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This paper shows how large-dimensional dynamic factor models are suitable for
structural analysis. We argue that all identification schemes employed in structural
vector autoregression (SVAR) analysis can be easily adapted in dynamic factor mod-
els. Moreover, the “problem of fundamentalness,” which is intractable in SVARs,
can be solved, provided that the impulse-response functions are sufficiently hetero-
geneous. We provide consistent estimators for the impulse-response functions and
for (n,T ) rates of convergence. An exercise with U.S. macroeconomic data shows
that our solution of the fundamentalness problem may have important empirical con-
sequences.

1. INTRODUCTION

Recent literature has shown that large-dimensional approximate (or generalized)
dynamic factor models can be used successfully to forecast macroeconomic vari-
ables (Forni, Hallin, Lippi, and Reichlin, 2005; Stock and Watson, 2002a, 2002b;
Boivin and Ng, 2003; Giannone, Reichlin, and Sala, 2005). These models assume
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that each time series in the data set can be expressed as the sum of two orthogonal
components: the “common component,” capturing that part of the series that co-
moves with the rest of the economy, and the “idiosyncratic component,” which
is the residual. The vector of the common components is highly singular, i.e., is
driven by a very small number (as compared to the number of variables) of shocks
(the “common shocks” or “common factors”). Indeed, evidence based on different
data sets points to the robust finding that few shocks explain the bulk of dynamics
of macro data (see Sargent and Sims, 1977; Giannone, Reichlin, and Sala, 2002;
Giannone et al., 2005). If the common component of the variable to be predicted
is large, a forecasting method based on a projection on linear combinations of
these shocks performs well because, although being parsimonious, it captures the
relevant comovements in the economy.

Here we argue that the scope of dynamic factor models goes beyond forecast-
ing. Our aim is to open the black box of these models and show how statistical
constructs such as factors can be related to macroeconomic shocks and their prop-
agation mechanisms.

We define macroeconomic shocks as those structural sources of variation that
are cross-sectionally pervasive, i.e., that significantly affect most of the variables
of the economy, as opposed to idiosyncratic sources of variation that are specific
to a single variable or a small group of variables, hence capturing both sectoral-
local dynamics (let us say “micro” dynamics) and measurement error. Our aim is
identification of the macroeconomic shocks and their dynamic effect on macro-
economic variables, whereas the idiosyncratic components are disregarded.

A key paper in which the distinction between macroeconomic shocks and
idiosyncratic sources of variation is systematically exploited for macroeconomic
modeling is Sargent and Sims (1977), in which several models, both “Keynes-
ian” and “classical,” are reformulated as factor models with a small number of
macroeconomic shocks. More recent literature includes papers in which dynamic
stochastic general equilibria (DSGE), augmented with measurement errors, are
estimated by maximum likelihood (augmenting a theory-based model with mea-
surement errors goes back to Sargent, 1989; see also Altug, 1989, and the litera-
ture mentioned therein; Ireland, 2004, and the literature mentioned therein; for an
explicit link to factor models see Giannone, Reichlin, and Sala, 2006; Boivin and
Giannoni, 2006).

The approach we propose here is a combination of structural vector autoregres-
sion (SVAR) analysis and large-dimensional dynamic factor models. Precisely,
the factor model is used to consistently estimate common and idiosyncratic com-
ponents of macroeconomic variables. Then we apply SVAR analysis to identify
the relationship between common components and macroeconomic shocks.

Our approach differs from error-augmented DSGE models in that we estimate
the impulse-response functions of the macroeconomic variables to macroeco-
nomic shocks without imposing any theory-based dynamic restriction. It has a
close relationship to factor augmented autoregression (FAVAR) models, in which
a vector autoregression (VAR) is augmented with common factors (see Bernanke,
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Boivin, and Eliasz, 2005). The link between factor models, FAVAR models, and
VAR models has been studied by Stock and Watson (2005), who show how SVAR
techniques can be used in a factor-model context. However, our analysis of the
fundamentalness of the structural shocks in factor models, and the consequent
motivation for an autoregressive approximation (see the discussion that follows
and Section 3), is a distinctive feature of the present paper. An early work in
which a large factor model is used for structural analysis is Forni and Reichlin
(1998); major differences with the present paper are the empirical focus and the
proposed estimation procedure.

To give a brief outline of the structure of the paper, suppose that we are inter-
ested in key macroeconomic variables such as per capita consumption, income,
and investment, denoted by ct , yt , and it (see our empirical exercise in Section 5).
The macrovariables ct , yt , and it are embedded in a large macroeconomic data
set (the number of variables in our exercise is 89) and modeled as a common
component, driven by structural macroeconomic shocks, plus an idiosyncratic
component (variable specific shocks and measurement error). Under fairly gen-
eral assumptions the common components can be estimated consistently (see
Section 2).

The vector of the common components, call it χχχnt , has dimension n, the num-
ber of variables in the data set, and rank q, the number of macroeconomic shocks
(three in our exercise), and is therefore highly singular. A crucial step in our analy-
sis is the dynamic specification of χχχnt as a (singular) vector autoregression driven
by the macroeconomic shocks. This implies assuming that the macroeconomic
shocks are fundamental for the common components χχχnt . Section 3 is dedicated
to showing that the fundamentalness problem, a weakness of SVAR analysis,
finds a satisfactory solution within our approach (on the fundamentalness issue
in SVAR models see Hansen and Sargent, 1991; Lippi and Reichlin, 1993, 1994;
and, more recently, Chari, Kehoe, and McGrattan, 2005; Fernández-Villaverde,
Rubio-Ramirez, and Sargent, 2005; Giannone et al., 2006). Nonfundamentalness
of structural shocks is a consequence—this is the usual explanation—of the agents
having an information set that is larger than the econometrician’s. We argue that
in large-dimensional factor models, in which the number of observed variables is
larger than the number of shocks (unlike in SVAR models), such “superior infor-
mation” can occur only by a fluke (on the importance of this feature for monetary
models, see Bernanke and Boivin, 2003; Giannone et al., 2002, 2005).

Once the vector autoregressive specification for χχχnt has been motivated, we
show that all the identification techniques developed in SVAR analysis, such as
long-run or impact effects, can be successfully imported in the identification of
structural macroeconomic shocks within large-dimensional dynamic factor mod-
els. As in SVAR analysis, the structural shocks are obtained by linearly transform-
ing the estimated residual vector vvv t , the key difference being that here the number
of shocks q is smaller than the number of variables. Last, we can go back to
the variables of interest and study their dynamic response to structural macroeco-
nomic shocks. Section 5 analyzes an empirical example on U.S. macroeconomic
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data that revisits the results of King, Plosser, Stock, and Watson (1991) in the light
of our discussion on fundamentalness.

Section 4 studies consistency and rates of convergence for the estimators of the
shocks and the impulse-response functions.

2. THE LARGE-DIMENSIONAL DYNAMIC FACTOR MODEL

The dynamic factor model used in this paper is a special case of the generalized
dynamic factor model of Forni, Hallin, Lippi, and Reichlin (2000) and Forni and
Lippi (2001). Such a model, and the one used here, differs from the traditional
dynamic factor model of Sargent and Sims (1977) and Geweke (1977), in that the
number of cross-sectional variables is infinite and the idiosyncratic components
are allowed to be mutually correlated to some extent, along the lines of Cham-
berlain (1983), Chamberlain and Rothschild (1983), and Connor and Korajczyk
(1988). Closely related models have been recently studied by Stock and Watson
(2002a, 2002b), Bai and Ng (2002), and Bai (2003).

Denote by xxxT
n = (xit )i=1,...,n; t=1,...,T an n × T rectangular array of observa-

tions.

Assumption 1. xxxT
n is a finite realization of a real-valued stochastic process

XXX = {xit , i ∈ N, t ∈ Z , xit ∈ L2(�,F, P)}
indexed by N×Z, where the n-dimensional vector processes

{xxxnt = (x1t . . . xnt )
′, t ∈ Z}, n ∈ N,

are stationary, with zero mean and finite second-order moments �x
k =E[xnt x′

n,t−k],
k ∈ Z.

We assume that each variable xit is the sum of two unobservable compo-
nents, the common component χi t and the idiosyncratic component ξi t . The com-
mon components are driven by q common shocks uuut = (u1t u2t . . . uqt )

′. Note that
q is independent of n (and small as compared to n in empirical applications).
Precisely, defining χχχnt = (χ1t . . . χnt )

′ and ξξξnt = (ξ1t . . . ξnt )
′:

xxxnt =χχχnt +ξξξnt ,

χχχnt = Bn(L)uuut ,
(1)

where the following conditions hold.

Assumption 2. uuut is a q-dimensional orthonormal white noise, and Bn(L) is
a nested sequence of one-sided n × q absolutely summable matrix polynomials
(infinite in general). Moreover, there exist an integer r ≥ q, a nested sequence of
n ×r matrices An , and a one-sided absolutely summable r ×q matrix polynomial
(infinite in general) N (L), such that

Bn(L) = An N (L). (2)
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Defining the r ×1 vector fff t as

fff t = N (L)uuut , (3)

(1) can be rewritten in the static form

xxxnt = An fff t +ξξξnt . (4)

In what follows, we shall use the term static factors to denote the r entries of
fff t , whereas the common shocks uuut will be also referred to as dynamic factors.

The dynamic factors uuut and Bn(L) are assumed to be structural sources of vari-
ation and impulse-response functions, respectively. Therefore model (1), as spec-
ified in Assumptions 1 and 2 and the other assumptions that follow, is a structural
factor model.

Obviously xxxnt admits infinitely many different representations of the forms (1)
and (4), with different dynamic and static factors. In particular, if H is an orthog-
onal q × q matrix, then χχχnt = Cn(L)vvv t , with vvv t = Huuut , Cn(L) = Bn(L)H ′ (the
same applies to the static factors with H replaced by any invertible r ×r matrix).
In Sections 3 and 4.1 we discuss identification of uuut , i.e., the conditions under
which Bn(L) and uuut can be determined among all alternative impulse-response
functions and dynamic factors.

Assumption 3 (Orthogonality of common and idiosyncratic components). For
all n, the vector ξξξnt is stationary. Moreover, uuut is orthogonal to ξiτ , i ∈N, t ∈Z,
τ ∈ Z.

The assumption of orthogonality between common and idiosyncratic compo-
nents has an economic justification. Interpreting the factor model as the joint
model of the economy and the statistical agency, under reasonable hypotheses
on the behavior of the statistical agency, the latter is orthogonal to the signal cap-
tured, in our framework, by the common shocks (for a discussion, see Sargent,
1989). Moreover, orthogonality between common and idiosyncratic components
ensures that the entries of Bn(L) can be interpreted as impulse-response functions
of the common shocks on the χ ’s and on the variables xit themselves.

Some definitions are needed for the next two assumptions. Let �
χ
k be the

k-lag covariance matrix of χχχnt and denote by μ
χ
j the j th eigenvalue, in decreas-

ing order, of �
χ
0 . Moreover, let �χ(θ) and �ξ(θ) be the spectral density matrix

of χχχnt and ξξξnt , respectively, and denote by λ
χ
j (θ) and λ

ξ
j (θ) their eigenvalues as

functions of θ ∈ [−π π ], in decreasing order.
To avoid heavy notation, indication of the dependence on n and T is kept to

a minimum. In particular, dependence on n of �
χ
k , μ

χ
j , etc., just defined, and of

other scalars and matrices defined subsequently, is not made explicit. In the same
way, reference to T and n will be avoided for estimated scalars and matrices. For
example, the estimator of �x

0 , the covariance matrix of xxxnt , is denoted by �̂x
0 .
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Assumption 4 (Pervasiveness of common dynamic and static factors).

(a) As n → ∞ we have λ
χ
q (θ) → ∞ for θ almost everywhere (a.e.) in [−π π ].

(b) There exist constants cj ,cj , j = 1, . . . ,r , such that cj > cj+1, j = 1, . . . ,
r −1, and

0 < cj < liminf
n→∞ n−1μ

χ
j ≤ limsup

n→∞
n−1μ

χ
j ≤ cj .

Assumption 5 (Nonpervasiveness of the idiosyncratic components). There ex-
ists a realL such that λξ

1(θ) ≤L for any n ∈N and θ a.e. in [−π π ]. This obviously

implies that μ
ξ
1 ≤ L for any n ∈ N, μ

ξ
j being the j th eigenvalue of �

ξ
0 .

Assumption 5 includes the case in which the idiosyncratic components are mu-
tually orthogonal with an upper bound for the spectral densities (and therefore for
the variances). Mutual orthogonality is the usual condition in finite-dimensional
factor models. Assumption 3 relaxes such condition by allowing for a limited
amount of cross correlation among the idiosyncratic components. Assumption 4
(pervasiveness of the common factors) implies that each of the common shocks
ujt affects (almost) all the variables xit , i ∈ N, with nondeclining coefficients.

Some comments on our assumptions are in order.

1. Assumption 4(a) implies that the number q of dynamic factors and the com-
mon components χi t are unique; i.e., a representation of the form (1)–(4)
with a different number of dynamic factors or different common components
is not possible (see Forni and Lippi, 2001).

2. Assumption 4(b) implies that the number r of static factors is unique; i.e., a
static representation of the common components χi t with a different number
of static factors is not possible.

3. We define the static and dynamic rank of fff t as the rank of, respectively,
its variance-covariance and spectral density matrix. By Assumption 4(a) the
dynamic rank of fff t is q for θ a.e. in [−π π ]. Assumption 4(b) entails that,
for n sufficiently large, An has full rank r and that fff t has static rank r for any
given t . Thus, for any given t , the space spanned by χi t , i ∈N, coincides with
the space spanned by the static factors f j t , j = 1, . . . ,r , and has therefore
dimension r .

The following dynamic factor model has been often considered in the large-
dimensional factor-model literature (see Stock and Watson, 2002a, 2002b, 2005;
Bai and Ng, 2007; Forni et al., 2005):

χχχnt = Cn0 fff ∗
t +Cn1 fff ∗

t−1 +·· ·+Cns fff ∗
t−s, (5)

where fff ∗
t is q-dimensional and the matrices C are n × q and nested and fff ∗

t has
the VAR representation

�(L) fff ∗
t = (1−�1L −·· ·−�h Lh) fff ∗

t = uuut , (6)
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where �(L) is q ×q. Using the definitions

fff t =
(

fff ∗′
t fff ∗′

t−1 . . . fff ∗′
t−s

)′
, An = (Cn0 Cn1 . . .Cns),

N (L) = (K (L)K (L)L . . . K (L)Ls)′,

where K (L) = (�(L)′)−1, we have fff t = N (L)uuut and

xxxnt = An fff t +ξξξnt . (7)

The static rank of fff t is always q(s +1). However, for (7) to be a static represen-
tation of the model it is necessary that An be full rank, and this depends on the
coefficients of the matrices Cnj :

1. If no restrictions among the coefficients of the matrices Cnj hold (assume,
e.g., that they are independently drawn from the same distribution), then (7)
is a static representation of the model.

2. If restrictions hold such that An is not full rank, then r < q(s + 1), and ob-
taining a static representation requires further manipulation. For example,
assume that q = 1, s = 1, so that (5) can be written as χi t = ci0ut +ci1ut−1.
If no restrictions hold among the c’s, then r = 2, and (7) is a static represen-
tation. But if the restriction ci1 = aci0 holds, then r = 1, N (L) = 1 + aL ,
ft = (1+aL)ut , and An = (c10c20 . . . cn0)

′.

In any case, with or without restrictions, existence of a static representation for
model (5)–(6) is an immediate consequence of the following remark.

Remark R. Assume that χχχnt = Bn(L)uuut . Denoting by Xt the space spanned by
χi t , i ∈ N, if Xt is finite dimensional, then χχχnt has a static representation χχχnt =
An fff t , with fff t = N (L)uuut .

Proof. Let r be the dimension of Xt . Stationarity of χχχnt , for all n, implies
that r is independent of t . Without loss of generality we can assume that fff t =
(χ1tχ2t . . .χr t ) is a basis in Xt , for a given t . Again, stationarity of χχχnt implies
that, for all t , fff t is a basis for Xt and that χi t = ai fff t , for all i , with ai independent
of t . Thus χχχnt = An fff t , where An is n ×r with aj on its j th row. Moreover setting
N (L) = Br (L), we have fff t = N (L)uuut . n

Model (5)–(6) implies that the entries of N (L) are rational functions of L . Con-
versely, assuming that the entries of N (L) are rational functions of L implies that
the model can be put in the form (5)–(6). This is fairly obvious. If φj (L) is the least
common multiple of the denominators of the entries in the j th column of N (L),
then N (L) = N1(L)N2(L)−1, where N1(L) is an r × q moving average (MA)
and N2(L) is q × q with the polynomials φj (L)−1 on the main diagonal and
zero elsewhere. Thus the following assumption is equivalent to assuming (5)
and (6).
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Assumption 6. The entries of N (L) are rational functions of L .

Note that if Assumption 6 holds for the vector fff t , i.e., for a static representation,
then it holds for all static representations.

Our last problem is a specification of N (L) that makes the model suitable for
identification and estimation of the shocks uuut . A standard solution is the assump-
tion that N (L) results from inversion of a VAR, i.e.,

fff t − D1 fff t−1 −·· ·− Dm fff t−m = Ruuut , (8)

where R is an r × q matrix, so that N (L) = (I − D1L −·· ·− Dm Lm)−1 R. This
assumption implies, as shown in Proposition 2 in Section 3.2, that uuut is identified
up to an orthogonal matrix. However, the VAR specification also implies that
uuut belongs to the space spanned by present and past values of the variables χi t ,
i.e., that uuut is fundamental for the χ ’s. This is the issue that will be thoroughly
discussed in the next section.

3. FUNDAMENTALNESS OF THE STRUCTURAL SHOCKS

3.1. Response Heterogeneity, n Large and Fundamentalness

3.1.1. Fundamentalness in SVAR Analysis. Let us begin by briefly recalling
some basic notions on fundamental representations of stationary stochastic vec-
tors. Assume that the n-dimensional stochastic vector μμμt admits a MA representa-
tion, i.e., that there exist a q-dimensional white noise vvv t and an n ×q, one-sided,
square-summable filter K (L), such that

μμμt = K (L)vvv t . (9)

If vvv t belongs to the space spanned by present and past values of μμμt we say that
representation (9) is fundamental and that vvv t is fundamental for μμμt (the condition
defining fundamentalness is also referred to as the miniphase assumption; see,
e.g., Hannan and Deistler, 1988, p. 25). With no substantial loss of generality we
can suppose that q ≤ n and that vvv t is full rank. Moreover, for our purpose, we can
suppose that the entries of K (L) are rational functions of L and that the rank of
K (z) is maximal, i.e., q, except for a finite number of complex numbers z. Then
(see, e.g., Rozanov, 1967, Ch. 1, Sect. 10; Ch. 2, p. 76) we have the following
result.

PROPOSITION F. Representation (9) is fundamental if and only if the rank of
K (z) is q for all z such that |z| < 1.

Assuming that (9) is fundamental, all fundamental white-noise vectors zzzt are
linear transformations of vvv t , i.e., zzzt = Cvvv t (see Proposition 2 in Section 3.2).
Nonfundamental white-noise vectors result from vvv t by means of linear filters that
involve the so-called Blaschke matrices (see, e.g., Lippi and Reichlin, 1994).
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A fundamental white noise naturally arises with linear prediction. Precisely, the
prediction error

wwwt = μμμt −Proj(μμμt |μμμt−1, μμμt−2, . . .)

is white noise and fundamental for μμμt . As a consequence, when estimating an au-
toregressive moving average (ARMA) with forecasting purposes, the MA matrix
polynomial is always chosen to be invertible, which implies fundamentalness.

Fundamentalness also plays an important role in the identification of structural
shocks in SVAR analysis. SVAR analysis starts with the projection of a full rank
n-dimensional vector μμμt on its past, thus producing an n-dimensional full rank
fundamental white noise wwwt . The structural shocks are then obtained as a linear
transformation Awwwt , the matrix A resulting from economic theory statements,
which is tantamount to assuming that the structural shocks are fundamental. Fun-
damentalness has here the effect that the identification problem is enormously
simplified. However, as pointed out in the literature mentioned in the Introduction
(see also Section 3.1.2), economic theory, in general, does not provide support for
fundamentalness, so that all representations that fulfill the same economic state-
ments but are nonfundamental are ruled out with no justification.

Our main point is that the situation changes dramatically if structural analysis
is conducted assuming that n > q. Precisely, as we see subsequently, fundamen-
talness is a nongeneric property for n = q, whereas it is generic for n > q. Thus
the question “why assume fundamentalness?”, which is legitimately asked when
n = q, is replaced by “why should we care about nonfundamentalness?” when
n > q .

An easy and effective illustration can be obtained assuming that q = 1 and that
the entries of K (L) = (K1(L)K2(L) . . . Kn(L))′ are polynomials whose degree
does not exceed s, so that K (L) is parameterized in Rn(s+1). In this case, if n =
q = 1, nonfundamentalness translates into the condition that at least one root of
K1(z) has modulus smaller than unity. Continuity of the roots of K1(z) implies
that if nonfundamentalness holds for a point κκκ in the parameter space it holds also
within a neighborhood of κκκ . Existence of points in the parameter space for which
nonfundamentalness holds is obvious; thus fundamentalness is nongeneric.

On the other hand, if n > q = 1, by Proposition F, nonfundamentalness implies
that the polynomials Kj (z) have a common root. As a consequence, their coef-
ficients must fulfill n − 1 equality constraints (see, e.g., van der Waerden, 1953,
p. 83). Fundamentalness is therefore generic.1

3.1.2. An Example of Structural Nonfundamentalness. The preceding discus-
sion has a forceful macroeconomic counterpart. Let us first adapt to our
framework the classic permanent-income consumption model, as used in
Fernández-Villaverde, Rubio-Ramirez, Sargent, and Watson (2007) to illustrate
nonfundamentalness. With minor changes in notation:

ct = ct−1 +σu(1− R−1)ut ,

yt − ct = −ct−1 +σu R−1ut ,
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where ct is permanent consumption, yt is labor income, ut is a white-noise pro-
cess, and R is a constant gross interest rate. The authors assume that the variable
yt − ct , call it st , is observed by the econometrician, whereas ct is not. From the
preceding equations we obtain

st − st−1 = σu R−1(1− RL)ut , (10)

so that, as R > 1, ut is not fundamental for st . Therefore the VAR for st (the best
the econometrician can do), that is just a univariate autoregression, would produce
an innovation that is not the structural shock ut . However, if the econometrician
observes ct , or yt , or the value of the consumer’s accumulated assets, then ut

becomes fundamental (Sect. II of Fernández-Villaverde et al., 2007). Precisely,
ut can be recovered using present and past values of st and another variable,
whereas present and past values of st alone are not sufficient.

This extremely simple example contains all the elements we need to motivate
fundamentalness of the structural shocks uuut for χχχnt .

1. As a rule nonfundamentalness arises when the econometrician’s information
set is smaller than the agent’s (see Hansen and Sargent, 1980, 1991; also the
learning-by-doing example in Lippi and Reichlin, 1993, can be reformulated
in terms of information sets). In the permanent-income model the agent ob-
serves permanent income whereas the econometrician does not.

2. However if any additional variable zt = b(L)ut is observed, then, by
Proposition F, ut is fundamental for the singular vector (st zt )

′, unless
b(R−1)= 0. For example, if zt = α(ut − βut−1), then β 
= R is sufficient
for fundamentalness of ut for (st zt )

′.
3. In our framework, the agent still observes ct and st , and the econometrician

observes

x1t = st + ξ1t ,

i.e., st plus measurement error. However, we also assume that x1t belongs
to a large data set xit = χi t + ξi t , which is observed by the econometrician.
The common components χi t can be recovered using our large-dimensional
factor-model techniques. Moreover, assuming for simplicity that q = 1, as in
the permanent-income example, the unique structural shock ut is fundamen-
tal for the vector of the common components, unless all the responses bi (L)
fulfill the extremely unlikely constraint bi (R−1) = 0.

In general, if the variables χi t are driven by q shocks, a macroeconomic model
that contains only q variables, suppose they are χj t , j = 1, . . . ,q, cannot en-
sure fundamentalness of uuut , the reason being possible superior information of the
agents with respect to present and past values of χj t , j = 1, . . . ,q. However, the
informational advantage of the agents disappears if the econometrician observes
a large set of additional macroeconomic variables. The generating process of χj t ,
j = q +1, . . . ,n, contains parameters that do not belong to the generating process
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of the first q and vice versa. Therefore, with all likelihood, their dynamic re-
sponses to uuut are sufficiently heterogeneous, with respect to the first q, to prevent
the rank reduction that is, by Proposition (F), equivalent to nonfundamentalness.

3.1.3. Fundamentalness in the Dynamic Factor Model. Based on the preced-
ing discussion we assume fundamentalness of uuut for χi t , i ∈ N.

PROPOSITION 1. Under Assumptions 1, 2, and 4, fundamentalness of uuut for
χi t , i ∈ N, is equivalent to left invertibility of N (L), i.e., to the existence of a
q × r filter G(L) such that G(L)N (L) = Iq . Moreover, under Assumptions 1–5,
uuut belongs to the space spanned by present and past values of xit , i = 1, . . . ,∞,
i.e., is fundamental for xit , i ∈ N.

Proof. If uuut is fundamental for χi t , i ∈ N, then it is fundamental for fff t ; i.e.,
there exists a q × r filter G(L) such that uuut = G(L) fff t = G(L)N (L)uuut . As uuut

is a white noise, G(L)N (L) = Iq . Now assume that G(L)N (L) = Iq . Assump-
tion 4 implies that A′

n An is full rank for n sufficiently large. Setting Sn(L) =
G(L)

(
A′

n An
)−1

A′
n , we have Sn(L)xxxnt = Sn(L)χχχnt + Sn(L)ξξξnt . Now

Sn(L)χχχnt = G(L)
(

A′
n An
)−1

A′
n An fff t = G(L) fff t = G(L)N (L)uuut = uuut .

Therefore uuut lies in the space spanned by present and past values of χχχnt . More-
over, Sn(L)ξξξnt = G(L)

(
A′

n An
)−1

A′
nξξξ t converges to zero in mean square by

Assumptions 4 and 5. n

The preceding proof also shows that fundamentalness of uuut for χi t , i ∈ N, is
equivalent to fundamentalness of uuut for χχχnt for n sufficiently large. In view of
Proposition 1, our fundamentalness assumption will be formulated as follows.

Assumption 7 (Fundamentalness). There exists a q × r one-sided filter G(L)
such that G(L)N (L) = Iq .

Obviously, if Assumption 7 holds for a particular static representation then it
holds for all static representations.

Starting with representation (5)–(6), if no restrictions hold among the coeffi-
cients of the matrices Cnj , we have Ñ (L) = (K (L)K (L)L . . . K (L)Ls)′, which
has left inverse (�(L)0q . . .0q). Thus, as we can obviously expect, no restric-
tions implies “maximum heterogeneity” of the responses to the structural shocks
and therefore fundamentalness. To see the effect of restrictions consider again the
example with q = 1 and χi t = ci0ut + ci1ut−1 (see Section 2). If the restriction
ci1 = aci0 holds we have r = 1 and N (L) = 1 + aL . In this extreme case As-
sumption 7, i.e., |a| < 1, is no less arbitrary as the fundamentalness assumption
in VAR analysis. When restrictions hold but r > q, Assumption 7 rules out lower
dimensional subsets of parameter space.

To introduce our last assumption, a VAR specification for fff t , let us consider
the orthogonal projection of fff t on the space spanned by its past values:
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fff t = Proj( fff t | fff t−1, fff t−2, . . . , )+wwwt , (11)

where wwwt is the r -dimensional vector of the residuals. Under our assumptions,
wwwt has rank q . Moreover, by the same argument used to prove Proposition 2 (see
Section 3.2), Assumption 7 implies that wwwt = Ruuut , where R is a maximum-rank
r ×q matrix.

To get some insight into the orthogonal projection (11), consider again repre-
sentation (5)–(6) with no restrictions. The static representation of the model has
r = q(s +1) and

fff t = (K (L)K (L)L . . . K (L)Ls)′uuut .

In particular, assuming that h ≤ s, fff t has the AR(1) representation⎛
⎜⎜⎜⎜⎜⎝

fff ∗
t

fff ∗
t−1

...

fff ∗
t−s

⎞
⎟⎟⎟⎟⎟⎠=

⎛
⎜⎜⎜⎜⎝

�1 �2 · · · �s−1 �s

Iq 0q · · · 0q 0q

0q Iq · · · 0q 0q

0q 0q · · · Iq 0q

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

fff ∗
t−1

fff ∗
t−2

...

fff ∗
t−s−1

⎞
⎟⎟⎟⎟⎟⎠+

⎛
⎜⎜⎜⎜⎜⎝

Iq

0q

...

0q

⎞
⎟⎟⎟⎟⎟⎠uuut ,

where �j = 0q if j > h. If h > s the order of the VAR is higher (but still finite).
Joining this observation with the usual approximation argument, a specification

of fff t as in (8), even with m very small, does not seem to cause a dramatic loss of
generality. In what follows we will adopt the VAR(1) specification that follows.

Assumption 7′ (Fundamentalness: VAR(1) specification). The r -dimensional
static factors fff t admit a VAR(1) representation

fff t = D fff t−1 + Ruuut , (12)

where D is r × r and R is a maximum-rank matrix of dimension r ×q.

Under (12),

χχχnt = Bn(L)uuut = An(I − DL)−1 Ruuut . (13)

Note that assuming (12) (or a higher order autoregressive equation) is independent
of the particular static factors we choose. For example, let gggt = G fff t , where G is
r ×r and invertible, be another basis in the space spanned by the χi t ’s. If fff t fulfills
(12), then gggt = [G DG−1]gggt−1 + [GR]uuut .

A convenient alternative formulation of Assumption 7′ is as follows.

Assumption 7′′. The r -dimensional static factors fff t admit a VAR(1) represen-
tation

fff t = D fff t−1 +εεεt , (14)

where D is r × r and εεεt is a white noise of rank q.
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3.2. Alternative Fundamental Representations

Our next result shows that if χχχnt = Cn(L)vvv t is a given fundamental representation,
then uuut can be obtained from vvv t by means of a static rotation.

PROPOSITION 2. Consider the common components of model (1)

χχχnt = Bn(L)uuut (15)

under Assumptions 1–7. If

χχχnt = Cn(L)vvv t (16)

for any n ∈ N, where the matrices Cn(L) are nested and vvv t is a q-dimensional
fundamental orthonormal white-noise vector, then representation (16) is related
to representation (15) by

uuut = Hvvv t ,

Bn(L) = Cn(L)H ′,

where H is a q ×q orthogonal matrix, i.e., H H ′ = Iq .

Proof. Projecting uuut entry by entry on the linear space V−
t spanned by present

and past values of vht , h = 1, . . . ,q, we get

uuut =
∞
∑
k=0

Hkvvv t−k +rrr t ,

where rrr t is orthogonal to vvv t−k , k ≥ 0. Now consider that V−
t and the space

spanned by present and past values of χi t , i ∈N, call it X−
t , are identical, because

the entries of χχχ t−k , k ≤ 0, belong to V−
t by equation (16), whereas the entries

of vvv t−k , k ≤ 0, belong to X−
t by assumption. The same is true for X−

t and the
space spanned by present and past values of uht , i = 1, . . . ,q, call it U−

t , so that
U−

t = V−
t . Hence rrr t = 0. Moreover, serial noncorrelation of the vht ’s implies that

∑∞
k=1 Hkvvv t−k is the projection of uuut on V−

t−1, which is zero because V−
t−1 = U−

t−1.
It follows that uuut = H0vvv t . Orthonormality of uuut implies that H0 is orthogonal, i.e.,
H0 H ′

0 = I . n

4. IDENTIFICATION AND ESTIMATION

4.1. Variables of Interest, Identification

Proposition 2 has the consequence that structural analysis in large-dimensional
factor models can be carried out along the same lines as standard SVAR analysis.
Precisely, the following procedure is carried out.

Step A. We select the variables of interest, the first m with no loss of generality.
Usually m = q.
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Step B. We determine a q-dimensional vector vvv t , which is fundamental for χi t ,
i ∈ N, and the corresponding representation χχχmt = Cm(L)vvv t .

Step C. We assume that economic theory implies a set of zero and sign restric-
tions that uniquely determines the structural impulse-response function
Bm(L) ( just identification), i.e., that economic theory identifies a rota-
tion H such that Bm(L) = Cm(L)H ′ and uuut = Hvvv t .

Step D. We construct a consistent estimator B̂m(L) that is consistent with rate

max
(
(1/

√
n), (1/

√
T )
)

.

Assuming that the variables of interest have been selected, let us concentrate
on step B. Denote by Mχ the r ×r diagonal matrix having μ

χ
j as entry ( j, j) and

by W χ the n × r matrix whose j th column is a unit-modulus eigenvector of �
χ
0

corresponding to μ
χ
j , so that

W χ ′�χ
0 = Mχ W χ ′. (17)

Then define

gggt = 1√
n

W χ ′χχχnt . (18)

The entries of gggt are the first r (nonnormalized) principal components of χχχnt .
Assumption 4(b) implies that for n large enough gggt is a basis for the space Xt ,
thus a vector of static factors. A fundamental representation for χχχmt is now easily
obtained as follows.

1. By Assumption 7′′, gggt = Dgggt−1 + εεεt , where, using �
g
k = E(gggtggg′

t−k) =
(1/n)W χ ′�χ

k W χ ,

D = �
g
1 (�

g
0 )−1 = 1

n
W χ ′�χ

1 W χ

(
Mχ

n

)−1

. (19)

2. Setting �ε = E(εεεtεεε
′
t ), we have

�ε = �
g
0 − D�

g
0 D′ = Mχ

n
− D

Mχ

n
D′. (20)

3. Now let με
j , j = 1, . . . ,q, be the j th eigenvalue of �ε , in decreasing order,

M the q ×q diagonal matrix with
√

με
j as its ( j, j) entry, Kj a unit-modulus

column eigenvector corresponding to με
j , and K = (K1 K2 . . . Kq). Defining

vvv t =M−1 K ′εεεt and K = KM,

χχχmt = Qm(I − DL)−1Kvvv t =
∞
∑
h=0

Qm DhKvvv t−h = Cm(L)vvv t , (21)

where, using (17) and defining Im = (Im 0m,n−m)′ (the n × m matrix with
zero on the last n −m rows and Im on the first m rows),

Qm = E(χχχmtggg
′
t )[E(gggtggg

′
t )]

−1 = √
nI ′

m W χ . (22)
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Note that gggt , Qm , D,M, K, and vvv t all depend on n. Note also that vvv t is funda-
mental for gggt , i.e., for all the χ ’s, not necessarily for χχχmt . In other words, vvv t can
be linearly recovered using contemporaneous and past values of all the χ ’s, not
necessarily the first m of the χ ’s (see Section 5.3 on this point).

The proof of our consistency result will need that the first q eigenvalues of
the matrix �ε be distinct and asymptotically bounded away from zero (like the
eigenvalues of �

χ
0 /n; see Assumption 4(b)).

Assumption 7. There exist constants di and di , i = 1, . . . ,q, such that di >
di+1, i = 1, . . . ,q −1, and

0 < di < liminf
n→∞ με

i ≤ limsup
n→∞

με
i < di .

Let us now briefly discuss step C. The assumption of just identification can be
formalized as follows.

1. Start with any representation χχχmt = S1(I − S2L)−1S3ssst = S(L)ssst , where ssst

is fundamental for the χ ’s.
2. The restrictions implied by economic theory determine a rule, i.e., a function

F , associating an orthogonal q × q matrix with any triple S1, S2, S3, such
that

Bm(L) = S(L)F(S1, S2, S3)
′, uuut = F(S1, S2, S3)ssst .

In particular, setting H = F(Qm, D,K), we have Bm(L) = Cm(L)H ′,
uuut = Hvvv t .

4.2. Estimation

Let us start with some definitions and notation.

1. �̂x
k = 1

T ∑T
h=k+1 xxxntxxx ′

nt−k ;
2. μ̂x

j is the j th eigenvalue of �̂x
0 ;

3. M̂x is the r × r diagonal matrix with μ̂x
j as its entry ( j, j);

4. Ŵ x is the n × r matrix with the corresponding normalized eigenvectors on
the columns.

The main motivation for using the static factors gggt , as defined in (18), is that gggt

can be approximated in probability by the sample principal components of xxxnt :

ĝggt = 1√
n

Ŵ x ′
xxxt .

However, our consistency proof is not based on this result. Rather, we will directly
deal with Q̂m , D̂, and K̂, which are defined like Qm , D, and K, respectively, with
�

χ
k , Mχ , and W χ replaced by �̂x

k , M̂x , and Ŵ x , respectively. Therefore we can
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define Ĉ(L) = Q̂m(I − D̂L)−1K̂, Ĥ = F(Q̂m, D̂,K̂), and the estimated impulse-
response function B̂m(L) = Ĉm(L)Ĥ ′.

Let us now state our last assumption and the consistency result.

Assumption 8. Denote by γ x
k,i j and γ̂ x

k,i j the entries of �x
k and �̂x

k , respectively.
There exists a positive real ρ such that

T E
[
(γ̂ x

k,i j −γ x
k,i j )

2
]

< ρ,

for k = 0,1 and for all positive integers T, i , and j .

Given i and j , convergence ofAk,i j = T E
[
(γ̂k,i j −γk,i j )

2
]

for T → ∞ can be
obtained under mild conditions on the autocovariances and fourth cumulants of
the x’s.2 As a specification of such conditions would not be useful here, we simply
assume convergence ofAk,i j , which obviously implies that for some positive real
numbers ρk,i j ,

T E
[
(γ̂k,i j −γk,i j )

2
]

< ρk,i j ,

for all T . Assumption 9 requires the additional condition that the real numbers
ρk,i j have a common upper bound ρ.

PROPOSITION 3. Denote by bk,i j the entries of the kth lag matrix coefficient
of Bm(L). Under Assumptions 1–9, for all k ≥ 0, i = 1, . . . ,m, j = 1, . . . ,q,

|bk,i j − b̂k,i j | = Op

(
max

(
1√
n
,

1√
T

))
. (23)

Proof. See the Appendix. n

In Section 5 we consider a case of partial identification, in which m = q = 3.
The restrictions allow identification of the third column of B3(L), call it B3,3(L),
i.e., the entries corresponding to the third common shock, but not of the whole
B3(L). Quite obviously, taking as F any member of the infinite set of functions
fulfilling the restrictions, (23) can be applied to B3,3(L).

In conclusion, (23) applies with just or partial identification. Overidentification
is left to further research.

5. AN EMPIRICAL APPLICATION

We illustrate our structural factor model by revisiting an influential work in SVAR
literature, namely, the three-dimensional SVAR estimated in King et al. (1991).
The variables are U.S. per capita output, investment, and consumption, partial
identification of the permanent shock and corresponding impulse-response func-
tions being achieved by imposing long-run neutrality of the remaining shocks on
output.
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Our exercise is based on a panel of macroeconomic series including the three
series used by King et al. (1991) with the same sampling period. As we see sub-
sequently, three common shocks, i.e., q = 3, are consistent with our data set.
Moreover, upon estimation of the common components, the variance of the id-
iosyncratic components of output and investment accounts for about 15% of their
total variance, the fraction falling to 10% for consumption. Thus, using the same
identification restrictions applied in King et al. (1991) allows a sensible and in-
teresting comparison between our impulse-response functions and those found in
King et al. (1991).

5.1. The Data

The data set is quarterly and is based on the FRED II database, Federal Re-
serve Bank of St. Louis, and Datastream. The original data of King et al. (1991)
are available on Mark Watson’s home page (www.princeton.edu/mwatson/public.
html). We collected 89 series, including data from NIPA (National Income and
Product Accounts) tables, price indices, productivity, industrial production in-
dices, interest rates, money, financial data, employment, labor costs, shipments,
and survey data. A larger n would be desirable, but we were constrained by both
the scarcity of series starting from 1949 (as in King et al., 1991) and the need
to balance data of different groups. To use Datastream series we were forced to
start from 1950:1 instead of 1949:1, so that the sampling period is 1950:1–1988:4.
Monthly data are taken in quarterly averages. All data have been transformed to
reach stationarity according to the ADF(4) test at the 5% level. Finally, the data
were taken in deviation from the mean as required by our formulas and divided by
the standard deviation to make results independent of the units of measurement.
A complete description of each series and the related transformations is available
on request.

5.2. The Choice of r and the Number of Common Shocks

As a first step we have to set r and q. Let us begin with r . We computed the
six consistent criteria suggested by Bai and Ng (2002) with r = 1, . . . ,30. The
criteria I Cp1 and I Cp3 do not work, because they do not reach a minimum for
r < 30; I Cp2 has a minimum for r = 12. To compute PCp1, PCp2, and PCp3
we estimated σ̂ 2 with r = 15 because with r = 30 none of the criteria reaches a
minimum for r < 30. The criterion PCp1 gives r = 15, PCp2 gives r = 14, and
PCp3 gives r = 20. Subsequently we report results for r = 12, r = 15, and r = 18,
with more detailed statistics for r = 15. With r = 15, the common factors explain
on average 79.7% of the total variance.

Regarding the variables of interest, the common factors explain 85.6% of the
total variance for output, 84.4% for investment, and 89.4% for consumption. The
Bai and Ng estimators were criticized for easily overestimating the number of
static factors when the idiosyncratic terms are strongly correlated. As a robustness
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check we therefore repeated our exercise with r = 9. Result are available upon
request. The main conclusions do not change.

Regarding q, the criterion proposed by Hallin and Liška (2007), non–log crite-
rion I C1, for different choices of the parameters and the penalty functions, pro-
duces values of q within the range 2–5. Thus the value q = 3, necessary to carry
out the comparison between our results and those of King et al. (1991), does not
conflict with available evidence.

5.3. Fundamentalness

We are interested in the impulse-response functions of per capita output, invest-
ment, and consumption, i.e., with no loss of generality, in the matrix C3(L)H ′.
The question here is that although Cn(L), which is n × 3, is fundamental by
assumption for n sufficiently large, the 3 × 3 matrix C3(L) is not necessarily
fundamental.3 In other words, the common shocks can be recovered using con-
temporaneous and past values of the n common components, but we do not know
whether the first three are sufficient.

Figure 1 plots the moduli of the two smallest roots of det(C3(L)) as a function
of r , for r varying over the range 3–30. Note that for r = 3 all the roots must be
larger than unity in modulus, because they stem from a three-variate VAR. This
is in fact the case for r = 3 and r = 4, but for r ≥ 5 the smallest root declines

FIGURE 1. The moduli of the first and the second smallest roots as functions of r .
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FIGURE 2. Frequency distribution of the modulus of the smallest root.

and lies always within the unit circle. For r ≥ 22 even the second smallest root
becomes smaller than unity in modulus.

Figure 2 reports the distribution of the modulus of the smallest root for r = 15,
across 1,000 replications for a standard block bootstrap on the x’s; the length of
the blocks was chosen to be equal to 22 quarters, large enough to retain the cycli-
cal information in the series. The mean value is 0.66. The percentage of estimated
values larger than one in modulus is 14.5.

Bootstrapping results strongly favor nonfundamentalness of the structural
impulse-response function C3(L)H ′. This implies that C3(L)H ′ cannot be ob-
tained by estimating a VAR for the three-dimensional vector (χ1tχ2tχ3t ). As we
argue in Section 5.4, nonfundamentalness of C3(L) explains some important dif-
ferences between our structural impulse-response function and that of King et al.
(1991).

5.4. Impulse-Response Functions and Variance Decomposition

Coming to the impulse-response functions, as anticipated earlier we impose long-
run neutrality of two shocks on per capita output, as in King et al. (1991). This is
sufficient to reach a partial identification, i.e., to identify the long-run shock and
its response functions on the three variables.

Figure 3 shows the response functions of per capita output for r = 12,15,18.
The general shape does not change that much with r . The productivity shock has
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FIGURE 3. The impulse-response function of the long-run shock on output for r =
12,15,18.

positive effects declining with time on the output level. The response function
reach its maximum value after 6–8 quarters with only negligible effects after two
years. It should be observed that this simple distributed-lag shape is different from
the one in King et al. (1991), where there is a sharp decline during the second and
the third years, which drives the overall effect back to the impact value.

In Figure 4 we concentrate on the case r = 15. We report the response functions
with 90% confidence bands for output, consumption, and investment, respectively
(confidence bands are obtained by means of the block bootstrap technique men-
tioned before). The shapes are similar for the three variables, with a positive im-
pact effect followed by important, though declining, positive lagged effects.

Table 1 reports the fraction of the forecast-error variance attributed to the per-
manent shock for output, consumption, and investment at different horizons. For
ease of comparison we report the corresponding numbers obtained with the (re-
stricted) VAR model and reported in Table 4 of King et al. (1991).

At horizon 1, our estimates are smaller. The difference is important for con-
sumption: only 0.30 according to the factor model as against 0.88 according to
the King et al. (1991) model. But at horizons larger than or equal to 8 quarters our
estimates are greater, the difference being very large for investment: at horizon
20 (5 years) the permanent shock explains 46% of its forecast-error variance
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FIGURE 4. The plots represent the impulse-response functions of the long-run shock on
output (top), consumption (middle), and investment (bottom) for r = 15.

according to King et al. (1991) as against 86% with the factor model. Thus a typ-
ical puzzle of the VAR literature, the finding that technological and other supply
shocks explain a small fraction of investment variations even in the medium-long
run, seems to find a solution in our factor model.

As the variance of the idiosyncratic components of output, investment, and
consumption does not exceed 15% of their total variance (see Section 5.2), non-
fundamentalness of the structural shocks for (χ1t χ2t χ3t ), as opposed to funda-
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TABLE 1. Fraction of the forecast-error variance due to the long-run shock

Dynamic factor model King et al. (1991)

Horizon Output Consumption Investment Output Consumption Investment

1 0.37 0.30 0.07 0.45 0.88 0.12
(0.20) (0.26) (0.16) (0.28) (0.21) (0.18)

4 0.57 0.77 0.42 0.58 0.89 0.31
(0.18) (0.18) (0.17) (0.27) (0.19) (0.23)

8 0.78 0.87 0.72 0.68 0.83 0.40
(0.13) (0.13) (0.13) (0.22) (0.18) (0.18)

12 0.86 0.90 0.80 0.73 0.83 0.43
(0.09) (0.11) (0.11) (0.19) (0.18) (0.17)

16 0.89 0.91 0.83 0.77 0.85 0.44
(0.08) (0.11) (0.10) (0.17) (0.16) (0.16)

20 0.91 0.92 0.86 0.79 0.87 0.46
(0.07) (0.12) (0.09) (0.16) (0.15) (0.16)

mentalness of the King et al. (1991) shocks for (x1t x2t x3t ), appears to play a
major role in explaining such different dynamic profiles.

6. CONCLUSIONS

We have argued that dynamic factor models are suitable for structural macroeco-
nomic modeling and provide an interesting alternative to structural VARs.

As we have shown, a large panel with a small number of common shocks allows
the econometrician to recover the structural shocks under a reasonable assumption
on the heterogeneity of the impulse-response functions. Thus the fundamentalness
problem, which has no solution in the VAR framework, where m shocks must be
recovered using present and past values of m variables, becomes tractable when
the number of variables exceeds the number of shocks.

Our empirical application revisits a SVAR estimated in King et al. (1991) for
U.S. output, investment, and consumption. Using a large panel including such
series, we estimate a factor model with three common shocks and apply the King
et al. (1991) identification scheme. Two important outcomes are as follows.

1. The three-dimensional impulse-response function corresponding to output,
investment, and consumption, implicit in our estimated factor model, is non-
fundamental, an important difference with respect to the VAR estimated in
King et al. (1991).

2. Comparing responses of the permanent shock in King et al. (1991) and the
factor model, we find that long-run effects are much more important in the
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second. In particular, the long-run response of investment in the factor model
is almost two times the one estimated in King et al. (1991).

NOTES

1. For a general result see Anderson and Deistler (2008). The proof of their Proposition 1 can be
adapted to show that for a generic rational K (L), with given maxima for the orders of numerator and
denominator polynomials, if n > q ≥ 1, then rank(K (z)) = q for all complex numbers z (no matter
whether inside, on, or outside the unit circle).

2. Anderson (1971, Sect. 8.3), discusses the univariate case; see, in particular, Theorem 8.3.3, in
which convergence is obtained under summability of the squared second moments and fourth cumu-
lants. Analogous conditions can be obtained in the multivariate case (for formulas linking the second
moments of estimated covariances to second and fourth cumulants of the x’s, see Hannan, 1970,
pp. 209–211).

3. Note that fundamentalness of C3(L) and of C3(L)H ′ are equivalent.
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APPENDIX: Proof of Proposition 3

If A is a symmetric matrix we denote by μj (A) the j th eigenvalue of A in decreasing

order. Given a matrix B, ‖B‖ denotes the spectral norm of B; thus ‖B‖ =√μ1(B B′),
which is the Euclidean norm if B is a row matrix. We will make use of the Weyl inequality
(see, e.g., Stewart and Sun, 1990, Cor. 4.10, p. 203): If A and B are two s × s symmetric
matrices, then

|μj (A + B)−μj (A)| ≤
√

μ1(B2) = ‖B‖, j = 1, . . . ,s. (A.1)



OPENING THE BLACK BOX 1343

PROPOSITION P.

(i) ‖Q̂m − Qm Ĵr ‖ = Op

(
max
(
(1/

√
n), (1/

√
T )
))

,

(ii) ‖D̂k − Ĵr Dk Ĵr ‖ = Op

(
max
(
(1/n), (1/

√
T )
))

, for all k ≥ 0,

(iii) ‖K̂− ĴrKĴq‖ = Op

(
max
(
(1/n), (1/

√
T )
))

,

where Ĵr and Ĵq , are diagonal matrices, r × r and q × q, respectively, depending on n
and T , whose diagonal entries are equal either to 1 or −1.

Roughly speaking, Proposition P states that Q̂m , D̂k , K̂ approximate Qm , Dk , K, re-
spectively. To see why we need Ĵr and Ĵq let us observe that the entries of gggt and ĝggt , and
also the columns of K and K̂ , all result from taking eigenvectors and are therefore iden-
tified up to a sign (by Assumptions 4(b) and 8, no multiple eigenvalues can occur). Thus,
e.g., Q̂m converges to Qm but only if we choose the right signs.

As a consequence, the raw impulse-response functions, i.e., the rows of Cm(L) as de-
fined in (21), and the entries of vvv t are identified up to a sign:

χmt = Cm(L)vvv t =
[

Qm Ĵr

](
I −
[
Ĵr DĴr

]
L
)−1 [ĴrKĴq

][
Ĵqvvv t

]

= Q̌m(I − ĎL)−1Ǩv̌vv t = Čm(L)v̌vv t ,

with Q̌m = Qm Ĵr , Ď = Ĵr DĴr , K̂= JrKĴq , v̌vv t = Ĵqvvv t , Čm(L) = Cm(L)Ĵq .

On the other hand, χχχmt = Čm(L)v̌vv t is obviously a fundamental representation. There-
fore, by assumption, application of the zero and sign restrictions to χχχmt = Čm(L)v̌vv t and to
χχχmt = Cm(L)vvv t gives the same result; i.e., setting Ȟ = F(Q̌m , Ď,Ǩ), we have

Bm(L) = Cm(L)H ′ = Čm(L)Ȟ ′; (A.2)

see the discussion in Section 4.1 (step C at the beginning and point 2 at the end).
Last, Proposition P implies that

‖Ĥ − Ȟ‖ = ‖F(Q̂m , D̂,K̂)− F(Q̌m , Ď,Ǩ)‖ = Op

(
max

(
1

n
,

1√
T

))
,

this being a standard result under reasonable regularity assumptions for F (the usual identi-
fication schemes, with zero first-impact or long-run restrictions, produce functions F with
elementary analytic entries). This result, combined with (A.2), implies Proposition 3.

The proof of Proposition P requires some intermediate results.

LEMMA 1. Denoting by Im the n ×m matrix having the identity matrix Im in the first
m rows and zero elsewhere (see Section 4.1),

(i) 1
n ‖�̂x

k −�x
k ‖ = Op

(
1√
T

)
, k = 0,1.

(ii) 1√
n
‖I ′

m

(
�̂x

0 −�x
0

)
‖ = Op

(
1√
T

)
for any (fixed) m.

(iii) 1
n ‖�̂x

k −�
χ
k ‖ = Op

(
max
(
(1/n), (1/

√
T )
))

, k = 0,1.

(iv) 1√
n
‖I ′

m

(
�̂x

0 −�
χ
0

)
‖ = Op

(
max
(
(1/

√
n), (1/

√
T )
))

for any (fixed) m.
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Proof. We have

μ1

(
(�̂x

k −�x
k )(�̂x

k −�x
k )′
)

≤ trace
(
(�̂x

k −�x
k )(�̂x

k −�x
k )′
)

=
n

∑
i=1

n

∑
j=1

(γ̂ x
k,i j −γ x

k,i j )
2.

By Assumption 9,

E

[
n

∑
i=1

n

∑
j=1

(
γ̂ x

k,i j −γ x
k,i j

)2
]

<
n2ρ

T
,

for all positive integers T and k = 0,1. Statement (i) follows using Chebychev’s inequality.
Similarly, we have

trace

(
I ′

m

(
�̂x

0 −�x
0

)2Im

)
=

m

∑
i=1

n

∑
j=1

(γ̂ x
0,i j −γ x

0,i j )
2 = Op

( n

T

)
.

Statement (ii) follows. As for (iii), observe that �̂x
k −�

χ
k = �̂x

k −�x
k +�

ξ
k by Assumption 3,

so that 1
n

∥∥∥�̂x
k −�

χ
k

∥∥∥ ≤ 1
n

∥∥∥�̂x
k −�x

k

∥∥∥+ 1
n

∥∥∥�ξ
k

∥∥∥. The first term on the right-hand side is

Op

(
1√
T

)
by statement (i), whereas the second is bounded by (1/n)μ

ξ
1, which is O

(
1
n

)
by Assumption 5. Statement (iv) is obtained in a similar way, using (ii) instead of (i) and

the upper bound (1/
√

n)μ
ξ
1 instead of (1/n)μ

ξ
1. n

LEMMA 2.

(i)
(
μ̂x

j /n
)

−
(
μ

χ
j /n
)

= Op

(
max
(
(1/n), (1/

√
T )
))

for any j .

(ii) There exists n̄ such that, for all n ≥ n̄, ( Mχ

n ) is invertible.

(iii) For any n ≥ n̄ and η > 0, there exists τ(η,n) such that, for T ≥ τ(η,n),
(

M̂x

n

)
is invertible with probability larger than 1 − η; moreover, if

(
M̂x

n

)−1
exists for

n = n∗ and T = T ∗, it exists for all n > n∗ and T > T ∗.

(iv)
∥∥∥Mχ

n

∥∥∥ and

∥∥∥∥(Mχ

n

)−1
∥∥∥∥, which depend on n, are O(1);

∥∥∥ M̂x

n

∥∥∥ and

∥∥∥∥( M̂x

n

)−1
∥∥∥∥,

which depend on n and T , are Op(1).

Proof. Setting A = �
χ
0 , B = �̂x

0 − �
χ
0 and applying (A.1) we get 1

n

∣∣∣μ̂x
j −μ

χ
j

∣∣∣ ≤
1
n

∥∥∥�̂x
0 −�

χ
0

∥∥∥, which is Op

(
max
(
(1/n), (1/

√
T )
))

by Lemma 1(iii). As for (ii), by As-

sumption 4(b) there exists n̄ such that, for n ≥ n̄, μ
χ
r

n > cr > 0, so that det
(

Mχ

n

)

= 0.

Turning to (iii), setting A = �x
0 , B = �̂x

0 − �x
0 and applying Weyl inequality we get

1
n

∣∣μ̂x
r −μx

r
∣∣≤ 1

n

∥∥∥�̂x
0 −�x

0

∥∥∥, which is Op

(
1√
T

)
by Lemma 1(i). Now, μx

r ≥ μ
χ
r , because

�
ξ
0 is positive semidefinite, so that, for n ≥ n̄, μx

r
n > cr > 0. Hence det

(
M̂x

n

)
is bounded

away from zero in probability as T → ∞. The last part of statement (iii) follows from the
fact that the rank of the observation matrix xxxT

n , and therefore the rank of �̂x
0 , is nonde-

creasing in n and T . As for (iv), observe that
∥∥∥Mχ

n

∥∥∥= μ
χ
1

n and

∥∥∥∥(Mχ

n

)−1
∥∥∥∥= n

μ
χ
r

, which
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are asymptotically bounded by c1 and 1
cr

by Assumption 4(b). Boundedness in probability

of
∥∥∥ M̂x

n

∥∥∥ and

∥∥∥∥( M̂x

n

)−1
∥∥∥∥ then follow from statement (i). n

LEMMA 3.

(i) ‖Wχ ′Ŵ x (M̂x/n)− (Mχ/n)Wχ ′Ŵ x‖ = Op

(
max
(
(1/n), (1/

√
T )
))

.

(ii) ‖Ŵ x ′Wχ Wχ ′Ŵ x − Ir ‖ = Op

(
max
(
(1/n), (1/

√
T )
))

.

(iii) There exist diagonal r × r matrices Ĵr , depending on n and T , whose diagonal
entries are equal to either 1 or −1, such that ‖Ŵ x ′Wχ − Ĵr ‖ = Op (max((1/n),

(1/
√

T )
))

.

Proof. We have
∥∥∥Wχ ′Ŵ x (M̂x/n)− (Mχ/n)Wχ ′Ŵ x

∥∥∥=∥∥∥(1/n)Wχ ′(�̂x
0 −�

χ
0

)
Ŵ x
∥∥∥≤

1
n

∥∥∥�̂x
0 −�

χ
0

∥∥∥. Statement (i) then follows from Lemma 1(iii). As for (ii), set

a = Ŵ x ′Wχ Wχ ′Ŵ x = Ŵ x ′Wχ Wχ ′Ŵ x M̂x

n

(
M̂x

n

)−1
,

b = Ŵ x ′Wχ Mχ

n Wχ ′Ŵ x
(

M̂x

n

)−1 = 1
n Ŵ x ′�χ

0 Ŵ x
(

M̂x

n

)−1
,

c = 1
n Ŵ x ′�̂x

0 Ŵ x
(

M̂x

n

)−1 = M̂x

n

(
M̂x

n

)−1 = Ir .

We have ‖a − c‖ ≤ ‖a − b‖+‖b − c‖. Both terms are Op

(
max
(
(1/n), (1/

√
T )
))

, the

first by statement (i), the second by Lemma 1(iii). Turning to (iii), let us denote by ŵx
j and

w
χ
j the j th column of Ŵ x and Wχ , respectively. By taking a single entry of the matrix on

the left-hand side of statement (i) we get

1

n

(
μ̂x

j −μ
χ
i

)
w

χ ′
j ŵx

i = Op

(
max

(
1

n
,

1√
T

))
,

i ≤ r , j ≤ r . Now, for j 
= i , 1
n

(
μ̂x

j −μ
χ
i

)
is bounded away from zero in probabil-

ity, because μ
χ
i and μ

χ
j are asymptotically distinct by Assumption 4(b), whereas μ̂x

j

tends to μ
χ
j in probability by Lemma 2(i). Hence the off-diagonal terms of Ŵ x ′Wχ are

Op

(
max
(
(1/n), (1/

√
T )
))

. Turning to the diagonal terms, let us first observe that ŵx ′
i

Wχ Wχ ′ŵx
i = 1+ Op

(
max
(
(1/n), (1/

√
T )
))

by statement (ii). But

ŵx ′
i Wχ Wχ ′ŵx

i = (ŵx ′
i w

χ
i

)2 +
r

∑
j=1
j 
=i

(
ŵx ′

i w
χ
j

)2 = (ŵx ′
i w

χ
i

)2 + Op

(
max

(
1

n
,

1√
T

))
.

Hence
(
1−|ŵx ′

i w
χ
i |)(1+|ŵx ′

i w
χ
i |)=Op

(
max
(
(1/n), (1/

√
T )
))

, so that 1−|ŵx ′
i w

χ
i | =

Op

(
max
(
(1/n), (1/

√
T )
))

. n

Proof of Proposition P(i). Set
a = Qm Ĵr = √

nI ′
m Wχ Ĵr , where Ĵr has been defined in Lemma 3(iii),

b = √
nI ′

m Wχ Wχ ′Ŵ x = √
nI ′

m Wχ Wχ ′Ŵ x M̂x

n

(
M̂x

n

)−1
,
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c = √
nI ′

m Wχ Mχ

n Wχ ′Ŵ x
(

M̂x

n

)−1 = 1√
n
I ′

m�
χ
0 Ŵ x

(
M̂x

n

)−1
,

d = 1√
n
I ′

m �̂x
0 Ŵ x

(
M̂x

n

)−1 = √
nI ′

m Ŵ x = Q̂m .

Let us begin by observing that
∥∥I ′

m Wχ
(

Mχ
)1/2 ∥∥ = ‖I ′

m�
χ
0 Im‖1/2 depends on the en-

tries of the upper left m ×m submatrix of �
χ
0 and therefore does not depend on n. Denoting

such fixed quantity by ζ , we have

‖√nI ′
m Wχ‖ =

∣∣∣∣∣
∣∣∣∣∣√nI ′

m Wχ
(

Mχ

n

)1/2(Mχ

n

)−1/2
∣∣∣∣∣
∣∣∣∣∣≤ ζ

∣∣∣∣∣
∣∣∣∣∣
(

Mχ

n

)−1/2
∣∣∣∣∣
∣∣∣∣∣ ,

which is O(1) by Lemma 2(iv). Hence ‖√nI ′
m Wχ‖ is O(1), so that we can apply Lemma

3(iii) to get ‖a − b‖ = Op

(
max
(
(1/n), (1/

√
T )
))

and Lemma 3(i) to get ‖b − c‖ =
Op

(
max
(
(1/n), (1/

√
T )
))

. Finally, Lemma 1(iv) ensures that ‖c − d‖ = Op

(
max(

(1/
√

n), (1/
√

T )
))

. n

Proof of Proposition P(ii). We have D̂ = (1/n)Ŵ x ′�̂x
1 Ŵ x

(
M̂x

n

)−1
(see (19)) and

Ĵr DĴr = (1/n)Ĵr Wχ ′�χ Wχ
(

Mχ

n

)−1 Ĵr = (1/n)Ĵr Wχ ′�χ
1 Wχ Ĵr

(
Mχ

n

)−1
, where

Ĵr has been defined in Lemma 3(iii). Set

a = D̂ = 1

n
Ŵ x ′�̂x

1 Ŵ x

(
M̂x

n

)−1

,

b = 1

n
Ŵ x ′�χ

1 Ŵ x

(
M̂x

n

)−1

= 1

n
Ŵ x ′Wχ Wχ ′�χ

1 Wχ Wχ ′Ŵ x

(
M̂x

n

)−1

,

c = 1

n
Ĵr Wχ ′�χ

1 Wχ Ĵr

(
M̂x

n

)−1

,

d = Ĵr DĴr = 1

n
Ĵr Wχ ′�χ

1 Wχ
(

Mχ

n

)−1
Ĵr = 1

n
Ĵr Wχ ′�χ

1 Wχ Ĵr

(
Mχ

n

)−1
.

By Lemma 1(i) ‖a − b‖ is Op

(
1√
T

)
; by Lemma 3(iii) ‖b − c‖ is Op

(
max
(
(1/n),

(1/
√

T )
))

; by Lemma 2(i) ‖c − d‖ is Op

(
max
(
(1/n), (1/

√
T )
))

. This proves the

statement for k = 1. Observing that Ĵ 2
r = Ir , the extension to the case k > 1 is straightfor-

ward. n

LEMMA 4.

(i) ‖�̂ε − Ĵr �εĴr ‖ = Op

(
max
(
(1/n), (1/

√
T )
))

, where Ĵr has been defined in

Lemma 3(iii).

(ii) μ̂ε
j −με

j = Op

(
max
(
(1/n), (1/

√
T )
))

j = 1, . . . ,r .

(iii) ‖M̂−M‖ = Op

(
max
(
(1/n), (1/

√
T )
))

.

(iv) M−1 exists for n sufficiently large, and its norm is O(1) as n → ∞; moreover,

‖M̂M−1 − Iq‖ = Op

(
max
(
(1/n), (1/

√
T )
))

.
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(v) There exist diagonal q × q matrices Ĵq , depending on n and T , whose diagonal

entries are either equal to 1 or −1, such that ‖K ′Ĵr K̂ − Ĵq‖ = Op

(
max
(
(1/n),

(1/
√

T )
))

.

Proof. We have �̂ε = (M̂x/n)− D̂(M̂x/n)D̂′ (see (20)) and Ĵr �
εĴr = Ĵr

(
(Mχ/n)−

D(Mχ/n)D′) Ĵr = (Mχ/n)− Ĵr DĴr (Mχ/n)Ĵr D′Ĵr . Statement (i) then follows from

Lemma 1(i) and Proposition P(ii). As for (ii), notice first that the eigenvalues of Ĵr �
εĴr

are identical to those of �ε . Hence setting A = �ε , B = �̂ε − Ĵr �
εĴr and applying (A.1)

we get
∣∣∣μ̂ε

j −με
j

∣∣∣≤ ∥∥∥�̂ε − Ĵr �εĴr

∥∥∥. Statement (ii) then follows from (i). Turning to (iii),

we have M̂2 −M2 =
(
M̂−M

)(
M̂+M

)
. As the second factor is asymptotically

bounded away from zero by Assumption 8, the result follows from statement (ii). State-
ment (iv) follows from the fact that με

q > dq > 0 for n sufficiently large by Assumption
8 and statement (iii). Finally, result (v) is obtained following the lines of Lemma 3, with
Assumption 8 ensuring asymptotically distinct eigenvalues instead of Assumption 4(b). n

Proof of Proposition P(iii). Let us denote by N̂ the diagonal matrix having on the
diagonal the smallest r − q eigenvalues of �̂ε and by K̂⊥ the r × (r − q) matrix having
on the columns the corresponding eigenvectors, so that �̂ε = K̂M̂2 K̂ ′ + K̂⊥N̂ K̂ ′⊥. As

με
j = 0 for j > q by Lemma 4(ii), the second term is Op

(
max
(
(1/n), (1/

√
T )
))

. Hence

by Lemma 4(i), ‖K̂M̂2 K̂ ′ − Ĵr KM2 K ′Ĵr ‖ = Op

(
max
(
(1/n), (1/

√
T )
))

, where Ĵr

has been defined in Lemma 3(iii). Postmultiplying by K̂M−1, which is O(1) by Lemma
4(iv), we get

‖K̂M̂2M−1 − Ĵr KM2 K ′Ĵr K̂M−1‖ = Op

(
max

(
1

n
,

1√
T

))
.

The desired result is obtained by applying Lemmas 4(iv) and (v) and observing that
ĴqM−1 =M−1Ĵq , where Ĵq has been defined in Lemma 4(v). n


