α, 1) .

We now comment on the two implications concerning the
elasticity of the average review and adjustment frequencies with
respect to its two arguments: θ

(B σ2) and α. First, using the def-
inition of T it is immediate that the elasticity with respect to
θ

(B σ2) is 1
2 : an increase of θ and ψ in the same percentage, which

keeps α constant, decreases both frequencies by half of that
percentage. This 1

2 elasticity is present in the models that feature
either information cost only or menu cost only. A novel element
of our model relative to the polar cases with only one cost is the
complementarity between observation andadjustment, which are
fully captured in the statistics by the separate argument α. For
instance, for a fixed θ, it can be shown that the number of reviews
is decreasing in α, that is, more expensive menu costs will induce
the firm to review less often.15

The second implication is that since the frequency of review
nr = 1

Tr(α,T) and the frequency of adjustment, na = 1
Ta(α,T) , are

proportional to the factor 1
T , then their ratio depends only on α:

(18)
nr

na
= F (α) ∈ [1, +∞] .

This function is plotted in the left panel of Figure IV. The plot
shows that nr

na
= 1 for α = 0. This is immediate because in the

absence of menu cost every observation produces an adjustment.

15. The propositions 9, 10 and11 in Alvarez, Lippi, andPaciello(2010) provide
analytical expressions to compute the values of na and nr and characterize
analytically the partial derivatives of these functions with respect to θ,ψ,α.
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FIGURE IV

Mapping between α and Three Observable Statistics

As α increases the number of reviews per adjustment increases,
that is, more reviews per adjustment occur. The figure shows
that the function

(
nr
na
− 1
)

is well approximated by the square

root of α, so that its elasticity is approximately 1
2 . Matched with

suitable observations on nr
na

, this function can be used to estimate
the magnitude of α. We return to this point shortly.

As an application of the complementarity between reviews
and adjustments, consider Figure V, which plots the sector av-
erage frequencies of price reviews and changes across different
sectors in different countries.16 From the fact that reviews are
more frequent than adjustments, one could naively infer (using
themodels withonlyonecost) that adjustingprices is costlierthan
observing and the menu cost is the most relevant margin in the
firm’s problem. Yet as the left panel of Figure IV shows, the fact
that reviews are more frequent than adjustments is consistent
with observations cost that are much bigger than menu costs,

16. The sources of the data are the surveys described by Fabiani et al. (2007)
and Greenslade and Parker (2008). Sectors are classified according to two-digit
NACE. See our Data Appendix for more documentation.
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FIGURE V

Average Industry Frequency of Price Changes vs. Adjustments

Each data point is the mean number of price changes and price reviews per
year in a country/industry pair. See the Data Appendix for more documentation.

that is, α much smaller than 1. This can help reconcile the view
of researchers that observation costs are much bigger than pure
menu costs, see, for example, Reis (2006a) and Zbaracki et al.
(2004), with the statistics of Figure V.

The characterization of nr, na and nr
na

is useful tointerpret the
data of Figure V. The intercept of a line in the ( logna, lognr) plane
is related to α, with a positive elasticity. For a given intercept,
that is, fixing α, the position of an observation along the 45◦ line
is given by the value of the scalar T, that is, with an elasticity of
1
2 with respect to the θ

(B σ2) parameter.

VI.B. Distribution of Price Changes

We now turn to the implications of results in Proposition 6
for the statistics computed from the distribution of price changes.
For instance, the average size of price changes is homogeneous of
degree 1 in P:

(19) E[ |Δp| ] = P E(α) ,
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where E(α) = 2
∫∞
ϕ(α) |x| w(x; 1,α) dx. Notice that, holding constant

the ratio of the two costs, α, the expression in Equation (19) has
the same comparative statics with respect toa change in both cost
(ψ, θ), andtoachangein(B,σ2) thantheones fromthemodels with
observation cost only or with menu cost only.

Moreover, the homogeneity of the density of price changes
w (Δp ; P,α) implies that, fixing α, the moments computed from
this density for different values of the parameter P will only differ
by a constant scaling factor. In other words, fixing α and P, any
ratio of moments of the same order computed for Δp, such as the
coefficient of variation or the ratio of the mode to the mean, will
depend only on α, for instance:

(20)
mode |Δp|
E[ |Δp| ]

=M(α) and
std[|Δp|]
E[ |Δp| ]

= S(α) ,

whereM(α) andS(α) aremonotonicfunctions that onlydependon
α.17 Thus, as illustratedinFigureVI, theshapeof thedistribution
depends on the ratio of the two costs. In particular, the shape
of the distribution of normalized price changes ranges from a
standard normal when α = 0 to a bimodal distribution in the case
of α→∞.

This result provides an additional identification scheme to
measure α, using the distribution of price changes.18 More gen-
erally, the implications of Proposition 6 are useful because they
produce a mapping between some observable statics and α that
could be used in the data to estimate the relative cost of review
to adjustment. Figure IV plots the ratio of the average frequency
of reviewtoadjustment, nr

na
(left panel), the coefficient of variation

of the absolute value of price changes, std[|Δp|]
E[ |Δp| ] (middle panel), and

the ratio of the mode to the mean for the absolute value of price
changes (right panel). As shown in Equations (18) and (20), these
observable statistics depend only on α. Hence they provide an
overidentifying restriction for our model.

Finally notice that the shape of the distribution of price gaps
on observation, g(p̃ ; P,α), only depends on α. This distribution is

17. These functions are given by M(α) = ϕ(α)
E(α) , and S(α) =

(
2
∫∞
ϕ(α) x2 w(x;1,α) dx−(E(α))2

) 1
2

E(α) . Numerical results show that M(α) ∈ [0, 1] is

increasing in α, andS(α) ∈
[
0,
√
π
2 − 1

]
is decreasing in α.

18. See Cavallo (2010) and Cavallo and Rigobon (2010) for an application of
our theory to statistics on the distribution of price changes.
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FIGURE VI

Distribution of Nonzero Normalized Price Changes

potentially important for the aggregate implications of our model
as it determines themass offirms neartheadjustingthresholds.19

This shape ranges from a normal distribution in the case of
observation cost only, that is, α = 0, to a triangular distribution
having the mode at p̃ = 0 in the case of a menu cost model, that is,
α→∞.

VI.C. The Hazard Rate of Price Changes

In our model with both costs, the hazard rate function is
not monotone in the time elapsed since the last price change
and, according to Proposition 6, its shape is determined by the
relative size of the two costs, α = ψ

θ
. In fact, the hazard function

ranges between twoextreme cases: in the model with observation
cost only, that is, α = 0, the hazard rate is 0 for all durations
with the exception of a single positive spike to infinity after τ
units of time since the last price adjustment; in contrast, the

19. See Caplin and Spulber (1987), Caplin and Leahy (1991), Golosov and
Lucas (2007), andMidrigan(2007) formoredetails inthecaseofmenucost models.
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hazardrate is increasing but quickly converging toa constant and
strictly positive rate in the menu cost model, that is, for α → ∞.
We are able to characterize analytically the hazard function for
durations shorterthan τ+min {τ , 2τ}, as describedinthefollowing
proposition.

PROPOSITION 7. Let t be the time elapsed since the last price
adjustment. The hazard rate of price adjustments is 0 for
t ∈ [0, τ), it jumps to infinity at t = τ , it returns to 0 in the
segment t ∈ (τ , τ + τ), it jumps to a positive value at τ + τ . In
the segment [τ + τ , τ +min {τ , 2τ}) it is strictly positive and, if
τ >

(
1
2

)
τ , it is strictly increasing and tends to infinity at the

end of this segment and returns to 0 right after.

Proposition 7 does not characterize the hazard rate when
durations are longer than τ +min {τ , 2τ}. Although an expression
can be developed for larger durations, it becomes increasingly
complex because a price change can happen after several com-
binations of previous reviews. Indeed, the larger the value of t,
the larger the number of combinations of different duration of
previous reviews that canhappen. Theeffect of this featureis that
the hazard rate for larger values of elapsed time t will tend to be
smaller but without the “holes” between the different waves of
price adjustments.

Figure VII plots the normalized hazard function, h( t
τ
; 1,α),

versus normalized time units, t
τ
, for two different values of α: a

high value α = 5 in the left panel, a small value α = 0.5 in the
right panel. The hazard function is obtained through simulations
of themodel’s decisionrule, Equation(16). Foreachvalueofα, the
other parameter determining the hazard, τ , is chosen to match
the median frequency of regular price changes and the average
absolute size of price changes found by Klenow and Kryvtsov
(2008) on U.S. data.20 This exercise highlights that products with
identical average frequency and size of price changes may still be
characterized by very different shapes of the hazard function.

The hazard rate is characterized by “waves” of price adjust-
ments, which are more evident for smaller values of α such as
the one reported in the right panel of Figure VII. After τ units
of time all the adjustments occur simultaneously, so the hazard
rate has a spike in both cases. The subsequent waves are less

20. We use a median frequency of 1.6 per year, a mean absolute price change
of 0.11.



1942 QUARTERLY JOURNAL OF ECONOMICS

FIGURE VII

Normalized Hazard Rate of Price Changes for Different Values of α = ψ
θ

The hazard rate was obtained by simulating the model in normalized daily
units. Dividing h

( t
τ

; 1,α
)

by 365 gives the probability of a price change in an
interval of length τ . See Proposition 6.

concentrated around a single value, and hence the hazard rates
have smaller spikes, which occur approximately every additional
τ units of time. Thelargerα, thesmallerthespikes of thedifferent
waves of price adjustments, andthe smaller the distance between
the different waves of price adjustment. In fact, at α = 5 the
different waves of price adjustments are harder to distinguish,
so the hazard function is flatter. Intuitively, as α→∞ increases,
the hazard rate in our model with both costs resembles more and
more hazard of the model with menu cost only.

An important implication of the example in Figure VII is
that accounting for cross-products heterogeneity in the ratio of
menu to observation cost is important to correctly estimate the
shape of the hazard function. In fact, the example shows that two
firms with identical average frequency and average size of price
changes may give rise to very different shapes of the hazard if
characterizedbyverydifferent values ofα=ψ

θ
. This predictionis in
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stark contrast to standard models with menu cost or observation
cost only where controlling for the heterogeneity in the frequency
of price changes is enough to account for heterogeneity in the
hazard function across different products.21 This result provides
theoretical support to Nakamura and Steinsson (2008) who find
substantial heterogeneity in the shape of the hazard function
across majorgroups ofproducts, evenaftercontrollingforproduct-
specific heterogeneity in the level of the hazard.22

VII. EXTENSIONS AND FUTURE RESEARCH

We discuss several extensions of the baseline model andsome
areas for future research. First, the information arrival in our
model is discrete: no new information arrives between reviews.
We briefly describe one extension where firms receive free signals
ontherealizationof thepricegap, inthespirit of Woodford(2009),
Gorodnichenko(2008), andBonomo, Carvalho, andGarcia (2010).
This model is intuitively appealing because if there is a large
change in the firm’s price gap, the firm is likely to learn about
it, even if it does not pay the observation cost θ. In our extension
the signal received by the firm equals the value of the price gap
plus an i.i.d. normal noise.23 As in the baseline model, if the firm
“reviews the price,” paying the observation cost θ, the price gap
is revealed perfectly. In this extension the state of the problem
is given by two variables: the best forecast of the price gap and
its variance, which evolves deterministically given the Gaussian
structure. Two general points emerge from this extension. The
first point is that free signals are a substitute for costly reviews.
Everything else the same, the presence of free information on the
price gap reduces the need to incur in (costly) reviews, relative
to the number of adjustments. This is natural because the only

21. See Campbell and Eden (2005) for a description of how the frequency
of price changes helps accounting for heterogeneity in models where only the
adjustment cost is present. See the Online Appendix for an analytical derivation
of the hazard function in the models with menu and observation cost only.

22. Nakamura and Steinsson (2008) argue that failing to account for this
heterogeneity might partially explain the differences in results relative to the
shape of the hazard with respect to Klenow and Kryvtsov (2008).

23. In the Online Appendix we state the problem formally, solve for the Riccati
equation of the variance of the signals explicitly, characterize analytically four
limiting cases, and set up a numerical procedure to solve the model.
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purpose of a review is to obtain information on the price gap. The
second point is that even with μ = 0, there are regions of the state
space where it is optimal to have multiple adjustments between
observations. This outcome is not possible in the model without
signals with μ = 0, since the forecast of the price gap is constant
between observations. These features imply that if the signals are
very informative, then costly reviews occur less frequently than
price adjustments, potentially leading to nr

na
< 1. This feature

appears inconsistent withtheevidencefortheEuropeancountries
collected in Fabiani et al. (2007).

Another extension to be explored in future research is to
apply the baseline setup of this article with both costs to the
problem of a multiproduct firm. The key assumption, introduced
by Lach and Tsiddon (1996) and Midrigan (2007, 2009), is that
once the menu cost is paid the firm can adjust the price of all its
products. Similartoourmodel, this setupcangeneratearbitrarily
small price changes even with a strictly positive menu cost. In
Alvarez and Lippi (2010) we provide an analytical solution for a
firm selling n goods but facing no observation cost. In this case
we show that the distribution of price changes is bimodal only
for n ≤ 2, it is single peaked for n ≥ 4, and converges to the
normal as n → ∞. Thus, provided that n ≥ 3, the multigood
model without observation cost and the one-good model with
both costs have different implications. We also show that for
all n the hazard rate is increasing, it has an asymptote, and it
ranges from the menu cost case (when n = 1) to the determin-
istic one in Taylor’s model (as n → ∞). The stark differences
between the shape of the hazard rate of price changes in the
menu-cost framework (inclusive of the multi-product extension)
and the two-cost model can be used empirically to discriminate
between the competing hypothesis generating the small price
changes.

Two further extensions concern quantitative applications of
the model with two costs. The first one is to estimate the relative
size of the menu and the observation cost. In Section VI we
showed that the shape of the distribution of price adjustment
is informative of α. A rigorous analysis of this point must deal
with the issue of aggregating sectors that are heterogeneous
in the parameters (σ2, θB , ψB ) in the steady state of an economy.
The aggregation issue is important: witness of this claim is the
large variation in the frequencies of price adjustment andreviews
across sectors, displayed in Figure V.
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Finally, the model with two costs can be used to set up a
general equilibrium economy along the lines of Mankiw and Reis
(2002) and Golosov and Lucas (2007), and numerically study the
impulse response of the economy toaggregate monetary shocks.24

We think that this is interesting because state-dependent rules,
generated by model with only menu costs as in Golosov and
Lucas (2007), feature strong selection effects that tend to pre-
dict a smaller output effect than is predicted by models with
observation cost only, as in Mankiw and Reis (2002). Since our
model combines elements of both, we think that an educated
parametrizationmight providenewinformationonthis important
topic.

APPENDIX: PROOFS

A Useful Lemma: Symmetry

The next lemma highlights a symmetry property of the value
function, associated decision rules, and statistics of the prob-
lem with respect to the inflation rate μ. To state it, we add μ
explicitly as an argument of the value function, policies, and
statistics.

LEMMA 1. Let μ ∈ R. (a) For each J ≥ 0 and p̃ ∈ R: VJ(p̃,μ)=VJ(−
p̃,−μ), T(p̃,μ)= T(− p̃,−μ) and for 1 ≤ i ≤ J : p̂i(μ)=−p̂i(−μ),
and ti(p̃,μ)= ti(− p̃,−μ). (b) For all p̃ ∈ R : V(p̃,μ)=V(− p̃,−μ).
(c) For all p̃ ∈ R : J∗(p̃,μ) = J∗( − p̃,−μ). (d) For all Δp ∈
R : w(Δp,μ) = w( − Δp,−μ), h(t,μ) = h(t,−μ) for all t ≥ 0,
na(μ) = na(− μ), and nr(μ) = nr(− μ).

Proof. Parts (a)–(b) follows from a guess and verify strategy:
assuming the symmetry of (b) on the value function on the right-
hand side of Equations (3) and (4), it follows directly using the
symmetry of the quadratic loss function with respect to p̃ = 0 and
the symmetry of the density of the standard normal n( ∙ ). Part
(c) follows directly from parts (a)–(b). Part (d) follows from the
symmetry of the polices described in parts (a)–(c). Part (e) follows
from differentiating the expressions in part (d). �

24. While the presence of both cost makes the problem for the firm more
complicatedthan the one in Golosov andLucas (2007), it still has one idiosyncratic
state, namely, the price gap. Hence, one can use exactly the same numerical
technique used by Golosov and Lucas’s (2007) to solve for an impulse response
to an aggregate monetary shock.
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Proof of Proposition 1

Proof. First consider the case where μ = 0. In this case, if ψ > 0
and σ > 0, it follows from Lemma 1 that the optimal policy is
to reset the price gap to 0, p̂ = 0. Because the expected value
of the price gap remains at p̂ = 0 between reviews, there are no
gains from price adjustment without the information produced
by a review, but there are strictly positive losses of size ψ >
0. Likewise, there are no gains from delaying the adjustment
after a review. The argument against the optimality of a delayed
adjustment is that during the first part of the period, of length
t1 > 0, the firm is having a loss of the order of the price gap.
In particular the first-order condition for t1 in Equation (4) is
Be−ρt1 [(p̃− μt1)2 − (p̂1 − μt1)2], which for μ = 0 and the optimal
value p̂1 = 0 gives Be−ρt1 p̃2 > 0. Since adjustments occur only
outside the range of inaction the price gap in that case is “large,”
that is, p̃2 > p̄2 and thus there is a strictly positive loss in
delaying the adjustment. Tosummarize, forμ=0, having multiple
adjustment between observations or delayed adjustments would
strictly increasethelosses of thedecisionmaker. Nowweconsider
the case of |μ| > 0. We note that the period return function
evaluated between reviews and the law of motion of the price gap
are continuous with respect toμ, and hence the value function, by
a careful application of the theorem of maximum, is continuous
with respect to μ. Using the continuity with respect to μ we will
establish the two required results. First, because the benefits for
multiple adjustment between observations are continuous on μ,
and hence for μ close to 0 they are close to 0. On the other hand,
an adjustment between reviews increases the cost in a discrete
amount, ψ > 0. Thus, there exists a μ̄1 > 0 for which if |μ| < μ̄1

it is not optimal to adjust between reviews. The second result of
the proposition is that for small but positive inflation, the optimal
price adjustment occurs immediately on review, t1 = 0. Again by
continuity on μ, notice that adjustment on the price will happen
for values of the price gap bounded away from 0, that is, the
first-order condition for t1 will continue to hold as an inequality
outside the inaction region. Thus, there exists a |μ̄2| > 0 for which
adjustments will not be delayed. Taking μ̄=min {μ̄1, μ̄2}we obtain
the desired result. That μ̄

σ2 is a function of (θσ
2

B , ψ
θ

) follows from
the homogeneity of the value function and policies with respect
to (B, θ,ψ) and (θ,ψ,μ,σ2, ρ). Clearly for θ > 0,σ > 0 we have
limm(∙,ψ/θ) = 0 as ψ ↓ 0 since adjustments are becoming free.
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Since we have established that m > 0 for ψ > 0 then it must be
locally increasing. �

Proof of Proposition 2

To obtain (a) we use the symmetry property of na( ∙ ), nr( ∙
) and h( ∙ ) described in Lemma 1 as well as differentiability of
these functions at μ=0. Toobtain (b) we differentiate (twice) with
respect toμ the identity na(μ)E [Δp,μ]=μ, and use that E [Δp, 0]=
∂
∂μ

na(μ) = 0, and na(0) > 0. For the rest of the results we use the
following.

LEMMA 2. Let f (p, q), h(p,μ) be two functions continuous with
respect to the first argument, differentiable at 0 with respect
to the second, and symmetric around (0, 0). Let h(∙,μ) be a
density function. Let q(μ) be a differentiable function with
q(0)= 0 and |q′(0)| <∞. Define H(μ)≡

∫∞
−∞ f (p, q(μ))h(∙,μ) dp.

Then ∂
∂μ

H(0) = 0.

To prove the lemma, differentiate the integral with respect μ
obtaining:

∂

∂μ
H(μ) =

∫ ∞

−∞

∂

∂q
f (p, q(μ)) q′(μ) h(p,μ) dp

+
∫ ∞

−∞
f (p, q(μ))

∂

∂μ
h(∙,μ) dp.

Using the symmetry of f and g, note we have for all p:

∂

∂q
f (p, 0) =−

∂

∂q
f (− p, 0) ,

∂

∂μ
g(p, 0) =−

∂

∂μ
g(− p, 0)

f (p, 0) = f (− p, 0) and g(p, 0) = g(− p, 0) ,

breaking the integral into positive and negative values of p and
using these results we prove the lemma.
To obtain (c) we use the lemma for f (Δp, q) = (Δp − q)2k for k =
1, 2, . . . , h(Δp,μ) = w(Δp,μ) and q(μ) = E [Δp,μ]. To obtain (d) we
usethelemmafor f (Δp, q)=|Δp|k fork=1, 2, . . . , h(Δp,μ)=w(Δp,μ)
and q(μ) = E [Δp,μ]. Because the derivative of all the moments of
the absolute value of price changes is 0, so must be the derivative
of the density. To obtain (e) we use the lemma for f (p̃,μ) = V(p̃,μ)
and h(p̃,μ) = g(p̃,μ).
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Proof of Proposition 3

Proof. Under the conjecture that p̂ = 0 and that V(∙) is symmetric
around 0, and by the symmetry of the normal density, we can
rewrite the Bellman equations (6) and (7) using only the positive
range for p̃ ∈ [0 , ∞) as:25

V0(p̃) = θ +min
τ

B
∫ τ

0
e−ρt [p̃2 + σ2t]dt +

e−ρτ
∫ ∞

−p̃/(σ
√
τ )

V
(
p̃ + sσ

√
τ
)

dN(s)

+e−ρτ
∫ ∞

p̃/(σ
√
τ )

V
(
−p̃ + sσ

√
τ
)

dN(s)(21)

V1 = ψ + θ +min
τ

B
∫ τ

0
e−ρt [σ2t]dt + e−ρτ2

×
∫ ∞

0
V
(
sσ
√
τ
)

dN(s).(22)

We use the corollary of the contraction mapping theorem. First,
notice that if the V in the right side of Equation (7) is symmetric
around p̃ = 0, with a minimum at p̃ = 0, then it is optimal to set
p̂ = 0. Second, notice that if the function V in the right side of
Equation (6) is symmetricwith a minimum at p̃=0, then the value
function in the left side is also symmetric, and hence V in Equa-
tion (8) is symmetric. Third, using the symmetry, we show that
if V(p̃) is weakly increasing, then the right side of Equation (8) is
weakly increasing. It suffices toshowthat V0(p̃) given by the right
side of (21) is increasing in p̃ for a fixed arbitrary value of τ . We
do this in two steps. The first step is to notice that the expression
containing p̃2 in (21) is obviously increasing in p̃. For the second
step, without loss of generality, weassumethat V is differentiable
almost everywhere and compute the derivative with respect to p̃
of the remaining two terms involving the expectations of V( ∙ ) in
(21). This derivative is:

e−ρτ

σ
√
τ

[

V(0) n

(
−p̃
σ
√
τ

)

− V(0) n

(
p̃

σ
√
τ

)]

25. Equation (21) uses that
∫∞
−∞ V(p − s)dN(s) =

∫∞
−p V(p + s)dN(s) +

∫∞
p

V(− p + s)dN(s).
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+ e−ρτ
[∫ ∞

−p̃
(σ
√
τ )

V ′(p̃ + s(σ
√
τ))dN(s)−

∫ ∞

p̃
(σ
√
τ )

V ′(− p̃ + s(σ
√
τ))dN(s)

]

= e−ρτ
[∫ ∞

0
V ′(z)

1
σ
√
τ

(

dN

(
z− p̃
σ
√
τ

)

− dN

(
z + p̃
σ
√
τ

))]

= e−ρτ
[∫ ∞

0
V ′(z)

1
σ
√
τ
√

2 π

(

e
− 1

2

(
z−p̃
σ
√
τ

)2

− e
− 1

2

(
z+p̃
σ
√
τ

)2
)

dz

]

≥ 0,

where the term involving V(0) is 0 due symmetry of dN(s)=n(s)ds,
where n( ∙ ) is the density of a standard normal, and where the

inequality follows since e
− 1

2

(
x−p̃
σ
√
τ

)2

− e
− 1

2

(
x+p̃
σ
√
τ

)2

> 0 for x > 0 and
p̃ > 0. Thus the derivative of V0(p̃) for 0 ≤ p̃ is

0 ≤ V ′0(p̃) = 2 B p̃
1− e−ρT(p̃)

ρ
+ e−ρT(p̃)

×
∫ ∞

0
V ′(z)

e
− 1

2

(
z−p̃

σ
√

T(̃p)

)2

− e
− 1

2

(
z+p̃

σ
√

T(̃p)

)2

σ
√

T(p̃) 2 π
dz

Notice that the inequality is strict if p̃ > 0 and V ′(x) > 0 in a
segment of strictly positive length. If p̃ = 0, then the slope is 0.

Finally, differentiating the value function twice, andevaluat-
ing at p̃ = 0 we get

V ′′(0) = 2 B
1− e−ρτ

ρ
+ 2

e−ρτ

σ
√
τ

∫ p̄

0
V ′(z) z

e−
1
2

z2

σ2τ

σ
√
τ 2 π

dz > 0 .

�

Proof of Proposition 4

Proof. The expression is basedon a second-order expansion of T(∙)
around p̃ = 0. The first-order condition for τ can be written as:

F(T; p̃)≡ e−ρτ
(

B (p̃2 + σ2τ)− ρ
∫ ∞

−∞
V
(
p̃− sσ

√
τ
)

dN(s)

+
∫ ∞

−∞
V ′
(
p̃− sσ

√
τ
) −s σ

2
√
τ

dN(s)

)

.

At a minimum F(T(p̃) ; p̃) = 0 and Fτ (T(p̃) ; p̃) ≥ 0. We have
∂T(p̃)
∂p̃

∣
∣
∣
p̃=0

=− Fp̃

Fτ
= 0 . That ∂T

∂p̃ = 0 follows from the symmetry of T(∙)
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around p̃, which is verified directly by checking that Fp̃ = 0 (see
below). Totally differentiating FτT′ + Fp̃ we obtain:

0 = Fττ (T′)2 + Fτ p̃T′ + FτT′′ + Fp̃τT′ + Fp̃p̃ ,

using that T′ = 0 we get the second derivative:

∂2T(p̃)
(∂p̃)2

∣
∣
∣
∣
p̃=0

=−
Fp̃p̃

Fτ
= 0.

To compute this second derivative we first compute:

Fτ (T; p̃) =−ρF(τ ; p̃) + e−ρτ
(

Bσ2 − ρ
∫ ∞

−∞
V ′
(
p̃− sσ

√
τ
) −sσ

2
√
τ

dN(s)

−
∫ ∞

−∞
V ′
(
p̃− sσ

√
τ
) −s στ

−3
2

4
dN(s)

+
∫ ∞

−∞
V ′′
(
p̃− sσ

√
τ
) s2σ2

4 τ
dN(s)

)

Taking ρ ↓ 0, using that at the optimum F = 0, that in the
approximation V̄ ′(p̃) = V ′′(0) p̃ and that V̄ ′′(p̃) = V ′′(0) we obtain:

Fτ (T; 0) = B σ2 −
∫ ∞

−∞
V ′
(
−sσ
√
τ
) −s σ τ−

3
2

4
dN(s)

+
∫ ∞

−∞
V ′′
(
−sσ
√
τ
) s2σ2

4 τ
dN(s)

= B σ2 −
∫ ∞

−∞
V ′′(0)

s2σ2

4 τ
dN(s)

+
∫ ∞

−∞
V ′′(0)

s2σ2

4 τ
dN(s) = B σ2 .(23)

We also have:

Fp̃(T; p̃) = e−ρτ
(

2Bp̃− ρ
∫ ∞

−∞
V ′
(
p̃− sσ

√
τ
)

dN(s)

+
∫ ∞

−∞
V ′′
(
p̃− sσ

√
τ
) −s σ

2
√
τ

dN(s)

)

Fp̃p̃(τ ; p̃) = e−ρτ
(

2B− ρ
∫ ∞

−∞
V ′′
(
p̃− sσ

√
τ
)

dN(s)

+
∫ ∞

−∞
V ′′′

(
p̃− sσ

√
τ
) −s σ

2
√
τ

dN(s)

)

.
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Evaluating Fp̃p̃ at p̃ = 0 for ρ ↓ 0 and the approximation with
V ′′′(0) = 0 gives:

Fp̃p̃(T; 0) = 2B .(24)

Expanding T(∙) around p̃=0, using that its first derivative is 0 and
thesecondderivativeis thenegativeof theratioof theexpressions
in Equations (23) and (24) we obtain:

T (p̃) = T (0) + T′ (0) (p̃) +
1
2

T′′ (0) (p̃)2 = τ −
1
2

Fp̃p̃

Fτ
(p̃)2 = τ −

(
p̃
σ

)2

.

which appears in the proposition. �

Proof of Proposition 5

Proof. We begin by establishing two lemmas that are useful to
characterize the solution for p̄ and τ . The proofs for this lemmas
are given at the end of this section.

LEMMA 3. Let φ ≡ p̄
σ
√
τ
, then V ′′(0), p̄, and τ solve the recursive

system:

σ2ψ

B
= f (φ),σ2τ = h(φ), and V ′′(0) = 2

ψ

p̄2
,

where f ( ∙ ) and h( ∙ ) are the following known functions of φ
and of two parameters (σ2 θ

B ,σ2ψ
B ):

σ2ψ

B
= f (φ)≡

φ2 [h(φ)]2

1− 2
√

h(φ)
∫ φ

0 s2 dN(s)
(25)

τ =
h(φ)
σ2
≡

√

2
θ + 2 ψ(1−N(φ))

σ2B
.(26)

Equations (25) and (26) can be thought of as the optimality
conditions for p̄ and τ . An immediate corollary of Lemma 3 is
that the optimal values of φ and σ2τ are only functions of two
parameters σ2 θ

B and σ2ψ
B . Notice also that the expression for τ

in Equation (26) is the same as the square root formula for the
problem with observation cost only (see Section 4.1 of Alvarez,
Lippi, and Paciello 2010), except that the cost θ is replaced by the
“expected” cost θ + ψ 2 (1−N(φ)).

Lemma 3 gives a recursive system of equations whose solu-
tionis theoptimal valueof (τ , p̄). Thenext lemmagives asufficient
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condition for the existence and uniqueness of the system, and
provides some comparative statics. In fact, it turns out that the
approximations used in this section can only be used globally—
that is, for all p̃ – if φ ∈ (0, 1), as is clear from Proposition 4. Thus,
the next lemma restricts attention to parameter settings so that
there is a unique solution in this range.

LEMMA 4. Let φ ≡ p̄
(σ
√
τ ). Assume that ψ

θ
≤
(

1
2 − 2(1−N(1))

)−1
≈

5.5. Then there exists a unique value φ ∈ (0, 1) that solves
σ2ψ

B = f (φ) defined in Equation (25). Also let τ be the solution

of τ = h(φ)
σ2 defined in Equation (26). Then,

1. φ is decreasing in θ, and τ is increasing in θ,
2. φ is decreasing in σ2

B , and σ2τ is increasing in σ2

B with an
elasticity≥ 1

2 ,
3. ∂φ

∂ σ
2

B

= 0 evaluated at σ2

B = 0,

4. ∂φ
∂ψ

> 0 if σ2ψ
B is small relative to θ.

The assumption is that the observation cost must be suffi-
ciently large relative to the menu cost (ψ

θ
< 5.5) for the approx-

imation to be globally valid—that is, for φ < 1—for arbitrary
values of σ2

B . The reason for this assumption is that the problem
formulationpresumes that afteradjustingthepricethefirmwaits
for τ > 0 periods before the next review because observation has
a non-negligible cost relative to the adjustments. For instance,
when θ = 0 the problem formulation is incorrect as the model
becomes themenucost model where τ=0 andpricereviews happen
continuously.

We now use these lemmas to establish the result in Proposi-
tion 5. Write the solution as λ(ψ σ

2

B ,α) ≡ φ(ψ σ
2

B ,ψ
σ2

B
α

). Then fixing
α we can write λ(ψ σ

2

B ,α) = λ(0,α) + λ1(0,α)ψ σ
2

B + o(ψ σ
2

B ) where
λ(0,α) = ϕ(α) and where by part 3 of Lemma 4: λ1(0,α) = ∂φ

∂ σ
2

B

= 0.

Some algebra, using the implicit definition of ϕ(α) by Equa-
tion (10), gives

(27)
∂ logϕ

∂ logα
=

1− 4α(1−N(ϕ))
2+4α(1−N(ϕ))

2− 4α(1−N(ϕ))
2+4α(1−N(ϕ))

n(ϕ)ϕ
(1−N(ϕ))

.

Since, ϕ → 0 as α → 0, then ∂ logϕ
∂ logα →

1
2 . For values of α > 0, we

have that
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(28)
∂ logϕ

∂ logα
<

1
2
⇐⇒

n(ϕ)ϕ
(1−N(ϕ))

< 2,

which is a property of the normal distribution for values of ϕ <
1. Finally, inequality (12) follows from the definition of ϕ in
Equation (10) and because 2ϕ

α
= [1−ϕ24(1−N(ϕ))] < 1. Inequality

(13) follows because ϕ < 1 and Equation (10).

Proof of Lemma 3

First we notice that using the quadratic approximation into
the definition of p̄ given by V0(p̄) = V1 implies

(29) ψ =
1
2

V ′′(0)(p̄)2 .

Second we derive Equation (26) as the first-order condition
for τ . To this end, use the Bellman equation (7) for a fixed τ >
0 evaluated at the optimal p̂ = 0, the symmetry of V(p̃), and the
approximation

V(p̃) =min{V1 , V(0) +
1
2

V ′′(0) (p̃)2}

to write:

V(0) = V1 − ψ = θ + Bσ2
∫ τ

0
e−ρtt dt + e−ρτ

∫ ∞

−∞
V
(
sσ
√
τ
)

dN(s)

= θ + Bσ2
∫ τ

0
e−ρtt dt + e−ρτ V(0) + ψ e−ρτ 2

[

1−N

(
p̄

σ
√
τ

)]

+ e−ρτ V ′′(0) σ2τ

∫ p̄
σ
√
τ

0
s2 dN(s).

Thus

ρV(0) =

θ + Bσ2
∫ τ

0 e−ρtt dt + ψ e−ρτ 2
[
1−N

(
p̄

σ
√
τ

)]
+ e−ρτ V′′(0) σ2τ

∫ p̄
σ
√
τ

0 s2 dN(s)

(1−e−ρτ )
ρ

,

letting ρ ↓ 0 gives

lim
ρ↓0

ρV(0) =
θ + ψ 2

[
1−N

(
p̄

σ
√
τ

)]

τ
+ Bσ2 τ

2
+ V ′′(0) σ2

∫ p̄
σ
√
τ

0
s2 dN(s).
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Maximizing the right side of this expression gives

0 =−
θ + ψ 2

[
1−N

(
p̄

σ
√
τ

)]

τ2 +
Bσ2

2
+
(

ψ 2 n
(

p̄
σ
√
τ

) (
p̄
σ

)

(τ)−3/2
)

1
τ

− V ′′(0) σ2
(

p̄
σ
√
τ

)2

n
(

p̄
σ
√
τ

)(
p̄
σ

)

(τ)−
3
2 ,

where we use n( ∙ ) for the density of the standard normal. Using
that V ′′(0) = 2ψ

p̄2 , this expression simplifies to

0 =−
θ + ψ 2

[
1−N

(
p̄

σ
√
τ

)]

τ2
+

Bσ2

2
.

Rearranging and using the definition of φ gives σ2τ = h(φ) of
Equation (26).

Third, we obtain an expression for V ′′(0). Differentiating the
value function twice, and evaluating it at p̃ = 0 we get

V ′′(0) = 2 B
1− e−ρτ

ρ
+ 2

e−ρτ

σ
√
τ

∫ p̄

0
V ′(z) z

e−
1
2

z2

σ2τ

σ
√
τ 2 π

dz.

With a change in variable s = z
(σ
√
τ ) we have:

V ′′(0) = 2 B
1− e−ρτ

ρ
+ 2 e−ρτ

∫ p̄
σ
√
τ

0
V ′
(
σ
√
τ s
)

s
e−

1
2 s2

√
2 π

ds .

Using the third-order approximation V(p̃)= V(0) + 1
2V ′′(0)(p̃)2

around p̃ = 0 we obtain:

V ′′(0) = 2 B
1− e−ρτ

ρ
+ e−ρτ V ′′(0) 2 σ

√
τ

∫ p̄
σ
√
τ

0
s2 e−

1
2 s2

√
2 π

ds,

or collecting terms:

V ′′(0) =
2 B 1−e−ρτ

ρ

1− e−ρτ 2 σ
√
τ
∫ p̄
σ
√
τ

0 s2 e−
1
2 s2

√
2 π

ds
,

and letting ρ ↓ 0, using the definition of φ and N for the CDF of a
standard normal:

(30) V ′′(0) =
2 B τ

1− 2 σ
√
τ
∫ φ

0 s2 dN(s)
.

Using Equation (29) toreplace V ′′(0) intoEquation (30), using the
definition of φ, and using σ2τ = h(φ) to replace τ and

√
τ we obtain

Equation (25).
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Proof of Lemma 4

Begin defining

f̂ (φ) =
ĥ(φ) φ2

1− 2
√

h(φ)
∫ φ

0 s2dN(s)
where ĥ(φ)≡

B
σ2
[h(φ)]2

= 2 (θ + 2ψ (1−N(φ))) , so that

f̂ (φ) =
2 φ2 (θ + 2ψ (1−N(φ)))

1− 2
[
2σ2 θ

B + 4σ2ψ
B (1−N(φ))

] 1
4 ∫ φ

0 s2dN(s)
,

and noting that ψ = f̂ (φ) is the same as the solution of Equations
(25) and (26).

First we turn tothe existence and uniqueness of the solution.
We show that it follows from an application of the intermediate
function theorem, together with monotonicity. We show that if
θ
ψ
> 1

2 − 2(1−N(1)) ≈ 0.1827 then: there is a value 0 < φ′ ≤ 1 so

that: (i) the function f̂ is continuous and increasing in φ ∈ [0,φ′),
(ii) f̂ (0) = 0, (iii) f̂ (φ′)> ψ, (iv) f̂ (φ)< 0 for φ ∈ (φ′, 1].

The value of φ′ is given by the minimum of 1 or the
solution to

(31) 1 = 2

[

2σ2 θ

B
+ 4σ2ψ

B
(1−N(φ′))

]1/4 ∫ φ′

0
s2dN(s) ,

so that if φ′ < 1, the function f̂ has a discontinuity going from
being positive and tending to +∞ to being negative and tending
to−∞.

The rest of the proof fills in the details: Step (1): Show that
ĥ(φ)2 ∙(φ)2 is increasing inφ if θ

ψ
> 0.1667 forφ < 1. Step(2): Show

that
√

h(φ) ∙
∫ φ

0 s2dN(s) is increasing in φ if φ < 1. Step (3): Using

(1) and (2) the function f̂ is increasing in φ for values of φ that are
smaller than 1, provided that its denominator is positive.

Step (1) follows from totally differentiating h(φ)2 ∙ (φ)2 with
respect to φ. Collecting terms we obtain that the derivative is
proportional to θ + 2 ∙ ψ(1 − N(φ)− φ ∙ N′(φ)). Since the function
1−N(φ)− φ ∙N′(φ) is positive for small values of φ and negative
for large values, we evaluate it at its upper bound for the relevant
region, obtaining: θ + 2ψ(1 − N(1)− N′(1)) > 0 or θ > ψ2[N(1) +
N′(1)− 1] ≈ ψ 0.1667. But notice that this condition is implied by
the assumption: θ > ψ[ 12 − 2(1−N(1))] ≈ ψ 0.1827.
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Step(2) follows from totally differentiating
√

h(φ)∙
∫ φ

0 s2dN(s)
with respect to φ. Collecting terms we obtain that the derivative
is proportional to φ2 −

∫ φ
0 s2dN(s) ψ

2 /(θ + 2ψ (1 − N(φ))). This

expression is greater than φ2−
∫ φ

0 s2dN(s) /(4(1−N(φ))), which is
obtained by setting θ to 0. This integral is positive for the values
of φ in (0, 1).

Now we turn to the comparative statics results. That φ is
decreasing in θ follows since f̂ is increasing in θ. That σ2τ is
increasing follows from the previous result and inspection of h.
That φ is decreasing in σ2

B follows because f̂ is increasing in
σ2

B . That σ2τ is increasing follows from the previous result and
inspection of h. That ∂φ

∂ σ
2

B

= 0 at σ2

B = 0 follows from differentiating

f̂ with respect to σ2

B and verifying that that derivative is 0 when
evaluated at at σ2

B = 0. That φ is strictly increasing in ψ when σ2

B

is small relative to θ it follows from differentiating f̂
ψ

with respect
to ψ. That derivative is strictly negative and continuous on the
parameters, when evaluated at θ > 0 and σ2

B = 0. �

Proof of Proposition 6

Proof. First theresult forthedensity g(∙). Note fromProposition 5
that the decision rules can be written as σ

√
τ = P and τ = T.

Equation (17) shows that the density for the normalizedprocess y,
which we denote by g(y, 1,α), depends exclusively on the param-
eter α (through φ). Recall that y = p̃

σ
√
τ
. The change in variable

from the normalized process y to the price gap p̃ shows that
g(p̃, P,α) =

(
1
P

)
g(y, 1,α). This proves that the density g(p̃, P,α)

is homogeneous of degree −1 in p̃ and P. A straightforward
extension of this logic shows that the same is true for the density
of price changes w(Δp).

Now we turn to the hazard rate: The time until next adjust-
ment is the first observation time t where y(t) > φ or y(t) < −φ.
The expression T′(y) = τ (1− y2) immediately shows that T′(y)
is homogeneous of degree 1 in τ = T. Let S(t) be the survival
function and recall hazard rate definition h(t) = −

(
1

S(t)

)
∂
∂t S(t).

Consider the following change of variable: t̂ = T t. This gives that
∂
∂t S(t, 1)= ∂

∂t S(̂t, T) T whichshows that thefunction ∂
∂t S(̂t, T) rateis

homogeneous of degree−1 in (̂t, T). It is then immediate toverify,
using the hazard rate definition, that h(̂t, T) is also homogeneous
of degree−1. �
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Proof of Proposition 7

Let t denote the time elapsed since the last price adjustment,
and let S(t) be the survival probability, that is, the fraction of
spells of unchanged prices that are of length t or longer. The
instantaneous hazard rate is defined as h(t) = −S′(t)

S(t) . First, notice
that until τ units of time no firm will review its price, and hence
no adjustments will take place, so that S(t) = 1 and the hazard
rate is 0 for t ∈ [0, τ). At τ all the firms review their prices, and a
fraction of them adjusts. This fraction is 2(1 − N(φ)), that is, the
probability that after the review the target is outside the range
of inaction. Thus, there is a jump down in the survival function
to S(τ) = 2 N (φ) − 1, and thus the instantaneous hazard rate
is infinite at this point. For the remaining firms the time of the
next review depends on the current price gap p̃. The earliest next
review among these firms occurs τ periods after the first review,
these are the firms that have a price gap inside the range of
inaction but arbitrarily close to its boundary, that is, very close
to p̄ or −p̄. We describe the number of firms that change prices
in their second review, between times τ + t̃ and τ + t̃ + Δ, as
approximately ∂S(τ +̃t)

∂t × Δ, satisfying:

∂S(τ + t̃)
∂t

=

[

1−N

(
p̄− p(̃t)

σ
√

t̃

)

+ N

(
−p̄− p(̃t)

σ
√

t̃

)]

2
∂p(̃t)
∂t

n
(

p(̃t)
σ
√
τ

)

σ
√
τ

,

for τ < t̃ < τ where p(̃t)≡ T−1(̃t) denotes the inverse of T(∙), sothat
T−1(̃t) : [τ , τ ] → [0, p̄]. The first term in brackets is the fraction
of those firms that had price gap p̃ > 0 at time τ and that after
the second review are outside the range of inaction, and hence
adjust their price (this expression is multiplied by 2 to include
the firms with p̃ < 0 at time τ). The remaining term counts the
number of firms that have a price gap p̃ = p(̃t) so that they will
adjust their price at τ + t̃. This, in turn, is made of two terms. The
second ratio is the density of innovations from time 0 to time τ
necessary to end up in the required value of the price gap p(̃t).
The derivative, ∂p(̃t)

∂t , comes from a change of variables formula, to
convert the density of prices intoa density expressed with respect
to times. If τ + τ > 2τ , the expression for ∂S′ (̃t+τ)

∂dt is valid for all
t ∈ [τ + τ , 2τ ]. In this case, since the symmetry of T( ∙ ) implies
that ∂T(0)

∂p = 0, then ∂p(τ )
∂t =∞, and thus the hazard rate tends to

infinity at the end of this interval, and reverts to 0 afterward. If
this condition is not satisfied, the expression for the derivative
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of S for values higher than τ + 2τ is more complex because a
price change can occur at exactly the same time after two or
three reviews.
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